Window Calculation.pdf
Short Description
Download Window Calculation.pdf...
Description
Structural Engineering Calculation Calculation
Window Calculations
Analysis of Window Panel and Aluminum Frame
Date Prep ared
:
Referen ce No .
:
Revision No .
:
M arch 03 , 2 0 17
0
Design Criteria Standards and Specifications American American Society for Testing Testing and Materials: ASTM ASTM E130 0-2004 , "Standard Practice for Determining Determining Load Resistance of Glass in Buildin gs Australian Standard: AS 1288-1994 , "Glass "Glass in Build ings-Selection ings-Selection an d Installation" Aluminum Design Design Man ual: ADM ADM 20 05, "Specifications and Guidelines for Aluminum Structures" American American Architectural Manufacturers Association: AAMA TIR-A9TIR-A9-91, 91, "Metal Curtain Wall Fasteners" Fasteners" Materials Structural M embers: embers: Monolithic Glass Unit Framing Members: Aluminum Extrusion Extrusion 6 063-T5 Fasteners: Stainless Steel Screw: AAMA TIR-A9-91 Sealant: ASTM ASTM C 1 401-02 Design Loads Dead Load Self weight of all structural members Weight of glass infill Wind Load Fo r glazin g an d framin g
Reference Number:
4 kPa
Prepared By: RS
Checked By:
Date Prepared: March 03, 2017
Design Criteria Standards and Specifications American American Society for Testing Testing and Materials: ASTM ASTM E130 0-2004 , "Standard Practice for Determining Determining Load Resistance of Glass in Buildin gs Australian Standard: AS 1288-1994 , "Glass "Glass in Build ings-Selection ings-Selection an d Installation" Aluminum Design Design Man ual: ADM ADM 20 05, "Specifications and Guidelines for Aluminum Structures" American American Architectural Manufacturers Association: AAMA TIR-A9TIR-A9-91, 91, "Metal Curtain Wall Fasteners" Fasteners" Materials Structural M embers: embers: Monolithic Glass Unit Framing Members: Aluminum Extrusion Extrusion 6 063-T5 Fasteners: Stainless Steel Screw: AAMA TIR-A9-91 Sealant: ASTM ASTM C 1 401-02 Design Loads Dead Load Self weight of all structural members Weight of glass infill Wind Load Fo r glazin g an d framin g
Reference Number:
4 kPa
Prepared By: RS
Checked By:
Date Prepared: March 03, 2017
GLASS GL ASS ANAL AN ALYSIS YSIS
Reference Number:
Prepared By: RS
Checked By:
Date Prepared: March 03, 2017
Subj Subjec ect: t: Type: Item tem:
Glas Glasss Ana Analy lysi siss (80 (800x 0x14 1400 00m mm) Monolithic 6FT Monol onoliithic thic Glas Glasss w/ w/ 44-side sidess Con Conti tinu nuou ouss Sup Suppo port rt
The following formulae were used to calculate the minimum thickness, the deflection, and the aspect ratio of the glass pane under a given static wind pressure in accordance with ASTM E1300 and AS 1288. Minimum Thickness, tmin
=
Maximum Deflection
=
Limiting Aspect Ratio
= =
(5 * DP * A) ^ (1 / 1.8)
in mm 2
t * exp(r0 + r 1 * x + r 2 * x )
in mm
0.2
8.98 / t
for glass thickness < 6mm 1.6
2
49.34 * (0.2 0.2 * t + 1.9) / t
for glass thickness > 6mm
Where: DP
= Desig Design n Pre Pressu ssure re depen depends ds on the the typ typee of of gla glass ss 2
A t
= Area of of the gl glass ass pa pane, in in m = Thickness of the glass pane, in mm
r 0
= 0.553 - 3.83*AR + 1.11*AR - 0.0969*AR
r 1
= -2.29 + 5.83*AR - 2.17*AR + 0.2067*AR
r 2
= 1.485 - 1.908*AR + 0.815*AR - 0.0822*AR
x AR WL E
2
3
2
3
2
= = = =
2
3
4
ln {ln [WL * A / (E * t )]} Aspect Ratio, a/b Wind Load, in kPa Modulus of Elasticity of glass, in kPa
Data Given:
800
Glass Width, b Glass Height, a Wind Pressure, WP Type of Support Construction Type of glass
= = = = = =
800 mm 1400 mm 4 kPa 4-sided continuous support Monolithic Tempered
Design Pressure, DP Minimum Thickness, tmin Allowable Deflection, Limiting Aspect Ratio
= = = =
1.60 3 .4 13.33 6.28
kPa mm mm
= = =
6 .0 8.99 1.75
mm mm
1400
Result:
(L/60 or 20mm)
Conclusion:
Design Thickness, t Maximum Deflection Aspect Ratio, AR
OK OK OK
Note:
As per the results of analyses above, the proposed glass type and thickness of glass is adequate to sustain the lateral load.
Reference Number:
Prepared By:
RS
Checked By:
Date Prepared: March 3, 2017
Verification of Deflection by ASTM E1300-04 (X1) q = 4 kPa A NFL GTF LR E t Aspect Ratio, AR
= = = = = = =
non-dimensional load, q = ln(q) = = ŵ Glass Deflection, w =
1120000 2.45 2.5 6.125 71700000 6.0 1.75
2
mm
from Annex A-1 Chart from page 503 onwards [2.0 from Table 1 of E1300] or [1.6 from Table kPa mm
54.00 3.99 2.30
from the FIG. X1.1 page 550
13.80 mm
Check with Max. Calculated Deflection above
Calculation of Actual Stress of Designed Thickness of Glass by AS1288 Design Stress = 38 MPa for thickness less than or equal 6mm Actual Stress in Glass = 12.07 MPa Calculation of Actual Stress of Designed Thickness of Glass by ASTM E-1300 Design Stress = 93.1 MPa X8.2 on page 554 Actual Stress in Glass = 29.56 MPa
Reference Number:
Prepared By:
RS
Checked By:
Date Prepared: March 3, 2017
FRAMING ANALYSIS
Reference Number:
Prepared By: RS
Checked By:
Date Prepared: March 03, 2017
Typical Window Panel : 1750mm x 1400mm (Wind Load 4kPa) Load Data 4 kPa
Wind Pressure
P
Width of Panel
a = 0.5 4200mm
=
a
=
875 mm
Unsupported Length
L
=
300 mm
Uniformly Distributed Load
w = P a w = 3.5
N mm
Result Data
2
•
Required Flexural Strength,
Mau =
w L 8
Mau = 0.04 kN m
(Assumed as uniformly distributed load) Maximum moment within unsupported span
2
•
Required Flexural Strength,
