Work Sheet Iit Based
May 6, 2017 | Author: KAPIL SHARMA | Category: N/A
Short Description
maths14...
Description
B3.2-R3: BASIC MATHEMATICS NOTE: 1. 2.
Answer question 1 and any FOUR questions from 2 to 7. Parts of the same question should be answered together and in the same sequence.
Time: 3 Hours 1. a) b)
Total Marks: 100
Find the square root of (3+4i). Find the real eigenvalue and associated eigenvector of the following 0 ½ 0
A=
0 0 ⅓
6 0 0
x
∫ sin
2
ydy
0
c)
Find lim
d)
Find the eccentricity of the hyperbola
e)
5 x 2 − 4 y 2 − 10 x − 16 y − 31 = 0 1 1 1 . then find lim S n . Let Sn = + + ........ + x →∞ 1.2 2.3 n(n + 1) Find the area of the region bounded by the curve y = ( x + 2)( x + 1)( x − 1), and the lines
f)
x →0
x3
x = -2 and x = 1. g)
x4 x + 6 Find the derivative of (2 x + 1)(2 x + 3) (7x4)
2. a)
b)
Find the value of k, for which the systems of equations x – ky +z = 0 kx + 3y – kz = 0 3x + y – z = 0, has (i) trivial solution, (ii) non-trivial solutions. If 1 x+1 x+2 f (x) =
c)
2(x + 1)
2(x + 1)
(x + 1) (x + 2)
3x (x + 1)
(x – 1) x (x + 1)
x (x + 1) (x + 2)
then find the value of f (100). Determine the rank of the following matrix, for all values of x . A=
B3.2-R3
5- x 2 1
2 1- x 0
1 0 1-x
(6+6+6)
Page 1 of 3
JULY, 2005
3. a)
0 ≤ x ≤1 x>0
The function f (x) = x3 + 2ax + b, bx2 + 3a ,
is differentiable for all x > 0. Find the values of a and b. Draw the graph of the function f (x ) . π
sin x
∫ 1 − sin x dx
b)
Evaluate
c)
Find all functions f (x ) such that
−π
df ( x) = −( x − 1) 2 dx
and draw the graph of f ( x ) in the x-y plane. Find in particular the function whose graph passes through the point ( x 0 , y 0 ) = (1, 1) . (5+5+8) 4. a) b) c)
Find the equations of the common tangents to the circle (x – 2)2 + y2 = 4 and the parabola y2 = - 4x. The lengths of two non-zero vectors a and b are equal. If the vectors a – 3b and 7a +5b are the right angles, then find the angle between the vectors a and b. AOB is the positive quadrant of the ellipse 9x2 + y2 = 36. Find the area between the arc AB and the chord AB. (6+6+6)
5.
dny and x = 0 dx n
a)
If y = x e
b)
Find the extreme values of the function
c)
f (x) = x x Assume that x1 is a point of maxima and x2 is a point of minima of the function f (x) = 2x3 – 9ax2 + 12a2x + 1
3 2x
, then find
1
2
Find the value of a > 0 for which x1 = x 2 (6+6+6) 6. a)
1− x2
3x − x 3
−1 with respect to tan −1 . Find the derivative of cos 2 2 1+ x 1 − 3x
∫
(1 + sin x )e x
dx
b)
Evaluate
e)
State the mean-value theorem. For f ( x ) = x - x in [a,b], determine all numbers ξ in the specified interval, such that
1 + cos x
3
f ' (ξ ) =
f (b ) − f (a ) b−a
Take a=0 and b=2. (6+6+6)
B3.2-R3
Page 2 of 3
JULY, 2005
7. a)
If Zk= cos
π π + i sin k , k = 1, 2, ........ then find the value of k 3 3
Z1 Z2 …….. ∞. b)
From the top of a tower 15 feet high, the angles of depression at two points on opposite sides of it are 30º and 60º. Find the distance between the points.
c)
If a , b , c are three vectors such that a + b + c =0, |a| = 3, |b|= 4, |c| = 5, then find the value of a . b + b . c + c . a
d)
Let P (x1, y1) and Q (x2, y2) be two distinct points on the parabola y = Ax2 + Bx + C, A≠0.Using Lagrange mean value theorem, find a point R on the arc PQ, where the tangent to the curve is parallel to the chord PQ. (6+4+4+4)
B3.2-R3
Page 3 of 3
JULY, 2005
B3.2-R3: BASIC MATHEMATICS NOTE:
1. 2.
Answer question 1 and any FOUR questions from 2 to 7. Parts of the same question should be answered together and in the same sequence.
Time: 3 Hours
Total Marks: 100
1.
r
r
r r
r
r
a)
Show that the points whose position vectors are i − 2 j + 3k ,2i + 3 j − 4k
b)
Show that the roots of the equation x2+x+1 =0 are of the form w and w2. Also, find the sum of the roots.
Ans
x2 + x +1 = 0
r r 7 j + 1 0k are collinear.
2
and
2
1 1 1 2 ⇒ ( x ) + 2.x. + + 1 − = 0 2 2 2 2
1 1 ⇒ x + = −1 2 4 2
3 1 3 ⇒ x + = − = i2. 4 2 4 1 3 3 ⇒ x + = i2. = i 2 4 2 1 3 ⇒x=− + i 2 2 1 3 Let ω = − + i 2 2 1 3 ∴ ω = − + i 2 2
2
2
2 1 1 3 3 = − + 2. − . i + i 2 2 2 2
2
1 3 3 − i− 4 2 4 1 3 =− − i 2 2 ∴ ω andω 2 are the roots of the given equation x 2 + x + 1 = 0 1 3 1 3 ω +ω2 = − + i + − − i = −1 2 2 2 2 =
c)
Let A and B be 2x2 matrices such that AB=0. Justify.
