Wind Actions on Enclosed Building with Doubly Pitched Roof
Short Description
Sample calculation of forces, and wind loads on typical enclosed building with doubly pitched roof to AS1170.2. Workbook...
Description
1/8
?????
REF.:
????
?????
?????
PAGE:
?????
?????
DATE:
?????
?????
DESIGN:
31-Jan-2012
????
client address1, suburb
Doubly Pitched Building {Gable}
Structure Classification: Structure Type: Design Method: Analysis Method:
Industrial Shed
Doubly Pitched Roof
Limit State Linear Elastic
DIMENSION AND GEOMETRY Alpha = 10.00 degrees = 0.17 radians = Pitch 1 in 5.67 Building Eaves Hght = he = 3.101 m Bay Spacing (main) Height to Top = ht = 3.894 m Number of Bays Average Height = h = 3.498 m Number of Portal Columns Building Span 9.000 m Building Length Long Long Axis Axis Bea Bearing ring deg. deg. Orie Orien ntat tation ion Tre Treated as U Unk nkno now wn Length along Slope of Rafter = b/d =
1.91
SITE Terra Terrain: in: T op opography: Shielding:
d/b =
4.569 m
0.52
h/d =
Total Rise
3.721 m 4 10 17.164 m
2.280
1.140
0.793 m
0.34
Deve Develo lope ped d Riv River er Side Side Town, Town, Mostly Mostly Suburb Suburban an,, but but with with some some large large open open spaces spaces.. Flat None
RISK ASSESSMENT Building Code of AustralPart Austral Part B1 Structural Provisions STRUCTURAL CATEGORY Importance Lev 2 {Normal} T able B1.2a Annual probability of Design Wind Event being exceeded Strength 1/500 = 0.002 R = 500 = Mean Return Period Serviceability 1/20 = 0.05 R = 20 = Mean Return Period
b= 9.00 m local pressure extent
d= 17.16 m a = min(0.2b,0.2d,ht) =
a/2 =
0.9 m
Tributary Area
Area Reduction Factors
m²
Rafter Aligned Projected Column Aligned
1.8 m
Ka halfspan
4.569 x 3.721
=
17.00
0.95
4.500 x 3.721
=
16.74
0.96
3.101 x 3.721
=
11.54
0.99
fullspan
schShedDesignerR01.xls
0.89
DesignReport
2/8
?????
REF.:
????
?????
?????
PAGE:
?????
?????
DATE:
?????
?????
DESIGN:
31-Jan-2012
????
client address1, suburb
ASSESSMENT OF DESIGN WIND SPEED : SITE AND BUILDING HEIGHT AND ORIENTATION ASSESSMENT OF SIT E AND BUILDING BUILDING HEIGHT Importance Lev 2 {Normal} Table B1.2a Annual probability of Design Wind Event being exceeded Strength 1/500 = 0.002 R = 500 Serviceability 1/20 = 0.05 R = 20 Location : South Australia Major Region A SubRegion 1 Region sensitivity {static analysis acceptable} C[dyn]
AS1170.2:2002
A1 Non-Cyclonic 1 46/ht = 11.81
Averag Average e Buildi Building ng Heig Height ht = h[avg h[avg 3.498 3.498 m N
NE
E
SE
S
SW
W
NW
0
45
90
135
180
225
270
315
β Tcat
degrees
2.5
2.5
2.5
2.5
2.5
2.5
2.5
V[R,u] = 45 M[d] = 1.00 M[z,cat] = 0.87 M[s] = 1.00 M[t] = 1.00 M[z,cat] 0.87 V[sit,β,u] = 39.15
45 1.00 0.87 1.00 1.00 0.87 39.15
45 1.00 0.87 1.00 1.00 0.87 39.15
45 1.00 0.87 1.00 1.00 0.87 39.15
45 1.00 0.87 1.00 1.00 0.87 39.15
45 1.00 0.87 1.00 1.00 0.87 39.15
45 1.00 0.87 1.00 1.00 0.87 39.15
45 m/s 1.00 0.87 1.00 1.00 0.87 39.15 m/s
Maximum Expected wind speed at SITE for strength limit state = V[R,s] 37 V[R,s]/V[R,u] 0.822 (Vs/Vu)^2 =
V[sit,β V[sit,β ,u] = 0.68
39.1 39.15 5 m/s m/s
ASSESSMENT OF BUILDING BUILDING ORIENTATION Long Axis Bearing deg. Orientation Treated as Unknown
1
Face Bearing Sector Bdry V[sector] =
0.0 0. 0 39.15
Θ
0 39.15 0.92
V[des,Θ,u] = q[ref] = q[ref] = (0.5
0.0 39.15
0 0.0 39.15
0.0 39.15
90 39.15 0.92
0.0 0.0 39.15
0.0 39.15
180 39.15 0.92
2.5
0 0.0 39.15
degrees 0.0 de degrees 39.15 m/s
270 39.15 0.92
degrees m/s kPa
ρ[air] ) V[des,Θ,u]² V[site] to V[design] 50 40 ] e 30 t i s [ V 20
10 0 0
45
90
135
180
225
270
315
360
Cardinal Direction [Beta] Site
Design
Strength Limit State Design simplified to two orthogonal directions: V[des,0,u] = 39.15 qz0 = 0.92 V[des,90,u] =
39.15
qz90 =
0.92
Classification of Wind Loading To AS4055: Upper wind Class
N2
W P33, W U40
Lower wind Class
schShedDesignerR01.xls
N1
W P28, W U34
DesignReport
3/8
?????
