Weatherford Log Interpretation Charts
March 5, 2017 | Author: odscam | Category: N/A
Short Description
Download Weatherford Log Interpretation Charts...
Description
Log Interpretation Charts Compact Tool Series ™
Contents Borehole Environment and Formation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Estimation of Formation Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Estimation of Rmf and Rmfe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Porosity and Formation Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Resistivity of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Resistivity of NaCl Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Maximum Tool Length in Deviated Wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Density and Pe Values of Saltwater Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Capture Cross Sections for Water and Hydrocarbons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Rwe Determination From Static SP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 SP Bed Thickness Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Rw vs. Rwe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Compact™ Spectral Gamma Ray Borehole Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Compact Spectral Gamma Ray KCI Mud Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Compact Gamma Ray Borehole Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Compact Array Induction Borehole Correction—Shallow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Compact Array Induction Borehole Correction—Medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Compact Array Induction Borehole Correction—Deep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Compact Array Induction Tornado Chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Compact Focused Electric Borehole Correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Compact Deep Laterolog Borehole Correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Compact Shallow Laterolog Borehole Correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Compact Laterolog Tornado Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Compact Deep Laterolog Borehole Correlation—Shuttle Deployed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Compact Shallow Laterolog Borehole Correction—Shuttle Deployed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Compact Laterolog Tornado Chart—Shuttle Deployed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Compact MicroLaterolog Mudcake Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Compact Neutron Porosity Charts—Explanatory Note. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Compact Neutron Porosity Matrix Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Compact Neutron Porosity Environmental Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Compact Neutron Porosity Matrix Cross Section Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Compact Neutron Porosity Formation Salinity Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Compact Neutron Porosity Cased-Hole Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Compact Neutron Porosity Environmental Correction Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Lithology-Porosity from Density-Neutron Crossplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Lithology-Porosity from Sonic-Neutron Crossplot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Porosity and Saturation from Density-Neutron Porosity Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Lithology-Porosity from Density-Pe Crossplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Matrix Identification from the PhotoDensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Log Responses in Common Rocks and Minerals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Compact Curve Mnemonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
© 2007 Weatherford. All rights reserved.
1
Borehole Environment and Formation Parameters
2
Chart Gen-1 © 2007 Weatherford. All rights reserved.
Estimation of Formation Temperature
English
2,500
5,000
7,500
1.2°F/100 ft. Follow the 1.2°F/100 ft geothermal gradient line to 10,000 ft, and draw a vertical line down to intersect at 180°F.
Chart Gen-2 © 2007 Weatherford. All rights reserved.
3
Estimation of Formation Temperature
Metric
1,000
2,000
3,000
4,000
5,000
6,000
7,000
4
Chart Gen-2(m) © 2007 Weatherford. All rights reserved.
Estimation of Rmf and Rmfe
Chart Gen-3 © 2007 Weatherford. All rights reserved.
5
Porosity and Formation Factor
10,000 m=2.8 m=2.6 m=2.4 1,000
m=2.2
Formation Factor, F
m=2.0 m=1.8 m=1.6 100
m=1.4
10
1 1
2
3
4
5
6 7 8 9 10 Porosity, ( pu )
20
30
40
Formation factor, F, is defined as Ro/R w, where R o is the resistivity of a formation fully saturated with water of resistivity Rw. It is related to formation porosity via a number of empirical relationships of the form a F= m where m is the cementation exponent and a is sometimes called the Archie constant. F is used to compute water saturation in the Archie equation: S wn = FR w / R.t The chart allows F to be generated from porosity for values of m between 1.4 and 2.8 assuming a to be 1.0. For soft formations, the Humble formula is sometimes used, in which a is 0.62 and m is 2.15.
6
Chart Gen-5 © 2007 Weatherford. All rights reserved.
50
Resistivity of Solutions
Chart Gen-7 is used to estimate the resistivity of NaCl equivalent solutions when the solids concentration is known, and also to convert resistivity from one temperature to another. It is based on the Hilchie equation: R(T) = R(1) [T(1) + x] / (T+x) x = 10 -(0.340396
where
log 10 R(1) - 0.641427)
and R(T) is the water resistivity at temperature T in degrees F and R(1) is the initial water resistivity at initial temperature T(1) degrees F. For solutions other than NaCl use the multipliers in Gen-6 to obtain equivalent concentrations. Then: Total NaCl equivalent =
i=1 i=n
K i (solids concentration)
where n is the number of components. The multiplier for NaCl is 1.0
2.0
NH 4 Mg
K
1.5
Multiplier (K)
Ca NaCl
1.0 SO4 NO 3 Br I
0.5
CO3 HCO 3
0.0
–0.5 10
100
1,000 10,000 Total Solids Concentration (ppm or mg/kg)
100,000
Chart Gen-6 © 2007 Weatherford. All rights reserved.
7
Resistivity of NaCl Solutions
o
Temperature ( F ) 50
100
150
200
300
400
10
5
200
4 3 2
500
1
0.5
2,00 0
0.4 0.3 0.2
5,00 0 10, 000
0.1
20, 000
0.05 0.04 0.03
50, 000
0.02 100 ,00 0
0.01 10
8
20
30
200 ,00 0 40 50 60 70 80 90 100 120 140 160 180 200 o Temperature ( C )
Chart Gen-7 © 2007 Weatherford. All rights reserved.
NaCl Concentration (ppm)
Resistivity of Solution (
-m)
1,00 0
Maximum Tool Length in Deviated Wells Compact™ 2 1/4 -in. ( 57-mm) Tools Rigid Tool Length (ft) 10
20
30
40
200
9
Bend Radius (m)
5 in. (127 mm)
10 6 in. (152 mm)
11 12 13 14 15
7 in. (178 mm) 8 in. (203 mm)
100
20 30 40 50
Angular Buildup Rate (° /30 m or °/100 ft)
3 in. (76 mm)
Well Diameter
4 in. (102 mm)
100 200
0 2
3
4
5
6 7 8 Rigid Tool Length (m)
9
10
11
12
Conventional 3 3/4 -in. ( 95-mm) Tools Rigid Tool Length (ft) 20
200
30
40 6 in. (152 mm)
5 in. (127 mm)
Bend Radius (m)
Well Diameter
9 7 in. (178 mm)
8 in. (203 mm) 9 in. (229 mm)
100
10 in. (254 mm)
10 11 12 13 14 15 20 30 40 50
Angular Buildup Rate (° /30 m or °/100 ft)
10
100 200
0 2
3
4
5
6 7 8 Rigid Tool Length (m)
9
10
11
12
For a given tool diameter t, the maximum rigid tool length L that will traverse a well of diameter d and bend radius R is given by: L = 2{(R+d)2 – (R+t)2 }1/2 Angular build rate (° / 30 m) = 1,718/R R in meters)
Chart Gen-8 © 2007 Weatherford. All rights reserved.
9
Density and Pe Values of Saltwater Solutions Applicability: NaCl solutions at 68oF (20oC).
o
Bulk Density at 20 C (gm/cm3 or Mg/m3)
1.20
1.15
1.10
1.05
1.00 0
50
100
150
200
250
Salinity (1,000 ppm NaCl)
1.8 1.6
1.25
1.4 1.00
1.2 1.0
0.75 0.8 0.6
0.50
0.4 0.25 0
50
100
150
Salinity (1,000 ppm NaCl)
10
Chart Gen-9 © 2007 Weatherford. All rights reserved.
200
250
Volumetric Cross Section, U f (barns/cm 3)
Photoelectric Cross Section (barns /electron)
1.5
Capture Cross Sections for Water and Hydrocarbons
120 o
(cu) w
o
68 F (20 C) and ambient pressure
100 80 60
o
o
302 F (150 C) and 10 kpsi (103 MPa) 40 20 0
25
50
0
75
100 125 150 Water Salinity (NaCl kppm) Pressure (psi) 4,000
2,000
16
200
6,000
225
250
8,000
140oF (60oC)
Methane 104oF (40oC)
12 o
o
68 F ( 20 C) 302oF (150oC)
8
g
(cu)
175
212oF (100oC) 4
176oF (80oC)
0 0
10
20
30 Pressure (MPa)
40
Solution Gas/Oil Ratio (ft 3/bbl) 100 1,000
20
50
60
5,000
23 22
h
(cu)
21 20 19 18 17 16
2
10
100 Solution Gas/Oil Ratio (m3/m3)
1,000
Chart Gen-10 © 2007 Weatherford. All rights reserved.
11
Rwe Determination From Static SP
English
at
12
Chart Sp-2 © 2007 Weatherford. All rights reserved.
Rwe Determination From Static SP
Metric
Chart Sp-2(m) © 2007 Weatherford. All rights reserved.
13
SP Bed Thickness Correction
14
Chart Sp-3b © 2007 Weatherford. All rights reserved.
Rw vs. Rwe
English
at
Chart Sp-3 © 2007 Weatherford. All rights reserved.
15
Rw vs. Rwe
Metric
16
Chart Sp-3(m) © 2007 Weatherford. All rights reserved.
Compact™ Spectral Gamma Ray Borehole Correction Applicability: Compact spectral gamma (MSG) tools. KCl-free muds. Borehole Diameter (mm) 100
150
200
250
300
350
5.0
400
450
f ( gm /cm 3 ) 2.0
4.0
1.8 Centered
GR(corr) /GR(log)
3.0
1.6
Eccentered
1.4 f 2.0 1.8 1.6 1.4 1.2 1.0
1.2
2.0
1.0
1.0 0.9 0.8 Air holes
0.7 0.6 0.5
2
4
6
8
10
12
14
16
18
Borehole Diameter (in.)