B3.2-R3
Page 1 of 11
Is it always true that A=0 and B=0?
JANUARY, 2005
d)
Ans
log(1 + x 3 ) x →0 sin 3 x log(1 + x 3 ) log(1 + x 3 ) log(1 + x 3 ) lt lt 3 log(1 + x ) 1 1 x →0 x 3 →0 x3 x3 x3 = = = = 3 = =1 lt lt 3 3 3 3 → x →0 x 0 1 1 Sin x Sin x Sin x Sin x lt lt 3 3 x →0 x x x →0 x
Evaluate lt
e)
Show that the line y=x+2 is a tangent to the parabola y2=8x. Also, find the point of contact.
f)
Test the Convergence of the series
g) h)
find the area included between the circle x2+y2=1 and the lines x=0 and x=1. Find points of maxima/minima of the function
∞
3n
∑ 2(n + 1) . n =1
f(x)=x+sin 2x; 0 ≤ x ≤ 2 Π i)
2. a)
If a circle passes through the point (a,b) and touches both the co-ordinate axit, then show that a=b. (3+3+3+3+3+3+3+4+3) State DeMoirre’s Theorem. Express the complex number Z=
(Cosθ + iSinθ ) 3 ( Sinθ + iCosθ ) (Cos 2θ − iSin 2θ )
In the form x-iy, where x and y are real numbers. Also find |z| and arg. z.
Ans
(cosθ + i sin θ )3 (sin θ + i cos θ ) (cos 2θ − i sin 2θ ) (cosθ + i sin θ )3 (sin θ + i cos θ ) = {cos (− 2θ ) − i (− sin (− 2θ ))} 3 ( cosθ + i sin θ ) (sin θ + i cosθ ) = {cos(− 2θ ) + i sin (− 2θ )} 3 ( cosθ + i sin θ ) (− i 2 sin θ + i cosθ ) = −2 (cosθ + i sin θ ) 5 = (cosθ + i sin θ ) i (cosθ − i sin θ ) 4 = i (cosθ + i sin θ ) (cosθ + i sin θ )(cosθ − i sin θ ) 4 = i (cosθ + i sin θ ) (cos 2 θ − i 2 sin 2 θ ) 4 = i (cosθ + i sin θ ) (cos 2 θ + sin 2 θ ) 4 = i (cosθ + i sin θ ) = i (cos (4θ ) + i sin (4θ )) = i cos (4θ ) + i 2 sin (4θ ) = − sin (4θ ) + i cos (4θ ) ∴ x = − sin (4θ ), y = cos (4θ ) z=
B3.2-R3
Page 2 of 11
Sinθ = − Sin (− θ ) Cosθ = Cos (− θ )
[i
2
]
= −1 ⇒ −i 2 = 1
JANUARY, 2005
(− sin (4θ ))2 + (cos (4θ ))2 = sin 2 (4θ ) + cos 2 (4θ ) = 1 = 1 cos (4θ ) π = π − tan −1 (− cot (4θ )) = π − tan −1 tan + 4θ Arg ( z ) = π − tan −1 2 − sin (4θ ) z = x2 + y2 =
π π π = π − + 4θ = π − − 4θ = + 4θ 2 2 2 b) c)
r
r
r r
r
r
r
r
r
Find the value of λ so that the vectors i − j + k ,2i + j − k and λi − j + λk are coplaner. Which of the following matrices is non-sungular?
1 2 , B = 3 6
A =
2 0 2 0
Also, find its inverse.
Ans
1 2 A= 3 6 1 2 A= = 6−6 = 0 3 6 ∴A is a Singular Matrix 2 0 B= 0 2 2 0 B = = 4−0 = 4 0 2 ∴B is a Non-Singular Matrix C11 = (−1)1+1 ⋅ (2) = 2 C12 = (−1)1+ 2 ⋅ (0) = 0 C 21 = (−1) 2+1 ⋅ (0) = 0 C 22 = (−1) 2+ 2 ⋅ (2) = 2 C 21 2 0 = C 22 0 2 2 0 1 Adj ( B) 0 2 2 0 = = = 1 B 4 0 2
C Adj ( B ) = 11 C12 B −1
d)
Solve the following system of equations by Cramer’s rule or by Gauss-elimination method: x1 - 2x2 + x3 = 0, -x2+x3 = -2, 2x1 − 3x3 = 10.
B3.2-R3
Page 3 of 11
JANUARY, 2005
Ans
x1 − 2 x 2 + x3 = 0 LLL (1) − x 2 + x3 = −2 LLL (2) 2 x1 − 3x3 = 10 LLL (3) By Cramer’s Rule 1 −2 1 D = 0 − 1 1 = 1(3 − 0) + 2(0 − 2) + 1(0 + 2) = 3 − 4 + 2 = 1 2 0 −3 0 −2 1 D1 = − 2 − 1 1 = 0(3 − 0) + 2(6 − 10) + 1(0 + 10) = 0 − 8 + 10 = 2 10 0 − 3 1 0 1 D3 = 0 − 2 1 = 1(6 − 10) − 0(0 − 2) + 1(0 + 4) = −4 − 0 + 4 = 0 2 10 − 3 1 −2 0 D3 = 0 − 1 − 2 = 1(−10 − 0) + 2(0 + 4) + 0(0 + 2) = −10 + 8 = −2 2 0 10 D1 2 = =2 D 1 D 0 x2 = 2 = = 0 D 1 D −2 x3 = 3 = = −2 D 1
∴ x1 =
By Gauss Elimination Method x1 − 2 x 2 + x3 = 0 LLL (1)
0 1 − 2 1 0 − 1 1 − 2 2 0 − 3 10
− x 2 + x3 = −2 LLL (2) 2 x1 − 3 x3 = 10 LLL (3) Step-1: Elimination of x1 (1) ⇒ x1 − 2 x 2 + x3 = 0 LLL (1) ⇒
− x 2 + x3 = −2 LLL (2)
(3) = (3) − (1) × 2 ⇒
4 x 2 − 5 x3 = 10 LLL (3)
(2)
B3.2-R3
Page 4 of 11
0 1 − 2 1 0 − 1 1 − 2 0 4 − 5 10
JANUARY, 2005
Step-2: Elimination of x 2 (1) ⇒ x1 − 2 x 2 + x3 = 0 LLL (1) ⇒
(2)
0 1 − 2 1 0 − 1 1 − 2 0 0 − 1 2
− x 2 + x3 = −2 LLL (2)
(3) = (3) + (2) × 4 ⇒
− x3 = 2 LLL (3)
∴ x3 = −2 x 2 = x3 + 2 = −2 + 2 = 0 x1 = 2 x 2 − x3 = (2 × 0) − (−2) = 0 + 2 = 2 e)
2 + 3i in the form x+iy where x 3 − 2i
Find the multiplicative inverse of the complex number and y are real numbers.
