Window Calculation.pdf

November 5, 2018 | Author: Romil Sampayo | Category: Bending, Strength Of Materials, Ultimate Tensile Strength, Stress (Mechanics), Mechanical Engineering
Share Embed Donate


Short Description

Download Window Calculation.pdf...

Description

Structural Engineering Calculation Calculation

Window Calculations

Analysis of Window Panel and Aluminum Frame

Date Prep ared

:

Referen ce No .

:

Revision No .

:

M arch 03 , 2 0 17

0

Design Criteria Standards and Specifications American American Society for Testing Testing and Materials: ASTM ASTM E130 0-2004 , "Standard Practice for Determining Determining Load Resistance of Glass in Buildin gs Australian Standard: AS 1288-1994 , "Glass "Glass in Build ings-Selection ings-Selection an d Installation" Aluminum Design Design Man ual: ADM ADM 20 05, "Specifications and Guidelines for Aluminum Structures" American American Architectural Manufacturers Association: AAMA TIR-A9TIR-A9-91, 91, "Metal Curtain Wall Fasteners" Fasteners" Materials Structural M embers: embers: Monolithic Glass Unit Framing Members: Aluminum Extrusion Extrusion 6 063-T5 Fasteners: Stainless Steel Screw: AAMA TIR-A9-91 Sealant: ASTM ASTM C 1 401-02 Design Loads Dead Load Self weight of all structural members Weight of glass infill Wind Load Fo r glazin g an d framin g

Reference Number:

4 kPa

Prepared By: RS

Checked By:

Date Prepared: March 03, 2017

Design Criteria Standards and Specifications American American Society for Testing Testing and Materials: ASTM ASTM E130 0-2004 , "Standard Practice for Determining Determining Load Resistance of Glass in Buildin gs Australian Standard: AS 1288-1994 , "Glass "Glass in Build ings-Selection ings-Selection an d Installation" Aluminum Design Design Man ual: ADM ADM 20 05, "Specifications and Guidelines for Aluminum Structures" American American Architectural Manufacturers Association: AAMA TIR-A9TIR-A9-91, 91, "Metal Curtain Wall Fasteners" Fasteners" Materials Structural M embers: embers: Monolithic Glass Unit Framing Members: Aluminum Extrusion Extrusion 6 063-T5 Fasteners: Stainless Steel Screw: AAMA TIR-A9-91 Sealant: ASTM ASTM C 1 401-02 Design Loads Dead Load Self weight of all structural members Weight of glass infill Wind Load Fo r glazin g an d framin g

Reference Number:

4 kPa

Prepared By: RS

Checked By:

Date Prepared: March 03, 2017

GLASS GL ASS ANAL AN ALYSIS YSIS

Reference Number:

Prepared By: RS

Checked By:

Date Prepared: March 03, 2017

Subj Subjec ect: t: Type: Item tem:

Glas Glasss Ana Analy lysi siss (80 (800x 0x14 1400 00m mm) Monolithic 6FT Monol onoliithic thic Glas Glasss w/ w/ 44-side sidess Con Conti tinu nuou ouss Sup Suppo port rt

The following formulae were used to calculate the minimum thickness, the deflection, and the aspect ratio of the glass  pane under a given static wind pressure in accordance with ASTM E1300 and AS 1288. Minimum Thickness, tmin

=

Maximum Deflection

=

Limiting Aspect Ratio

= =

(5 * DP * A) ^ (1 / 1.8)

in mm 2

t * exp(r0  + r 1 * x + r 2 * x )

in mm

0.2

8.98 / t

for glass thickness < 6mm 1.6

2

49.34 * (0.2 0.2 * t  + 1.9) / t

for glass thickness > 6mm

Where: DP

= Desig Design n Pre Pressu ssure re depen depends ds on the the typ typee of of gla glass ss 2

A t

= Area of of the gl glass ass pa pane, in in m = Thickness of the glass pane, in mm

r 0

= 0.553 - 3.83*AR + 1.11*AR   - 0.0969*AR 

r 1

=  -2.29 + 5.83*AR - 2.17*AR   + 0.2067*AR 

r 2

= 1.485 - 1.908*AR + 0.815*AR   - 0.0822*AR 

x AR WL E

2

3

2

3

2

= = = =

2

3

4

ln {ln [WL * A  / (E * t )]} Aspect Ratio, a/b Wind Load, in kPa Modulus of Elasticity of glass, in kPa

Data Given:

800

Glass Width, b Glass Height, a Wind Pressure, WP Type of Support Construction Type of glass

= = = = = =

800 mm 1400 mm 4 kPa 4-sided continuous support Monolithic Tempered  

Design Pressure, DP Minimum Thickness, tmin Allowable Deflection, Limiting Aspect Ratio

= = = =

1.60 3 .4 13.33 6.28

kPa mm mm

= = =

6 .0 8.99 1.75

mm mm

1400

Result:

(L/60 or 20mm)

Conclusion:

Design Thickness, t Maximum Deflection Aspect Ratio, AR

OK  OK  OK 

Note:

As per the results of analyses above, the proposed glass type and thickness of glass is adequate to sustain the lateral load.

Reference Number:

Prepared By:

RS

Checked By:

Date Prepared: March 3, 2017

Verification of Deflection by ASTM E1300-04 (X1) q = 4 kPa A  NFL GTF LR E t Aspect Ratio, AR

= = = = = = =

non-dimensional load, q = ln(q) = = ŵ Glass Deflection, w =

1120000 2.45 2.5 6.125 71700000 6.0 1.75

2

mm

from Annex A-1 Chart from page 503 onwards [2.0 from Table 1 of E1300] or [1.6 from Table kPa mm

54.00 3.99 2.30

from the FIG. X1.1 page 550

13.80 mm

Check with Max. Calculated Deflection above

Calculation of Actual Stress of Designed Thickness of Glass by AS1288 Design Stress = 38 MPa for thickness less than or equal 6mm Actual Stress in Glass = 12.07 MPa Calculation of Actual Stress of Designed Thickness of Glass by ASTM E-1300 Design Stress = 93.1 MPa X8.2 on page 554 Actual Stress in Glass = 29.56 MPa

Reference Number:

Prepared By:

RS

Checked By:

Date Prepared: March 3, 2017

FRAMING ANALYSIS

Reference Number:

Prepared By: RS

Checked By:

Date Prepared: March 03, 2017

Typical Window Panel : 1750mm x 1400mm (Wind Load 4kPa) Load Data 4  kPa

Wind Pressure

P

Width of Panel

a = 0.5  4200mm

=

a

=

875  mm

Unsupported Length

L

=

300  mm

Uniformly Distributed Load

w = P a w = 3.5 

N mm

Result Data

2



Required Flexural Strength,

Mau =

w L 8

Mau = 0.04  kN  m

(Assumed as uniformly distributed load) Maximum moment within unsupported span

2



Required Flexural Strength,

Mab =

w L 8

Mab = 0.04  kN  m



Required Shear Strength,

Va =

w L 2

Va = 0.53 kN

Reference Number:

Prepared By: RS

(Assumed as uniformly distributed load) Maximum moment within unbraced segment (Assumed as uniformly distributed load)

Maximum shear force

Checked By:

Date Prepared: March 03, 2017

Material Data A lu mi nu m Me m be r : Dimension

6063- T5

V e rti cal Pe ri me te r

Unsupported Length,

Lu = 300  mm

Unsupported Length for bending,

Lb = 300  mm

Material Properties Compressive modulus of elasticity,

E

 A

69600  MPa

=

Tensile ultimate strength,

Ftu

=

150  MPa

Tensile yield strength,

Fty

=

110  MPa

Compressiv e yield strength,

Fcy

=

110  MPa

Shear ultimate strength,

Fsu

=

90  MPa

B

C

Section Properties 2

Cross-sectional area,

 Ag = 151  mm

Shear area,

 Av

Moment of Inertia about x-axis,

Ix

Moment of Inertia about y-axis,

I y = 12746  mm

Extreme Fiber Distance

x e = 22  mm

Extreme Fiber distance

ye = 30  mm

Radius of Gyration about x-axis

r x

Radius of Gyration about y-axis

r y = 9  mm

Section modulus of beam

Sc

=

Torsion constant

J

63016  mm

=

=

2

151  mm

4

60727  mm

---------------- REGIONS --------------- Area: 151.1951 Perimeter: 245.8343 Bounding box: X: -15.9281 -- 22.0719 Y: -29.9522 -- 20.0478 Centroid: X: 0.0000 Y: 0.0000 Moments of inertia: X: 60726.9597 Y: 12745.5710 Product of inertia: XY: 10726.5390 Radii of gyration: X: 20.0411 Y: 9.1814 Principal moments and X-Y directions about centroid: I: 10456.7665 along [0.2087 0.9780] J: 63015.7641 along [-0.9780 0.2087]

4

=

=

20  mm

3

2028  mm

4

Actual Stresses Maximum Bending Stress at the Support Bending moment on male mullion, •

Maximum stress due to bending

Mmu = Mau Mmu

f mu = Sc

;

Mmu

;

f mu

=

=

0.01  kN  m

7.12 MPa

Maximum Bending Stress at Unbraced Segment ; Mmb

0.01  kN  m



Bending moment on male mullion,

Mmb = Mau



Maximum stress due to bending

Mmu f mb = Sc

;

f mb

=

7.12 MPa

Vm = Va

;

Vm

=

0.53 kN

=

Maximum Shear Stress •



Shear stress on male mullion,

Stress due to shear force

Reference Number:

f vm =

Vm  Av

Prepared By: RS

;

f vm = 3.4723  MPa

Checked By:

Date Prepared: March 03, 2017

Structural Check

Allowable Tensile Stress for 6063-T5

Aluminum,

Tension in Beams, extreme fiber, net section Flat element in uniform tension Fmu := min Fmu

=

Allowable Bending Stress for 6063-T5

(ADM2005 Sec.3.4.2, page I-A-26)

 Fty   ny

Ftu ,

(Table 2-23 Sec.3.4.2, page VII-70)

 

kt  nu

 

67  MPa

> f mu

=

7  MPa

OK

Aluminum,

Compression i n Beams, extreme fiber, gross section Tubular shapes Slenderness limit, Section Slenderness, Since

 Allowable Stress,

(ADM2005 Sec.3.4.11, page I-A-33) S1

S= S1

;

138

=

Lb

;

r y

<

S

<

Fb =

S

=

Lb = 300  mm

43

r y = 9  mm

S2

 

1 ny

(Table 2-23 Sec.3.4.11, page VII-71)

S2 = 3832

 Bc

 



Lb  Sc

1.6  Dc 

Fb = 67  MPa

0.5  Cb 

>

f mb

=

  Iy J

(Table 2-23 Sec.3.4.11, page VII-71)

 

7  MPa

OK

Compression i n Beams, uniform compression, gross section Flat element supported on one edge Element B Slenderness Limit,

Section Slenderness, Since  Allowable Stress,

(ADM2005 Sec.3.4.15, page I-A-33) S1

=

S= S1

;

8

b = 11.5  mm

b

Fb =

;

t

<

S 1

<

S

=

8.21

t

=

1.4  mm

S2

 

b 

(Table 2-23 Sec.3.4.15, page VII-71)

 Bp − 5.1  Dp  ny   t  

Fb = 66  MPa

Reference Number:

(Table 2-23 Sec.3.4.15, page VII-71)

S2 = 16

>

Prepared By: RS

f mb

=

7  MPa

OK

Checked By:

Date Prepared: March 03, 2017

Flat element supported on both edge Element A

(ADM2005 Sec.3.4.15, page I-A-33)

Slenderness Limit,

Section Slenderness, Since  Allowable Stress,

S1

=

S= S1

;

26

b = 13.3  mm

b

;

t

<

(Table 2-23 Sec.3.4.15, page VII-71)

S2 = 50

S

<

S

=

9.5

b 

1.4  mm

(Table 2-23 Sec.3.4.15, page VII-71)

 B − 5.1  Dp  ny   p t  

Fb =

=

S2

 

1

t

Fb = 67  MPa

>

f mb

=

7  MPa

OK

Compression in Beam elements, bending in own plane, gross section Flat element supported on both edges Element C Slenderness Limit, S1 = 25 Section Slenderness, Since

 Allowable Stress,

S= S1

(ADM2005 Sec.3.4.18, page I-A-35) ;

h = 47.04 mm

h

;

t

<

Fb =

S

(Table 2-23 Sec.3.4.18, page VII-71)

S2 = 33

>

S

=

33.6

t

=

1.4  mm

S2

k 2c 

Bbr  E

h    ny 0.29  t    

Fb = 91  MPa

Allowable Shear Stress for 6063-T5

>

f mb

=

7  MPa

OK

Aluminum,

Shear in elements, gross section Unstiffened flat elements supported on both edges Element A Slenderness Limit, ; S1 = 44 S2 = 98 h Section Slenderness, ; S= S = 33.6 t Since  Allowable Stress,

S1

>

S

Fsm =

<

(Table 2-23 Sec.3.4.20, page VII-71) h = 47.04 mm t

=

1.4  mm

S2

Fty 3  ny

Fsm = 38  MPa

Reference Number:

(ADM2005 Sec.3.4.20, page I-A-36)

>

Prepared By: RS

f vm = 3.4723 MPa

Checked By:

OK

Date Prepared: March 03, 2017

Stress Ratio, Limit to 0.90 or 90% ratio Tensile Stress Ratio,

f mu Fmu

=

0.11

<

0.90

OK

<

0.90

OK

<

0.90

Bending Stress Ratio,

( ) min ( Fmu , Fb)

max fmu   , f mb

Shear Stress Ratio,

f vm Fsm

Reference Number:

=

=

0.11

0.09

Prepared By: RS

Checked By:

OK

Date Prepared: March 03, 2017

Material Data

A lu mi nu m Me m be r :

6063- T5

V e rti cal P an el F ram e

Dimension Unsupported Length,

Lu = 300  mm

Unsupported Length for bending,

Lb = 300  mm

Material Properties Compressive modulus of elasticity,

E

C

69600  MPa

=

Tensile ultimate strength,

Ftu

=

150  MPa

Tensile yield strength,

Fty

=

110  MPa

Compressiv e yield strength,

Fcy

=

110  MPa

Shear ultimate strength,

Fsu

=

90  MPa

B  A

Section Properties 2

Cross-sectional area,

 Ag = 220  mm

Shear area,

 Av

Moment of Inertia about x-axis,

Ix

Moment of Inertia about y-axis,

I y = 25932  mm

Extreme Fiber Distance

x e = 27  mm

Extreme Fiber distance

ye = 30  mm

Radius of Gyration about x-axis

r x

Radius of Gyration about y-axis

r y = 11  mm

Section modulus of beam

Sc

=

Torsion constant

J

71686  mm

=

=

---------------- REGIONS --------------- Area: 220.2969 Perimeter: 359.6496 Bounding box: X: -26.5638 -- 25.7362 Y: -19.9457 -- 30.0543 Centroid: X: 0.0000 Y: 0.0000 Moments of inertia: X: 69562.5645 Y: 25931.6560 Product of inertia: XY: 9857.5250 Radii of gyration: X: 17.7698 Y: 10.8495 Principal moments and X-Y directions about centroid: I: 23807.9197 along [0.2106 0.9776] J: 71686.3008 along [-0.9776 0.2106]

2

220  mm

4

69563  mm

4

=

=

18  mm

3

2315  mm

4

Actual Stresses Maximum Bending Stress at the Support



Bending moment on male mullion,

Mmu = Mau

;

