Z transform.pdf
Short Description
Download Z transform.pdf...
Description
EE480.3 Digital Control Systems Part 2. z-transform Kunio Takaya Electrical and Computer Engineering University of Saskatchewan January 14, 2008
** Go to full-screen mode now by hitting CTRL-L
1
Contents 1 z-Transform
3
2 z-transform of simple functions
3
3 Properties of the z-transform
8
4 Continue to discrete time systems
2
23
1
z-Transform
The definition of the z-Transform is X(z) =
+∞ X
x(k)z −k .
k=−∞
where, x(k) is a discrete time sequence (sampled data). When x(k) is defined for k ≥ 0, i.e. causal, one sided z-transform is given by X(z) =
+∞ X
x(k)z −k .
k=0
The variable z is complex, so is X(z).
3
2
z-transform of simple functions
δ function 1 δ(k) = 0 Z[δ(k)] =
if k = 0 otherwise
+∞ X
δ(k)z −k = 1
k=0
unit step function 1 u(k) = 0 Z[u(k)] =
+∞ X
if k ≥ 0 if k < 0
u(k)z −k = z 0 + z −1 + z −2 + +z −3 · · ·
k=0
4
Since the sum of n terms of a geometric progression is given by the formula, n−1 X 1 − rn k ar = a 1−r k=0
1 1 − z −n Z[u(k)] = lim = . −1 n→∞ 1 − z −1 1−z This z-trnasform is valid only for jzj < 1, in the region of convergence in the z-plane. Decaying exponential function f (t) = e−at t ≥ 0, sampled with a sampling period T ⇒ f (k) = e−aT k , k ≥ 0 5
Z[f (k)]
=
∞ X
e−aT k z −k =
k=0
=
∞ X
(e−aT z −1 )k
k=0
1 1 − e−aT z −1
The region of convergence is e−aT < jzj. If a > 0, the system is stable and the pole at z = e−aT < 1 is inside the unit circle. If a < 0, the system is unstable and the pole at z = e−aT > 1 is outside the unit circle. Damped cosine wave f (k) = e−aT k cos ωT k, k ≥ 0
Z[f (k)]
=
∞ X
e−aT k cos ωT k z −k
k=0
6
= = = =
∞
∞
k=0
k=0
1 X −aT +jωT −1 k 1 X −aT −jωT −1 k (e z ) + (e z ) 2 2 1 1 1 1 + 2 1 − e−aT +jωT z −1 2 1 − e−aT −jωT z −1 1 − e−aT cos ωT z −1 1 − 2e−aT cos ωT z −1 + e−2aT z −2 z 2 − e−aT cos ωT z z 2 − 2e−aT cos ωT z + e−2aT
The region of convergence is e−aT < jzj. • Exercise: Find the z-transform of a discrete sequence f (k) = 2−k
7
for k ≥ 0
3
Properties of the z-transform
Shift Operations - One step delay with u(k) Z[x(k − 1)u(k)]
=
=
∞ X
x(k − 1)z −k
k=0 ∞ X
x(k)z −(k+1)
k=−1
=
∞ X
x(k)z −k−1 + x(−1)z 0
z −1
∞ X
k=0
=
x(k)z −k + x(−1)
k=0
=
z −1 Z[x(k)u(k)] + x(−1)
8
Shift Operations - One step delay with u(k − 1) Z[x(k − 1)u(k − 1)]
=
=
∞ X
k=1 ∞ X
x(k − 1)z −k x(k)z −(k+1)
k=0
=
z −1
∞ X
x(k)z −k
k=0
=
z −1 Z[x(k)u(k)]
Shift Operations - m step delay with u(k) Z[x(k − m)u(k)]
=
∞ X
x(k − m)z −k
k=0
9
=
∞ X
x(k)z −(k+m)
k=−m
=
∞ X
x(k)z −k−m +
k=0
=
z −m
∞ X
x(k)z −k−m
k=−m m X
x(k)z −k +
k=0
=
−1 X
z −m Z[x(k)u(k)] +
x(−k)z k−m
k=1 m X
x(−k)z k−m
k=1
Shift Operations - m step delay with u(k − m) Z[x(k − m)u(k − m)]
=
=
∞ X
k=m ∞ X
x(k)z −(k+m)
k=0
10
x(k − m)z −k
=
z −m Z[x(k)u(k)]
Shift Operations - m step time advance with u(k + m) Z[x(k + m)u(k + m)]
=
= =
∞ X
x(k + m)z −k
k=−m ∞ X
x(k)z −(k−m)
k=0 +m
z
Z[x(k)u(k)]
Initial Value theorem lim X(z) = lim
z→∞
z→∞
+∞ X
x(k)z −k = x(0)
k=0
Final Value theorem Z[x(k + 1)u(k)] − Z[x(k)u(k)] 11
= =
zX(z) − zx(0) − X(z) ∞ ∞ X X x(k + 1)z −k − x(k)z −k
k=0
zX(z) − X(z) lim (z − 1)X(z)
z→1
=
=
k=0
zx(0) +
x(0) +
∞ X
x(k + 1)z −k −
k=0 ∞ X
x(k + 1) −
k=0
=
k=0 ∞ X
k=0
x(∞)
Derivative dX(z) dz
=
∞ d X x(k)z −k dz k=0
=
∞ X
k=0
12
d −k x(k) z dz
∞ X
x(k)
x(k)z −k
= = Z[kx(k)] =
∞ X
−x(k)kz −k−1
k=0 −1
−z
Z[kx(k)] dX(z) −z dz
Example: Z[ku(k)]
= = =
d 1 dz 1 − z −1 −z −2 −z (1 − z −1 )2
−z
z −1 z = (1 − z −1 )2 (z − 1)2
Convolution
13
Consider multiplying G(z) and X(z). G(z)X(z) ∞ ∞ X X = g(k)z −k × x(k)z −k k=0