Use this chart to correct the gamma ray response from MSG series tools for the effects of borehole size and mud weight. Standard conditions are for eccentered tools in 8-in. (203-mm) diameter wells with KCl-free mud of density 1.2gm/cm3. Corrections for non-standard conditions are approximated by: GR(corr) /GR(log) = 0.7 e 0.06978 d f GR(corr) /GR(log) =
f
e 0.06753 d + 0.7
for centered tools for eccentered tools
where d = (caliper in inches – 3.74) f = mud density in g/cm 3
Chart Gam-1 © 2007 Weatherford. All rights reserved.
17
Compact™ Spectral Gamma Ray KCI Mud Correction Applicability: Compact spectral gamma (MSG) tools, eccentered.
Total Gamma Ray Correction (API units)
0
6 in. (150 mm)
–10 8 in. (200 mm)
–20 –30
10 in. (250 mm)
–40
12 in. (300 mm)
14 in. (350 mm)
–50
18 in. (460 mm)
–60
0
20
40
60
80 100 120 140 KCl Concentration (kppm)
160
180
200
0 Potassium Correction (%)
6 in. (150 mm)
–1 8 in. (200 mm)
–2 10 in. (250 mm)
12 in. (300 mm)
–3
14 in. (350 mm)
–4 18 in. (460 mm)
–5
0
20
40
60
80 100 120 140 Kcl Concentration (kppm)
160
180
Use this chart to correct spectral gamma ray logs for the effects of KCl drilling muds. KCl increases the measured total gamma ray and potassium concentration curves. The corrections are given by: Grcorr = GRlog – 0.382K ( 1 – e-0.207d ) and K%corr = K%log – 0.027K ( 1 – e-0.25d ) where K is the KCl concentration in kppm, and d = (caliper in inches – 5.2)
18
Chart Gam-2a © 2007 Weatherford. All rights reserved.
200
Compact™ Gamma Ray Borehole Correction Applicability: Compact series (MCG and MGS) tools. KCl-free muds. Borehole Diameter (mm) 100
150
200
250
300
350
5.0 4.0
Centered
3.0
GR(corr) /GR(log)
f (gm /cm 3)
Eccentered
2.0 1.8 1.6
2.0
1.4 1.2 1.0
f 2.0 1.0
1.0 0.9 0.8
Air holes
0.7 0.6 0.5
2
4
6
8
10
12
14
Borehole Diameter (in.)
Use this chart to correct gamma ray logs from Compact series tools for the effects of borehole size and mud weight. The standard condition is an eccentered tool in an 8-in. (203-mm) diameter well with KCl-free mud of density 1.2gm/cm3. Corrections for non-standard conditions are approximated by: – 2.25 (d 5.75 ) for centered tools – 2.25 -0.24 f (d 5.75 ) for eccentered tools
GR(corr) /GR(log) = 0.75 exp 0.35 GR(corr) /GR(log) = 1.75 – exp
f
where d = caliper in inches f = mud density in g/cm 3
Chart Gam-3 © 2007 Weatherford. All rights reserved.
19
Compact™ Array Induction Borehole Correction—Shallow Applicability: Compact series (MAI) tools. Borehole Diameter (mm) 50
100
150
200
250
300
0.04
Borehole Geometric Factor
0.03 Standoff 0.02
2.0 in. (51 mm) 1.5 in. (38 mm) 1.0 in. (25 mm)
0.01
0.5 in. (13 mm) 0.0
0.0 in. (0 mm)
–0.01 2
4
6 8 Borehole Diameter (in.)
10
12
Field logs are corrected for bit size, nominal standoff, and borehole fluid salinity. Corrections are applied to each sub-array. The chart shows the composite correction after construction of the shallow output curve. If borehole conditions depart significantly from nominal, new borehole corrections may be computed and applied to the processed logs after first removing the field corrections. Borehole corrected conductivities are given by:
corr =
app – g b
where app is the apparent conductivity, and g b the borehole geometric factor.
20
m the borehole fluid conductivity,
Chart Ind-10 © 2007 Weatherford. All rights reserved.
m
1– g b
Compact™ Array Induction Borehole Correction—Medium Applicability: Compact series (MAI) tools. Borehole Diameter (mm) 50
100
150
200
250
300
0.008 Standoff Borehole Geometric Factor
0.006 0.0 in. (0 mm) 0.004
0.5 in. (13 mm)
1.0 in. (25 mm)
0.002
1.5 in. (38 mm)
0.0
2.0 in. (51 mm) –0.002 2
4
6 8 Borehole Diameter (in.)
10
12
Field logs are corrected for bit size, nominal standoff, and borehole fluid salinity. Corrections are applied to each sub-array. The chart shows the composite correction after construction of the medium output curve. If borehole conditions depart significantly from nominal, new borehole corrections may be computed and applied to the processed logs after first removing the field corrections. Borehole corrected conductivities are given by:
corr =
app – g b
where app is the apparent conductivity, and g b the borehole geometric factor.
m
1– g b m the borehole fluid conductivity,
Chart Ind-11 © 2007 Weatherford. All rights reserved.
21
Compact™ Array Induction Borehole Correction—Deep Applicability: Compact series (MAI) tools. Borehole Diameter (mm) 50
100
150
200
250
300
0.004 Standoff
0.5 in. (13 mm)
0.003 Borehole Geometric Factor
0.0 in. (0 mm)
0.002 1.5 in. (38 mm) 0.001
2.0 in. (51 mm)
0.0
–0.001 2
4
6 8 Borehole Diameter (in.)
10
12
Field logs are corrected for bit size, nominal standoff, and borehole fluid salinity. Corrections are applied to each sub-array. The chart shows the composite correction after construction of the deep output curve. If borehole conditions depart significantly from nominal, new borehole corrections may be computed and applied to the processed logs after first removing the field corrections. Borehole corrected conductivities are given by:
corr =
app – g b
where app is the apparent conductivity, and g b the borehole geometric factor.
22
m the borehole fluid conductivity,
Chart Ind-12 © 200\7 Weatherford. All rights reserved.
m
1– g b
Compact™ Array Induction Tornado Chart Applicability: Compact series (MAI) tools. Thick beds. Use borehole corrected data.
Rxo = 10
m
40 Di
30 25 in. (0.64 m)
30 in. (0.76 m)
40 in. (1.0 m)
50 in. (1.27 m)
20 in. (0.51 m)
20
60 in. (1.52 m) 70 in. (1.78 m)
15 in. (0.38 m)
80 in. (2.03 m)
50
100 in. (2.54 m)
R SFE / RILD
10 30
8
0.95
25
6
0.9
Rt RILD
120 in. (3.05 m) 0.8
20
0.7
0.6 0.5
5 15
4
10
3
7
2
5
Rxo Rt
3 2
1 1.0
1.2
1.4
1.6 1.8 R ILM / R ILD
2.0
2.2
2.4
2.6
Chart Ind-5 © 2007 Weatherford. All rights reserved.
23
Compact™ Array Induction Tornado Chart Applicability: Compact series (MAI) tools. Thick beds. Use borehole corrected data.
Rxo = 20
m
40 Di 30
30 in. 25 in. (0.76 m) (0.64 m)
40 in. (1.0 m)
50 in. (1.27 m)
60 in. (1.52 m)
20 in. (0.51 m)
20
70 in. (1.78 m)
80 in. (2.03 m) 90 in. (2.29 m) 100 in. (2.54 m)
15 in. (0.38 m)
50
120 in. (3.05 m)
R SFE / RILD
10
140 in. (3.56 m)
30
8
0.95
6
Rt 0.9 RILD
0.8 0.7
0.6
20
5
0.5 15
4
10
3
7
2
5
Rxo Rt
3 2
1 1.0
24
1.2
1.4
1.6 1.8 R ILM / R ILD
Chart Ind-6 © 2007 Weatherford. All rights reserved.
2.0
2.2
2.4
2.6
Compact™ Array Induction Tornado Chart Applicability: Compact series (MAI) tools. Thick beds. Use borehole corrected data.
Rxo = 100 40
m
Di 30 in. 25 in. (0.76 m) (0.64 m) 20 in. (0.51 m)
30
20
40 in. (1.0 m)
50 in. (1.27 m)
60 in. (1.52 m)
70 in. (1.78 m) 80 in. (2.03 m)
15 in. (0.38 m)
90 in. (2.29 m) 100 in. (2.54 m) 120 in. (3.05 m) 150 in. (3.81 m)
50
R SFE / RILD
10
200 in. (5.08 m)
30
8
0.9
0.95
6
Rt RILD
0.8
0.7
0.6
20
0.5
5
0.4 15
4
10
3
7
2
5
Rxo Rt
3 2
1 1.0
1.2
1.4
1.6 1.8 R ILM / R ILD
2.0
2.2
2.4
2.6
Chart Ind-7 © 2007 Weatherford. All rights reserved.
25
Compact™ Array Induction Tornado Chart Applicability: Compact series (MAI) tools. Thick beds. Use borehole corrected data.
Rxo < R t 7.0
150 in. 100 in. (2.54 m) (3.81 m) 120 in. 200 in. 90 in. (3.05 m) (5.08 m) (2.29 m) 80 in. (2.03 m) 0.02 70 in. (1.78 m)
6.0 5.0
4.0
60 in. (1.52 m)
3.0
Di
50 in. (1.27 m)
R SFE / RILD
0.05 10.0
40 in. (1.0 m)
2.0
0.10 5.0 0.15
Rt RILD 3.0
30 in. (0.76 m)
1.0
0.20
0.9
0.40 0.80
2.0 25 in. (0.64 m)
0.8 0.7
Rxo Rt
1.2
0.6 0.5 0.1
26
0.2
0.3 0.4 R ILM / R ILD
Chart Ind-8 © 2007 Weatherford. All rights reserved.
0.5
0.6
0.7 0.8
1.0
Compact™ Focused Electric Borehole Correction Applicability: Compact series (MFE) tools. Centered
2.4 2.2 300 mm 12 in.