Mmu

Maximum stress due to bending

Mmu f mu = Sc

;

f mu

=

=

16.54J

7.14 MPa

Maximum Bending Stress at Unbraced Segment •



Bending moment on male mullion, Maximum stress due to bending

Maximum Shear Stress • Shear stress on male mullion,



Stress due to shear force

Reference Number:

; Mmb

Mmb = Mau Mmu

=

16.54J

f mb = Sc

;

f mb

=

7.14 MPa

Vm = Va

;

Vm

=

0.53 kN

Vm f vm =  Av Prepared By: RS

f vm = 2.3831  MPa

Checked By:

Date Prepared: March 03, 2017

Structural Check

Allowable Tensile Stress for 6063-T5

Aluminum,

Tension in Beams, extreme fiber, net section Flat element in uniform tension Fmu := min Fmu

=

Allowable Bending Stress for 6063-T5

(ADM2005 Sec.3.4.2, page I-A-26)

 Fty   ny

Ftu ,

(Table 2-23 Sec.3.4.2, page VII-70)

 

kt  nu

 

67  MPa

> f mu

=

7  MPa

OK

Aluminum,

Compression i n Beams, extreme fiber, gross section Tubular shapes Slenderness limit, Section Slenderness, Since

 Allowable Stress,

(ADM2005 Sec.3.4.11, page I-A-33) S1

S= S1

;

138

=

Lb

;

r y

<

S

<

Fb =

S

=

Lb = 300  mm

32

r y = 11  mm

S2

 

1 ny

(Table 2-23 Sec.3.4.11, page VII-71)

S2 = 3832

 Bc

 



Lb  Sc

1.6  Dc 

Fb = 67  MPa

0.5  Cb 

>

f mb

=

  Iy J

(Table 2-23 Sec.3.4.11, page VII-71)

 

7  MPa

OK

Compression i n Beams, uniform compression, gross section Flat element supported on one edge Element A Slenderness Limit,

Section Slenderness, Since  Allowable Stress,

(ADM2005 Sec.3.4.15, page I-A-33) S1

=

S= S1

;

8

b = 26.56 mm

b

Fb =

;

t

<

S 1

<

S

=

18.97

t

=

1.4  mm

S2

 

b 

(Table 2-23 Sec.3.4.15, page VII-71)

 Bp − 5.1  Dp  ny   t  

Fb = 43  MPa

Reference Number:

(Table 2-23 Sec.3.4.15, page VII-71)

S2 = 16

>

Prepared By: RS

f mb

=

7  MPa

OK

Checked By:

Date Prepared: March 03, 2017

Flat element supported on one edge Element B Slenderness Limit,

Section Slenderness, Since  Allowable Stress,

S1

=

S= S1

;

8

S2 = 16

b = 23.71 mm

b

;

t

<

(ADM2005 Sec.3.4.15, page I-A-33) (Table 2-23 Sec.3.4.15, page VII-71)

S

<

S

=

16.94

b 

1.4  mm

(Table 2-23 Sec.3.4.15, page VII-71)

 B − 5.1  Dp  ny   p t  

Fb =

=

S2

 

1

t

Fb = 49  MPa

>

f mb

=

7  MPa

OK

Compression in Beam elements, bending in own plane, gross section Flat element supported on both edges Element C Slenderness Limit, Section Slenderness, Since

 Allowable Stress,

(ADM2005 Sec.3.4.18, page I-A-35) S1

=

S= S1

;

25

h = 47.06 mm

h

;

t

<

Fb =

S

(Table 2-23 Sec.3.4.18, page VII-71)

S2 = 33

>

S

=

33.61

t

=

1.4  mm

S2

k 2c 

Bbr  E

h    ny 0.29  t    

Fb = 91  MPa

Allowable Shear Stress for 6063-T5

>

f mb

=

7  MPa

OK

Aluminum,

Shear in elements, gross section Unstiffened flat elements supported on both edges Element A Slenderness Limit, ; S1 = 44 S2 = 98 h Section Slenderness, ; S= S = 33.6 t Since  Allowable Stress,

S1

>

S

Fsm =

<

(Table 2-23 Sec.3.4.20, page VII-71) h = 47.04 mm t

=

1.4  mm

S2

Fty 3  ny

Fsm = 38  MPa

Reference Number:

(ADM2005 Sec.3.4.20, page I-A-36)

>

Prepared By: RS

f vm = 2.3831 MPa

Checked By:

OK

Date Prepared: March 03, 2017

Stress Ratio, Limit to 0.90 or 90% ratio Tensile Stress Ratio,

f mu Fmu

=

0.11

<

0.90

OK

<

0.90

OK

<

0.90

Bending Stress Ratio,

( ) min ( Fmu , Fb)

max fmu   , f mb

Shear Stress Ratio,

f vm Fsm

Reference Number:

=

=

0.11

0.06

Prepared By: RS

Checked By:

OK

Date Prepared: March 03, 2017

Material Data

Aluminum Member : Dimension

6063-T5

Vertical Moulding Frame

Unsupported Length,

Lu = 300  mm

Unsupported Length for bending,

Lb = 300  mm

Material Properties Compressive modulus of elasticity,

E

B

69600  MPa

=

Tensile ultimate strength,

Ftu

=

150  MPa

Tensile yield strength,

Fty

=

110  MPa

Compressiv e yield strength,

Fcy

=

110  MPa

Shear ultimate strength,

Fsu

=

90  MPa

 A

Section Properties 2

Cross-sectional area,

 Ag = 220  mm

Shear area,

 Av

Moment of Inertia about x-axis,

Ix

Moment of Inertia about y-axis,

I y = 25932  mm

Extreme Fiber Distance

x e = 27  mm

Extreme Fiber distance

ye = 30  mm

Radius of Gyration about x-axis

r x

Radius of Gyration about y-axis

r y = 11  mm

Section modulus of beam

Sc

=

Torsion constant

J

71686  mm

=

=

2

220  mm

4

69563  mm

4

=

=

18  mm

3

2315  mm

4

---------------- REGIONS --------------- Area: 64.0045 Perimeter: 123.4229 Bounding box: X: -10.1685 -- 9.3315 Y: -12.7345 -- 18.9655 Centroid: X: 0.0000 Y: 0.0733 Moments of inertia: X: 7860.4918 Y: 1861.7072 Product of inertia: XY: -1526.2318 Radii of gyration: X: 11.0820 Y: 5.3933 Principal moments and X-Y directions about centroid: I: 1495.7075 along [0.2332 -0.9724] J: 8226.1473 along [0.9724 0.2332]

Actual Stresses Maximum Bending Stress at the Support Bending moment on male mullion,

Mmu = Mau

Mmu f mu = Sc Maximum Bending Stress at Unbraced Segment

;

Mmu

;

f mu

=

16.54J

7.14 MPa



Maximum stress due to bending



Bending moment on male mullion,

Mmb = Mau



Maximum stress due to bending

Mmu f mb = Sc

;

f mb

=

7.14 MPa

Vm = Va

;

Vm

=

0.53 kN

;

f vm = 2.3831  MPa

=

; Mmb

=

16.54J

Maximum Shear Stress •



Shear stress on male mullion,

Stress due to shear force

Reference Number:

f vm =

Vm  Av

Prepared By: RS

Checked By:

Date Prepared: March 03, 2017

Structural Check

Allowable Tensile Stress for 6063-T5

Aluminum,

Tension in Beams, extreme fiber, net section Flat element in uniform tension Fmu := min Fmu

=

Allowable Bending Stress for 6063-T5

(ADM2005 Sec.3.4.2, page I-A-26)

 Fty   ny

Ftu ,

(Table 2-23 Sec.3.4.2, page VII-70)

 

kt  nu

 

67  MPa

> f mu

=

7  MPa

OK

Aluminum,

Compression i n Beams, extreme fiber, gross section Tubular shapes Slenderness limit, Section Slenderness, Since

 Allowable Stress,

S1

S= S1

;