k=0 −1
+ g(2)z −2 + g(3)z −3 + · · ·]
=
[g(0) + g(1)z
×
[x(0) + x(1)z −1 + x(2)z −2 + x(3)z −3 + · · ·]
=
g(0)x(0) + [g(0)x(1) + g(1)x(0)]z −1
+
[g(0)x(2) + g(1)x(1) + g(2)x(0)]z −2
[g(0)x(3) + g(1)x(2) + g(2)x(1) + g(32)x(0)]z −3 n X + g(k)x(n − k) z −n + · · ·
+
=
k=0 ∞ X n X
g(k)x(n − k) z −n
n=0 k=0
14
=
Z[
n X
g(k)x(n − k)] = Z[
k=0
n X
x(k)g(n − k)]
k=0
Input Sequence
Impulse Response
X(z)
G(z)
Output Sequence Y(z)=G(z)X(z)
Figure: Convolution and Transfer Function When an input sequence x(k) is applied to a system having an impulse response g(k), the response y(k) of the system is given the convolution sum. k X y(k) = x(n)g(k − n) n=0
The equivalent expression in the z-transform is Y (z) = G(z)X(z). 15
Inverse z-Transform Partial Fraction Method The z-transform of an exponential sequence x(k) = ak is given by X(z) =
z 1 = . −1 1 − az z−a
Any sequence that starts with a non-zero value at k = 0 usually has the same order in the numerator and denominator of the z-transform. To find the inverse z-transform, one must take partial X(z) instead of X(z) itself. fraction expansion on z X(z) X (z) = z 0
= =
B(z) (z − a1 )k (z − a2 )(z − a3 ) · · · c12 c1k c11 + + ··· + (z − a1 )k (z − a1 )k−1 (z − a1 ) 16
+
c2 c3 + + ··· (z − a2 ) (z − a3 )
Where, unknown coefficients are given by ci = (z − ai ) X 0 (z)jz=ai n−1
c1n
d 1 k 0 (z − a1 ) X (z) = n−1 (n − 1)! dz z=a1
After partial fraction expansion, find the expanded form of X(z) by multiplying X 0 (z) by z, then find the inverse z-transform term-by-term by table look-up. Example E(z)
=
E(z) z
=
1 (z − 1)(z − 2) 11 1 1 1 − + 2z z−1 2z−2 17
E(z) e(k)
1 z 1 z − + 2 z−1 2z−2 1 1 = ( δ(k) − 1k + 2k )u(k) 2 2 =
• Exercise: Find the inverse z-transform of Y (z) =
1 (1 − z −1 )(1 − 2z −1 )
Use of MATLAB for partial fraction expansion >> [r,p,k]=residue([1],[1, -3, 2, 0]) r = 0.5000 -1.0000 0.5000 p = 2 1 18
0 k = []
Difference Equation y(k) + a1 y(k − 1) + a2 y(k − 2) + · · · + ak y(0) =
b0 u(k) + b1 u(k − 1) + · · · + bk u(0)
Where, y(k) is output sequence, and u(k) is input sequence. In control systems, b0 is often 0, as input u(k) does not immediately affect output y(k). Take the z-transform of this difference equation considering u(k) = 0 and y(k) = 0 for k < 0. Z f[y(k) + a1 y(k − 1) + a2 y(k − 2) + · · · + ak y(0)]u(k)g = Z f[b0 u(k) + b1 u(k − 1) + · · · + bk u(0))]u(k)g 19
Since Z[y(k − i)] = z −i Y (z) and Z[u(k − i)] = z −i U (z), Y (z) + a1 z −1 Y (z) + a2 z −2 Y (z) + · · · + ak z −k Y (z) = b0 U (z) + b1 z −1 U (z) + b2 z −2 U (z) + · · · + bk z −k U (z) This leads to a transfer function of the difference equation. b0 + b1 z −1 + b2 z −2 + · · · + bk z −k Y (z) = G(z) = U (z) 1 + a1 z −1 + a2 z −2 + · · · + ak z −k The output Y (z) for a given input U (z) is given by b0 + b1 z −1 + b2 z −2 + · · · + bk z −k Y (z) = G(z)U (z) = U (z) −1 −2 −k 1 + a1 z + a2 z + · · · + ak z Example A difference equation, m(k) = e(k) − e(k − 1) − m(k − 1) 20
is driven by an input sequence 1, k ≥ 0 even e(k) = 0, k ≥ 0 odd Using the z-Transform, M (z)
=
E(z)
=
z−1 E(z) z+1 z2 1 = 2 1 − z −2 z −1
Thus, the solution in the z-Transform is M (z)
=
z2 z2 = z 2 + 2z + 1 (z + 1)2
= 1 − 2z −1 + 3z −2 − 4z −3 + · · ·
21
Assignment No. 2 Solve following problems related to the z-transform fundamentals in the textbook pp. 78-79. 1. 2-1 2. 2-2 (a)(b) 3. 2-3 (c) 4. 2-4 5. 2-8 (a)(e) Do only the partial fraction expansion method.
22
4
Continue to discrete time systems
23
View more...
Comments