Mab =
w L 8
Mab = 0.04 kN m
•
Required Shear Strength,
Va =
w L 2
Va = 0.53 kN
Reference Number:
Prepared By: RS
(Assumed as uniformly distributed load) Maximum moment within unbraced segment (Assumed as uniformly distributed load)
Maximum shear force
Checked By:
Date Prepared: March 03, 2017
Material Data A lu mi nu m Me m be r : Dimension
6063- T5
V e rti cal Pe ri me te r
Unsupported Length,
Lu = 300 mm
Unsupported Length for bending,
Lb = 300 mm
Material Properties Compressive modulus of elasticity,
E
A
69600 MPa
=
Tensile ultimate strength,
Ftu
=
150 MPa
Tensile yield strength,
Fty
=
110 MPa
Compressiv e yield strength,
Fcy
=
110 MPa
Shear ultimate strength,
Fsu
=
90 MPa
B
C
Section Properties 2
Cross-sectional area,
Ag = 151 mm
Shear area,
Av
Moment of Inertia about x-axis,
Ix
Moment of Inertia about y-axis,
I y = 12746 mm
Extreme Fiber Distance
x e = 22 mm
Extreme Fiber distance
ye = 30 mm
Radius of Gyration about x-axis
r x
Radius of Gyration about y-axis
r y = 9 mm
Section modulus of beam
Sc
=
Torsion constant
J
63016 mm
=
=
2
151 mm
4
60727 mm
---------------- REGIONS --------------- Area: 151.1951 Perimeter: 245.8343 Bounding box: X: -15.9281 -- 22.0719 Y: -29.9522 -- 20.0478 Centroid: X: 0.0000 Y: 0.0000 Moments of inertia: X: 60726.9597 Y: 12745.5710 Product of inertia: XY: 10726.5390 Radii of gyration: X: 20.0411 Y: 9.1814 Principal moments and X-Y directions about centroid: I: 10456.7665 along [0.2087 0.9780] J: 63015.7641 along [-0.9780 0.2087]
4
=
=
20 mm
3
2028 mm
4
Actual Stresses Maximum Bending Stress at the Support Bending moment on male mullion, •
Maximum stress due to bending
Mmu = Mau Mmu
f mu = Sc
;
Mmu
;
f mu
=
=
0.01 kN m
7.12 MPa
Maximum Bending Stress at Unbraced Segment ; Mmb
0.01 kN m
•
Bending moment on male mullion,
Mmb = Mau
•
Maximum stress due to bending
Mmu f mb = Sc
;
f mb
=
7.12 MPa
Vm = Va
;
Vm
=
0.53 kN
=
Maximum Shear Stress •
•
Shear stress on male mullion,
Stress due to shear force
Reference Number:
f vm =
Vm Av
Prepared By: RS
;
f vm = 3.4723 MPa
Checked By:
Date Prepared: March 03, 2017
Structural Check
Allowable Tensile Stress for 6063-T5
Aluminum,
Tension in Beams, extreme fiber, net section Flat element in uniform tension Fmu := min Fmu
=
Allowable Bending Stress for 6063-T5
(ADM2005 Sec.3.4.2, page I-A-26)
Fty ny
Ftu ,
(Table 2-23 Sec.3.4.2, page VII-70)
kt nu
67 MPa
> f mu
=
7 MPa
OK
Aluminum,
Compression i n Beams, extreme fiber, gross section Tubular shapes Slenderness limit, Section Slenderness, Since
Allowable Stress,
(ADM2005 Sec.3.4.11, page I-A-33) S1
S= S1
;
138
=
Lb
;
r y
<
S
<
Fb =
S
=
Lb = 300 mm
43
r y = 9 mm
S2
1 ny
(Table 2-23 Sec.3.4.11, page VII-71)
S2 = 3832
Bc
−
Lb Sc
1.6 Dc
Fb = 67 MPa
0.5 Cb
>
f mb
=
Iy J
(Table 2-23 Sec.3.4.11, page VII-71)
7 MPa
OK
Compression i n Beams, uniform compression, gross section Flat element supported on one edge Element B Slenderness Limit,
Section Slenderness, Since Allowable Stress,
(ADM2005 Sec.3.4.15, page I-A-33) S1
=
S= S1
;
8
b = 11.5 mm
b
Fb =
;
t
<
S 1
<
S
=
8.21
t
=
1.4 mm
S2
b
(Table 2-23 Sec.3.4.15, page VII-71)
Bp − 5.1 Dp ny t
Fb = 66 MPa
Reference Number:
(Table 2-23 Sec.3.4.15, page VII-71)
S2 = 16
>
Prepared By: RS
f mb
=
7 MPa
OK
Checked By:
Date Prepared: March 03, 2017
Flat element supported on both edge Element A
(ADM2005 Sec.3.4.15, page I-A-33)
Slenderness Limit,
Section Slenderness, Since Allowable Stress,
S1
=
S= S1
;
26
b = 13.3 mm
b
;
t
<
(Table 2-23 Sec.3.4.15, page VII-71)
S2 = 50
S
<
S
=
9.5
b
1.4 mm
(Table 2-23 Sec.3.4.15, page VII-71)
B − 5.1 Dp ny p t
Fb =
=
S2
1
t
Fb = 67 MPa
>
f mb
=
7 MPa
OK
Compression in Beam elements, bending in own plane, gross section Flat element supported on both edges Element C Slenderness Limit, S1 = 25 Section Slenderness, Since
Allowable Stress,
S= S1
(ADM2005 Sec.3.4.18, page I-A-35) ;
h = 47.04 mm
h
;
t
<
Fb =
S
(Table 2-23 Sec.3.4.18, page VII-71)
S2 = 33
>
S
=
33.6
t
=
1.4 mm
S2
k 2c
Bbr E
h ny 0.29 t
Fb = 91 MPa
Allowable Shear Stress for 6063-T5
>
f mb
=
7 MPa
OK
Aluminum,
Shear in elements, gross section Unstiffened flat elements supported on both edges Element A Slenderness Limit, ; S1 = 44 S2 = 98 h Section Slenderness, ; S= S = 33.6 t Since Allowable Stress,
S1
>
S
Fsm =
<
(Table 2-23 Sec.3.4.20, page VII-71) h = 47.04 mm t
=
1.4 mm
S2
Fty 3 ny
Fsm = 38 MPa
Reference Number:
(ADM2005 Sec.3.4.20, page I-A-36)
>
Prepared By: RS
f vm = 3.4723 MPa
Checked By:
OK
Date Prepared: March 03, 2017
Stress Ratio, Limit to 0.90 or 90% ratio Tensile Stress Ratio,
f mu Fmu
=
0.11
<
0.90
OK
<
0.90
OK
<
0.90
Bending Stress Ratio,
( ) min ( Fmu , Fb)
max fmu , f mb
Shear Stress Ratio,
f vm Fsm
Reference Number:
=
=
0.11
0.09
Prepared By: RS
Checked By:
OK
Date Prepared: March 03, 2017
Material Data
A lu mi nu m Me m be r :
6063- T5
V e rti cal P an el F ram e
Dimension Unsupported Length,
Lu = 300 mm
Unsupported Length for bending,
Lb = 300 mm
Material Properties Compressive modulus of elasticity,
E
C
69600 MPa
=
Tensile ultimate strength,
Ftu
=
150 MPa
Tensile yield strength,
Fty
=
110 MPa
Compressiv e yield strength,
Fcy
=
110 MPa
Shear ultimate strength,
Fsu
=
90 MPa
B A
Section Properties 2
Cross-sectional area,
Ag = 220 mm
Shear area,
Av
Moment of Inertia about x-axis,
Ix
Moment of Inertia about y-axis,
I y = 25932 mm
Extreme Fiber Distance
x e = 27 mm