Ans
2 + 3i (2 + 3i )(3 + 2i ) 6 + 4i + 9i + 6i 2 6 − 6 + 4i + 9i 13i = = = = =i 2 3 − 2i (3 − 2i )(3 + 2i ) 9+4 13 3 2 − (2i ) ∴ x = 0, y = 1 (x + iy )−1 = 2 x 2 − i. 2 y 2 = 0 − i 1 = 0 − 1 i = −i 0 +1 1+ 0 x +y x +y z=
(4+3+3+5+3) 3. a)
Without expanding, show that the determinant
5 7 9 Ans
2 3 4
3 4 5
vanishes.
5 2 3 D= 7 3 4 9 4 5 5 5 3 = 7 7 4 =0 9 9 5
b) Ans
If f(x) =
[C 2 = C 2 + 1.C3 ]
25 − x 2 , prove that lt
x →3
f ( x) − f (3) − 3 . = x−3 4
f ( x) = 25 − x 2 f (3) = 25 − 3 2 = 25 − 9 = 16 = 4 lt
x →3
f ( x) − f (3) 25 − x 2 − 4 = lt = lt x →3 x →3 x−3 x−3
= lt
x →3
B3.2-R3
25 − x − 4
(x − 3)(
2
2
25 − x 2 + 4
)
= lt
x →3
( 25 − x
−4
(x − 3)(
9− x
(x − 3)(
2
2
25 − x 2 + 4
Page 5 of 11
)( 25 − x
+4
2
25 − x + 4 2
)
= lt
x →3
)
(
)
− x2 − 9
(x − 3)(
)
25 − x 2 + 4
)
JANUARY, 2005
(x − 3)(x + 3) = − lt ( x + 3) = − x →3 (x − 3)( 25 − x 2 + 4) x→3 ( 25 − x 2 + 4)
= − lt =−
3+3 25 − 3 2 + 4
=−
6 16 + 4
6 6 3 =− =− 4+4 8 4
c) d)
find the distance between the parallel lines 2x+4y = 7 and x+2y = 3. Using the concept of ‘rank’ of a matrix, list for consistency the following system of equation 2x + 8y + 5z = 5, x + 2y – z = 2, x + y +z = -2.
e)
If y = A cos mx + B Sin mx, then show that
Ans
y = A Cos mx + B Sin mx dy d = ( A Cos mx + B Sin mx) dx dx d d = A Cos mx + B Sin mx dx dx d d = A Cos mx + B Sin mx dx dx = − Am Sin mx + Bm Cos mx = Bm Cos mx − Am Sin mx
d2y + m2 y = 0 2 dx
d 2 y d dy d = = ( Bm Cos mx − Am Sin mx) dx 2 dx dx dx d d = Bm Cos mx − Am Sin mx dx dx d d = Bm Cos mx − Am Sin mx dx dx = − Bm . m Sin mx − Am . m Cos mx = − Bm 2 Sin mx − Am 2 Cos mx m 2 y = m 2 ( A Cos mx + B Sin mx ) = Am 2 Cos mx + Bm 2 Sin mx d2y + my 2 = − Bm 2 Sin mx − Am 2 Cos mx + Am 2 Cos mx + Bm 2 Sin mx = 0 dx 2 (Proved) f)
Ans
Find the value of k so that the function f(x) defined below is continuous at x =
Π . 2
π kCosx , when x ≠ π − 2 x 2 f(x) = π k , when x = 2 The function f (x) is defined as: k cos x f ( x) = , when x ≠ π 2 π − 2x =k , when x = π 2
B3.2-R3
Page 6 of 11
JANUARY, 2005
At the point x = π 2 π f =k 2 k cos x 1 k cos x lt f ( x) = lt = lt x →π 2 x →π 2 π − 2 x 2 x →π 2 π 2 − x Put x − π 2 = θ ∴θ → 0 as x → π 2 k cos(π 2 + θ ) 1 k cos x 1 k (− sin θ ) k k sin θ k 1 ∴ lt = lt = lt = lt = .1 = −θ 2 θ →0 − θ 2 θ →0 θ 2 2 2 x →π 2 π 2 − x 2 θ →0 As the function in continuous at x = π 2 ∴ f (π 2 ) = lt f ( x) x →π 2
k 2 ⇒ 2k = k ⇒ 2k − k = 0 ⇒k =0 ⇒k=
(2+3+3+4+3+3) 4. a)
Find the characteristics roots of the matrix
2 3 4 0 −1 5 0 0 3
b)
Find local maximum/minimum value (if any) for the function f(x) = x3 – 12x2 + 36x + 17, 1 ≤ x ≤ 10.