138

=

Lb

;

r y

<

S

<

Fb =

S

=

Lb = 300  mm

32

r y = 11  mm

S2

 

1 ny

(ADM2005 Sec.3.4.11, page I-A-33) (Table 2-23 Sec.3.4.11, page VII-71)

S2 = 3832

 Bc

 



Lb  Sc

1.6  Dc 

Fb = 67  MPa

0.5  Cb 

>

f mb

=

  Iy J

(Table 2-23 Sec.3.4.11, page VII-71)

 

7  MPa

OK

Compression i n Beams, uniform compression, gross section Flat element supported on one edge Element A Slenderness Limit,

Section Slenderness, Since  Allowable Stress,

(ADM2005 Sec.3.4.15, page I-A-33) S1

=

S= S1

;

8

b = 26.56 mm

b

Fb =

;

t

<

S 1

<

S

=

18.97

t

=

1.4  mm

S2

 

b 

(Table 2-23 Sec.3.4.15, page VII-71)

 Bp − 5.1  Dp  ny   t  

Fb = 43  MPa

Reference Number:

(Table 2-23 Sec.3.4.15, page VII-71)

S2 = 16

>

Prepared By: RS

f mb

=

7  MPa

OK

Checked By:

Date Prepared: March 03, 2017

Flat element supported on one edge Element A Slenderness Limit, Section Slenderness, Since  Allowable Stress,

S1

=

S= S1

8

b t

<

S

<

;

S2 = 16

;

S

=

13.93

t

b 

1.4  mm

(Table 2-23 Sec.3.4.15, page VII-71)

 B − 5.1  Dp  ny   p t  

Fb =

=

S2

 

1

(ADM2005 Sec.3.4.15, page I-A-33) (Table 2-23 Sec.3.4.15, page VII-71) b = 19.5  mm

Fb = 56  MPa

>

f mb

=

7  MPa

OK

Compression in Beam elements, bending in own plane, gross section Flat element supported on both edges Element B Slenderness Limit, Section Slenderness, Since

 Allowable Stress,

(ADM2005 Sec.3.4.18, page I-A-35) S1

=

S= S1

;

25

h = 28.03 mm

h

;

t

<

Fb =

S

(Table 2-23 Sec.3.4.18, page VII-71)

S2 = 33

>

S

=

20.02

t

=

1.4  mm

S2

k 2c 

Bbr  E

h    ny 0.29  t    

Fb = 87  MPa

Allowable Shear Stress for 6063-T5

>

f mb

=

7  MPa

OK

Aluminum,

Shear in elements, gross section Unstiffened flat elements supported on both edges Element B Slenderness Limit, ; S1 = 44 S2 = 98 h Section Slenderness, ; S= S = 20.02 t Since  Allowable Stress,

S1

>

S

Fsm =

<

(Table 2-23 Sec.3.4.20, page VII-71) h = 28.03 mm t

=

1.4  mm

S2

Fty 3  ny

Fsm = 38  MPa

Reference Number:

(ADM2005 Sec.3.4.20, page I-A-36)

>

Prepared By: RS

f vm = 2.3831 MPa

Checked By:

OK

Date Prepared: March 03, 2017

Stress Ratio, Limit to 0.90 or 90% ratio Tensile Stress Ratio,

f mu Fmu

=

0.11

<

0.90

OK

<

0.90

OK

<

0.90

Bending Stress Ratio,

( ) min ( Fmu , Fb)

max fmu   , f mb

Shear Stress Ratio,

f vm Fsm

=

=

0.11

0.06

OK

Conclusion: From the abov e analysis resul t, 6063-T5 Vertical Frame Sec tion i s satis factory.

Reference Number:

Prepared By: RS

Checked By:

Date Prepared: March 03, 2017

Typical Window Panel : 1750mm x 1400mm (Wind Load 4kPa) Load Data 4  kPa

Wind Pressure

P

Width of Panel

a = 0.5  4200mm

=

a

=

700  mm

Unsupported Length

L

=

583  mm

Uniformly Distributed Load

w = P a w = 2.8 

N mm

Result Data

2



Required Flexural Strength,

Mau =

w L 8

Mau = 0.12  kN  m

(Assumed as uniformly distributed load) Maximum moment within unsupported span

2



Required Flexural Strength,

Mab =

w L 8

Mab = 0.12  kN  m



Required Shear Strength,

Va =

w L 2

Va = 0.82 kN

Reference Number:

Prepared By: RS

(Assumed as uniformly distributed load) Maximum moment within unbraced segment (Assumed as uniformly distributed load)

Maximum shear force

Checked By:

Date Prepared: March 03, 2017

Material Data Dimension A lu mi nu m Me m be r :

6063- T5

Ho ri zo ntal P e ri me te r

Unsupported Length,

Lu = 583  mm

Unsupported Length for bending,

Lb = 583  mm

Material Properties Compressive modulus of elasticity,

E

 A

69600  MPa

=

Tensile ultimate strength,

Ftu

=

150  MPa

Tensile yield strength,

Fty

=

110  MPa

Compressiv e yield strength,

Fcy

=

Shear ultimate strength,

Fsu

=

110  MPa

B

C

90  MPa

Section Properties 2

Cross-sectional area,

 Ag = 151  mm

Shear area,

 Av

Moment of Inertia about x-axis,

Ix

Moment of Inertia about y-axis,

I y = 12746  mm

Extreme Fiber Distance

x e = 22  mm

Extreme Fiber distance

ye = 30  mm

Radius of Gyration about x-axis

r x

Radius of Gyration about y-axis

r y = 9  mm

Section modulus of beam

Sc

=

=

J

4

---------------- REGIONS --------------- Area: 151.1951 Perimeter: 245.8343 Bounding box: X: -15.9281 -- 22.0719 Y: -29.9522 -- 20.0478 Centroid: X: 0.0000 Y: 0.0000 Moments of inertia: X: 60726.9597 Y: 12745.5710 Product of inertia: XY: 10726.5390 Radii of gyration: X: 20.0411 Y: 9.1814 Principal moments and X-Y directions about centroid: I: 10456.7665 along [0.2087 0.9780] J: 63015.7641 along [-0.9780 0.2087]

60727  mm

4

=

=

20  mm

=

Scy Torsion constant

2

151  mm

3

2028  mm

=

3

578 mm

4

63016  mm

Actual Stresses (Wind Load) Maximum Bending Stress at the Support Bending moment on male mullion, •

Maximum stress due to bending

Mmu = Mau f mu =

Mmu Sc

;

Mmu

;

f mu

Maximum Bending Stress at Unbraced Segment • Bending moment on male mullion, Mmb = Mau •

Maximum stress due to bending

Maximum Shear Stress • Shear stress on male mullion,



Stress due to shear force

Reference Number:

Mmu

=

=

; Mmb

0.04  kN  m

21.51 MPa

=

0.04  kN  m

f mb = Sc

;

f mb

=

21.51 MPa

Vm = Va

;

Vm

=

0.82 kN

Vm f vm =  Av Prepared By: RS

f vm = 5.3983  MPa ; Checked By:

Date Prepared: March 03, 2017

Structural Check (Wind Load)

Allowable Tensile Stress for 6063-T5

Aluminum,

Tension in Beams, extreme fiber, net section Flat element in uniform tension Fmu := min Fmu

=

Allowable Bending Stress for 6063-T5

(ADM2005 Sec.3.4.2, page I-A-26)

 Fty   ny

Ftu ,

(Table 2-23 Sec.3.4.2, page VII-70)

 

kt  nu

 

67  MPa

> f mu

=

22  MPa

OK

Aluminum,

Compression i n Beams, extreme fiber, gross section Tubular shapes Slenderness limit, Section Slenderness, Since

 Allowable Stress,

(ADM2005 Sec.3.4.11, page I-A-33) S1

S= S1

;

138

=

Lb

;

r y

<

S

<

Fb =

S

=

Lb = 583  mm

83

r y = 9  mm

S2

 