Extreme Fiber distance
ye = 30 mm
Radius of Gyration about x-axis
r x
Radius of Gyration about y-axis
r y = 11 mm
Section modulus of beam
Sc
=
Torsion constant
J
71686 mm
=
=
---------------- REGIONS --------------- Area: 220.2969 Perimeter: 359.6496 Bounding box: X: -26.5638 -- 25.7362 Y: -19.9457 -- 30.0543 Centroid: X: 0.0000 Y: 0.0000 Moments of inertia: X: 69562.5645 Y: 25931.6560 Product of inertia: XY: 9857.5250 Radii of gyration: X: 17.7698 Y: 10.8495 Principal moments and X-Y directions about centroid: I: 23807.9197 along [0.2106 0.9776] J: 71686.3008 along [-0.9776 0.2106]
2
220 mm
4
69563 mm
4
=
=
18 mm
3
2315 mm
4
Actual Stresses Maximum Bending Stress at the Support
•
Bending moment on male mullion,
Mmu = Mau
;
Mmu
Maximum stress due to bending
Mmu f mu = Sc
;
f mu
=
=
16.54J
7.14 MPa
Maximum Bending Stress at Unbraced Segment •
•
Bending moment on male mullion, Maximum stress due to bending
Maximum Shear Stress • Shear stress on male mullion,
•
Stress due to shear force
Reference Number:
; Mmb
Mmb = Mau Mmu
=
16.54J
f mb = Sc
;
f mb
=
7.14 MPa
Vm = Va
;
Vm
=
0.53 kN
Vm f vm = Av Prepared By: RS
f vm = 2.3831 MPa
Checked By:
Date Prepared: March 03, 2017
Structural Check
Allowable Tensile Stress for 6063-T5
Aluminum,
Tension in Beams, extreme fiber, net section Flat element in uniform tension Fmu := min Fmu
=
Allowable Bending Stress for 6063-T5
(ADM2005 Sec.3.4.2, page I-A-26)
Fty ny
Ftu ,
(Table 2-23 Sec.3.4.2, page VII-70)
kt nu
67 MPa
> f mu
=
7 MPa
OK
Aluminum,
Compression i n Beams, extreme fiber, gross section Tubular shapes Slenderness limit, Section Slenderness, Since
Allowable Stress,
(ADM2005 Sec.3.4.11, page I-A-33) S1
S= S1
;
138
=
Lb
;
r y
<
S
<
Fb =
S
=
Lb = 300 mm
32
r y = 11 mm
S2
1 ny
(Table 2-23 Sec.3.4.11, page VII-71)
S2 = 3832
Bc
−
Lb Sc
1.6 Dc
Fb = 67 MPa
0.5 Cb
>
f mb
=
Iy J
(Table 2-23 Sec.3.4.11, page VII-71)
7 MPa
OK
Compression i n Beams, uniform compression, gross section Flat element supported on one edge Element A Slenderness Limit,
Section Slenderness, Since Allowable Stress,
(ADM2005 Sec.3.4.15, page I-A-33) S1
=
S= S1
;
8
b = 26.56 mm
b
Fb =
;
t
<
S 1
<
S
=
18.97
t
=
1.4 mm
S2
b
(Table 2-23 Sec.3.4.15, page VII-71)
Bp − 5.1 Dp ny t
Fb = 43 MPa
Reference Number:
(Table 2-23 Sec.3.4.15, page VII-71)
S2 = 16
>
Prepared By: RS
f mb
=
7 MPa
OK
Checked By:
Date Prepared: March 03, 2017
Flat element supported on one edge Element B Slenderness Limit,
Section Slenderness, Since Allowable Stress,
S1
=
S= S1
;
8
S2 = 16
b = 23.71 mm
b
;
t
<
(ADM2005 Sec.3.4.15, page I-A-33) (Table 2-23 Sec.3.4.15, page VII-71)
S
<
S
=
16.94
b
1.4 mm
(Table 2-23 Sec.3.4.15, page VII-71)
B − 5.1 Dp ny p t
Fb =
=
S2
1
t
Fb = 49 MPa
>
f mb
=
7 MPa
OK
Compression in Beam elements, bending in own plane, gross section Flat element supported on both edges Element C Slenderness Limit, Section Slenderness, Since
Allowable Stress,
(ADM2005 Sec.3.4.18, page I-A-35) S1
=
S= S1
;
25
h = 47.06 mm
h
;
t
<
Fb =
S
(Table 2-23 Sec.3.4.18, page VII-71)
S2 = 33
>
S
=
33.61
t
=
1.4 mm
S2
k 2c
Bbr E
h ny 0.29 t
Fb = 91 MPa
Allowable Shear Stress for 6063-T5
>
f mb
=
7 MPa
OK
Aluminum,
Shear in elements, gross section Unstiffened flat elements supported on both edges Element A Slenderness Limit, ; S1 = 44 S2 = 98 h Section Slenderness, ; S= S = 33.6 t Since Allowable Stress,
S1
>
S
Fsm =
<
(Table 2-23 Sec.3.4.20, page VII-71) h = 47.04 mm t
=
1.4 mm
S2
Fty 3 ny
Fsm = 38 MPa
Reference Number:
(ADM2005 Sec.3.4.20, page I-A-36)
>
Prepared By: RS
f vm = 2.3831 MPa
Checked By:
OK
Date Prepared: March 03, 2017
Stress Ratio, Limit to 0.90 or 90% ratio Tensile Stress Ratio,
f mu Fmu
=
0.11
<
0.90
OK
<
0.90
OK
<
0.90
Bending Stress Ratio,
( ) min ( Fmu , Fb)
max fmu , f mb
Shear Stress Ratio,
f vm Fsm
Reference Number:
=
=
0.11
0.06
Prepared By: RS
Checked By:
OK
Date Prepared: March 03, 2017
Material Data
Aluminum Member : Dimension
6063-T5
Vertical Moulding Frame
Unsupported Length,
Lu = 300 mm
Unsupported Length for bending,
Lb = 300 mm
Material Properties Compressive modulus of elasticity,
E
B
69600 MPa
=
Tensile ultimate strength,
Ftu
=
150 MPa
Tensile yield strength,
Fty
=
110 MPa
Compressiv e yield strength,
Fcy
=
110 MPa
Shear ultimate strength,
Fsu
=
90 MPa
A
Section Properties 2
Cross-sectional area,
Ag = 220 mm
Shear area,
Av
Moment of Inertia about x-axis,
Ix
Moment of Inertia about y-axis,
I y = 25932 mm
Extreme Fiber Distance
x e = 27 mm
Extreme Fiber distance
ye = 30 mm
Radius of Gyration about x-axis
r x
Radius of Gyration about y-axis
r y = 11 mm
Section modulus of beam
Sc
=
Torsion constant
J
71686 mm
=
=
2
220 mm
4
69563 mm
4
=
=
18 mm
3
2315 mm
4
---------------- REGIONS --------------- Area: 64.0045 Perimeter: 123.4229 Bounding box: X: -10.1685 -- 9.3315 Y: -12.7345 -- 18.9655 Centroid: X: 0.0000 Y: 0.0733 Moments of inertia: X: 7860.4918 Y: 1861.7072 Product of inertia: XY: -1526.2318 Radii of gyration: X: 11.0820 Y: 5.3933 Principal moments and X-Y directions about centroid: I: 1495.7075 along [0.2332 -0.9724] J: 8226.1473 along [0.9724 0.2332]
Actual Stresses Maximum Bending Stress at the Support Bending moment on male mullion,
Mmu = Mau
Mmu f mu = Sc Maximum Bending Stress at Unbraced Segment
;
Mmu
;
f mu
=
16.54J
7.14 MPa
•
Maximum stress due to bending
•
Bending moment on male mullion,
Mmb = Mau
•
Maximum stress due to bending