1.8
10 in. 8 in. 6 in. 4 in.
1.6 1.4
250 mm 200 mm 150 mm 100 mm
1.2 1.0
Borehole Diameter
0.8 0.6 0.4
0.1
1
10
100
1,000
10,000
RFEFR / Rm
The corrected shallow resistivity curve FEFE has been corrected for bit size and Rm. To apply an alternative correction, enter the chart using the raw shallow resistivity curve FEFR.
Corrections are approximated by: RFEFR(Corr) / RFEFR = a0 + a1x + a2x2 + a3x3 +..... where x = ln(RFEFR/Rm). Coefficients for 4-, 6-, 8-, 10- and 12-in. wells are (left to right):
Centered
RFEFR(Corr) / RFEFR
2.0
a0 a1 a2 a3 a4 a5
1.0000000 0.3515411 –0.1259589 0.0209587 –0.0018341 0.0000652
1.0000000 0.5245657 –0.2158732 0.0404045 –0.0037254 0.0001324
1.0000000 0.6591658 –0.2848466 0.0570030 –0.0056788 0.0002223
1.0000000 0.7950933 –0.4006034 0.1119412 –0.0172275 0.0010960
1.0000000 0.9368961 –0.4659671 0.1453734 –0.0286625 0.0026412
Chart SFE-2 © 2007 Weatherford. All rights reserved.
27
Compact™ Deep Laterolog Borehole Correction Applicability: Compact series (MDL) tools, wireline operating mode A (voltage reference at 94 ft/29 m). Standard condition is 5-in. (13-mm) standoff in an 8-in. (200-mm) well, Ra/Rm = 20 Centered
RLLD(Corr) / RLLD
1.6 1.4
Borehole Diameter in. mm
1.2 1.0 4
8
6
10
12
14
100
16
150
200
350 250 300
400
0.8 0.6
1
10
1,000
10,000
1.5-in. (38-mm) Standoff
1.6
RLLD(Corr) / RLLD
100 RLLD / Rm
1.4
Borehole Diameter in. mm
1.2 1.0
6
10 8
16 12 14 350 400 250 300 200 150
0.8 0.6
1
10
1,000
10,000
0.5-in. (13-mm) Standoff
1.6
RLLD(Corr) / RLLD
100 RLLD / Rm
1.4
Borehole Diameter in. mm
1.2 14 16 400 10 12 300 350 8 200 250 6 150 4 100
1.0 0.8 0.6
28
1
10
100 RLLD / Rm
Chart Lat-4 © 2007 Weatherford. All rights reserved.
1,000
10,000
Compact™ Shallow Laterolog Borehole Correction Applicability: Compact series (MDL) tools, wireline operating mode A (voltage reference at 94 ft/29 m). Standard condition is 5-in. (13-mm) standoff in an 8-in. (200-mm) well, Ra/Rm = 20 Centered
1.6 Borehole Diameter
RLLS(Corr) / RLLS
1.4 1.2 1.0
in.
mm
16 14 12 10 8 6 4
400 350 300 250 200 150 100
0.8 0.6
1
10
100 RLLS / Rm
RLLS(Corr) / RLLS
1.4 16 14 12 10 8 6
1.0
10,000
1,000
10,000
350 300 250 200 150
mm in. Borehole Diameter
0.8
1
10
100 RLLS / Rm 0.5-in. (13-mm) Standoff
1.6 1.4 RLLS(Corr) / RLLS
1,000
400
1.2
400 16 14 12 10 8 6 4
1.2
350 300 250 200 150 100 in. mm Borehole Diameter
1.0 0.8 0.6
10,000
1.5-in. (38-mm) Standoff
1.6
0.6
1,000
1
10
100 RLLS / Rm
Chart Lat-5 © 2006 Weatherford. All rights reserved.
29
Compact™ Laterolog Tornado Chart Applicability: Compact series (MDL) tools, wireline operating mode A (voltage reference at 94 ft/29 m). Thick beds, 8-in. (203-mm) hole, step invasion profile, Rxo/Rm = 50 Use borehole corrected data. 100 80
20
Rt RLLD
30
1.2
1.3
60
40
100
50
80
1.8
1.6
70
50
60
1.4
100
40
50 Rt R xo
30
120
30
20
D i (in.) 20 15
10
RLLD / Rxo
8
10
6
7
5 4
5
3
3 2
2 1.5 1.0 0.8 0.6 0.5
0.4
0.4 0.3 0.2 0.4
30
0.2
0.6
0.8 1.0
2
3
4 5 RLLD / RLLS
Chart Lat-6 © 2007 Weatherford. All rights reserved.
10
20
30
40 50
Compact™ Deep Laterolog Borehole Correlation—Shuttle Deployed Applicability: Compact series (MDL) tools, shuttle deployed. Centered
RLLD(Corr) / RLLD
1.6 Borehole Diameter in. mm
1.4 1.2 1.0
4
8
12
16 100
200
300
400
0.8 0.6
1
10
1,000
10,000
1.5-in. (38-mm) Standoff
1.6
RLLD(Corr) / RLLD
100 RLLD / Rm
1.4
Borehole Diameter in. mm
1.2 12 16 400 6 8 150 200 300
1.0 0.8 0.6
1
10
1,000
10,000
0.5-in. (13-mm) Standoff
1.6
RLLD(Corr) / RLLD
100 RLLD / Rm
1.4
Borehole Diameter in. mm
1.2 12 16 300 400 4 8 100 200
1.0 0.8 0.6
1
10
100 RLLD / Rm
1,000
10,000
Chart Lat-10 © 2007 Weatherford. All rights reserved.
31
Compact™ Shallow Laterolog Borehole Correction—Shuttle Deployed Applicability: Compact series (MDL) tools, shuttle deployed. Centered
1.6 Borehole Diameter
RLLS(Corr) / RLLS
1.4 1.2
in.
mm
16 14 12 10
400 350 300 250 200 150 100
1.0 6 4
0.8 0.6
1
10
100 RLLS / Rm
RLLS(Corr) / RLLS
1.4 16 14 12 10 8 6
1.0
1
10
100 RLLS / Rm
1,000
10,000
0.5-in. (13-mm) Standoff
1.6 1.4 RLLS(Corr) / RLLS
10,000
350 300 250 200 150
mm in. Borehole Diameter
0.8
400
1.2
16 14 12 10 8 6 4
1.0 0.8
32
1,000
400
1.2
0.6
10,000
1.5-in. (38-mm) Standoff
1.6
0.6
1,000
350 300 250 200 150 100
in. mm Borehole Diameter
1
10
100 RLLS / Rm
Chart Lat-11 © 2007 Weatherford. All rights reserved.
Compact™ Laterolog Tornado Chart—Shuttle Deployed Applicability: Compact series (MDL) tools, shuttle deployed. Thick beds, 8-in. (203-mm) hole, step invasion profile, Rxo/Rm = 50 Use borehole corrected data. 100 80
Rt RLLD
20
1.2
1.3
30
100
1.1
60
1.4
40
50
1.5 1.6 1.8 60 80
100
70
50
120
40
50 Rt R xo 30
30 20
D i (in.)
20 15
10
RLLD / Rxo
8
10
6
7
5 4
5
3
3 2
2
1.0 0.8 0.6 0.5
0.4
0.4 0.3 0.2 0.4
0.2
0.6
0.8 1.0
2
3
4 5 RLLD / RLLS
10
20
30
40 50
Chart Lat-12 © 2007 Weatherford. All rights reserved.
33
Compact™ MicroLaterolog Mudcake Correction Applicability: MMR series with 4-, 6-, and 8-in. (102-, 152-, and 203-mm) profile pads in matching hole sizes.
hmc =
1.0 in. (25 mm)
0.8 in. (20 mm)
0.7 in. (17.5 mm)
0.6 in. (15 mm)
0.5 in. (12.5 mm)
0.4 in. (10 mm)
RMLL(corr) / RMLL
3.0
2.0 0.3 in. (7.5 mm)
0.2 in. (5 mm)
1.0 0.9 0.8 0.7 1
0 in. (0 mm)
2
3
4
5
10 RMLL / Rmc
34
Chart Micro-3 © 2007 Weatherford. All rights reserved.
20
30
40
50
100
Compact™ Neutron Porosity Charts—Explanatory Note Applicability: Compact series (MDN) tools. Neutron porosity logs are calibrated in limestone units (curve mnemonic NPRL) and may be displayed also in apparent sandstone units (mnemonic NPRS) or apparent dolomite units (NPRD). Chart Npor-5 shows the magnitude of the transforms. Use Charts Npor-6a to Npor-8 to determine the magnitude of open-hole environmental corrections. Chart Npor-9a details the cased-hole corrections. Compact tool field logs are corrected automatically for any or all environmental perturbations. Refer to the Neutron Constants table part of the log tail to determine whether a particular correction has been applied (indicated by departure from standard conditions). Standard Conditions Limestone matrix: CaCO3 with 7.10 cu capture cross section Borehole size: 8.0 in. (203 mm) Borehole fluid: Fresh water Tool standoff: 0.0 in. (0 .0 mm) Mud weight: 8.345 lb/US gal (1,000 k g/m 3) o o Borehole temperature: 68 F (20 C) Formation pressure: 0 kpsi (0 MPa) Formation fluid: Fresh water with 22.2 cu capture cross section Standard sandstone matrix is SiO2 with 4.26 cu capture cross section. Standard dolomite matrix is CaMg(CO3) with 4.70 cu capture cross section. If a correction was not applied during acquisition, or if alternative parameter values are established, the charts allow a new net correction to be computed. The uncorrected apparent limestone porosity curve NPOR is provided for this purpose. Corrections are applied in a specific order. For open-hole corrections, enter Chart Npor-6a with the value of NPOR, and draw a line vertically through the first four nomograms from the uppermost porosity entry point through to the second porosity scale. A correction is computed from each nomogram by following the correction curves from the actual condition to the standard condition. A multiplier is applied to the corrections for borehole fluid salinity and standoff if the hole size is not 8 in. The total correction is the arithmetic sum of the individual corrections. Next, transform the resulting porosity into the appropriate matrix units, using Chart Npor-5, before applying ma and formation fluid salinity corrections in Charts Npor-7 and Npor-8. Finally, return to Chart Npor-6a to perform formation temperature and pressure corrections. The procedure for applying cased-hole corrections is detailed within Npor-9a.