1 ny

(Table 2-23 Sec.3.4.11, page VII-71)

S2 = 3832

 Bc

 



Lb  Sc

1.6  Dc 

Fb = 67  MPa

0.5  Cb 

>

f mb

=

  Iy J

(Table 2-23 Sec.3.4.11, page VII-71)

 

22  MPa

OK

Compression i n Beams, uniform compression, gross section Flat element supported on one edge Element B Slenderness Limit,

Section Slenderness, Since  Allowable Stress,

(ADM2005 Sec.3.4.15, page I-A-33) S1

=

S= S1

;

8

b = 11.5  mm

b

Fb =

;

t

<

S 1

<

S

=

8.21

t

=

1.4  mm

S2

 

b 

(Table 2-23 Sec.3.4.15, page VII-71)

 Bp − 5.1  Dp  ny   t  

Fb = 66  MPa

Reference Number:

(Table 2-23 Sec.3.4.15, page VII-71)

S2 = 16

>

Prepared By: RS

f mb

=

22  MPa

OK

Checked By:

Date Prepared: March 03, 2017

Flat element supported on both edge Element A

(ADM2005 Sec.3.4.15, page I-A-33)

Slenderness Limit,

Section Slenderness, Since  Allowable Stress,

S1

=

S= S1

;

26

b = 13.3  mm

b

;

t

<

(Table 2-23 Sec.3.4.15, page VII-71)

S2 = 50

S

<

S

=

9.5

b 

1.4  mm

(Table 2-23 Sec.3.4.15, page VII-71)

 B − 5.1  Dp  ny   p t  

Fb =

=

S2

 

1

t

Fb = 67  MPa

>

f mb

=

22  MPa

OK

Compression in Beam elements, bending in own plane, gross section Flat element supported on both edges Element C Slenderness Limit, Section Slenderness, Since

 Allowable Stress,

S1

=

S= S1

(ADM2005 Sec.3.4.18, page I-A-35) ;

25

h = 47.04 mm

h

;

t

<

Fb =

S

(Table 2-23 Sec.3.4.18, page VII-71)

S2 = 33

>

S

=

33.6

t

=

1.4  mm

S2

k 2c 

Bbr  E

h    ny 0.29  t    

Fb = 91  MPa

Allowable Shear Stress for 6063-T5

>

f mb

=

22  MPa

OK

Aluminum,

Shear in elements, gross section Unstiffened flat elements supported on both edges Element A Slenderness Limit, ; S1 = 44 S2 = 98 h Section Slenderness, ; S= S = 33.6 t Since  Allowable Stress,

S1

>

S

Fsm =

<

(Table 2-23 Sec.3.4.20, page VII-71) h = 47.04 mm t

=

1.4  mm

S2

Fty 3  ny

Fsm = 38  MPa

Reference Number:

(ADM2005 Sec.3.4.20, page I-A-36)

>

Prepared By: RS

f vm = 5.3983 MPa

Checked By:

OK

Date Prepared: March 03, 2017

Stress Ratio, Limit to 0.90 or 90% ratio Tensile Stress Ratio,

f mu Fmu

=

0.32

<

0.90

OK

<

0.90

OK

<

0.90

Bending Stress Ratio,

( ) min ( Fmu , Fb)

max fmu   , f mb

Shear Stress Ratio,

f vm Fsm

=

=

0.32

0.14

OK

Dead Load Required Flexural Strength under dead load, Density of Glass

kg

glass = 2500

ρ

3

m Gravity Force

g = 9.81

m s

2

Thickness of Glass

t g = 6  mm

Panel Width

b = 1750  mm

Panel Height

h = 1400  mm

Volume of Glass

Vglass = 14700000 mm

Total Dead Load

DL = Vglass  ρglass  g

;

DL = 360 N

Point Load

P = 0.5 DL

;

P

=

180.2 N

Location of Setting Block

a=

;

a

=

438  mm

Maximum Bending Moment

  Iy  Ma = P  a   IT 

;

Ma = 0.01  kN  m

Maximum Bending Stress

Ma f by = Scy

;

f by = 10.5 MPa

Maximum Shear Force

Vsy = P

;

V sy

Maximum Shear Stress

Vsy f vy =  Av

;

f vy

Reference Number:

3

b 4

Prepared By: RS

=

=

180N

1  MPa

Checked By:

Date Prepared: March 03, 2017

Actual Stresses (Dead Load) Maximum Bending Stress at the Support



Bending moment on male mullion,

Mmu = Mau

;

Mmu

Maximum stress due to bending

Mmu f mu = Sc

;

f mu

0.04  kN  m

=

=

21.51 MPa

Maximum Bending Stress at Unbraced Segment •



Bending moment on male mullion,

; Mmb

Mmb = Mau Mmu

Maximum stress due to bending

0.04  kN  m

=

f mb = Sc

;

f mb

=

21.51 MPa

Vm = Va

;

Vm

=

0.82 kN

Maximum Shear Stress •

Shear stress on male mullion,

Vm



f vm =  Av

Stress due to shear force

f vm = 5.3983  MPa

;

Structural Check (Dead Load)

Allowable Tensile Stress for 6063-T5

Aluminum,

Tension in Beams, extreme fiber, net section Flat element in uniform tension Fmu := min Fmu

=

Allowable Bending Stress for 6063-T5

(ADM2005 Sec.3.4.2, page I-A-26)

 Fty   ny

Ftu ,

(Table 2-23 Sec.3.4.2, page VII-70)

 

kt  nu

 

67  MPa

> f mu

=

22  MPa

OK

Aluminum,

Compression i n Beams, extreme fiber, gross section Tubular shapes Slenderness limit, Section Slenderness, Since

 Allowable Stress,

(ADM2005 Sec.3.4.11, page I-A-33) S1

=

S= S1

;

138

Lb

<

Fb =

;

r y S

<

1 ny

S

=

Lb = 583  mm

83

r y = 9  mm

S2

   Bc

 

Fb = 67  MPa

Reference Number:

(Table 2-23 Sec.3.4.11, page VII-71)

S2 = 3832



1.6  Dc  >

Prepared By: RS

Lb  Sc 0.5  Cb  f mb

=

  Iy J

(Table 2-23 Sec.3.4.11, page VII-71)

 

22  MPa

Checked By:

OK

Date Prepared: March 03, 2017

Compression i n Beams, uniform compression, gross section Flat element supported on both edge Element C Slenderness Limit,

Section Slenderness, Since  Allowable Stress,

(ADM2005 Sec.3.4.15, page I-A-33) S1

=

S= S1

;

26

b = 47.04 mm

b

;

t

<

(Table 2-23 Sec.3.4.15, page VII-71)

S2 = 50

S

<

S

=

33.6

b 

1.4  mm

(Table 2-23 Sec.3.4.15, page VII-71)

 B − 5.1  Dp  ny   p t  

Fb =

=

S2

 

1

t

Fb = 62  MPa

>

f mb

=

22  MPa

OK Compression in Beam elements, bending in own plane, gross section Flat element supported on both edges Element B Slenderness Limit,

Section Slenderness, Since

 Allowable Stress,

(ADM2005 Sec.3.4.18, page I-A-35) S1

=

S= S1

;

25

h = 22.07 mm

h

;

t

<

Fb =

S

(Table 2-23 Sec.3.4.18, page VII-71)

S2 = 33

>

S

=

15.76

t

=

1.4  mm

S2

k 2c 

Bbr  E

h    ny 0.29  t    

Fb = 87  MPa

Allowable Shear Stress for 6063-T5

>

f mb

=

22  MPa

OK

Aluminum,

Shear in elements, gross section Unstiffened flat elements supported on both edges Element B Slenderness Limit, ; S1 = 44 S2 = 98 h Section Slenderness, ; S= S = 15.76 t Since  Allowable Stress,