REF.:
????
?????
?????
PAGE:
?????
?????
DATE:
?????
?????
DESIGN:
31-Jan-2012
????
client address1, suburb PRESSURE COEFFICIENTS : BUILDING BUILDING Reference Conditions V[des,0,u] = 39.15 m/ m/s qz0 = 0.92 kP kPa
Ref erence Conditions V[des,90,u] = 39.15 m/ m/s
Internal Internal Pressure Coefficents Cpi1 = -0.3 pi = Cpi2 = 0.4 pi =
Cpi1 = Cpi2 =
Θ= 0
-0.28 kPa 0.37 kPa
→
0.92
-0.28 kPa 0.37 kPa
Longitudinal
→
Dimension & Geometric Considerations h= 3.498 m he = b = length 17.16 m d = span h/d = 0.34 Table 3.4.3 WL1 θ=0
Cpe p[e] NB:
-0.3 pi = 0.4 pi =
Θ = 90
Transverse
qz90 =
α >= 10 wall
roof
W
U 0.5h
0
3.101 m 9.00 m
1 UD
wall
Cpe p[e] p = Cpe.qz
θ=0
[kPa]
Table 3.4.3.2(A) WL2 θ=90 wall
D L 1h
2h
3h
1.749 3.498 6.995 10.493 0.70 -0.81 -0.81 -0.81 -0.81 [kPa] 0.64 -0.71 -0.71 -0.71 -0.71 p[e] = Cpe . qz . Ka {f or roof and side walls} WL1
h= b = span h/d =
side wall
roof
3.894 m 17.16 m
UD
wall L
0.5h
9.000 -0.41 -0.36
ht = d = length
W
d3h
1.749 3.498 6.995 10.493 17.164 0.70 -0.90 -0.90 -0.50 -0.30 -0.20 [kPa] 0.64 -0.79 -0.79 -0.44 -0.26 -0.18 p[e] = Cpe . qz . Ka {for roof and side walls}
S
WL2
1h 2h 3h d3h 3.498 6.995 10.493 17 17.164 -0.65 -0.5 -0.3 -0.2 -0.59 -0.46 -0.27 -0.18
p = Cpe.ka.qz {roof & side walls only}
Θ = 270
Transverse
Longitudinal
← ←
h= b = length h/d = T able 3.4.3 WL1 θ=0 wall W
Cpe p[e] NB:
3.498 m 17.16 m 0.34 0 roof U 0.5h
he = d = span
3.101 m 9.00 m
1 UD
wall D L
1h
2h
3h
1.749 3.498 6.995 10.493 0.70 -0.81 -0.81 -0.81 -0.81 [kPa] 0.64 -0.71 -0.71 -0.71 -0.71 p[e] = Cpe . qz . Ka {f or roof and side walls} WL1
θ=0
side wall 1h
Cpe p[e] p = Cpe.qz
[kPa]
h= b = span h/d = Table 3.4.3.2(A) WL2 θ=90 wall
3.894 m 17.16 m
UD
wall L
-0.3 Cp Cpe -0.28 p[e] NB:
1h
2h
3h
d>3h
1.749 3.498 6.995 10.493 17.164 0.70 -0.90 -0.90 -0.50 -0.30 -0.20 [kPa] 0.64 -0.79 -0.79 -0.44 -0.26 -0.18 p[e] = Cpe . qz . Ka {for roof and side walls} WL2
3h
roof 0.5h
S 2h
ht = d = length
W
d
View more...
Comments