Npor Explanatory Note © 2007 Weatherford. All rights reserved.
35
Compact™ Neutron Porosity Matrix Transforms Applicability: Compact series (MDN) tools. ma
values: Silica 4.26 cu
fl value:
Limestone 7.10 cu
22.2 cu.
Dolomite 4.70 cu
40
35
ite m lo Do
Li
20
m es to ne
lic a
25
Si
True Porosity (pu)
30
15
10
5
0 –3
0
5
10
15
20
25
30
35
Apparent Limestone Porosity (pu) Use this chart to transform Compact series neutron porosity logs recorded in apparent limestone units into true sandstone and dolomite porosities. Enter the apparent limestone porosity, and move vertically to the appropriate matrix line. Read the true porosity from the vertical axis. The transforms are described by the following equations: sand
= 0.000075
3 lim
– 0.012
dol
= 0.000025
3 lim
– 0.0022
2 lim
+1.43
2 lim
+0.982
lim +1.76 lim –0.88
When formation ma values depart significantly from standard conditions, use Chart Npor-7 to make additional corrections.
Chart Npor-5 36
© 2007 Weatherford. All rights reserved.
40
Compact™ Neutron Porosity Environmental Corrections Applicability: Open-hole logs from Compact series (MDN) tools. 0
Multiplier
2.0 1.5
2.5 Standoff 1.5 0.5
1.0 0.5 0
50
Borehole Salinity (kppm) (kppm)
0
40
250 250 200 200 150 150 100 100 50 50 00
Standoff (in.)
1
Borehole Salinity
Multiplier Multiplier
2
Apparent Limestone Porosity Units 20 30
16 14 12 10 8 6 4
Borehole Size (in.)
Hole Hole Size Size (in.) (in.) 4 8 12 16 3
10
2.5 2.0 1.5 1.0 0.5 0
4 8 12 16 Hole Size (in.)
Mud Weight (lb/US gal) natural barite
18 16 14 12 10 8
0
Temperature Temperature o ((°F) F)
Pressure (kpsi)
10
20 30 Corrected Porosity Units
40
50
10
20
40
50
300 300 250 250 200 200 150 150 100 100 50 50 25 20 15 10 5 0 0
30
Standard condition
Chart Npor-6a © 2007 Weatherford. All rights reserved.
37
Compact™ Neutron Porosity Matrix Cross Section Corrections Applicability: Open-hole logs from Compact series (MDN) tools.
0
Environmentally Corrected Neutron Porosity (pu) 10 20 30 40
50
70 60 ma
(cu)
Sandstone Formations
50 40 30 20 10 0 70 60
ma
(cu)
Limestone Formations
50 40 30 20 10 0 70 60
ma
(cu)
Dolomite Formations
50 40 30 20 10 0
0
10
20
30
40
50
Standard condition
Use the appropriate nomogram to deduce corrections for variations in matrix sigma values. Sigma corrections associated with variations in formation fluid salinity are specified in Chart Npor-8. Matrix sigma corrections are given by: = (–2.51a2 + 11.34a - 8.83).(0.08 exp(–0.04 ) + 0.05) sand = (–1.37a2 + 8.78a - 7.41).(0.08 exp(–0.045 ) + 0.25) lime = (–7.09a2 + 16.98a - 9.89).(0.11 exp(–0.06 ) + 0.20) dolomite where: = borehole corrected neutron porosity in appropriate matrix units and a = ma(std) / ma and ma(std) = 4.26, 7.10, and 4.70 cu, respectively, for standard sand, lime, and dolomite.
Chart Npor-7 38
© 2007 Weatherford. All rights reserved.
Compact™ Neutron Porosity Formation Salinity Corrections Applicability: Open-hole logs from Compact series (MDN) tools.
0
Salinity (kppm) Sandstone Formations
Salinity (kppm) Limestone Formations
Salinity (kppm) Dolomite Formations
Environmentally Corrected Neutron Porosity (pu) 10 20 30 40
50
250 200 150 100 50 0
250 200 150 100 50 0
250 200 150 100 50 0
0
10
20
30
40
50
Standard condition
Use the appropriate nomogram to deduce corrections for variations in formation salinity. If the matrix cross section is known, a correction should first be made using Chart Npor-7. Salinity corrections are approximated by: +1.0).kppm2.10–5
sand
= (– 0.07 2 + 2.0 –3.0).kppm3.10–8 + (0.031 – (1.4 +2.0).kppm.10–3
lime
= (– 0.066 2 + 3.0 –1.0).kppm3.10–8 + (0.024 – ( +1.0).kppm.10–3
dolomite
= (– 0.02 2 + 0.4 –1.0).kppm3.10–8 + (0.022 – (2.0 +2.0).kppm.10–3
where:
= borehole corrected neutron porosity in appropriate matrix units
2–
0.4
2– 2–
0.6
+1.2).kppm2.10–5
0.1
+1.0).kppm2.10–5
Chart Npor-8 © 2007 Weatherford. All rights reserved.
39
Compact™ Neutron Porosity Cased-Hole Corrections Applicability: Cased-hole logs from Compact series (MDN) tools.
0
10
0
10
Apparent Limestone Porosity Units (pu) 20 30
40
50
40
50
16 14
Casing ID (in.)
12 10 8 6 4 0.6 0.5
Casing Thickness (in.)
0.4 0.3 0.2 0.1 0 3.0 2.5
Cement Thickness (in.)
2.0 1.5 1.0 0.5 0
20
30
Standard condition
In cased holes substitute this chart for the open-hole borehole size correction. Enter the chart with uncorrected porosity in apparent limestone units (NPOR or uncorrected NPRL), and draw a vertical line through each nomogram. Derive values from each nomogram by marking the intersection with the given casing ID, casing thickness and cement thickness values; then move parallel to the nearest curve to the standard condition. Sum the values to find the total correction. Apply any remaining environmental corrections at this point. Example: casing ID = 5 in., casing thickness = 0.5 in., cement thickness = 1.25 in. For NPOR = 28 pu, corrected porosity = 28 + (3.9 – 7.5 – 6.6) = 17.8 pu. Casing ID where
Casing Thickness Cement Thickness
40
= f( ) . f(c) f( ) = 0.0000027 3 – 0.00137 2 + 0.1484 f( c ) = –0.00017c 3 + 0.0131c 2 – 0.232c c = (caliper – 8.0) in.
= (0.00004 3 – 0.0135 2 + 1.0877 ) . (0.59 t 3– 0.235 t 2 – 0.75 t) t = casing thickness in inches = (– 0.0009 2 + 0.13 + 0.05 ) . (0.087h – 0.33 h – 1.5 h ) h = cement thickness in in. 3
Chart Npor-9a © 2007 Weatherford. All rights reserved.
+ 1.6
2
Compact™ Neutron Porosity Environmental Correction Equations Applicability: Open-hole logs from Compact series (MDN) tools. Porosity (
) in pu. Range: as Chart Npor-6a.
General To determine whether a particular environmental correction was applied during acquisition, refer to the correction parameter value recorded on the log tail; if it is equal to the standard condition value, then no correction was applied. Corrections are additive. To compute corrections for borehole size, borehole fluid salinity, standoff, and mud weight based on alternative parameter values, use the relevant equations applied to the raw Apparent Limestone Porosity curve (mnemonic NPOR). Temperature and pressure corrections should be applied after matrix and formation fluid salinity corrections have been made. Borehole Size where c f(
= (caliper – 8.0) in. ) = –0.0000027
3
– 0.00137
2
+ 0.1484
+ 1.61
Borehole Fluid Salinity = k.(0.05 + 1.0 ) MDNACL / 250 where k = (caliper – 2.25)/5.75 in. MDNACL = NaCl equivalent salinity in kppm Standoff = f(standoff).f(
).(caliper 3/2,048+caliper 2/256+caliper/16)
where f(standoff) = 0.8s2 – 4.4 s 2 f( )=– 0.0005 +0.034 +0.6 s = standoff / k in. k = (caliper – 2.25)/ 5.75 in. Mud Weight Natural Muds = (0.0143
+ 0.1786).(w – 8.345)
Barite Muds = (0.0057
+ 0.0714).(w – 8.345)
where w
= mud weight in lb/US gal
Borehole Temperature o = (0.0007 + 0.001).( F – 68) Pressure = (0.02 – 0.004 ).kpsi © 2007 Weatherford. All rights reserved.
41
Lithology-Porosity from Density-Neutron Crossplot Applicability: MPD and MDN tools, environmentally corrected. Formation fluid density = 1.0 g/cm 3 (Mg/m 3).
1.9 45 40
2.0
40
40
35 35
35
30
to es m Li
15
2.4
20
10
15
2.5
ne
20
5
10
2.6
25
30
20
25
15
ite m o l Do
10
15 5
5
2.7
10
0
0 5
–5
2.8 0
–10
2.9
–15 3.0 0
5
10
15
20
25
Apparent Limestone Porosity (pu)
42
Chart LPC-1 © 2007 Weatherford. All rights reserved.