Mmu f mb = Sc
;
f mb
=
7.14 MPa
Vm = Va
;
Vm
=
0.53 kN
;
f vm = 2.3831 MPa
=
; Mmb
=
16.54J
Maximum Shear Stress •
•
Shear stress on male mullion,
Stress due to shear force
Reference Number:
f vm =
Vm Av
Prepared By: RS
Checked By:
Date Prepared: March 03, 2017
Structural Check
Allowable Tensile Stress for 6063-T5
Aluminum,
Tension in Beams, extreme fiber, net section Flat element in uniform tension Fmu := min Fmu
=
Allowable Bending Stress for 6063-T5
(ADM2005 Sec.3.4.2, page I-A-26)
Fty ny
Ftu ,
(Table 2-23 Sec.3.4.2, page VII-70)
kt nu
67 MPa
> f mu
=
7 MPa
OK
Aluminum,
Compression i n Beams, extreme fiber, gross section Tubular shapes Slenderness limit, Section Slenderness, Since
Allowable Stress,
S1
S= S1
;
138
=
Lb
;
r y
<
S
<
Fb =
S
=
Lb = 300 mm
32
r y = 11 mm
S2
1 ny
(ADM2005 Sec.3.4.11, page I-A-33) (Table 2-23 Sec.3.4.11, page VII-71)
S2 = 3832
Bc
−
Lb Sc
1.6 Dc
Fb = 67 MPa
0.5 Cb
>
f mb
=
Iy J
(Table 2-23 Sec.3.4.11, page VII-71)
7 MPa
OK
Compression i n Beams, uniform compression, gross section Flat element supported on one edge Element A Slenderness Limit,
Section Slenderness, Since Allowable Stress,
(ADM2005 Sec.3.4.15, page I-A-33) S1
=
S= S1
;
8
b = 26.56 mm
b
Fb =
;
t
<
S 1
<
S
=
18.97
t
=
1.4 mm
S2
b
(Table 2-23 Sec.3.4.15, page VII-71)
Bp − 5.1 Dp ny t
Fb = 43 MPa
Reference Number:
(Table 2-23 Sec.3.4.15, page VII-71)
S2 = 16
>
Prepared By: RS
f mb
=
7 MPa
OK
Checked By:
Date Prepared: March 03, 2017
Flat element supported on one edge Element A Slenderness Limit, Section Slenderness, Since Allowable Stress,
S1
=
S= S1
8
b t
<
S
<
;
S2 = 16
;
S
=
13.93
t
b
1.4 mm
(Table 2-23 Sec.3.4.15, page VII-71)
B − 5.1 Dp ny p t
Fb =
=
S2
1
(ADM2005 Sec.3.4.15, page I-A-33) (Table 2-23 Sec.3.4.15, page VII-71) b = 19.5 mm
Fb = 56 MPa
>
f mb
=
7 MPa
OK
Compression in Beam elements, bending in own plane, gross section Flat element supported on both edges Element B Slenderness Limit, Section Slenderness, Since
Allowable Stress,
(ADM2005 Sec.3.4.18, page I-A-35) S1
=
S= S1
;
25
h = 28.03 mm
h
;
t
<
Fb =
S
(Table 2-23 Sec.3.4.18, page VII-71)
S2 = 33
>
S
=
20.02
t
=
1.4 mm
S2
k 2c
Bbr E
h ny 0.29 t
Fb = 87 MPa
Allowable Shear Stress for 6063-T5
>
f mb
=
7 MPa
OK
Aluminum,
Shear in elements, gross section Unstiffened flat elements supported on both edges Element B Slenderness Limit, ; S1 = 44 S2 = 98 h Section Slenderness, ; S= S = 20.02 t Since Allowable Stress,
S1
>
S
Fsm =
<
(Table 2-23 Sec.3.4.20, page VII-71) h = 28.03 mm t
=
1.4 mm
S2
Fty 3 ny
Fsm = 38 MPa
Reference Number:
(ADM2005 Sec.3.4.20, page I-A-36)
>
Prepared By: RS
f vm = 2.3831 MPa
Checked By:
OK
Date Prepared: March 03, 2017
Stress Ratio, Limit to 0.90 or 90% ratio Tensile Stress Ratio,
f mu Fmu
=
0.11
<
0.90
OK
<
0.90
OK
<
0.90
Bending Stress Ratio,
( ) min ( Fmu , Fb)
max fmu , f mb
Shear Stress Ratio,
f vm Fsm
=
=
0.11
0.06
OK
Conclusion: From the abov e analysis resul t, 6063-T5 Vertical Frame Sec tion i s satis factory.
Reference Number:
Prepared By: RS
Checked By:
Date Prepared: March 03, 2017
Typical Window Panel : 1750mm x 1400mm (Wind Load 4kPa) Load Data 4 kPa
Wind Pressure
P
Width of Panel
a = 0.5 4200mm
=
a
=
700 mm
Unsupported Length
L
=
583 mm
Uniformly Distributed Load
w = P a w = 2.8
N mm
Result Data
2
•
Required Flexural Strength,
Mau =
w L 8
Mau = 0.12 kN m
(Assumed as uniformly distributed load) Maximum moment within unsupported span
2
•
Required Flexural Strength,
Mab =
w L 8
Mab = 0.12 kN m
•
Required Shear Strength,
Va =
w L 2
Va = 0.82 kN
Reference Number:
Prepared By: RS
(Assumed as uniformly distributed load) Maximum moment within unbraced segment (Assumed as uniformly distributed load)
Maximum shear force
Checked By:
Date Prepared: March 03, 2017
Material Data Dimension A lu mi nu m Me m be r :
6063- T5
Ho ri zo ntal P e ri me te r
Unsupported Length,
Lu = 583 mm
Unsupported Length for bending,
Lb = 583 mm
Material Properties Compressive modulus of elasticity,
E
A
69600 MPa
=
Tensile ultimate strength,
Ftu
=
150 MPa
Tensile yield strength,
Fty
=
110 MPa
Compressiv e yield strength,
Fcy
=
Shear ultimate strength,
Fsu
=
110 MPa
B
C
90 MPa
Section Properties 2
Cross-sectional area,
Ag = 151 mm
Shear area,
Av
Moment of Inertia about x-axis,
Ix
Moment of Inertia about y-axis,
I y = 12746 mm
Extreme Fiber Distance
x e = 22 mm
Extreme Fiber distance
ye = 30 mm
Radius of Gyration about x-axis
r x
Radius of Gyration about y-axis
r y = 9 mm
Section modulus of beam
Sc
=
=
J
4
---------------- REGIONS --------------- Area: 151.1951 Perimeter: 245.8343 Bounding box: X: -15.9281 -- 22.0719 Y: -29.9522 -- 20.0478 Centroid: X: 0.0000 Y: 0.0000 Moments of inertia: X: 60726.9597 Y: 12745.5710 Product of inertia: XY: 10726.5390 Radii of gyration: X: 20.0411 Y: 9.1814 Principal moments and X-Y directions about centroid: I: 10456.7665 along [0.2087 0.9780] J: 63015.7641 along [-0.9780 0.2087]
60727 mm
4
=
=
20 mm
=
Scy Torsion constant
2
151 mm
3
2028 mm
=
3
578 mm
4
63016 mm
Actual Stresses (Wind Load) Maximum Bending Stress at the Support Bending moment on male mullion, •
Maximum stress due to bending
Mmu = Mau f mu =
Mmu Sc
;
Mmu
;
f mu
Maximum Bending Stress at Unbraced Segment • Bending moment on male mullion, Mmb = Mau •
Maximum stress due to bending
Maximum Shear Stress • Shear stress on male mullion,
•
Stress due to shear force
Reference Number:
Mmu
=
=