c)
Evaluate
Ans
I =∫
dx 4 + 1)
∫ x( x
x dx dx =∫ 2 4 4 x( x + 1) x ( x + 1)
Put x 2 dx = u ⇒ 2 x dx = du 1 ⇒ x dx = du 2 1 1 (u 2 + 1) − u 2 du ∴I = ∫ = du 2 u (u 2 + 1) 2 ∫ u (u 2 + 1) =
1 (u 2 + 1) 1 u2 du = J say du − 2 ∫ u (u 2 + 1) 2 ∫ u (u 2 + 1)
Put u 2 + 1 = v
B3.2-R3
Page 7 of 11
JANUARY, 2005
⇒ 2u du = dv 1 ⇒ u du = dv 2 1 u du 1 1 dv 1 dv 1 1 = × ∫ = ∫ = log v = log (u 2 + 1) 2 ∫ 2 u +1 2 2 v 4 v 4 4 1 1 u du 1 1 1 1 J = log u − ∫ 2 = log u − log(u 2 + 1) = log x 2 − log x 2 2 2 u +1 2 4 2 4 1 1 1 1 = log x 2 − log( x 4 + 1) = log x 2 − log( x 4 + 1) + C 2 4 2 2
{(
)
2
}
+1
d)
Find the asymptotes of the Curse x2y – xy2 + xy + y2 + x – y =0.
Ans
x 2 y − xy 2 + xy + y 2 + x − y = 0 The given equation is of 3rd degree where the term y 3 and x 3 are absent. So, it is possible to exist an asymptotes parallel to y-axis and x-axis. 2 Equating the co-efficient of x with 0 , we get: y = 0 is a required asymptotes Again the above equation can be written as:
x 2 y − ( x − 1) y 2 + xy + x − y = 0 2 Equating the co-efficient of y with 0 , we get: x = 1 is another required asymptotes. Now, the given equation can be written as:
xy ( x − y ) + xy + y 2 + x − y = 0 The asymptotes parallel to x − y = 0 is: 2x 2 xy + y 2 + x − y x2 + x2 + x − x = x − y + lt = x − y + lt = x− y+2 x − y + lt x →∞ x →∞ x →∞ x 2 xy x2 y=x
∴ The required asymptotes is x − y + 2 = 0 ⇒ y = x+2 Thus, y = 0, x = 1, y = x + 2 are the required asymptotes. e)
Verify the thpothesis and the conclusion of the Rolle’s theorem for the function f(x) = (x – 2)
x on [0,2]. (3+4+3+4+4)
5. a)
b)
Write the equation of the ellipse 3x2 + 4y2 = 12 in standard form and sketch it. Clearly indicate its; center and vertices.
4 1 + ) x →2 x − 4 2− x 1 1 4− x −2 4 − (x + 2) 4 4 lt 2 + − = lt 2 = lt 2 = lt 2 x →2 x − 4 2 − x x → 2 x − 4 x − 2 x → 2 x − 4 x → 2 x − 4
Evaluate:
B3.2-R3
lt (
2
Page 8 of 11
JANUARY, 2005
− (x − 2) 1 1 2− x 1 = − lt = lt 2 = − = lt =− x→2 x − 4 x→2 x + 2 4 x→2 (x + 2)( x − 2 ) 2+ 2
c)
Show that the conic 9x2 – 24xy + 16y2 – 18x – 101y + 19 = 0 represents a parabola. 1
d)
Evaluate
∫ 0
1
x x2 + 3
dx
x
∫
dx = I Say 2 x + 3 0 Let x 2 + 3 = u ⇒ 2 x dx = 2u du ⇒ x dx = du u du x ∫ x 2 + 3 dx = ∫ u = ∫ du 1
I =∫ 0
e)
2
x x +3 2
x
0
z
1 2
3
2
dx = ∫ du = z ] = 2 − 3 3
3
Applying Leibnitz’s test to show that the series 1 -
1 2
1
+
3
1
−
4
+ ...... is convergent (4+4+4+3+3)
6. a) Ans
3+i in polar form. 1− i 3+i 3 + i (1 + i ) 3 + 3i + i + i 2 3 − 1 + 3i + i = z= = = 2 2 (1 − i )(1 + i ) 1− i 1 − (− 1) 1 −i
Express the complex number
(
=
(
)
)
3 −1+ i 3 +1 3 −1 3 +1 = + i 2 2 2 3 −1 3 +1 and y = 2 2
∴x =
{( 3 ) + 1 } =
2 2 2 3 −1 3 +1 + = r = x + y = 2 2 2
=
2
2
4
8 = 2 4
3 +1 1+ 3 +1 −1 y −1 −1 −1 2 = tan = tan θ = tan = tan 3 −1 3 − 1 x 1− 2
B3.2-R3
2(3 + 1) 4
2
Page 9 of 11
1 3 1 3
JANUARY, 2005
π π tan + tan 4 6 = tan −1 tan π + π = tan −1 tan 10π = tan −1 π π 4 6 4 − 1 tan . tan 4 6 5π 5π + i sin ∴ z = 2 cos 12 12 b) c) Ans
d) Ans
10π 5π = = 4 2
Find the equation of the circle whose center is (1, 2) and which touches the line 3x+4y=1
1 − 1 1 2 and B = , then is it true that (AB)’ = -A’ B’? 2 − 1 4 −1 1 − 1 1 2 A= and B = 2 − 1 4 − 1 1 − 1 1 2 1 − 4 2 + 1 − 3 3 AB = = = 2 − 1 4 − 1 2 − 4 4 + 1 − 2 5 − 3 − 2 ( AB )/ = 5 3 2 1 A/ = − 1 − 1 − 1 − 2 − A/ = 1 1 1 4 B/ = 2 − 1 − 1 − 2 1 4 − 1 − 4 − 4 + 2 − 5 − 2 = = − A/ B / = 1 2 − 1 1 + 2 4 − 1 3 3 1 / ∴ ( AB ) ≠ − A / B / If A =
Use DeMoivre’s Theorem to show that
Cos3θ = 4Cos 3θ − 3Cosθ cos 3θ = 4 cos 3 θ − 3 cosθ By Demoivre’s Theorem: (cos 3θ + i sin 3θ ) = (cosθ + i sin θ )3 ⇒ cos 3θ + i sin 3θ = cos 3 θ + 3 cos 2 i sin θ + 3i 2 sin 2 θ cosθ + i 3 sin 3 θ ⇒ cos 3θ + i sin 3θ = cos 3 θ + 3 cos 2 i sin θ − 3 sin 2 θ cosθ − i sin 3 θ ⇒ cos 3θ + i sin 3θ = cos 3 θ − 3 sin 2 θ cosθ + i 3 cos 2 sin θ − sin 3 θ ∴ cos 3θ = cos 3 θ − 3 sin 2 θ cosθ [If , x + iy = a + ib, then x = a] 3 2 ⇒ cos 3θ = cos θ − 3 cosθ 1 − cos θ