S1

>

S

Fsm =

<

(Table 2-23 Sec.3.4.20, page VII-71) h = 22.07 mm t

=

1.4  mm

S2

Fty 3  ny

Fsm = 38  MPa

Reference Number:

(ADM2005 Sec.3.4.20, page I-A-36)

>

Prepared By: RS

f vm = 5.3983 MPa

Checked By:

OK

Date Prepared: March 03, 2017

Stress Ratio, Limit to 0.90 or 90% ratio Tensile Stress Ratio,

f mu Fmu

=

0.32

<

0.90

OK

<

0.90

OK

<

0.90

Bending Stress Ratio,

( ) min ( Fmu , Fb)

max fmu   , f mb

Shear Stress Ratio,

f vm Fsm

Reference Number:

=

=

0.32

0.14

Prepared By: RS

Checked By:

OK

Date Prepared: March 03, 2017

Material Data A lu mi nu m Me m be r :

6063- T5

Ho ri zo nta l P an el Fra me

Dimension Unsupported Length, Unsupported Length for bending, Material Properties Compressive modulus of elasticity,

Lu = 300  mm Lb = 300  mm E

69600  MPa

=

Tensile ultimate strength,

Ftu

=

150  MPa

Tensile yield strength,

Fty

=

110  MPa

Compressiv e yield strength,

Fcy

=

110  MPa

Shear ultimate strength,

Fsu

=

90  MPa

C B  A

Section Properties 2

Cross-sectional area,

 Ag = 220  mm

Shear area,

 Av

Moment of Inertia about x-axis,

Ix

Moment of Inertia about y-axis,

I y = 25932  mm

Extreme Fiber Distance

x e = 27  mm

Extreme Fiber distance

ye = 30  mm

Radius of Gyration about x-axis

r x

Radius of Gyration about y-axis

r y = 11  mm

Section modulus of beam

Sc

=

=

J

4

69563  mm

4

=

=

18  mm

=

Scy Torsion constant

---------------- REGIONS --------------- Area: 220.2969 Perimeter: 359.6496 Bounding box: X: -26.5638 -- 25.7362 Y: -19.9457 -- 30.0543 Centroid: X: 0.0000 Y: 0.0000 Moments of inertia: X: 69562.5645 Y: 25931.6560 Product of inertia: XY: 9857.5250 Radii of gyration: X: 17.7698 Y: 10.8495 Principal moments and X-Y directions about centroid: I: 23807.9197 along [0.2106 0.9776] J: 71686.3008 along [-0.9776 0.2106]

2

220  mm

3

2315  mm

=

3

976 mm

4

71686  mm

Actual Stresses (Wind Load) Maximum Bending Stress at the Support Bending moment on male mullion, •

Maximum stress due to bending



Bending moment on male mullion,

Mmu = Mau Mmu

f mu = Sc Maximum Bending Stress at Unbraced Segment



Maximum stress due to bending

Maximum Shear Stress • Shear stress on male mullion,



Stress due to shear force

Reference Number:

;

Mmu

;

f mu

Mmu

=

; Mmb

Mmb = Mau

=

49.96J

21.58 MPa

=

49.96J

f mb = Sc

;

f mb

=

21.58 MPa

Vm = Va

;

Vm

=

0.82 kN

Vm f vm =  Av Prepared By: RS

f vm = 3.705 MPa

Checked By:

Date Prepared: March 03, 2017

Structural Check (Wind Load)

Allowable Tensile Stress for 6063-T5

Aluminum,

Tension in Beams, extreme fiber, net section Flat element in uniform tension Fmu := min Fmu

=

Allowable Bending Stress for 6063-T5

(ADM2005 Sec.3.4.2, page I-A-26)

 Fty   ny

Ftu ,

(Table 2-23 Sec.3.4.2, page VII-70)

 

kt  nu

 

67  MPa

> f mu

=

22  MPa

OK

Aluminum,

Compression i n Beams, extreme fiber, gross section Tubular shapes Slenderness limit, Section Slenderness, Since

 Allowable Stress,

(ADM2005 Sec.3.4.11, page I-A-33) S1

S= S1

;

138

=

Lb

;

r y

<

S

<

Fb =

S

=

Lb = 300  mm

32

r y = 11  mm

S2

 

1 ny

(Table 2-23 Sec.3.4.11, page VII-71)

S2 = 3832

 Bc

 



Lb  Sc

1.6  Dc 

Fb = 67  MPa

0.5  Cb 

>

f mb

=

  Iy J

(Table 2-23 Sec.3.4.11, page VII-71)

 

22  MPa

OK

Compression i n Beams, uniform compression, gross section Flat element supported on one edge Element A Slenderness Limit,

Section Slenderness, Since  Allowable Stress,

(ADM2005 Sec.3.4.15, page I-A-33) S1

=

S= S1

;

8

b = 26.56 mm

b

Fb =

;

t

<

S 1

<

S

=

18.97

t

=

1.4  mm

S2

 

b 

(Table 2-23 Sec.3.4.15, page VII-71)

 Bp − 5.1  Dp  ny   t  

Fb = 43  MPa

Reference Number:

(Table 2-23 Sec.3.4.15, page VII-71)

S2 = 16

>

Prepared By: RS

f mb

=

22  MPa

OK

Checked By:

Date Prepared: March 03, 2017

Flat element supported on one edge Element B Slenderness Limit,

Section Slenderness, Since  Allowable Stress,

S1

=

S= S1

;

8

S2 = 16

b = 23.71 mm

b

;

t

<

(ADM2005 Sec.3.4.15, page I-A-33) (Table 2-23 Sec.3.4.15, page VII-71)

S

<

S

=

16.94

b 

1.4  mm

(Table 2-23 Sec.3.4.15, page VII-71)

 B − 5.1  Dp  ny   p t  

Fb =

=

S2

 

1

t

Fb = 49  MPa

>

f mb

=

22  MPa

OK

Compression in Beam elements, bending in own plane, gross section Flat element supported on both edges Element C Slenderness Limit, Section Slenderness, Since

 Allowable Stress,

(ADM2005 Sec.3.4.18, page I-A-35) S1

=

S= S1

;

25

h = 47.06 mm

h

;

t

<

Fb =

S

(Table 2-23 Sec.3.4.18, page VII-71)

S2 = 33

>

S

=

33.61

t

=

1.4  mm

S2

k 2c 

Bbr  E

h    ny 0.29  t    

Fb = 91  MPa

Allowable Shear Stress for 6063-T5

>

f mb

=

22  MPa

OK

Aluminum,

Shear in elements, gross section Unstiffened flat elements supported on both edges Element A Slenderness Limit, ; S1 = 44 S2 = 98 h Section Slenderness, ; S= S = 33.6 t Since  Allowable Stress,

S1

>

S

Fsm =

<

(Table 2-23 Sec.3.4.20, page VII-71) h = 47.04 mm t

=

1.4  mm

S2

Fty 3  ny

Fsm = 38  MPa

Reference Number:

(ADM2005 Sec.3.4.20, page I-A-36)

>

Prepared By: RS

f vm = 3.705 MPa

Checked By:

OK

Date Prepared: March 03, 2017

Stress Ratio, Limit to 0.90 or 90% ratio Tensile Stress Ratio,

f mu =

Fmu

0.32

<

0.90

OK

<

0.90

OK

<

0.90

Bending Stress Ratio,

( ) min ( Fmu , Fb)

max fmu   , f mb

Shear Stress Ratio,

f vm =

Fsm

=

0.32

0.1

OK

Dead Load Required Flexural Strength under dead load, Density of Glass

glass = 2500

kg

ρ

m Gravity Force

g

=

9.81

3

m s

2

6  mm

Thickness of Glass

tg

Panel Width

b

=

1750  mm

Panel Height

h

=

1400  mm

Volume of Glass

V glass = 14700000  mm

Total Dead Load

DL = Vglass  ρglass  g

;

DL = 360 N

Point Load

P = 0.5 DL

;