; Mmb
0.04 kN m
21.51 MPa
=
0.04 kN m
f mb = Sc
;
f mb
=
21.51 MPa
Vm = Va
;
Vm
=
0.82 kN
Vm f vm = Av Prepared By: RS
f vm = 5.3983 MPa ; Checked By:
Date Prepared: March 03, 2017
Structural Check (Wind Load)
Allowable Tensile Stress for 6063-T5
Aluminum,
Tension in Beams, extreme fiber, net section Flat element in uniform tension Fmu := min Fmu
=
Allowable Bending Stress for 6063-T5
(ADM2005 Sec.3.4.2, page I-A-26)
Fty ny
Ftu ,
(Table 2-23 Sec.3.4.2, page VII-70)
kt nu
67 MPa
> f mu
=
22 MPa
OK
Aluminum,
Compression i n Beams, extreme fiber, gross section Tubular shapes Slenderness limit, Section Slenderness, Since
Allowable Stress,
(ADM2005 Sec.3.4.11, page I-A-33) S1
S= S1
;
138
=
Lb
;
r y
<
S
<
Fb =
S
=
Lb = 583 mm
83
r y = 9 mm
S2
1 ny
(Table 2-23 Sec.3.4.11, page VII-71)
S2 = 3832
Bc
−
Lb Sc
1.6 Dc
Fb = 67 MPa
0.5 Cb
>
f mb
=
Iy J
(Table 2-23 Sec.3.4.11, page VII-71)
22 MPa
OK
Compression i n Beams, uniform compression, gross section Flat element supported on one edge Element B Slenderness Limit,
Section Slenderness, Since Allowable Stress,
(ADM2005 Sec.3.4.15, page I-A-33) S1
=
S= S1
;
8
b = 11.5 mm
b
Fb =
;
t
<
S 1
<
S
=
8.21
t
=
1.4 mm
S2
b
(Table 2-23 Sec.3.4.15, page VII-71)
Bp − 5.1 Dp ny t
Fb = 66 MPa
Reference Number:
(Table 2-23 Sec.3.4.15, page VII-71)
S2 = 16
>
Prepared By: RS
f mb
=
22 MPa
OK
Checked By:
Date Prepared: March 03, 2017
Flat element supported on both edge Element A
(ADM2005 Sec.3.4.15, page I-A-33)
Slenderness Limit,
Section Slenderness, Since Allowable Stress,
S1
=
S= S1
;
26
b = 13.3 mm
b
;
t
<
(Table 2-23 Sec.3.4.15, page VII-71)
S2 = 50
S
<
S
=
9.5
b
1.4 mm
(Table 2-23 Sec.3.4.15, page VII-71)
B − 5.1 Dp ny p t
Fb =
=
S2
1
t
Fb = 67 MPa
>
f mb
=
22 MPa
OK
Compression in Beam elements, bending in own plane, gross section Flat element supported on both edges Element C Slenderness Limit, Section Slenderness, Since
Allowable Stress,
S1
=
S= S1
(ADM2005 Sec.3.4.18, page I-A-35) ;
25
h = 47.04 mm
h
;
t
<
Fb =
S
(Table 2-23 Sec.3.4.18, page VII-71)
S2 = 33
>
S
=
33.6
t
=
1.4 mm
S2
k 2c
Bbr E
h ny 0.29 t
Fb = 91 MPa
Allowable Shear Stress for 6063-T5
>
f mb
=
22 MPa
OK
Aluminum,
Shear in elements, gross section Unstiffened flat elements supported on both edges Element A Slenderness Limit, ; S1 = 44 S2 = 98 h Section Slenderness, ; S= S = 33.6 t Since Allowable Stress,
S1
>
S
Fsm =
<
(Table 2-23 Sec.3.4.20, page VII-71) h = 47.04 mm t
=
1.4 mm
S2
Fty 3 ny
Fsm = 38 MPa
Reference Number:
(ADM2005 Sec.3.4.20, page I-A-36)
>
Prepared By: RS
f vm = 5.3983 MPa
Checked By:
OK
Date Prepared: March 03, 2017
Stress Ratio, Limit to 0.90 or 90% ratio Tensile Stress Ratio,
f mu Fmu
=
0.32
<
0.90
OK
<
0.90
OK
<
0.90
Bending Stress Ratio,
( ) min ( Fmu , Fb)
max fmu , f mb
Shear Stress Ratio,
f vm Fsm
=
=
0.32
0.14
OK
Dead Load Required Flexural Strength under dead load, Density of Glass
kg
glass = 2500
ρ
3
m Gravity Force
g = 9.81
m s
2
Thickness of Glass
t g = 6 mm
Panel Width
b = 1750 mm
Panel Height
h = 1400 mm
Volume of Glass
Vglass = 14700000 mm
Total Dead Load
DL = Vglass ρglass g
;
DL = 360 N
Point Load
P = 0.5 DL
;
P
=
180.2 N
Location of Setting Block
a=
;
a
=
438 mm
Maximum Bending Moment
Iy Ma = P a IT
;
Ma = 0.01 kN m
Maximum Bending Stress
Ma f by = Scy
;
f by = 10.5 MPa
Maximum Shear Force
Vsy = P
;
V sy
Maximum Shear Stress
Vsy f vy = Av
;
f vy
Reference Number:
3
b 4
Prepared By: RS
=
=
180N
1 MPa
Checked By:
Date Prepared: March 03, 2017
Actual Stresses (Dead Load) Maximum Bending Stress at the Support
•
Bending moment on male mullion,
Mmu = Mau
;
Mmu
Maximum stress due to bending
Mmu f mu = Sc
;
f mu
0.04 kN m
=
=
21.51 MPa
Maximum Bending Stress at Unbraced Segment •
•
Bending moment on male mullion,
; Mmb
Mmb = Mau Mmu
Maximum stress due to bending
0.04 kN m
=
f mb = Sc
;
f mb
=
21.51 MPa
Vm = Va
;
Vm
=
0.82 kN
Maximum Shear Stress •
Shear stress on male mullion,
Vm
•
f vm = Av
Stress due to shear force
f vm = 5.3983 MPa
;
Structural Check (Dead Load)
Allowable Tensile Stress for 6063-T5
Aluminum,
Tension in Beams, extreme fiber, net section Flat element in uniform tension Fmu := min Fmu
=
Allowable Bending Stress for 6063-T5
(ADM2005 Sec.3.4.2, page I-A-26)
Fty ny
Ftu ,
(Table 2-23 Sec.3.4.2, page VII-70)
kt nu
67 MPa
> f mu
=
22 MPa
OK
Aluminum,
Compression i n Beams, extreme fiber, gross section Tubular shapes Slenderness limit, Section Slenderness, Since
Allowable Stress,
(ADM2005 Sec.3.4.11, page I-A-33) S1
=
S= S1
;
138
Lb
<
Fb =
;
r y S
<
1 ny
S
=
Lb = 583 mm
83
r y = 9 mm
S2
Bc
Fb = 67 MPa
Reference Number:
(Table 2-23 Sec.3.4.11, page VII-71)
S2 = 3832
−
1.6 Dc >
Prepared By: RS
Lb Sc 0.5 Cb f mb
=
Iy J
(Table 2-23 Sec.3.4.11, page VII-71)
22 MPa
Checked By:
OK
Date Prepared: March 03, 2017
Compression i n Beams, uniform compression, gross section Flat element supported on both edge Element C Slenderness Limit,
Section Slenderness, Since Allowable Stress,
(ADM2005 Sec.3.4.15, page I-A-33) S1
=
S= S1
;
26
b = 47.04 mm
b
;
t
<
(Table 2-23 Sec.3.4.15, page VII-71)
S2 = 50
S
<
S
=
33.6
b
1.4 mm
(Table 2-23 Sec.3.4.15, page VII-71)
B − 5.1 Dp ny p t
Fb =
=
S2
1
t
Fb = 62 MPa
>
f mb
=
22 MPa
OK Compression in Beam elements, bending in own plane, gross section Flat element supported on both edges Element B Slenderness Limit,
Section Slenderness, Since
Allowable Stress,
(ADM2005 Sec.3.4.18, page I-A-35) S1