(
) (
(
)
)
⇒ cos 3θ = cos θ − 3 cosθ + 3 cos θ ⇒ cos 3θ = 4 cos 3 θ − 3 cosθ (Pr oved ) 3
3
(4+4+5+5)
B3.2-R3 2005
Page 10 of 11
JANUARY,
7. a) b) c) Ans d)
Sketch the graph of the function y = Sin3x in [0,Π]. Find the area enclosed between the parabola y = 4x2 , the x axis and the lines x=1 and x =2.
x− | x | x →0 + 2 x− x 0−0 0 lt = = =0 x →0 + 2 2 2
Find
lt
x = x, when x ≥ 0 x = − x, when x ≤ 0
Assuming the validity of the Macularin’s series expansion, find the first four terms of the function f(x) = ex Cosx. (5+5+4+4)
B3.2-R3 2005
Page 11 of 11
JANUARY,
B3.2-R3: BASIC MATHEMATICS Question Papers July, 2004 NOTE:
1. 2.
Answer question 1 and any FOUR questions from 2 to 7. Parts of the same question should be answered together and in the same sequence. Time: 3 Hours Total Marks: 100 1. a.
b.
c.
If 1, ω, ω2 are the cube roots of unity, then find the value of (1+ω)(1+ω2)(1+ω4)(1+ω5) 2 1 2 Find the inverse of the matrix 1 2 2 using the Guass-Jordan 2 2 2 method
Using the binomial theorem, find the coefficient of x4 in the 10
x 3 expansion of − 2 3 x
d.
lim x + 5 x +3 Find x → ∞ x +1
e.
Derive a reduction formula for I m,n = ∫ x m (log x) n dx m, n are integers relating Im,n and Im,n-1. π
f.
Evaluate the definite integral
xdx
∫ 1 + cos 0
g.
Test for convergence, the series
∑[ ∞
n =1
h.
2
x
n4 + 1 − n4 −1
]
Find the equation of the tangent to the parabola y2=4(x+1) which is parallel to the line x+y+1=0.
i. 2. a.
b. c. d.
3. a.
b. c. d. e.
4. a.
b.
Find the projection of the vector 2i+3j-k along the vector 4i+j+2k. (3+4+3+3+2+4+3+4+2) Find all the characteristic roots (elgen values) and the corresponding 1 2 2 characteristic vector (elgen vectors) of the matrix 0 2 1 − 1 2 2 Show that the length of the segment of the tangent line to the curve x=acos3t, y=asin3t, cut off by the coordinate axis is constant. Find the area of the region bounded by y=|x+5|, x=-1, x=-6 and the xaxis. Obtain the first four terms of the Taylor series of f ( x) = x about x=2. Estimate the error if this series is used in the interval[2,3]. (5+5+4+4) Find the complex numbers, which satisfy both the equations z−6 5 z−2 = and =1 z − 4i 9 z−4 x y z If xyz = 1 and y z x = 1, then find the value of x3+y3+z3. z x y Find the sides of a rectangle of greatest area that can be inscribed in the ellipse 4x2+9y2=36 Find the area of the region bounded by {( x, y ) : x 2 + y 2 ≤ 16 and x + y ≥ 4} . Find a unit vector perpendicular to both the vectors 2i − 3 j + 6k , i + j + k (4+2+5+4+3) If z=x+iy where x and y are variables, then find the locus represented z −1 =1 by the equation z +1 Find the values of the parameters ka and a such that the system of x1 − x2 + 2 x3 = 3 equations 2 x1 − 3 x2 + x3 = −2 2 x1 + x2 + kx3 = a has (i) unique solution, (ii) infinite number of solutions, (iii) no solution. 2 ∫ [x ]dx where [x ] denotes the greatest integer function 2
c.
Evaluate the integral
2
0
2
at x . d.
Test for convergence, the series
n2 −1 n x for all values of x. 2 +2
∑n
e.
5. a.
A stone is dropped in quiet water. The water moves in circles. The radii of the circles are increasing at the rate of 0.2 cm/sec. Find the rate at which the area of a circle is increasing when radius is 5 cm. (2+5+4+5+2) If a i > 0, i = 1,2,...,9and they form a geometric progression, then find the value of the determinant log a1 log a 4 log a 7
log a 2 log a5 log a8
log a3 log a 6 log a9
b.
Find the equations of the tangents to the ellipse 16x2+3y2=1, which are perpendicular to the line 3x=4y+1
c.
Using the DeMoivre's theorem, find the values of 1 − 3i
d.