30
35
40
2.71 g/cm 3)
S
d an
25
e on st
30
ma =
2.3
35
25
0
Bulk Density (g/cm 3 or Mg/m 3)
ro Po 20
y si t
(
30
2.2
Density Porosity (pu)
2.1
Lithology-Porosity from Density-Neutron Crossplot Applicability: MPD and MDN tools, environmentally corrected. Formation fluid density = 1.19 g/cm 3 (Mg/m 3).
1.9
2.0
45
40
15 10
2.5
20
5
10
2.6
25
30
to es m i L
15
30
35
25
ne to s nd Sa 20
20
2.4
30
25
ne
20
25
15 ite m o l Do
10
15
5
5
0
2.7
10
0
2.71 g/cm 3)
2.3
35
ma =
Po
y sit ro
35
30
40
(
2.2
Bulk Density (g/cm 3 or Mg/m 3)
40
35
0
5
Density Porosity (pu)
2.1
–5
2.8 0
–10
2.9 –15 3.0 0
5
10
15
20
25
30
35
40
Apparent Limestone Porosity (pu)
Chart LPC-2 © 2007 Weatherford. All rights reserved.
43
Lithology-Porosity from Sonic-Neutron Crossplot Applicability: MDN tools, environmentally corrected. Formation fluid slowness = 189 ms /f t (620 ms /m).
360
40
110
35
340
320 35
30
100
35 35
30
35
Raiga-Clemenceau
40
Time average
240
220 20
15 10
10
0
200 15
10
15
5
60
5
180 10
5 5
50
160 0
5
0
140
40
0
5
10
15
20
25
Apparent Limestone Porosity (pu)
44
Chart LPC-5 © 2007 Weatherford. All rights reserved.
30
35
40
Sonic Transit Time (ms/m)
30 30
25
to ne 25
25
260
Do lo m ite
15
70
20
10
15
L 20 ime s
20
15
80
280
25
Sa nd s
20
to ne
20
Po ro s
30
30
25 2 5
300
10
Sonic Transit Time (ms /f t )
ity
90
Porosity and Saturation from Density-Neutron Porosity Plot Applicability: MPD and MDN tools, borehole corrected. Formation fluid salinity = 0 ppm, gas-bearing formations 55
45 45 Porosity
50
40 40
0% 20%
45
Sandstone Density Porosity (pu)
40%
40
60%
35
30 30
20% 40%
30
60%
25
20 20
35 35 80%
100% Sxo
25 25 80% 100% Sxo
20
15 15 15
10 10
10
2,000 psi and 122°F (50°C)
5
5
0
0
5
7,000 psi and 248°F (120°C)
5
10
15
20
25
30
35
40
45
Sandstone Neutron Porosity (pu) Use this chart to compute porosity and gas saturation in gas-bearing formations. It assumes a mixture of methane, fresh water, and silica sand. Enter with borehole corrected neutron porosity in apparent sandstone units and density porosity computed using an apparent filtrate density of 1.0 g/cc.
Chart Gas-1 © 2007 Weatherford. All rights reserved.
45
Lithology-Porosity from Density-Pe Crossplot Applicability: MPD series tools. Fresh-water-filled formations, fluid density = 1.0 g/cm 3 (Mg/m 3).
40
lt 0 Sa
1.9
40
2.0
30
30
40
2.1
tone Limes
20
30
10
2.5
20
10
2.4
Dolomite
2.3
20
Sandstone
2.6 10
0
Bulk Density (g/cm 3 or Mg/m 3)
2.2
0
2.7
0
2.8
2.9
3.0 0
1.0
2.0
3.0
4.0
Photoelectric Cross Section (barns/electron)
46
Chart Lpor-11 © 2007 Weatherford. All rights reserved.
5.0
6.0
Lithology-Porosity from Density-Pe Crossplot Applicability: MPD series tools. Salt-water-filled formations, fluid density = 1.19 g/cm 3 (Mg/m 3)
lt 0 Sa
1.9
40
40
2.0
20
ne Limesto
30
2.7
0
10
0
2.6
10
Dolomite
2.5
20
10
2.4
20
2.3
Sandstone
2.8 0
Bulk Density (g/cm 3 or Mg/m 3)
30
30
2.2
40
2.1
2.9
3.0 0
1.0
2.0
3.0
4.0
5.0
6.0
Photoelectric Cross Section (barns/electron)
Chart Lpor-12 © 2007 Weatherford. All rights reserved.
47
Matrix Identification from the PhotoDensity
Salt
2.6 Quartz
% Calcit e
20
40
60
80
2.7
80 Calcite
60
% tz ar Qu
2.8
20 40
40
60
20
80
%
lo Do
te mi
Dolomite
2.9
Barite
3.0
maa ,
Apparent Matrix Grain Density (g/cm3 or Mg/m3)
2.5
Shale
3.1 2
4 6 8 10 12 14 Umaa , Apparent Matrix Volumetric Cross Section (barns/cm3)
16
This chart is used to identify matrix components in mixed-lithology formations. Input data are density, Pe, and total porosity computed, for example, from a density-neutron crossplot. The apparent matrix grain density maa and the apparent matrix volumetric cross section Umaa are computed as: maa =
log – t f 1– t
and
Umaa = Pe
t Uf
e–
1–
t
where t is total porosity, f is formation fluid density, Uf is formation fluid volumetric cross section, and e is the formation electron density given by: e = log e = ( log + 0.187797)/1.07009 e = log + 0.065
Typical values for the fluid parameters
f
( log > 2.71 g/cm3 ) (1.687 < log < 2.71 g/cm3 ) ( log < 1.687 g/cm3 )
and Uf are:
Water (fresh) 1.00 Water (200 kppm NaCl) 1.11 Oil 1.22 Gas 1.33
48
Chart Lith-2 © 2007 Weatherford. All rights reserved.
Uf
f
oil – gas –
0.19 0.19
0.40 1.36 0.14 0.12
oil gas
Log Responses in Common Rocks and Minerals Applicability: Compact series tools, standard conditions.
r log Z S
U r Pe log* (g/cm3) (barn/electr.) (barn/cm3)
D tc ts D F MDN
M
(g/cm3)
SiO2
0.499
2.65
2.65
1.81
4.8
–1.2
56
88
CaCO3
0.500
2.71
2.71
5.08
13.8
0.0
46
89
Dolomite
CaMg(CO3)2
0.498
2.87
2.86
3.14
9.0
0.9
42
77
Anhydrite
CaSO4
0.499
2.98
2.96
5.05
14.9
–1.5
51
98
Barite
BaSO4
0.446
4.08
3.99
265.56
1,060.6
–2.0
69
133
Gypsum
CaSO4.2H2O
0.511
2.35
2.35
3.99
9.5
58.0
52
Halite
NaCl
0.479
2.03
2.03
4.65
9.6
–2.0
67
120
Sylvite
KCl
0.483
1.86
1.86
8.51
16.3
–2.0
74
140
Siderite
FeCO3
0.483
3.91
3.83
14.62
56.0
12.0
44
85
Hematite
Fe2O3
0.476
5.16
5.00
21.48
107.3
11.0
44
74
Magnetite
Fe3O4
0.475
5.07
4.92
22.14
108.9
9.0
72
155
Goethite
FeO(OH)
0.484
4.23
4.13
18.90
78.1
60.0+
Pyrite
FeS2
0.483
4.99
4.84
16.89
81.8
–2.0
39
62
Orthoclase
KAlSi3O8
0.496
2.54
2.54
2.86
7.2
–2.0
69
Anorthoclase
(Na,K)AlSi3O8
0.496
2.59
2.59
2.86
7.4
–1.0
Albite
NaAlSi3O8
0.496
2.58
2.58
1.68
4.4
–1.0
47
Anorthite
CaAl2Si2O8
0.496
2.74
2.74
3.13
8.6
–1.0
45
0.497
2.83
2.82
2.40
6.8
20.0
47
79
0.493
3.19
3.16
6.27
19.2
21.0
49
82
0.504
2.64
2.64
1.49
3.9
40.0
212
328
Montmorillonite Al4(Si4O10)2.nH2O
0.502
2.63
2.63
1.63
4.3
47.0
Illite
0.499
2.76
2.76
3.45
9.5
35.0
Bituminous Coal CHn Nx Oy
0.527
1.29
1.31
0.17
0.2
60.0+
Anthracite
CHn Nx Oy
0.513
1.55
1.54
0.16
0.3
40.0
105
Lignite
CHn Nx Oy
0.525
1.28
1.25
0.20
0.3
54.0
160
Name
Chemical Formula
Quartz Calcite
Muscovite Biotite
K(Mg,Fe)3AlSi3O10
p.u.
mm s/ft s/ft
98
(OH)2
Kaolinite
Al4Si4O10(OH)8 KyAl4(Si8-yAly) O20(OH)4
120
* Z/A correction set to Advanced
Chart Lith-3c
© 2007 Weatherford. All rights reserved.