P

Location of Setting Block

a=

;

a = 438  mm

Maximum Bending Moment

Ma = P  a 

;

Ma

=

3

b 4

 Iy  IT

   

Ma

180.2 N

=

=

0.01  kN  m

Maximum Bending Stress

f by = Scy

;

f by = 12.64 MPa

Maximum Shear Force

V sy = P

;

Vsy

Maximum Shear Stress

Vsy f vy =  Av

;

f vy

Reference Number:

Prepared By: RS

=

=

180 N

1  MPa

Checked By:

Date Prepared: March 03, 2017

Structural Check (Dead Load)

Allowable Tensile Stress for 6063-T5

Aluminum,

Tension in Beams, extreme fiber, net section Flat element in uniform tension Fmu := min Fmu

=

Allowable Bending Stress for 6063-T5

(ADM2005 Sec.3.4.2, page I-A-26)

 Fty   ny

Ftu ,

(Table 2-23 Sec.3.4.2, page VII-70)

 

kt  nu

 

67  MPa

> f mu

=

22  MPa

OK

Aluminum,

Compression i n Beams, extreme fiber, gross section Tubular shapes Slenderness limit, Section Slenderness, Since

 Allowable Stress,

(ADM2005 Sec.3.4.11, page I-A-33) S1

S= S1

;

138

=

Lb

;

r y

<

S

<

Fb =

S

=

Lb = 300  mm

32

r y = 11  mm

S2

 

1 ny

(Table 2-23 Sec.3.4.11, page VII-71)

S2 = 3832

 Bc

 



Lb  Sc

1.6  Dc 

Fb = 67  MPa

0.5  Cb 

>

f mb

=

  Iy J

(Table 2-23 Sec.3.4.11, page VII-71)

 

22  MPa

OK

Compression i n Beams, uniform compression, gross section Flat element supported on both edge Element C Slenderness Limit,

Section Slenderness, Since  Allowable Stress,

(ADM2005 Sec.3.4.15, page I-A-33) S1

=

S= S1

26

Fb =

S2 = 50

;

S

t S 1

<

=

34

t

=

1.4  mm

S2

 

b 

(Table 2-23 Sec.3.4.15, page VII-71)

 B − 5.1  Dp  ny   p t  

Fb = 62  MPa

Reference Number:

(Table 2-23 Sec.3.4.15, page VII-71) b = 47.6  mm

b

<

;

>

Prepared By: RS

f mb

=

22  MPa

OK

Checked By:

Date Prepared: March 03, 2017

Compression in Beam elements, bending in own plane, gross section Flat element supported on both edges (ADM2005 Sec.3.4.18, page I-A-35)

Element A Slenderness Limit,

S1

Section Slenderness,

S=

Since

 Allowable Stress,

S1

=

25

t

Fb =

S

S2 = 33

;

S

(Table 2-23 Sec.3.4.18, page VII-71) h = 26.56 mm

h

<

;

>

=

18.97

t

=

1.4  mm

S2

k 2c 

Bbr  E

h    ny 0.29  t    

Fb = 87  MPa

Allowable Shear Stress for 6063-T5

>

f mb

=

22  MPa

OK

Aluminum,

Shear in elements, gross section Unstiffened flat elements supported on both edges Element A Slenderness Limit, ; S1 = 44 S2 = 98 h Section Slenderness, ; S= S = 18.97 t Since  Allowable Stress,

S1

>

S

Fsm =

<

(Table 2-23 Sec.3.4.20, page VII-71) h = 26.56 mm t

=

1.4  mm

S2

Fty 3  ny

Fsm = 38  MPa

Reference Number:

(ADM2005 Sec.3.4.20, page I-A-36)

>

Prepared By: RS

f vm = 3.705 MPa

Checked By:

OK

Date Prepared: March 03, 2017

Stress Ratio, Limit to 0.90 or 90% ratio Tensile Stress Ratio,

f mu Fmu

=

0.32

<

0.90

OK

<

0.90

OK

<

0.90

Bending Stress Ratio,

( ) min ( Fmu , Fb)

max fmu   , f mb

Shear Stress Ratio,

f vm Fsm

Reference Number:

=

=

0.32

0.1

Prepared By: RS

Checked By:

OK

Date Prepared: March 03, 2017

Material Data A lu mi nu m Me m be r : Dimension

6063- T5

Ho ri zo nta l Mo ul di ng F ram e

Unsupported Length,

Lu = 300  mm

Unsupported Length for bending,

Lb = 300  mm

Material Properties Compressive modulus of elasticity,

E

B

69600  MPa

=

Tensile ultimate strength,

Ftu

=

150  MPa

Tensile yield strength,

Fty

=

110  MPa

Compressiv e yield strength,

Fcy

=

110  MPa

Shear ultimate strength,

Fsu

=

90  MPa

 A

Section Properties 2

Cross-sectional area,

 Ag = 220  mm

Shear area,

 Av

Moment of Inertia about x-axis,

Ix

Moment of Inertia about y-axis,

I y = 25932  mm

Extreme Fiber Distance

x e = 27  mm

Extreme Fiber distance

ye = 30  mm

Radius of Gyration about x-axis

r x

Radius of Gyration about y-axis

r y = 11  mm

Section modulus of beam

Sc

=

=

J

4

69563  mm

4

=

=

18  mm

=

Scy Torsion constant

2

220  mm

3

2315  mm

=

3

976 mm

---------------- REGIONS --------------- Area: 64.0045 Perimeter: 123.4229 Bounding box: X: -10.1685 -- 9.3315 Y: -12.7345 -- 18.9655 Centroid: X: 0.0000 Y: 0.0733 Moments of inertia: X: 7860.4918 Y: 1861.7072 Product of inertia: XY: -1526.2318 Radii of gyration: X: 11.0820 Y: 5.3933 Principal moments and X-Y directions about centroid: I: 1495.7075 along [0.2332 -0.9724] J: 8226.1473 along [0.9724 0.2332]

4

71686  mm

Actual Stresses (Wind Load) Maximum Bending Stress at the Support Bending moment on male mullion, •

Maximum stress due to bending



Bending moment on male mullion,



Maximum stress due to bending

Mmu = Mau Mmu

f mu = Sc Maximum Bending Stress at Unbraced Segment

Maximum Shear Stress • Shear stress on male mullion,



Stress due to shear force

Reference Number:

;

Mmu

;

f mu

Mmu

=

; Mmb

Mmb = Mau

=

49.96J

21.58 MPa

=

49.96J

f mb = Sc

;

f mb

=

21.58 MPa

Vm = Va

;

Vm

=

0.82 kN

Vm f vm =  Av

;

f vm = 3.705 MPa

Prepared By: RS

Checked By:

Date Prepared: March 03, 2017

Structural Check (Wind Load)

Allowable Tensile Stress for 6063-T5

Aluminum,

Tension in Beams, extreme fiber, net section Flat element in uniform tension Fmu := min Fmu

=

Allowable Bending Stress for 6063-T5

(ADM2005 Sec.3.4.2, page I-A-26)

 Fty   ny

Ftu ,

(Table 2-23 Sec.3.4.2, page VII-70)

 

kt  nu

 

67  MPa

> f mu

=

22  MPa

OK

Aluminum,

Compression i n Beams, extreme fiber, gross section Tubular shapes Slenderness limit, Section Slenderness, Since

 Allowable Stress,

S1

S= S1

;

138

=

Lb

;

r y

<

S

<

Fb =

S

=

Lb = 300  mm

32

r y = 11  mm

S2

 

1 ny

(ADM2005 Sec.3.4.11, page I-A-33) (Table 2-23 Sec.3.4.11, page VII-71)

S2 = 3832

 Bc

 



Lb  Sc

1.6  Dc 

Fb = 67  MPa

0.5  Cb 

>

f mb

=

  Iy J

(Table 2-23 Sec.3.4.11, page VII-71)

 