Examine whether the vectors i+2j+3k, 3i+4j+5k, 6i+7j+8k are linearly dependent or linearly independent.
e.
Find a point on the curve y = x which is nearest to the point(2,0). (4+4+3+3+4)
(
)
1/ 4
.
6. lim e sin 3 x − 1 . x→0 x
a.
Find the limit
b.
Find the conic, which is represented by the equation 9x2-4y2+36x+8y-4=0 Hence, find its (i) centre, (ii) vertices, (ii) eccentricity
c.
Find the rank of the matrix − 2 − 1 3 − 2 − 3 4 1 5 1 2 7 1 11 − 8 11 − 13
d.
Using vectors, find the unit normal to the plane containing the points A(1,2,3), B(2,1,0), C(3,2,1).
e.
Evaluate the integral ∫ log[ 1 − x + 1 + x ]dx (2+4+4+3+5)
7. a.
Find the values of a and b such that the function f(x)=x-3, for x ≥ 2 =ax+b, for 0 x ≤ 2
=-2x-1, for x < 0 is continuous for all x. b.
Prove that the feet of perpendiculars from the foci of the ellipse x2 y2 + =1 a2 b2 upon any tangent to this ellipse lie on the auxiliary circle.
c.
The following vectors are given: a = i + j + k , b = 2i − j + k and c = 3i + 2 j + 2k . Determing a vector d such that d • a = 0, and d × b = c × b.
d.
Find the intervals in which f ( x) = sin x + sin x ,0 < x ≤ 2π , is increasing or decreasing or neither increasing nor decreasing. π /2
e.
Evaluate the integral
∫ sin(2 x) log(tan x)dx 0
(3+4+4+4+3)
B3.2-R3: BASIC MATHEMATICS NOTE:
1. 2.
Answer question 1 and any FOUR questions from 2 to 7. Parts of the same question should be answered together and in the same sequence.
Time: 3 Hours
Total Marks: 100
1. a) Ans
Using DeMoivre's theorem, find all the values of z = 1 +
(
z = 1 + 3i = 1 + 3i We have, 1 +
)
1
2
1 π π 3 3i = 2 + i = 2 cos + i sin 3 3 2 2
π π = 2cos 2kπ + + i sin 2kπ + 3 3
(
3i .
)
1
2
1
π π 2 2 Hence, 1 + 3i = 2 2 cos 2kπ + + i sin 2kπ + 3 3 1 1 1 π π = 2 2 cos 2kπ + + i sin 2kπ + , where k = 0, 1, 2 2 3 2 3 b) Ans
1
1
2 3 as the sum of a symmetric and a skew-symmetric matrix. 1 4 a b 0 x Let S = be s 2x2 symmetric matrix and K = be a 2x2 skewb c − x 0 Write the matrix A=
symmetric matrix.
A=S+K 2 3 a b 0 x ⇒ + = 1 4 b c − x 0 b + x 2 3 a = ⇒ c 1 4 b − x ⇒ a = 2, b + x = 3, b − x = 1, c = 4 b + x + b − x = 3 +1 = 4 ⇒ 2b = 4 ⇒b=2 b+x =3 ⇒ x = 3−b = 3− 2 =1 2 2 0 1 ∴S = and K = 2 4 − 1 0 A=S+K B3.2-R3
Page 1 of 9
JANUARY, 2004
c)
2 3 2 2 0 ⇒ + = 1 4 2 4 − 1 − 1 − 2 For the matrix A= − 1 1 0 1
1 0 0 1 , determine A3 and hence A-1. 0
− 1 2 0 A = − 1 2 2 0 1 0 3 A = A2 . A − 1 2 0 − 1 A = − 1 1 1.− 1 0 1 0 0 − 1 0 3 2 A = A . A = 0 0 − 1 1 2
2 0 1 − 2 + 0 − 2 + 2 + 0 0 + 2 + 0 − 1 0 2 1 1 = 1 − 1 + 0 − 2 + 1 + 1 0 + 1 + 0 = 0 0 1 1 0 0 − 1 + 0 0 + 1 + 0 0 + 1 + 0 − 1 1 1 2 − 1 2 0 1 + 0 + 0 − 2 + 0 + 2 0 + 0 + 0 1.− 1 1 1 = 0 + 0 + 0 0 + 0 + 1 0 + 0 + 0 1 0 1 0 1 − 1 + 0 − 2 + 1 + 1 0 + 1 + 0
1 0 0 = 0 1 0 0 0 1 − 1 2 0 A = − 1 1 1 0 1 0 − 1 2 0 1 0 0 [A I ] = − 1 1 1 0 1 0 0 1 0 0 0 1 − 1 2 0 1 0 = 0 − 1 1 − 1 1 0 1 0 0 0 − 1 2 = 0 − 1 0 0 1 − 2 = 0 1 0 0
B3.2-R3
0 0 R 2 = R 2 − R1 1
0 1 0 0 1 − 1 1 0 1 − 1 1 1 R3 = R3 + R 2 0 − 1 0 0 − R1 − 1 1 − 1 0 − R3 1 − 1 1 1
Page 2 of 9
JANUARY, 2004
1 − 2 0 − 1 0 0 = 0 1 0 0 0 1 R 2 = R 2 − R3 0 0 1 − 1 1 1 1 0 0 − 1 0 2 R1 = R1 + 2 R 2 = 0 1 0 0 0 1 0 0 1 − 1 1 1 − 1 0 2 Thus A = 0 0 1 − 1 1 1 tan − 1 x lim Find , if it exists. x− > 0 x −1
d) e)
Find the equation of the tangent to the parabola x
2 = 4( y + 1) , which is parallel to the
line x + y + 1 = 0 . f)
Let the curve C be defined by x = a cos θ , y = a sin θ , 0 ≤ θ ≤ π 3
3
2
. Find the
coordinates of a point P, on the curve C where the tangent to the curve C is parallel to the chord joining the points A(a,0) and B (0, a ) . g)
( x + 1)e x Evaluate the integral I = ∫ dx . cos 2 ( xe x ) ( x + 1)e x dx I =∫ cos 2 ( xe x )
h) i) j)
Let xe x = u ⇒ ( xe x + e x ) dx = du ⇒ e x ( x + 1) dx = du du I =∫ = ∫ sec 2 u du = tan u = tan( xe x ) + c 2 cos u 2 Find the area of the region bounded by the curves y = x and y = 8 x . 1 Discuss the convergence of the sequence {a n }, where a n = n sin . 2n If a . i = (i + j) = a . (i + j + k) = 1, then determine the vector a. (3+3+3+2+3+3+3+3+2+3)
2. a) Ans
If A and B are symmetric matrices, then show that the matrix A B - B A is a skewsymmetric matrix.