49
Compact™ Curve Mnemonics
50
Curve Mnemonic
Curve Description
AIAT AIBT AIIT AIR1 AIR2 AIR3 AIR4 AIST AITC AIX1 AIX2 AIX3 AIX4 APOR CIL1 CIL2 CIL3 CIL4 CILD CILM CILS IHTD IHTF RILD RILM SYM1 SYM2 SYM3 SYM4 VEC0 VEC1 VEC2 VEC3 VEC4 VEC5 ACCF BAZI BAZT BNBT BNGR BNIT BNST BNXA BNXM BNYA BNYM BNZA BNZM BTLF BTLT BZAC BZAT GBNE GRBG HSBA MAGF
MAI Array Temperature Borehole Temperature Raw MAI Internal Temperature Induction Receiver 1 Induction Receiver 2 Induction Receiver 3 Induction Receiver 4 MAI Status MAI Transmitter Current Induction VX1 Induction VX2 Induction VX3 Induction VX4 Apparent Porosity Conductivity Receiver 1 Conductivity Receiver 2 Conductivity Receiver 3 Conductivity Receiver 4 Deep Conductivity Medium Conductivity Shallow Conductivity Differential Temperature Borehole Temperature Deep Induction Medium Induction Symmetrised Receiver 1 Symmetrised Receiver 2 Symmetrised Receiver 3 Symmetrised Receiver 4 Shallow Induction Near Induction Near Medium Induction Far Medium Induction Far Induction Deepest Induction Acceleration Magnitude Borehole Azimuth (Mag.) Borehole Azimuth (True) MBN Bulkhead Temperature Gamma Ray Raw MBN Internal Temperature MBN Status X Accelerometer X Magnetometer Y Accelerometer Y Magnetometer Z Accelerometer Z Magnetometer Filtered Borehole Tilt Borehole Tilt Z Accelerometer Counts Z Accelerometer Time Borehole Corrected Gamma Gamma Ray Relative Bearing (HS) Field Magnitude
© 2007 Weatherford. All rights reserved.
Tool
Tool Description
MAI
Compact Array Induction
MBN
Compact Borehole Navigation
Compact™ Curve Mnemonics
Curve Mnemonics Mnemonic NDAA NDPT NSPD RAZI SAAZ SRBA CCLG CGCL CGDT CGFR CGGR CGIT CGSP CGST CGVN CGVP CGVT CGXT GGCE GRGC SPCG DNFD DNFT DNIT DNND DNNT DNST NPOR NPRD NPRL NPRS NRAT FEFC FEFE FEFR FEFV FEIT FEQC FEQR FEQS FERI FERV FESI FEST FEXI FEXV BHUN BONE BTEN BTHO BTTH FCCP FCIT FCMC FCMS FCMT
Mnemonics Curve Description Description Depth Difference Speed Corrected Depth PROCESSED Speed Azimuth of Reference Apparent Azimuth Relative Bearing Casing Collar Locator CCL Raw Downhole Tension Fluid Resistance Gamma Ray Raw MCG Internal Temperature SP Raw MCG Status Line Voltage (–ve) Line Voltage (+ve) Line Voltage MCG External Temperature Borehole Corrected Gamma Gamma Ray Spontaneous Potential Far Neutron Raw Far Neutron Dead Time MDN Internal Temperature Near Neutron Raw Near Neutron Dead Time MDN Status Base Neutron Porosity Dolomite Neutron Por. Limestone Neutron Por. Sandstone Neutron Por. Neutron Ratio (Near/Far) Shallow FE (Phase Corr.) Shallow FE Shallow FE (No Corr.) MFE Fish Voltage MFE Internal Temperature Quadrature FE (Phase C.) Quadrature FE (No Corr.) Quadrature FE MFE Current MFE Voltage MFE Sense DC Current MFE Status MFE Quadrature Current MFE Quadrature Voltage Paine P. (Abs) 100s Paine P. (Abs) 1s Paine P. (Abs) 10s Paine P. (Abs) 1000s Paine P. (Abs) 10000s MFC Caliper MFC Internal Temperature MFC Motor Current MFC Motor Speed MFC Motor Temperature
Tool
Tool
Tool Tool Description Description
MBN
Compact Borehole Navigation
MCG
Compact Comms Gamma
MDN
Compact Dual Neutron
MFE
Compact Focused Electric
MFT
Compact Formation Tester
© 2007 Weatherford. All rights reserved.
51
Compact™ Curve Mnemonics
52
Curve Mnemonic
Curve Description
FCST FPEX FPGP FPGT FPIT FPMC FPMS FPMT FPNG FPPP FPPS FPPV FPQC FPQH FPQT FPST PGAB PGPF PHUN PKEY PONE PSVL PTEN PTHO PTTH QDPF QFRC QHUN QONE QTEM QTEN QTHO QTTH TPRE GDIT GDLO GDST GDUP GCSL GGME GRGM GSCL GSFR GSGR GSIT GSSP GSST GSVN GSVP GSVT GSXT SPGS BHTD BHTF HTBT HTIT
MFC Section Status MFP Extended Status Paine Pressure Raw Paine Gauge Temperature MFP Internal Temperature MFP Motor Current MFP Motor Speed MFP Motor Temperature Paine Voltage (–ve) Piston Position Paine Voltage (+ve) Paine Voltage Quartzdyne Pressure (C) Quartzdyne Temp. (C) Quartzdyne Reference MFP Section Status Paine Pressure (Abs) Paine Pressure (Gauge) Paine P. (Gge) 100s Piston Control Paine P. (Gge) 1s Piston Swept Volume Paine P. (Gge) 10s Paine P. (Gge) 1000s Paine P. (Gge) 10000s Quartzdyne Pressure Quartzdyne Fraction Quartzdyne 100s Quartzdyne 1s Quartzdyne Temperature Quartzdyne 10s Quartzdyne 1000s Quartzdyne 10000s Pretest Time MGD Internal Temperature Lower Gas Detector MGD Status Upper Gas Detector MCL C. Collar Locator Borehole Corr. MGS Gamma MGS Gamma Ray MGS CCL Raw MGS Fluid Resistance MGS Gamma Ray Raw MGS Internal Temperature MGS SP Raw MGS Status MGS Line Voltage (–ve) MGS Line Voltage (+ve) MGS Line Voltage MGS External Temperature MGS SP Differential Temperature Borehole Temperature Borehole Temperature Raw MHT Internal Temperature
© 2007 Weatherford. All rights reserved.
Tool
Tool Description
MFT
Compact Formation Tester
MGD
Compact Gas Detector
MGS
Compact Gamma Sonde
MHT
Compact High-res Temp
Compact™ Curve Mnemonics
Curve Mnemonics Mnemonic HTST AZII BT1L BT1U BT2L BT2U BT3L BT3U BT4L BT4U BT5L BT5U BT6L BT6U BT7L BT7U BT8L BT8U BTM1 BTM2 BTM3 BTM4 BTM5 BTM6 BTM7 BTM8 BTN1 BTN2 BTN3 BTN4 BTN5 BTN6 BTN7 BTN8 CORI DI26 DI48 DIPI IAAZ IACF IAP1 IAZI IAZT IEAT IEAX IEAY IEB1 IEB2 IEB3 IEB4 IEB5 IEB6 IEB7 IEB8 IEBT IEC2
Mnemonics Curve Description Description MHT Status Dip Azimuth From Imager Imager Pad 1 Lower Row Imager Pad 1 Upper Row Imager Pad 2 Lower Row Imager Pad 2 Upper Row Imager Pad 3 Lower Row Imager Pad 3 Upper Row Imager Pad 4 Lower Row Imager Pad 4 Upper Row Imager Pad 5 Lower Row Imager Pad 5 Upper Row Imager Pad 6 Lower Row Imager Pad 6 Upper Row Imager Pad 7 Lower Row Imager Pad 7 Upper Row Imager Pad 8 Lower Row Imager Pad 8 Upper Row Imager Pad 1 Md. Current Imager Pad 2 Md. Current Imager Pad 3 Md. Current Imager Pad 4 Md. Current Imager Pad 5 Md. Current Imager Pad 6 Md. Current Imager Pad 7 Md. Current Imager Pad 8 Md. Current Imager Pad 1 Imager Pad 2 Imager Pad 3 Imager Pad 4 Imager Pad 5 Imager Pad 6 Imager Pad 7 Imager Pad 8 Dip Cor. From Imager Imager Diameter 2 – 6 Imager Diameter 4 – 8 Dip Angle From Imager Apparent Azimuth Acceleration Magnitude Azimuth of Reference Borehole Azimuth (Mag.) Borehole Azimuth (True) MIE Acc. Temperature MIE Accelerometer X MIE Accelerometer Y MIE Button 1 MIE Button 2 MIE Button 3 MIE Button 4 MIE Button 5 MIE Button 6 MIE Button 7 MIE Button 8 MIE Board Temperature MIE Caliper 2
Tool
Tool
Tool Tool Description Description
MHT
Compact High-res Temp
MIE
Compact Imager Electrodes
© 2007 Weatherford. All rights reserved.
53
Compact™ Curve Mnemonics
54
Curve Mnemonic
Curve Description
IEC4 IEC6 IEC8 IECX IECY IECZ IEDA IEDC IEDD IEDI IEDZ IEMI IEMP IEMX IEMY IEMZ IEOF IEP1 IEP2 IEP3 IEP4 IEP5 IEP6 IEP7 IEP8 IEPA IEPT IES0 IES1 IETT IETX IETY IETZ IEVR IEXA IEYA IEZC IEZT IFTT IMAX IMAY IMGF IMGX IMGY IMGZ IMT1 IMT3 IMT5 IMT7 IMZA IRBR IRHS IRKT ITLT NDCC NDPI
MIE Caliper 4 MIE Caliper 6 MIE Caliper 8 MIE Caliper X MIE Caliper Y MIE Acc. Z Counts MIE Drive Volts (Arm) MIE Data Counter MIE Drive Volts (Dref) MIE Drive Current MIE Acc. Z Time MIE Motor Current MIE Motor Position MIE Magnetometer X MIE Magnetometer Y MIE Magnetometer Z MIE A/D Offset MIE Pad 1 Data MIE Pad 2 Data MIE Pad 3 Data MIE Pad 4 Data MIE Pad 5 Data MIE Pad 6 Data MIE Pad 7 Data MIE Pad 8 Data MIE Parity MIE Pad Temperature MIE Status 0 MIE Status 1 MIE Accelerometer Temp. MIE Magnetometer X MIE Magnetometer Y MIE Magnetometer Z MIE Volt Reference MIE Accelerometer X MIE Accelerometer Y MIE Acc. Z Counts MIE Acc. Z Time Filtered Borehole Tilt MIE Accelerometer X MIE Accelerometer Y Field Magnitude MIE Magnetometer X MIE Magnetometer Y MIE Magnetometer Z Imager Trace 1 Imager Trace 3 Imager Trace 5 Imager Trace 7 Z Accelerometer Relative Bearing Relative Bearing (HS) Breakout Angle Borehole Tilt Depth Difference Speed Corrected Depth
© 2007 Weatherford. All rights reserved.