=
S= S1
;
25
h = 22.07 mm
h
;
t
<
Fb =
S
(Table 2-23 Sec.3.4.18, page VII-71)
S2 = 33
>
S
=
15.76
t
=
1.4 mm
S2
k 2c
Bbr E
h ny 0.29 t
Fb = 87 MPa
Allowable Shear Stress for 6063-T5
>
f mb
=
22 MPa
OK
Aluminum,
Shear in elements, gross section Unstiffened flat elements supported on both edges Element B Slenderness Limit, ; S1 = 44 S2 = 98 h Section Slenderness, ; S= S = 15.76 t Since Allowable Stress,
S1
>
S
Fsm =
<
(Table 2-23 Sec.3.4.20, page VII-71) h = 22.07 mm t
=
1.4 mm
S2
Fty 3 ny
Fsm = 38 MPa
Reference Number:
(ADM2005 Sec.3.4.20, page I-A-36)
>
Prepared By: RS
f vm = 5.3983 MPa
Checked By:
OK
Date Prepared: March 03, 2017
Stress Ratio, Limit to 0.90 or 90% ratio Tensile Stress Ratio,
f mu Fmu
=
0.32
<
0.90
OK
<
0.90
OK
<
0.90
Bending Stress Ratio,
( ) min ( Fmu , Fb)
max fmu , f mb
Shear Stress Ratio,
f vm Fsm
Reference Number:
=
=
0.32
0.14
Prepared By: RS
Checked By:
OK
Date Prepared: March 03, 2017
Material Data A lu mi nu m Me m be r :
6063- T5
Ho ri zo nta l P an el Fra me
Dimension Unsupported Length, Unsupported Length for bending, Material Properties Compressive modulus of elasticity,
Lu = 300 mm Lb = 300 mm E
69600 MPa
=
Tensile ultimate strength,
Ftu
=
150 MPa
Tensile yield strength,
Fty
=
110 MPa
Compressiv e yield strength,
Fcy
=
110 MPa
Shear ultimate strength,
Fsu
=
90 MPa
C B A
Section Properties 2
Cross-sectional area,
Ag = 220 mm
Shear area,
Av
Moment of Inertia about x-axis,
Ix
Moment of Inertia about y-axis,
I y = 25932 mm
Extreme Fiber Distance
x e = 27 mm
Extreme Fiber distance
ye = 30 mm
Radius of Gyration about x-axis
r x
Radius of Gyration about y-axis
r y = 11 mm
Section modulus of beam
Sc
=
=
J
4
69563 mm
4
=
=
18 mm
=
Scy Torsion constant
---------------- REGIONS --------------- Area: 220.2969 Perimeter: 359.6496 Bounding box: X: -26.5638 -- 25.7362 Y: -19.9457 -- 30.0543 Centroid: X: 0.0000 Y: 0.0000 Moments of inertia: X: 69562.5645 Y: 25931.6560 Product of inertia: XY: 9857.5250 Radii of gyration: X: 17.7698 Y: 10.8495 Principal moments and X-Y directions about centroid: I: 23807.9197 along [0.2106 0.9776] J: 71686.3008 along [-0.9776 0.2106]
2
220 mm
3
2315 mm
=
3
976 mm
4
71686 mm
Actual Stresses (Wind Load) Maximum Bending Stress at the Support Bending moment on male mullion, •
Maximum stress due to bending
•
Bending moment on male mullion,
Mmu = Mau Mmu
f mu = Sc Maximum Bending Stress at Unbraced Segment
•
Maximum stress due to bending
Maximum Shear Stress • Shear stress on male mullion,
•
Stress due to shear force
Reference Number:
;
Mmu
;
f mu
Mmu
=
; Mmb
Mmb = Mau
=
49.96J
21.58 MPa
=
49.96J
f mb = Sc
;
f mb
=
21.58 MPa
Vm = Va
;
Vm
=
0.82 kN
Vm f vm = Av Prepared By: RS
f vm = 3.705 MPa
Checked By:
Date Prepared: March 03, 2017
Structural Check (Wind Load)
Allowable Tensile Stress for 6063-T5
Aluminum,
Tension in Beams, extreme fiber, net section Flat element in uniform tension Fmu := min Fmu
=
Allowable Bending Stress for 6063-T5
(ADM2005 Sec.3.4.2, page I-A-26)
Fty ny
Ftu ,
(Table 2-23 Sec.3.4.2, page VII-70)
kt nu
67 MPa
> f mu
=
22 MPa
OK
Aluminum,
Compression i n Beams, extreme fiber, gross section Tubular shapes Slenderness limit, Section Slenderness, Since
Allowable Stress,
(ADM2005 Sec.3.4.11, page I-A-33) S1
S= S1
;
138
=
Lb
;
r y
<
S
<
Fb =
S
=
Lb = 300 mm
32
r y = 11 mm
S2
1 ny
(Table 2-23 Sec.3.4.11, page VII-71)
S2 = 3832
Bc
−
Lb Sc
1.6 Dc
Fb = 67 MPa
0.5 Cb
>
f mb
=
Iy J
(Table 2-23 Sec.3.4.11, page VII-71)
22 MPa
OK
Compression i n Beams, uniform compression, gross section Flat element supported on one edge Element A Slenderness Limit,
Section Slenderness, Since Allowable Stress,
(ADM2005 Sec.3.4.15, page I-A-33) S1
=
S= S1
;
8
b = 26.56 mm
b
Fb =
;
t
<
S 1
<
S
=
18.97
t
=
1.4 mm
S2
b
(Table 2-23 Sec.3.4.15, page VII-71)
Bp − 5.1 Dp ny t
Fb = 43 MPa
Reference Number:
(Table 2-23 Sec.3.4.15, page VII-71)
S2 = 16
>
Prepared By: RS
f mb
=
22 MPa
OK
Checked By:
Date Prepared: March 03, 2017
Flat element supported on one edge Element B Slenderness Limit,
Section Slenderness, Since Allowable Stress,
S1
=
S= S1
;
8
S2 = 16
b = 23.71 mm
b
;
t
<
(ADM2005 Sec.3.4.15, page I-A-33) (Table 2-23 Sec.3.4.15, page VII-71)
S
<
S
=
16.94
b
1.4 mm
(Table 2-23 Sec.3.4.15, page VII-71)
B − 5.1 Dp ny p t
Fb =
=
S2
1
t
Fb = 49 MPa
>
f mb
=
22 MPa
OK
Compression in Beam elements, bending in own plane, gross section Flat element supported on both edges Element C Slenderness Limit, Section Slenderness, Since
Allowable Stress,
(ADM2005 Sec.3.4.18, page I-A-35) S1
=
S= S1
;
25
h = 47.06 mm
h
;
t
<
Fb =
S
(Table 2-23 Sec.3.4.18, page VII-71)
S2 = 33
>
S
=
33.61
t
=
1.4 mm
S2
k 2c
Bbr E
h ny 0.29 t
Fb = 91 MPa
Allowable Shear Stress for 6063-T5
>
f mb
=
22 MPa
OK
Aluminum,
Shear in elements, gross section Unstiffened flat elements supported on both edges Element A Slenderness Limit, ; S1 = 44 S2 = 98 h Section Slenderness, ; S= S = 33.6 t Since Allowable Stress,
S1
>
S
Fsm =
<
(Table 2-23 Sec.3.4.20, page VII-71) h = 47.04 mm t
=
1.4 mm
S2
Fty 3 ny
Fsm = 38 MPa
Reference Number:
(ADM2005 Sec.3.4.20, page I-A-36)
>
Prepared By: RS
f vm = 3.705 MPa
Checked By:
OK
Date Prepared: March 03, 2017
Stress Ratio, Limit to 0.90 or 90% ratio Tensile Stress Ratio,
f mu =
Fmu
0.32
<
0.90
OK
<
0.90
OK
<
0.90
Bending Stress Ratio,
( ) min ( Fmu , Fb)
max fmu , f mb
Shear Stress Ratio,
f vm =
Fsm
=
0.32
0.1
OK