x y a b and B = y z b d a b x y ax − by ay − bz AB = = b d y z bx − dy by − dz
Let, A =
B3.2-R3
Page 3 of 9
JANUARY, 2004
y a b ax − by bx − dy = z b d ay − bz by − dz ax − by ay − bz ax − by bx − dy AB − BA = − bx − dy by − dz ay − bz by − dz 0 ay − bz − bx + dy = 0 bx − dy − ay + bz 0 ay + dy − bx − bz = , which is a skew-symmetric matrix. 0 − (ay + dy − bx − bz ) x BA = y
b)
Without expanding, find the value of the determinant.
a −b b−c c −a D= x − y y − z z − x p−q q−r r− p Ans
a−b b−c c−a D = x− y y−z z−x p−q q−r r− p a−b+b−c+c−a = x− y+ y−z+z−x p−q+q−r+r− p
b−c c−a y−z z−x q−r r− p
(C1 = C1 + C 2 + C3 )
0 b−c c−a = 0 y−z z−x =0 0 q−r r− p c)
Determine a and b such that the function f ( x ) = x + ax + bx has an extremum at 3
3
x = 1 and f (1) = −3 . d) e)
Find the value of a . b if |a| = 6, |b| = 4 and |a x b| = 12. If z1=2+i, z2=3-4i, z3=-3+2i, then find the principal value of
Ans
z z z = Re 1 2 . z3 z1 = 2 + i, z 2 = 3 − 4i, z 3 = −3 + 2i
arg(z ) , where
z z (2 + i )(3 − 4i ) 6 − 8i + 3i − 4i 2 − 5i + 10 z = Re 1 2 = Re = Re = Re 3 − 2i 3 − 2i − 3 + 2i z3 − 15i − 10i 2 + 30 + 20i (− 5i + 10i )(3 + 2i ) 40 + 5i 40 = Re = Re = = Re 2 2 3 − (2i ) 9 + 4 13 (3 − 2i )(3 + 2i )
(
Here x =
B3.2-R3
)
40 , y = 0. 13
Page 4 of 9
JANUARY, 2004
2
40 40 Arg ( z ) = x + y = + 0 2 = 13 13 2
2
(5+2+3+4+4) 3. a)
Find the rank of the matrix
1 2 3 A= 2 4 6 . − 1 5 4
b) c) d)
Does A-1 exist? Examine whether the vectors i - j+ 2 k, 3 I + j - 3 k, 2i - 5j + k are linearly independent or linearly dependent. Find the value of p for which the equation 2pxy+4x-6y+9=0, p ≠ 0 represents a pair of straight lines. It is given that the Rolle's theorem hold for the function f(x)=x3+bx2+cx, at
1 ≤ x ≤ 2 at x = 4 . Find the values of b and c. 3 e)
Evaluate the integral 1
I = ∫ x(1 − x) n dx 0
(3+3+4+4+4) 4. 2
a)
Evaluate the integral I =
∫ | x − 1 | dx.
−2
b)
Find the angle of intersection between the curves C2 : x2 = -4(y - 1); C1 : x2 = 4(y + 1);
c) d)
If 1, ω ,ω are the cube roots of unity, then find the roots of (z – 2)3 + 27 = 0. Discuss the convergence of the series
x>0
2
∞
∑a n =1
n2 +1 n2 n =1 ∞
n
=∑
dy , where y = x + x + x + ... dx
e)
Find
Ans
y = x + x + x + ... = x + y ⇒ y = x+ y ⇒ y2 = x + y d 2 d (x + y ) ⇒ y = dx dx dy dy ⇒ 2y = 1+ dx dx dy dy ⇒ 2y − =1 dx dx
B3.2-R3
Page 5 of 9
JANUARY, 2004
dy (2 y − 1) = 1 dx dy 1 ⇒ = dx (2 y − 1)
⇒
(4+4+4+2+4) 5.
1 + cos 2 x 1 − cos 2 x dx . 2 cos 2 x 1 + cos 2 x dx = cot −1 cot 2 x dx dx = ∫ Ans I = ∫ cot −1 ∫ 2 sin 2 x − 1 cos 2 x x2 = ∫ cot −1 (cot x ) dx = ∫ x dx = +c 2
a)
Evaluate I =
∫ cot
−1
(
b)
)
Find the value of k so that the function
sin(kx) /(5 x), x ≠ 0 3/5 , x=0 is continuous at x = 0. The function f ( x ) is given as: sin(kx) /(5 x), x ≠ 0 f ( x) = 3/5 , x=0 At x = 0 3 f (0) = 5 sin kx sin kx sin kx kx k = lim lim f ( x ) = lim . = lim x →0 x →0 5 x x →0 kx 5 x 5 x→0 kx Put θ = kx θ → 0 as x → 0 k k sin kx k sin θ k ∴ lim = lim = .1 = 5 x→0 kx 5 θ →0 θ 5 5 As the function is continuous at x = 0 f (0) = lim f ( x ) f ( x) =
Ans
x →0
3 k = 5 5 15 ⇒k = =3 5
⇒
c)
Find the conditions on a for which the system of equations
ax + 2 y + 3z = 4 4 x + 5 y + 6az = 3 7 x + 8 y + 9az = 6
B3.2-R3
Page 6 of 9
JANUARY, 2004
d) e)
has a unique solution. Find the area of region bounded by y = x( x − 2)( x − 3), x = 0, x = 3 and the x axis. Find the coordinates of the vertex, the coordinates of the focus and the equation of the directrix for the parabola.