Tool
Tool Description
MIE
Compact Imager Electrodes
Compact™ Curve Mnemonics
Curve Mnemonics Mnemonic NSPI RAX1 RAX5 RAY3 RAY7 IMCB IMCC IMCF IMCK IMCP IMGR IMIT IMMN IMS0 IMS1 IMS2 IMSD DA1F DDIF DDLB DDLL DDMR DDVF DGLL DGVF DLA1 DLDC DLDG DLDI DLDV DLGV DLIT DLSC DLSF DLSG DLSI DLSP DLST DLSV DLV1 DLVD DLVR DLVS DLZS DSGF DSIF DSLB DSLL DSMR DSVF DV1F M333 M33B M444 M44B M555
Mnemonics Curve Description Description PROCESSED Speed Imager Pad 1 Radius Imager Pad 5 Radius Imager Pad 3 Radius Imager Pad 7 Radius MIM Current Block MIM Current Chip MIM Current File Number MIM Time/Date MIM Current Page MMI Image MIM Internal Temperature MMI Image Mean MIM Status 0 MIM Status 1 MIM Status 2 MMI Image Standard Dev. Filtered A1D Voltage Filtered Deep Current Corrected Deep Laterolog Deep Laterolog Deep App. Mud Res. Filtered Deep Voltage Groningen Laterolog Filt. Groningen Voltage A1D Electrode Voltage Deep Current Check Deep Guard Current Deep Current Deep Voltage Groningen Voltage MDL Internal Temperature Shallow Current Check MDL Status 2 Shallow Guard Current Shallow Current SP Voltage Raw MDL Status 1 Shallow Voltage V1 Electrode Voltage Deep Voltage Check Voltage Reference Shallow Voltage Check A/D Zero Voltage Filt Shal Guard Current Filtered Shallow Current Corr. Shallow Laterolog Shallow Laterolog Shallow App. Mud Res. Filtered Shallow Voltage Filtered V1 Voltage Shallow Laterolog Cond. Corr. Shallow Lat. Cond. Deep Laterolog Cond. Corr Deep Laterolog Cond Groningen Laterolog Con.
Tool
Tool
Tool Tool Description Description
MIE
Compact Imager Electrodes
MIM
Compact Imager Memory
MLE
Compact Laterolog Electrode
© 2007 Weatherford. All rights reserved.
55
Compact™ Curve Mnemonics
56
Curve Mnemonic
Curve Description
M66B SPDL M111 M222 MINV MLCP MLIT MLIV MLMC MLMV MLNV MLST MLTC MMLI MNRL M666 M777 M888 M999 MACP MAI1 MAI2 MAIT MAMC MAMV MAST MATC MAV1 MBCP MBIT MBIV MBLI MBMC MBMV MBNV MBST MBTC MINV MNRL MRRG MRRS MRSB MMAD MMBT MMBV MMCK MMDC MMIT MMOV MMPD MMPP MMSF MMSN MMST MMVR CLDC
Corr. MicroRes (S) Cond. Spontaneous Potential Micro-normal Cond. Micro-Inverse Cond. Micro-inverse MML Caliper Raw MML Internal Temperature Micro-inverse Voltage MML Motor Current MML Motor Voltage Micro-normal Voltage MML Status MML Caliper Micro-normal Current Micro-normal MicroRes (S) Cond. MicroRes (G) Cond. MMR MicroLog Normal Con. MMR MicroLog Inverse Con MMR Caliper Raw MMR MicroRes Current 1 MMR MicroRes Current 2 MMR Internal Temperature MMR Motor Current MMR Motor Voltage MMR Status MMR Caliper MMR MicroRes Voltage 1 MMR Caliper Raw MMR Internal Temperature MMR MicroLog Voltage (I) MMR MicroLog Current MMR Motor Current MMR Motor Voltage MMR MicroLog Voltage (N) MMR Status MMR Caliper MMR MicroLog Inverse MMR MicroLog Normal MicroRes Resistance (G) MicroRes Resistance (S) Corr MicroRes Resis. (S) MMS.C A/D Offset Voltage MMS.C Borehole Temp. MMS.C Battery Voltage MMS.C Sonde Time MMS.C DC+ DC– MMS.C Board Temperature MMS.C 0V Offset MMS.C Paine Drive Volt. MMS.C Paine Pressure MMS.C Flash Mem. Status MMS.C Sample Number MMS.C Status MMS.C Reference Voltage Density Caliper
© 2007 Weatherford. All rights reserved.
Tool
Tool Description
MLE
Compact Laterolog Electrode
MML
Compact MicroLog
MMR
Compact MicroResistivity
MMS-C
Compact Memory Sonde
MPD
Compact Photo Density
Compact™ Curve Mnemonics
Curve Mnemonics Mnemonic DCCP DCOR DEN DENF DENN DPOR DPRD DPRL DPRS FMDT HDEN MTXD NMDT PCIT PCMC PCST PDFC PDFE PDFL PDFS PDFT PDHD PDIT PDNC PDNE PDNL PDNS PDNT PDPE PDSF PDST PFSD PFTC PNSD PNTC XPOR AVOL DFCL HVOL GCGR GR GRPO GRTH GRUR HTSG RAKT RAKU RAUT SGD1 SGD2 SGD3 SGD4 SGD5 SGD6 SGG1 SGG2
Mnemonics Curve Description Description Density Caliper Raw Density Correction Compensated Density Far Spaced Density Near Spaced Density Base Density Porosity Dolomite Density Por. Limestone Density Por. Sandstone Density Por. Far Mean Dead Time Vectar Processed Density Matrix density Near Mean Dead Time MPD Internal Temperature MPD Motor Current MDC Status Far Density Counts MPD Far EHT Far Lock Counts Far Density Spectrum Far Density Dead Time MPD PE Hard Counts MPD Internal Temperature Near Density Counts MPD Near EHT Near Lock Counts Near Density Spectrum Near Density Dead Time PE MPD PE Soft Counts MPD Status Far Density SDU Far Total Counts, No D/T Near Density SDU Near Total Counts, No D/T Crossplot Porosity Annular Volume Differential Caliper Hole Volume SGS Corrected Gamma Ray SGS Gamma Ray Potassium Gamma Thorium Gamma Uranium Gamma SGS EHT 2 TH/K U/K TH/U Disc. 1 (Gamma Ray Raw) Disc. 2 Disc. 3 Disc. 4 Disc. 5 Disc. 6 Gate 1 Gate 2
Tool
Tool
MPD
Tool Tool Description Description
Compact Photo Density
MPD, MTC, MML, MMR, MIE MPD, MTC, MML, MMR MPD, MTC, MML, MMR, MIE
MSG
Compact Spectral Gamma
© 2007 Weatherford. All rights reserved.
57
Compact™ Curve Mnemonics
58
Curve Mnemonic
Curve Description
SGG3 SGG4 SGG5 SGHT STSG DL11 DL12 DL21 DL22 DT34 DT35 DT45 DT46 DT56 DTSM FGAP FGTR FGTT PK11 PK12 PK21 PK22 PT11 PT12 PT21 PT22 RN11 RN12 RN21 RN22 SEM1 SEM2 SHRD SHRL SHRS SIV1 SIV2 SPRD SPRL SPRS STGN STIT STPK STSS STWS TR11 TR12 TR21 TR22 TS11 TS12 TS21 TS22 VL34 VL35 Vl45
Gate 3 Gate 4 Gate 5 SGS EHT 1 SGS Status 4' Discriminator Level 6' Discriminator Level 3' Discriminator Level 5' Discriminator Level 3–4' Compensated Sonic 3–5' Compensated Sonic 4–5' Compensated Sonic 4–6' Compensated Sonic 5–6' Compensated Sonic Smeared 3–4' Sonic Fixed Gate Peak Ampl. Fixed Gate Peak Tr. Time Fixed Gate Dsc. Tr. Time 4' Peak Amplitude 6' Peak Amplitude 3' Peak Amplitude 5' Peak Amplitude 4' Time To Pk. Amplitude 6' Time To Pk. Amplitude 3' Time To Pk. Amplitude 5' Time To Pk. Amplitude 4' Road Noise Max. Defl. 6' Road Noise Max. Defl. 3' Road Noise Max. Defl. 5' Road Noise Max. Defl. Waveform-PROCESSED Semb. 1 Waveform-PROCESSED Semb. 2 Dolomite H-R Sonic Por. Limestone H-R Sonic Por. Sandstone H-R Sonic Por. Waveform-PROCESSED Sonic 1 Waveform-PROCESSED Sonic 2 Dolomite Sonic Porosity Limestone Sonic Porosity Sandstone Sonic Porosity MSS Gain Status MSS Internal Temperature MSS Peak Status MSS Status MSS Waveform Seg. Status 4' Transit Time 6' Transit Time 3' Transit Time 5' Transit Time 4' Transit Time Set 6' Transit Time Set 3' Transit Time Set 5' Transit Time Set 3–4' Compensated Sonic 3–5' Compensated Sonic 4–5' Compensated Sonic
© 2007 Weatherford. All rights reserved.