Dead Load Required Flexural Strength under dead load, Density of Glass
glass = 2500
kg
ρ
m Gravity Force
g
=
9.81
3
m s
2
6 mm
Thickness of Glass
tg
Panel Width
b
=
1750 mm
Panel Height
h
=
1400 mm
Volume of Glass
V glass = 14700000 mm
Total Dead Load
DL = Vglass ρglass g
;
DL = 360 N
Point Load
P = 0.5 DL
;
P
Location of Setting Block
a=
;
a = 438 mm
Maximum Bending Moment
Ma = P a
;
Ma
=
3
b 4
Iy IT
Ma
180.2 N
=
=
0.01 kN m
Maximum Bending Stress
f by = Scy
;
f by = 12.64 MPa
Maximum Shear Force
V sy = P
;
Vsy
Maximum Shear Stress
Vsy f vy = Av
;
f vy
Reference Number:
Prepared By: RS
=
=
180 N
1 MPa
Checked By:
Date Prepared: March 03, 2017
Structural Check (Dead Load)
Allowable Tensile Stress for 6063-T5
Aluminum,
Tension in Beams, extreme fiber, net section Flat element in uniform tension Fmu := min Fmu
=
Allowable Bending Stress for 6063-T5
(ADM2005 Sec.3.4.2, page I-A-26)
Fty ny
Ftu ,
(Table 2-23 Sec.3.4.2, page VII-70)
kt nu
67 MPa
> f mu
=
22 MPa
OK
Aluminum,
Compression i n Beams, extreme fiber, gross section Tubular shapes Slenderness limit, Section Slenderness, Since
Allowable Stress,
(ADM2005 Sec.3.4.11, page I-A-33) S1
S= S1
;
138
=
Lb
;
r y
<
S
<
Fb =
S
=
Lb = 300 mm
32
r y = 11 mm
S2
1 ny
(Table 2-23 Sec.3.4.11, page VII-71)
S2 = 3832
Bc
−
Lb Sc
1.6 Dc
Fb = 67 MPa
0.5 Cb
>
f mb
=
Iy J
(Table 2-23 Sec.3.4.11, page VII-71)
22 MPa
OK
Compression i n Beams, uniform compression, gross section Flat element supported on both edge Element C Slenderness Limit,
Section Slenderness, Since Allowable Stress,
(ADM2005 Sec.3.4.15, page I-A-33) S1
=
S= S1
26
Fb =
S2 = 50
;
S
t S 1
<
=
34
t
=
1.4 mm
S2
b
(Table 2-23 Sec.3.4.15, page VII-71)
B − 5.1 Dp ny p t
Fb = 62 MPa
Reference Number:
(Table 2-23 Sec.3.4.15, page VII-71) b = 47.6 mm
b
<
;
>
Prepared By: RS
f mb
=
22 MPa
OK
Checked By:
Date Prepared: March 03, 2017
Compression in Beam elements, bending in own plane, gross section Flat element supported on both edges (ADM2005 Sec.3.4.18, page I-A-35)
Element A Slenderness Limit,
S1
Section Slenderness,
S=
Since
Allowable Stress,
S1
=
25
t
Fb =
S
S2 = 33
;
S
(Table 2-23 Sec.3.4.18, page VII-71) h = 26.56 mm
h
<
;
>
=
18.97
t
=
1.4 mm
S2
k 2c
Bbr E
h ny 0.29 t
Fb = 87 MPa
Allowable Shear Stress for 6063-T5
>
f mb
=
22 MPa
OK
Aluminum,
Shear in elements, gross section Unstiffened flat elements supported on both edges Element A Slenderness Limit, ; S1 = 44 S2 = 98 h Section Slenderness, ; S= S = 18.97 t Since Allowable Stress,
S1
>
S
Fsm =
<
(Table 2-23 Sec.3.4.20, page VII-71) h = 26.56 mm t
=
1.4 mm
S2
Fty 3 ny
Fsm = 38 MPa
Reference Number:
(ADM2005 Sec.3.4.20, page I-A-36)
>
Prepared By: RS
f vm = 3.705 MPa
Checked By:
OK
Date Prepared: March 03, 2017
Stress Ratio, Limit to 0.90 or 90% ratio Tensile Stress Ratio,
f mu Fmu
=
0.32
<
0.90
OK
<
0.90
OK
<
0.90
Bending Stress Ratio,
( ) min ( Fmu , Fb)
max fmu , f mb
Shear Stress Ratio,
f vm Fsm
Reference Number:
=
=
0.32
0.1
Prepared By: RS
Checked By:
OK
Date Prepared: March 03, 2017
Material Data A lu mi nu m Me m be r : Dimension
6063- T5
Ho ri zo nta l Mo ul di ng F ram e
Unsupported Length,
Lu = 300 mm
Unsupported Length for bending,
Lb = 300 mm
Material Properties Compressive modulus of elasticity,
E
B
69600 MPa
=
Tensile ultimate strength,
Ftu
=
150 MPa
Tensile yield strength,
Fty
=
110 MPa
Compressiv e yield strength,
Fcy
=
110 MPa
Shear ultimate strength,
Fsu
=
90 MPa
A
Section Properties 2
Cross-sectional area,
Ag = 220 mm
Shear area,
Av
Moment of Inertia about x-axis,
Ix
Moment of Inertia about y-axis,
I y = 25932 mm
Extreme Fiber Distance
x e = 27 mm
Extreme Fiber distance
ye = 30 mm
Radius of Gyration about x-axis
r x
Radius of Gyration about y-axis
r y = 11 mm
Section modulus of beam
Sc
=
=
J
4
69563 mm
4
=
=
18 mm
=
Scy Torsion constant
2
220 mm
3
2315 mm
=
3
976 mm
---------------- REGIONS --------------- Area: 64.0045 Perimeter: 123.4229 Bounding box: X: -10.1685 -- 9.3315 Y: -12.7345 -- 18.9655 Centroid: X: 0.0000 Y: 0.0733 Moments of inertia: X: 7860.4918 Y: 1861.7072 Product of inertia: XY: -1526.2318 Radii of gyration: X: 11.0820 Y: 5.3933 Principal moments and X-Y directions about centroid: I: 1495.7075 along [0.2332 -0.9724] J: 8226.1473 along [0.9724 0.2332]
4
71686 mm
Actual Stresses (Wind Load) Maximum Bending Stress at the Support Bending moment on male mullion, •
Maximum stress due to bending
•
Bending moment on male mullion,
•
Maximum stress due to bending
Mmu = Mau Mmu
f mu = Sc Maximum Bending Stress at Unbraced Segment
Maximum Shear Stress • Shear stress on male mullion,
•
Stress due to shear force
Reference Number:
;
Mmu
;
f mu
Mmu
=
; Mmb
Mmb = Mau
=
49.96J
21.58 MPa
=
49.96J
f mb = Sc
;
f mb
=
21.58 MPa
Vm = Va
;
Vm
=
0.82 kN
Vm f vm = Av
;
f vm = 3.705 MPa
Prepared By: RS
Checked By:
Date Prepared: March 03, 2017
Structural Check (Wind Load)
Allowable Tensile Stress for 6063-T5
Aluminum,
Tension in Beams, extreme fiber, net section Flat element in uniform tension Fmu := min Fmu
=
Allowable Bending Stress for 6063-T5
(ADM2005 Sec.3.4.2, page I-A-26)
Fty ny
Ftu ,
(Table 2-23 Sec.3.4.2, page VII-70)
kt nu
67 MPa
> f mu
=
22 MPa
OK
Aluminum,
Compression i n Beams, extreme fiber, gross section Tubular shapes Slenderness limit, Section Slenderness, Since
Allowable Stress,
S1
S= S1
;
138
=
Lb
;
r y
<
S
<
Fb =
S
=
Lb = 300 mm
32
r y = 11 mm
S2
1 ny