4 x − y 2 + 2 y − 13 = 0 (2+2+4+5+5) 6. 1
a)
Evaluate the integral I =
Ans
I =∫
x2 + x −1 ∫0 ( x + 1)( x + 2) dx
1
1
1
x2 + x −1 x2 + x −1 x2 + x −1 dx dx = ∫ 2 dx = ∫ 2 ( x + 1)( x + 2) 0 0 x + x + 2x + 2 0 x + 3x + 2
1
=∫ 0
(x
2
)
(
)
+ 3x + 2 − 2 x − 3 x 2 + 3 x + 2 − (2 x + 3) = dx dx ∫0 x 2 + 3x + 2 x 2 + 3x + 2
(
1
1
)
(
1
)
1
1
2x + 3 2x + 3 x 2 + 3x + 2 dx = I Say dx == ∫ dx − ∫ 2 dx − ∫ 2 2 3 2 3 2 + 3 + 2 + + x x + + x x x x 0 0 0 0 2x + 3 ∴∫ 2 dx x + 3x + 2 Let x 2 + 3 x + 2 = z ⇒ (2 x + 3) dx = dz dz 2x + 3 2 ∫ x 2 + 3x + 2 dx = ∫ z = log z = log x + 3x + 2 1 1 1 2x + 3 1 dx = x ]0 − log x 2 + 3 x + 2 0 I = ∫ dx − ∫ 2 0 0 x + 3x + 2 =∫
(
)
)]
(
{ (
)
(
)}
= ( x − 1) − log 12 + 3.1 + 2 − log 0 2 + 3.0 + 2 = x − (log 6 − log 2 ) = x − log = x − log 3 b)
Solve the system of equations
Ans
using Cramer’s rule. The system equation is given as:
6 2
x− y =2
2 x + 3 y = −1 x− y =2 2 x + 3 y = −1 1 −1 D= = 3 − (− 2) = 3 + 2 = 5 2 3 2 −1 D1 = = 6 −1 = 5 −1 3 1 2 D2 = = −1 − 4 = −5 2 −1
B3.2-R3
Page 7 of 9
JANUARY, 2004
D1 5 = =1 D 5 D −5 x2 = 2 = = −1 D 5
∴ x1 =
c)
Find the absolute maximum value of
f ( x) = (sin x)(a + cos x), d)
0≤ x≤
π 2
Find the eccentricity of the ellipse
4 x 2 + 9 y 2 − 32 x + 54 y + 109 = 0 e)
Given a = I + 3j – k, b = 2j – 3k,
find the value of (a – b) . (a + b). (4+3+5+4+2)
7. a)
Find the value of x so that
[1
Ans
1
1 [1 1 x] 0 2
1 0 2 1 x ] 0 2 1 2 = 0 2 1 0 1 0 2 1 2 1 2 = 0 1 0 1
1 ⇒ [1 + 0 + 2 x 0 + 2 + x 2 + 1 + 0] 2 = 0 1 1 ⇒ [2 x + 1 x + 2 3] 2 = 0 1 ⇒ [2 x + 1 + 2 x + 4 + 3] = 0 ⇒ 2x + 1 + 2x + 4 + 3 = 0 ⇒ 4x + 8 = 0 ⇒ 4 x = −8 −8 ⇒x= = −2 4
b)
Evaluate the integral π /2
I=
1 + sin 2 x
∫ 1 − cos 2 x dx
π /4 π /2
Ans
I=
1 + sin 2 x
∫ 1 − cos 2 x dx
π /4
1 + sin 2 x sin 2 x + cos 2 x + 2 sin x cos x dx Let I 1 = ∫ dx = ∫ 1 − cos 2 x 2 sin 2 x
B3.2-R3
Page 8 of 9
JANUARY, 2004
1 sin 2 x 1 cos 2 x 1 2 sin x cos x + dx dx + ∫ dx 2 2 ∫ ∫ 2 sin x 2 sin x 2 sin 2 x 1 1 1 1 = ∫ dx + ∫ cot 2 x dx + ∫ cot x dx = x − cos ecx + log(sin x ) 2 2 2 2
=
π 2
π /2
I=
1 + sin 2 x x cos ecx + log(sin x ) dx = − ∫ 1 − cos 2 x 2 2 π π /4
4
π 2 cos ec(π 2) π π 4 cos ec(π 4) π = − + log sin − − + log sin 2 2 2 2 4 2 2 1 2 1 π π 1 π 1 π = − − + = − + log 1 − − + log + log 1 − log 2 2 2 4 8 2 2 4 2 8 = c)
π 2 −1 1 − − log 8 2 2
Obtain the second-degree Taylor’s polynomial approximation to
f ( x) = x about
x = 1. d)
Find the angle between the tangents to the circle x + y + 6 y + 7 = 0 at the points of 2
2
intersection with the line x = 1 e)
Discuss the convergence of the series
∑a
n
where a n =
n4 +1 − n4 −1 . (3+4+4+4+3)
B3.2-R3
Page 9 of 9
JANUARY, 2004
View more...
Comments