Tool
Tool Description
MSG
Compact Spectral Gamma
MSS
Compact Sonic Sonde
Compact™ Curve Mnemonics
Curve Mnemonics Mnemonic VL46 VL56 VLSM WF11 WF12 WF21 WF22 WL11 WL12 WL21 WL22 WS11 WS12 WS21 WS22 WSEG MSPD SMDA SMDB SMM0 SMM1 SMM2 SMM3 SMM4 SMM5 SMM6 SMM7 SMST SMTD SMTU CLTC CLXC CLYC CLZC TCCP TCIT TCMC TCMV TCST XCCP XCIT XCMC XCMV XCST YCCP YCIT YCMC YCMV YCST ZCCP ZCIT ZCMC ZCMV ZCST SBHN SBNE
Mnemonics Curve Description Description 4–6' Compensated Sonic 5–6' Compensated Sonic Smeared 3–4' Sonic 4' Waveform 6' Waveform 3' Waveform 5' Waveform 4' Peak Window Length 6' Peak Window Length 3' Peak Window Length 5' Peak Window Length 4' Peak Window Start 6' Peak Window Start 3' Peak Window Start 5' Peak Window Start Waveform Segment Logging Speed DST Analog Channel A DST Analog Channel B SMS Channel 0 SMS Channel 1 SMS Channel 2 SMS Channel 3 SMS Channel 4 SMS Channel 5 SMS Channel 6 SMS Channel 7 (temp.) SMS Status DST Downhole Tension DST Uphole Tension Two-Arm Caliper X Two-Arm Caliper Y Two-Arm Caliper Z Two-Arm Caliper Two-Arm Caliper Raw MTC Internal Temperature MTC Motor Current MTC Motor Voltage MTC Status Two-Arm X caliper Raw MTX Internal Temperature MTX Motor Current MTX Motor Voltage MTX Status Two-Arm Y Caliper Raw MTY Internal Temperature MTY Motor Current MTY Motor Voltage MTY Status Two-Arm Z Caliper Raw MTZ Internal Temperature MTZ Motor Current MTZ Motor Voltage MTZ Status SER Paine P. (A) 100s SER Paine P. (A) 1s
Tool
Tool
Tool Tool Description Description
MSS
Compact Sonic Sonde
MSU
Compact Service Unit
MTC
Compact Two-arm Caliper
SER
Shuttle Electric Release © 2007 Weatherford. All rights reserved.
59
Compact™ Curve Mnemonics
60
Curve Mnemonic
Curve Description
SBTH SBTN SBTO SPET SPEX SPGB SPGF SPGP SPHN SPIT SPMC SPMS SPMT SPNG SPOE SPPP SPPS SPPV SPQC SPQH SPQT SPSL SPST SPTH SPTN SPTO SQDF SQFC SQHN SQOE SQTE SQTH SQTM SQTO WBHN WBNE WBTH WBTN WBTO WQDF WQFC WQHN WQOE WQTE WQTH WQTM WQTO WRET WREX WRGB WRGF WRGP WRHN WRIT WRMC WRMS
SER Paine P. (A) 10000s SER Paine P. (A) 10s SER Paine P. (A) 1000s SER Paine Gauge Temp. SER Extended Status SER Paine Pressure (Abs) SER Paine Pres. (Gauge) SER Paine Pressure Raw SER Paine P. (G) 100s SER Internal Temperature SER Motor Current SER Motor Speed SER Motor Temperature SER Paine Voltage (–ve) SER Paine P. (G) 1s SER Piston Position SER Paine Voltage (+ve) SER Paine Voltage SER Quartzdyne Pres. (C) SER Quartzdyne Temp. (C) SER Quartzdyne Reference SER Piston Swept Volume SER Section Status SER Paine P. (G) 10000s SER Paine P. (G) 10s SER Paine P. (G) 1000s SER Quartzdyne Pressure SER Quartzdyne Fraction SER Quartzdyne 100s SER Quartzdyne 1s SER Quartzdyne 10s SER Quartzdyne 10000s SER Quartzdyne Temp. SER Quartzdyne 1000s WRT Paine P. (A) 100s WRT Paine P. (A) 1s WRT Paine P. (A) 10000s WRT Paine P. (A) 10s WRT Paine P. (A) 1000s WRT Quartzdyne Pressure WRT Quartzdyne Fraction WRT Quartzdyne 100s WRT Quartzdyne 1s WRT Quartzdyne 10s WRT Quartzdyne 10000s WRT Quartzdyne Temp. WRT Quartzdyne 1000s WRT Paine Gauge Temp. WRT Extended Status WRT Paine Pressure (Abs) WRT Paine Pres. (Gauge) WRT Paine Pressure Raw WRT Paine P. (G) 100s WRT Internal Temperature WRT Motor Current WRT Motor Speed
© 2007 Weatherford. All rights reserved.
Tool
Tool Description
SER
Shuttle Electric Release
WRT
Wireline Release Tool
urve Mnemonic
Compact™ Curve Mnemonics
Curve Mnemonics Mnemonic WRMT WRNG WROE WRPP WRPS WRPV WRQC WRQH WRQT WRSL WRST WRTH WRTN WRTO BCDC BCDL BCMC BCML BCSC BCSL BMOD CLPR COAL COMP DCAL DENA DES1 DES2 DILL DPHI DTA DTP1 DTP2 DTP3 DTP4 DTP5 EDIT ESTP FEDT FF FGAS FHT0 FP FPRF FPSH FRPG FT FWD1 FWD2 FWD3 FWD4 FWD5 GMOD HI INVD INVM
Mnemonics Curve Description Description WRT Motor Temperature WRT Paine Voltage (–ve) WRT Paine P. (G) 1s WRT Piston Position WRT Paine Voltage (+ve) WRT Paine Voltage WRT Quartzdyne Pres. (C) WRT Quartzdyne Temp. (C) WRT Quartzdyne Reference WRT Piston Swept Volume WRT Section Status WRT Paine P. (G) 10000s WRT Paine P. (G) 10s WRT Paine P. (G) 1000s Corr. Deep Conductivity Corrected Deep Laterolog Corr. Micro Conductivity Corr. Micro Laterolog Corr. Shallow Conduct. Corr. Shallow Laterolog Bulk Modulus Closure Pressure Volume of Coal Bulk Compressibility Differential Caliper Apparent Density Data Edit Shade One Data Edit Shade Two Invasion Depth Density Porosity Apparent Delta T Delta Pressure 1 Delta Pressure 2 Delta Pressure 3 Delta Pressure 4 Delta Pressure 5 Data Edit Curve Estim. Poisson's Ratio Data Edit Curve Formation Factor Gas Flag Fracture Extent 0 Formation Pressure Perforations Closure Pressure Grad. Fracture Pressure Grad. Formation Temperature Fracture Width 1 Fracture Width 2 Fracture Width 3 Fracture Width 4 Fracture Width 5 Shear Modulus Hydrogen Index Invasion Depth Maximum Invasion Depth
Tool
Tool
Tool Tool Description Description
WRT
Wireline Release Tool
Analysis
Analysis
© 2007 Weatherford. All rights reserved.
61
Compact™ Curve Mnemonics
62
Curve Mnemonic
Curve Description
LEDT NETP NETR NPHI PERM PHDN PHDS PHI1 PHI2 PHIA PHID PHIE PHIG PHIN PHIS PHIX PHSN POIR PORE RHOG RO RTLC RTLL RWA RXOC RXOL RXRT SATD SATP SGAS SHYC SOIL SPVF SSVF SW SWWW SXO VANH VCMB VDOL VGAS VHAL VHYC VLME VMA VOIL VOL1 VOL2 VOL3 VP14 VP15 VP20 VP25 VP30 VP40 VP60
Data Edit Curve Nett Pay Nett Reservoir Neutron Porosity Permeability Density/Neutron Porosity Density/Sonic Porosity Primary Porosity Bad Hole Porosity Apparent Neutron Por. Density Porosity Effective Porosity Gaymard Porosity Neutron Porosity Sonic Porosity Crossplot Porosity Sonic/Neutron Porosity Poisson's Ratio Pore Pressure Apparent Matrix Density RO Rt Conductivity Rt Apparent Water Res. Rxo Conductivity Rxo RXO/RT Mean Saturation Depth Saturation Profile Saturation of Gas Saturation Hydrocarbons Saturation of Oil Delta T Compressional Delta T Shear Saturation of Water Saturation of Water Sat Mud Filtrate + Water Volume of Anhydrite Vw + Voil Volume of Dolomite Volume of Gas Volume of Halite Volume of Hydrocarbons Volume of Limestone Matrix Volume Volume of Oil Phie + Vlime + Vsand Phie + Vsand Vsh + Vanhy Enhanced Shallow Cond. VP15 VP20 Enhanced Medium Cond. VP30 VP40 VP60
© 2007 Weatherford. All rights reserved.
Tool
Tool Description
Analysis
Analysis
Compact™ Curve Mnemonics
Curve Mnemonics Mnemonic VP65 VP85 VPFE VRAT VSH VSND VW VXO WAV1 YMOD
Mnemonics Curve Description Description Enhanced Deep Cond. VP85 Vivid Shallow FE Velocity Ratio Volume of Shale Volume of Sandstone Volume of Water Vol Mud Filtrate + Water Invasion Profile Young's Modulus
Tool
Tool
Analysis
Tool Tool Description Description
Analysis
© 2007 Weatherford. All rights reserved.
63
Log Interpretation Charts Compact™ Tool Series
515 Post Oak Blvd., Suite 600 Houston, Texas 77027 USA Tel: 713-693-4000 www.weatherford.com
Weatherford products and services are subject to the Company’s standard terms and conditions, available on request or at www.weatherford.com. For more information contact an authorized Weatherford representative. Unless noted otherwise, trademarks and service marks herein are the property of Weatherford. Specifications are subject to change without notice. Weatherford sells its products and services in accordance with the terms and conditions set forth in the applicable contract between Weatherford and the client. © 2007 Weatherford. All rights reserved.
Document 4060.01
View more...
Comments