(ADM2005 Sec.3.4.11, page I-A-33) (Table 2-23 Sec.3.4.11, page VII-71)
S2 = 3832
Bc
−
Lb Sc
1.6 Dc
Fb = 67 MPa
0.5 Cb
>
f mb
=
Iy J
(Table 2-23 Sec.3.4.11, page VII-71)
22 MPa
OK
Compression i n Beams, uniform compression, gross section Flat element supported on one edge Element A Slenderness Limit,
Section Slenderness, Since Allowable Stress,
(ADM2005 Sec.3.4.15, page I-A-33) S1
=
S= S1
;
8
b = 26.56 mm
b
Fb =
;
t
<
S 1
<
S
=
18.97
t
=
1.4 mm
S2
b
(Table 2-23 Sec.3.4.15, page VII-71)
Bp − 5.1 Dp ny t
Fb = 43 MPa
Reference Number:
(Table 2-23 Sec.3.4.15, page VII-71)
S2 = 16
>
Prepared By: RS
f mb
=
22 MPa
OK
Checked By:
Date Prepared: March 03, 2017
Flat element supported on one edge Element A Slenderness Limit, Section Slenderness, Since Allowable Stress,
S1
=
S= S1
8
b t
<
S
<
;
S2 = 16
;
S
=
13.93
t
b
1.4 mm
(Table 2-23 Sec.3.4.15, page VII-71)
B − 5.1 Dp ny p t
Fb =
=
S2
1
(ADM2005 Sec.3.4.15, page I-A-33) (Table 2-23 Sec.3.4.15, page VII-71) b = 19.5 mm
Fb = 56 MPa
>
f mb
=
22 MPa
OK
Compression in Beam elements, bending in own plane, gross section Flat element supported on both edges Element B Slenderness Limit, Section Slenderness, Since
Allowable Stress,
(ADM2005 Sec.3.4.18, page I-A-35) S1
=
S= S1
;
25
h = 28.03 mm
h
;
t
<
Fb =
S
(Table 2-23 Sec.3.4.18, page VII-71)
S2 = 33
>
S
=
20.02
t
=
1.4 mm
S2
k 2c
Bbr E
h ny 0.29 t
Fb = 87 MPa
Allowable Shear Stress for 6063-T5
>
f mb
=
22 MPa
OK
Aluminum,
Shear in elements, gross section Unstiffened flat elements supported on both edges Element B Slenderness Limit, ; S1 = 44 S2 = 98 h Section Slenderness, ; S= S = 20.02 t Since Allowable Stress,
S1
>
S
Fsm =
<
(Table 2-23 Sec.3.4.20, page VII-71) h = 28.03 mm t
=
1.4 mm
S2
Fty 3 ny
Fsm = 38 MPa
Reference Number:
(ADM2005 Sec.3.4.20, page I-A-36)
>
Prepared By: RS
f vm = 3.705 MPa
Checked By:
OK
Date Prepared: March 03, 2017
Stress Ratio, Limit to 0.90 or 90% ratio Tensile Stress Ratio,
f mu Fmu
=
0.32
<
0.90
OK
<
0.90
OK
<
0.90
Bending Stress Ratio,
( ) min ( Fmu , Fb)
max fmu , f mb
Shear Stress Ratio,
f vm Fsm
=
=
0.32
0.1
OK
Dead Load Required Flexural Strength under dead load, Density of Glass
kg
glass = 2500
ρ
3
m Gravity Force
g = 9.81
m s
2
Thickness of Glass
t g = 6 mm
Panel Width
b = 1750 mm
Panel Height
h = 1400 mm
Volume of Glass
Vglass = 14700000 mm
Total Dead Load
DL = Vglass ρglass g
;
DL = 360 N
Point Load
P = 0.5 DL
;
P
=
180.2 N
Location of Setting Block
a=
;
a
=
438 mm
Maximum Bending Moment
Iy Ma = P a IT
;
Ma = 0.01 kN m
Maximum Bending Stress
Ma f by = Scy
;
f by = 12.64 MPa
Maximum Shear Force
Vsy = P
;
V sy
Maximum Shear Stress
Vsy f vy = Av
;
f vy
Reference Number:
3
b 4
Prepared By: RS
=
=
180N
1 MPa
Checked By:
Date Prepared: March 03, 2017
Actual Stresses (Dead Load) Maximum Bending Stress at the Support Bending moment on male mullion,
Mmu = Mau Mmu
;
Mmu
;
f mu
=
49.96J
21.58 MPa
•
Maximum stress due to bending
•
Bending moment on male mullion,
Mmb = Mau
•
Maximum stress due to bending
Mmu f mb = Sc
;
f mb
=
21.58 MPa
Vm = Va
;
Vm
=
0.82 kN
Vm f vm = Av
;
f vm = 3.705 MPa
f mu = Sc Maximum Bending Stress at Unbraced Segment
Maximum Shear Stress • Shear stress on male mullion,
•
Stress due to shear force
Reference Number:
Prepared By: RS
=
; Mmb
=
49.96J
Checked By:
Date Prepared: March 03, 2017
Structural Check (Dead Load)
Allowable Tensile Stress for 6063-T5
Aluminum,
Tension in Beams, extreme fiber, net section Flat element in uniform tension Fmu := min Fmu
=
Allowable Bending Stress for 6063-T5
(ADM2005 Sec.3.4.2, page I-A-26)
Fty ny
Ftu ,
(Table 2-23 Sec.3.4.2, page VII-70)
kt nu
67 MPa
> f mu
=
22 MPa
OK
Aluminum,
Compression i n Beams, extreme fiber, gross section Tubular shapes Slenderness limit, Section Slenderness, Since
Allowable Stress,
S1
S= S1
;
138
=
Lb
;
r y
<
S
<
Fb =
S
=
Lb = 300 mm
32
r y = 11 mm
S2
1 ny
(ADM2005 Sec.3.4.11, page I-A-33) (Table 2-23 Sec.3.4.11, page VII-71)
S2 = 3832
Bc
−
Lb Sc
1.6 Dc
Fb = 67 MPa
0.5 Cb
>
f mb
=
Iy J
(Table 2-23 Sec.3.4.11, page VII-71)
22 MPa
OK
Compression i n Beams, uniform compression, gross section Flat element supported on one edge Element B Slenderness Limit,
Section Slenderness, Since Allowable Stress,
(ADM2005 Sec.3.4.15, page I-A-33) S1
=
S= S1
8
Fb =
S2 = 16
;
S
t S 1
<
=
20.02
t
=
1.4 mm
S2
b
(Table 2-23 Sec.3.4.15, page VII-71)
B − 5.1 Dp ny p t
Fb = 41 MPa
Reference Number:
(Table 2-23 Sec.3.4.15, page VII-71) b = 28.03 mm
b
<
;
>
Prepared By: RS
f mb
=
22 MPa
OK
Checked By:
Date Prepared: March 03, 2017
Compression in Beam elements, bending in own plane, gross section Flat element supported on both edges Element A Slenderness Limit, Section Slenderness, Since
Allowable Stress,
(ADM2005 Sec.3.4.18, page I-A-35) S1
=
S= S1
;
25
h = 19.5 mm
h
;
t
<
Fb =
S
(Table 2-23 Sec.3.4.18, page VII-71)
S2 = 33
>
S
=
13.93
t
=
1.4 mm
S2
k 2c
Bbr E
h ny 0.29 t
Fb = 87 MPa
Allowable Shear Stress for 6063-T5
>
f mb
=
22 MPa
OK
Aluminum,
Shear in elements, gross section Unstiffened flat elements supported on both edges Element A Slenderness Limit, ; S1 = 44 S2 = 98 h Section Slenderness, ; S= S = 13.93 t Since Allowable Stress,
S1
>
S
Fsm =
<
(Table 2-23 Sec.3.4.20, page VII-71) h = 19.5 mm t
=
1.4 mm
S2
Fty 3 ny
Fsm = 38 MPa
Reference Number:
(ADM2005 Sec.3.4.20, page I-A-36)
>
Prepared By: RS
f vm = 3.705 MPa
Checked By:
OK
Date Prepared: March 03, 2017
View more...
Comments