22  MPa

OK

Compression i n Beams, uniform compression, gross section Flat element supported on one edge Element A Slenderness Limit,

Section Slenderness, Since  Allowable Stress,

(ADM2005 Sec.3.4.15, page I-A-33) S1

=

S= S1

;

8

b = 26.56 mm

b

Fb =

;

t

<

S 1

<

S

=

18.97

t

=

1.4  mm

S2

 

b 

(Table 2-23 Sec.3.4.15, page VII-71)

 Bp − 5.1  Dp  ny   t  

Fb = 43  MPa

Reference Number:

(Table 2-23 Sec.3.4.15, page VII-71)

S2 = 16

>

Prepared By: RS

f mb

=

22  MPa

OK

Checked By:

Date Prepared: March 03, 2017

Flat element supported on one edge Element A Slenderness Limit, Section Slenderness, Since  Allowable Stress,

S1

=

S= S1

8

b t

<

S

<

;

S2 = 16

;

S

=

13.93

t

b 

1.4  mm

(Table 2-23 Sec.3.4.15, page VII-71)

 B − 5.1  Dp  ny   p t  

Fb =

=

S2

 

1

(ADM2005 Sec.3.4.15, page I-A-33) (Table 2-23 Sec.3.4.15, page VII-71) b = 19.5  mm

Fb = 56  MPa

>

f mb

=

22  MPa

OK

Compression in Beam elements, bending in own plane, gross section Flat element supported on both edges Element B Slenderness Limit, Section Slenderness, Since

 Allowable Stress,

(ADM2005 Sec.3.4.18, page I-A-35) S1

=

S= S1

;

25

h = 28.03 mm

h

;

t

<

Fb =

S

(Table 2-23 Sec.3.4.18, page VII-71)

S2 = 33

>

S

=

20.02

t

=

1.4  mm

S2

k 2c 

Bbr  E

h    ny 0.29  t    

Fb = 87  MPa

Allowable Shear Stress for 6063-T5

>

f mb

=

22  MPa

OK

Aluminum,

Shear in elements, gross section Unstiffened flat elements supported on both edges Element B Slenderness Limit, ; S1 = 44 S2 = 98 h Section Slenderness, ; S= S = 20.02 t Since  Allowable Stress,

S1

>

S

Fsm =

<

(Table 2-23 Sec.3.4.20, page VII-71) h = 28.03 mm t

=

1.4  mm

S2

Fty 3  ny

Fsm = 38  MPa

Reference Number:

(ADM2005 Sec.3.4.20, page I-A-36)

>

Prepared By: RS

f vm = 3.705 MPa

Checked By:

OK

Date Prepared: March 03, 2017

Stress Ratio, Limit to 0.90 or 90% ratio Tensile Stress Ratio,

f mu Fmu

=

0.32

<

0.90

OK

<

0.90

OK

<

0.90

Bending Stress Ratio,

( ) min ( Fmu , Fb)

max fmu   , f mb

Shear Stress Ratio,

f vm Fsm

=

=

0.32

0.1

OK

Dead Load Required Flexural Strength under dead load, Density of Glass

kg

glass = 2500

ρ

3

m Gravity Force

g = 9.81

m s

2

Thickness of Glass

t g = 6  mm

Panel Width

b = 1750  mm

Panel Height

h = 1400  mm

Volume of Glass

Vglass = 14700000 mm

Total Dead Load

DL = Vglass  ρglass  g

;

DL = 360 N

Point Load

P = 0.5 DL

;

P

=

180.2 N

Location of Setting Block

a=

;

a

=

438  mm

Maximum Bending Moment

  Iy  Ma = P  a   IT 

;

Ma = 0.01  kN  m

Maximum Bending Stress

Ma f by = Scy

;

f by = 12.64 MPa

Maximum Shear Force

Vsy = P

;

V sy

Maximum Shear Stress

Vsy f vy =  Av

;

f vy

Reference Number:

3

b 4

Prepared By: RS

=

=

180N

1  MPa

Checked By:

Date Prepared: March 03, 2017

Actual Stresses (Dead Load) Maximum Bending Stress at the Support Bending moment on male mullion,

Mmu = Mau Mmu

;

Mmu

;

f mu

=

49.96J

21.58 MPa



Maximum stress due to bending



Bending moment on male mullion,

Mmb = Mau



Maximum stress due to bending

Mmu f mb = Sc

;

f mb

=

21.58 MPa

Vm = Va

;

Vm

=

0.82 kN

Vm f vm =  Av

;

f vm = 3.705 MPa

f mu = Sc Maximum Bending Stress at Unbraced Segment

Maximum Shear Stress • Shear stress on male mullion,



Stress due to shear force

Reference Number:

Prepared By: RS

=

; Mmb

=

49.96J

Checked By:

Date Prepared: March 03, 2017

Structural Check (Dead Load)

Allowable Tensile Stress for 6063-T5

Aluminum,

Tension in Beams, extreme fiber, net section Flat element in uniform tension Fmu := min Fmu

=

Allowable Bending Stress for 6063-T5

(ADM2005 Sec.3.4.2, page I-A-26)

 Fty   ny

Ftu ,

(Table 2-23 Sec.3.4.2, page VII-70)

 

kt  nu

 

67  MPa

> f mu

=

22  MPa

OK

Aluminum,

Compression i n Beams, extreme fiber, gross section Tubular shapes Slenderness limit, Section Slenderness, Since

 Allowable Stress,

S1

S= S1

;

138

=

Lb

;

r y

<

S

<

Fb =

S

=

Lb = 300  mm

32

r y = 11  mm

S2

 

1 ny

(ADM2005 Sec.3.4.11, page I-A-33) (Table 2-23 Sec.3.4.11, page VII-71)

S2 = 3832

 Bc

 



Lb  Sc

1.6  Dc 

Fb = 67  MPa

0.5  Cb 

>

f mb

=

  Iy J

(Table 2-23 Sec.3.4.11, page VII-71)

 

22  MPa

OK

Compression i n Beams, uniform compression, gross section Flat element supported on one edge Element B Slenderness Limit,

Section Slenderness, Since  Allowable Stress,

(ADM2005 Sec.3.4.15, page I-A-33) S1

=

S= S1

8

Fb =

S2 = 16

;

S

t S 1

<

=

20.02

t

=

1.4  mm

S2

 

b 

(Table 2-23 Sec.3.4.15, page VII-71)

 B − 5.1  Dp  ny   p t  

Fb = 41  MPa

Reference Number:

(Table 2-23 Sec.3.4.15, page VII-71) b = 28.03 mm

b

<

;

>

Prepared By: RS

f mb

=

22  MPa

OK

Checked By:

Date Prepared: March 03, 2017

Compression in Beam elements, bending in own plane, gross section Flat element supported on both edges Element A Slenderness Limit, Section Slenderness, Since

 Allowable Stress,

(ADM2005 Sec.3.4.18, page I-A-35) S1

=

S= S1

;

25

h = 19.5  mm

h

;

t

<

Fb =

S

(Table 2-23 Sec.3.4.18, page VII-71)

S2 = 33

>

S

=

13.93

t

=

1.4  mm

S2

k 2c 

Bbr  E

h    ny 0.29  t    

Fb = 87  MPa

Allowable Shear Stress for 6063-T5

>

f mb

=

22  MPa

OK

Aluminum,

Shear in elements, gross section Unstiffened flat elements supported on both edges Element A Slenderness Limit, ; S1 = 44 S2 = 98 h Section Slenderness, ; S= S = 13.93 t Since  Allowable Stress,

S1

>

S

Fsm =

<

(Table 2-23 Sec.3.4.20, page VII-71) h = 19.5  mm t

=

1.4  mm

S2

Fty 3  ny

Fsm = 38  MPa

Reference Number:

(ADM2005 Sec.3.4.20, page I-A-36)

>

Prepared By: RS

f vm = 3.705 MPa

Checked By:

OK

Date Prepared: March 03, 2017

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF