Waste to Energy (WTE)

December 9, 2017 | Author: Santosh Gopal | Category: Incineration, Fly Ash, Waste, Cement, Municipal Solid Waste
Share Embed Donate


Short Description

Download Waste to Energy (WTE)...

Description

M-WTE Multi-Purpose Reactor Enhanced Waste -To - Energy

SATAREM Waste to Resources with no Dioxins

INTRODUCTION

2

SATAREM’s History ‰

Satarem was created in 1992 by former directors from Fuller (USA), at the time the largest cement engineering company in the world and former directors from Green Island Cement (HK). Satarem’s founders, Jérôme Friler and Adolf Wong, still oversee the company’s management and operations. They are based respectively in France and Hong‐Kong. Each of them owns 50% of SATAREM AG.

‰

Satarem currently employs over 150 engineers and technical staff specialized in the design & construction turnkey of cement plants, waste management plants and renewable energy systems.

‰

Current portfolio of 6 projects, for total turnover of over USD 500 million

Satarem’s offices

Activities Innovations  ENVIRONMENT SECTOR WINDSAT &  PASAT New generation  wind turbine &  Swell to Energy  turbine

POWER PLANTS Gas turbines,  GTCC, Steam  turbines

CEMENT PLANTS

ƒ Delivery of equipments and spare parts 

ƒ Comprehensive turnkey EPC services ƒ Operation & Maintenance services

WHR Electricity generation  system using heat from  waste gases

C‐POWER Electricity generation  from Municipal Solid  Waste incineration,        combined with cement  production

Group structure: Corporate SATAREM A.G.

SATAREM  HONG KONG

SATAREM  CHINA

SATAREM  AMERICAS

SATAREM  INDIA

SATAREM  VOSTOCK

2002

2002

2003

2011

2008

50% Adolf  Wong

Guanzhou

50%  SATAREM

90%  SATAREM

50% Jerome  Friler

Dongguan

50%  SATAREM 50% Adrian  Turnell

Shanghai

50%  Venkatesh

BGE 2010

FTM ‐ SATAREM

SATAREM  KSA

2009

2011

50% Eskandar  Maleki

70%  SATAREM

13% William  Nya

30%

37%  SATAREM

50%  SATAREM

INVESTORS  UNION

50% FTM

5

HISTORY ‰ ‰ ‰ ‰

‰ ‰ ‰ ‰ ‰

1992 Creation of SATAREM in Livry Gargan (France) 1998 Jerome Friler takes over the Company 2001 Opening of SATAREM CHINA LTD., with a first project in China. Adolf Wong enters SATAREM. 2003 SATAREM becomes the first Company to manufacture its equipment in China according to European standards. 2005 SATAREM moves its activity to Hong Kong and learns to build cement plants TURNKEY. 2005 Hong Kong C-Power WTE plant is commissioned. 2008 SATAREM starts its WTE activity. 2010 SATAREM changes business model to BOT. 2011 SATAREM obtains contracts for 3 Power plants in Iraq.

6

STRENGTHS ‰

COST EFFECTIVENESS: SATAREM provides clients with a fully integrated offer, the best turnkey services at the most effective cost.

‰

FLEXIBILITY: SATAREM delivers equipments and services in accordance with clients’ schedules and SATAREM’s high specifications, including European standards and norms.

‰

DESIGN: We design in house all processes and master engineering for each project, like C‐Power WTE technology that is patented.

‰

SUPPLIERS: We develop long term relationships with our core equipment’ manufacturers.

‰

QUALITY: At each step of the process, SATAREM controls the quality of the equipment delivered by its suppliers in order to ensure their compliance with all relevant standard(s)

‰

MARKETING: Very efficient commercial network

7

Our values: price and flexibility

Client’s satisfaction

SATAREM offers High quality Competitive price Latest technologies International experience

Our beliefs

Flexibility Skilled manpower Turnkey implementation Special dedicated team for each project

8

Waste Management Options

9

Unmanaged Dumping: EHS Unacceptable Environmental Hazards : • Land pollution by stockpiled garbage ‐ Toxic heavy metals ‐ Organic pollutants ‐ Non biodegradables • Ground water pollution by leachate (garbage juice) • Air pollution by VOC ‐ Landfill gas methane (potent Green House Gas =21x CO2)  ‐ Other fugitive gas: dioxins & furan,  POP, hydrogen sulphite, ammonia

Safety Hazards: • Spontenous burning of garbage pile, major  source of dioxin emission • Landfill gas explosions ‐ safety risk to  scavengers & personnel on site

Health Hazards : • Land, water and air pollutants  • Breeding ground for vectors & diseases • Odor and toxic  air emissions problem

Sanitary Landfills: Not Highly Sustainable

Leach Prevention : Difficult to Manage 

Leachate Treatment: Another Challenge

Occupy Large Land Area

Landfill Gas – Maximum 70% Collection

Waste Incinerators: A Compromised Solution Advantages: ‰ Weight & volume reduction ‰ Energy recovery & reuse ‰ Occupy less space than landfills

Municipal Waste‐ to‐Energy Facility  Shanghai China 

Disadvantages: ‰ Dioxin re‐formation in flue gas ‰ Toxic fly ash to manage ‰ High Capex and Opex ‰ Not flexible in throughput ‰ Dedicated for specific waste types

Sludge Incinerator  East London UK

Hazardous Waste Incinerator  Limay France

Cement Plant as a Waste Management Option Use of cement kilns for hazardous waste destruction and waste derived fuels are becoming common global practice due to distinctive economical and environmental advantages ‰ Lower capital and operation costs No need to build and operate dedicated facility No ashes to manage „ „

‰ Lower environmental risks Alkaline process environment neutralizes acids gases Toxic heavy metal ions stabilized in cement matrix Minimized dioxin & furan formation „ „ „

‰ Higher sustainabilities Waste reused as fuel and raw material Reduce limestone raw material usage Reduce fossil fuel usage Net reduction of CO2 emission UN approved CDM methodologies „ „ „ „ „

Cement Plant: Advantages over Incinerators Cement Processing Plant : Comparative Advantages ƒ ƒ ƒ ƒ ƒ

Higher Reaction Temperature Longer Retention Time Excessive Lime for Acid Gas Scrubbing Silicate Cement Matrix for Heavy Metal Capturing In Process Energy & Material Re‐utilization 

Fuel  Wastes

Raw Materials (>70% CaCO3 )

Bag House

PreHeater

150oC

Calciner CaCO3 = CaO + CO2

1450oC 1050oC

Raw  Material

Flue Gas

900oC

Flue Gas Retention   Time > 6 Seconds

Rotary Kiln

Air  Intake

Flue Gas

Bag House

Grate Cooler 1250oC

90oC

1050oC

Clinker Wastes 850oC

Fuel  Air Intake

Scrubber (Lime  Slurry)

Secondary  Combustion

Fly Ash

250oC

Flue Gas Retention   Time > 2 Seconds

Rotary Kiln Bottom Ash

Hazardous Waste Incinerator (Environmentally  most demanding  waste  incineration system)

Cement Plant for Waste : Minimal Dioxin Formation Use of waste‐derived fuels at preheater/precalciner  and dioxins in emission PCDD/PCDF emissions in ng  I‐TEQ/Nm3

Plant

Year

Type of alternative fuel 

1

2002

Animal meal, plastics and textile 

0.0025

2

2002

Animal meal and impregnated saw dust 

0.0033

3

2002

Coal, plastic and tyres 

4

2002

Tyres 

5

2002

Petcoke, plastic and waste oil 

0.001

6

2002

Petcoke, sunflower shells and waste oil 

0.012

7

2002

Tyre chips 

8

2002

Solvents 

9

2002

Impregnated saw dust and solvents 

0.00003 & 0.00145

10

2002

Solvents 

0.00029 & 0.00057

11

2002

Sludge

12

2002

Car waste and sludge

Source: Results of LaFarge Study as presented by Karstensen in 2006

0.0021 & 0.0041 0.002 & 0.006

0.004 & 0.021 0.07

 6 Sec. Reactions: ƒ Calcium Carbonate to Lime ƒ POP High Temperature Destruction ƒ Acid Gases Neutralization

Flue Gas with : ƒ Persistent Organic Pollutants ƒ Acid Gases • Hydrogen Chloride Gas (HCl) • Sulphuric Oxides (SOX)

Cooked Meal with  Lime (CaO)

M-WTE: A Hybrid Facility ‰

A lime/cooked cement feed meal production facility ƒ The Multi‐Purpose Reactor (MPR) converts limestone powder (CaCO3) into lime (CaO) , produces lime for acid gas scrubbing and subsequent after‐use applications, e.g. paving brick production or use as cement kiln cooked meal feed

‰

A versatile, dioxin free incinerator ƒ Two stage incineration process with MPR ƒ High temperature (900 °C) and long retention time (6 seconds) ƒ Front of pipe chlorine removal and enhanced removal of persistent organic pollutants (POP) for dioxin prevention

‰

High efficiency waste‐to‐resources facility ƒ ƒ ƒ ƒ

High temperature flue gas for power generation Turns wastes into power and non toxic reusable material Near “zero” residue when in symbiosis with cement plant Maximum synergies with other energy intensive industries or lime based industries

Front-of-Pipe Approach to Dioxin Prevention Typical WTE Process Dioxin  Contaminated  Fly Ash

Waste Heat Boiler: Heat Recovery 

Dioxin  Contaminated  Fly Ash

Scrubber: Acid  Gas Removal

Dioxin  Contaminated  Fly Ash

Activated  Charcoal Injection:   Dioxin Removal

Dioxin  Contaminated  Fly Ash

Hazardous Waste:  To Secure Landfill

SNCR: Nitrogen  Oxide Reduction

Bag House:  Particulates  Removal

Grate or Kiln:  Primary  Incineration

Multi‐Purpose  Reactor (MPR): ƒ Dioxin Prevention •Acid Gas Removal • POP Destruction ƒ NOX Control

Waste Heat Boiler: Heat Recovery 

Bag House:  Particulates  Removal M‐WTE Process

Uses of Spent  Reagent :  ƒCooked Meal to  Cement kiln, or ƒ Other Lime  Applications ƒ Re‐circulate as  Reagent at MPR

Dioxin Free  Reagent

Dioxin Free  Fly Ash

Dioxin Free  Fly Ash

Wastes that can be Treated by M-WTE ‰

Sewage sludge

‰

‰

Used tyres Plastics Paper

‰

Industrial WWTP sludge Municipal solid waste

‰

Wood

‰

Metal refining slag

‰

Glass

‰

Toxic heavy metal sludge

‰

Agricultural wastes

‰

Construction waste

‰

Refuse derived fuel

‰

Clinical waste

‰

Oil, grease and solvents Green wastes

‰ ‰

Electronic scraps Leachate

‰ ‰

‰ ‰

Coal ash

‰

Concentrated

‰

Distillation bottom

‰

Animal carcass

‰

High toxic substance

‰

Ore processing waste

‰ ‰

Desulphurization gypsum Oil tank cleaning waste

M-WTE Design & Environmental Considerations

37

M-WTE Design & Environmental Considerations Environmental Performance Considerations ‰ Acid Gases Removal/ POP Destruction High temperature lowers scrubbing efficiency Compensated by stoichiometrically excessive extended retention time at 850‐900 °C „ „

‰ NOx Control of reaction temperature and oxygen level Removal using SNCR with ammonia injection „ „

‰ Heavy Metals / Particulates MPR reagent matrix retention of Pb and Cd Bag‐house temperation control for Hg „ „

‰ Carbon Monoxide Assure oxygen supply level Destruction at MPR „ „

reagent,

M-WTE Design & Environmental Considerations Process Considerations ‰ MPR Scrubbing Reagent Formulation Raw meal conversion to lime for acid gas scrubbing and after use applications Quantities flexible and linked to demand for after use application „

„

‰ Alkali Chloride & Sulphate Removal By‐pass and washing for CaCl2 removal if needed „

‰ Waste Heat Utilization Clinker cooler air for waste pre‐heating / drying Pre‐heater flue gas to economizer section for heat recovery „ „

‰ Power Generation High temperature flue gas to waste heat boiler „

‰ Host Cement Facility Relationship Potential for C‐POWER application in parallel with cement plant „

C-POWER (Cement Processing Oxidative Waste and Energy Recovery)

M-WTE in Symbiosis with Cement Plant

40

C-Power: M-WTE in Symbiosis with Cement Process Cement Process Flue Gas

M‐WTE Process 

Raw Mill

Pre‐Heater Waste  Heat (Optional)

Flue Gas Generator Bag House

Bag House

Pre‐heater

Cooling  Air

Combustion Air

Calciner

Cement Kiln

Cooler

Raw Meal from Raw  Milling

Boiler Reagent (Raw Meal)

Reagent  Recovery Fuel 

Cooked Meal to  Cement Kiln

Electricity 

MPR Used  Reagent (Cooked  Meal)

Incinerator Air Reception  Facility

Cement Mill

Fly Ash

Clinker Cooler Waste Heat  (Optional)

Bottom Ash to  Cement Mill

Incinerator Bottom Ash

Wastes

C-POWER: Symbiotic Advantages with Cement Plant Treats Massive Quantities of Waste  • Non invasive technology allows mass burning of waste without affecting cement quality

Increase Cement Production • Additional calcined material to increase kiln production

High Temperature Waste Heat‐to‐Power • Combine LTWHR of cement plant to allow HTWHR after MPR

Enhanced Environmental Performance • Pre-emptive chlorine removal prevents dioxins • Bottom ash and fly ash re-used, no residues to manage

Energy & Material Efficiency • Full recovery of material & energy from wastes • Reduction of fossil fuel (coal) and limestone usage thus CO2 reduction

M-WTE/C-POWER: “0” Residue Configurations

Limestone  Powder /  Reagent 

Kiln or Grate  Incinerator

900oC

Cyclones

Waste Feed 

High  Energy  Steam

Hot Flue  Gas at Multi  Purpose  Reactor (MPR)

Flue Gas

Turbine &  Generator

High  Pressure Boiler

Cooked Reagent / Lime Powder

Bottom Ash

Fine Dust

Dioxin‐Free  Reagent / Lime  Powder

Cement Milling Road Construction

Cement Kiln Feed

Building Material

Other  Lime Applications 

Paving Bricks

Filter Bag‐house

Revenues from C-POWER ‰ Increase

in cement production capacity

ƒ 15% cement production increase with no system upgrade ƒ Up to 50% production increase with system upgrade ‰ Waste

tipping fees

ƒ Municipal garbage: government concession services ƒ Industrial & hazardous wastes: service charter to waste producers ‰ Certified

Emission Reduction credits trading

ƒ UN approved CDM methodologies … … …

Fossil fuel alternative: biomass fraction as waste derived fuels Limestone displacement : slag and ash as raw material replacement Alternative treatment for organics : avoidance of biogas at dump   

‰ Electrical

power generation

ƒ Superior performance to conventional WTE facilities ƒ Up to 30% energy conversion (e.g. 450kwh/MT @ LHV 1300KCal/Kg)

CDM Methodologies Applicable to C-POWER/M-WTE Methodology Number

Description

Number of registered Projects

ACM5 (ver 3)

Increasing the blend in cement production 

36

AM33 (ver 2)

Use of non‐carbonated calcium sources in the  raw mix for cement processing

6

AM40 (ver 1.1)

Use of alternative raw materials that contain  no carbonates in clinker manufacturing in  cement kilns

1

ACM15 (consolidating  AM33 and AM40)

Alternative raw materials that do not contain  carbonates for clinker manufacturing in  cement kilns

0

ACM3 (ver 7)

Emission reduction through partial  substitution of fossil fuels with alternative  fuels in cement manufacture

16

AM24 (ver 2)

Baseline methodology for greenhouse gas  reductions through waste heat recovery and  utilization for power generation at cement  plants

11

AM25 (ver 2)

Avoided emissions from organic waste  through alternative waste treatment  processes

>1000

PRESENT CONTRACTS

46

PRESENT BOT CONTRACTS IN WTE Project

W a s t e t o E n e r g y

Country

Description

Contract  Type

Contract Price

Estimate Revenues  Investment  ROI  EBIDTA per  d per year  needed  (yea Starting year (US$) (US$) (US$) rs) Date

City of Buenos  Argentina Aires

30 MW WTE

BOT 25  years

USD 130/MWh

Septemb 41 283 000 34 283 000 100 000 000 2,9 er 2011

City of Ankara Turkey

1300 TPD WTE

BOT 25  years

USD 133/MWh

Septemb 27 799 200 22 799 200 70 000 000 3,1 er 2011

City of Adana Turkey

1300 TPD WTE

BOT 25  years

USD 133/MWh

Septemb 27 799 200 22 799 200 70 000 000 3,1 er 2011

City of  Bangalore

India

500 TPD WTE

BOT 15  years

USD 110/MWh

End of  2011

17 424 000 13 424 000 50 000 000 3,7

Terra Firma

India

500 TPD WTE

BOT 15  years

USD 110/MWh

End of  2011

17 424 000 13 424 000 50 000 000 3,7

Srinivasa  Gayathri  Renewable  Energy

India

500 TPD WTE

BOT 15  years

USD 110/MWh

End of  2011

17 424 000 13 424 000 50 000 000 3,7

Libreville

Gabon

BOT 25  500 TPD WTE years

Conakry

Guinea

500 TPD WTE

BOT 25  years

To be negociated  End of  between 120 and 160  2011 USD/MWH

19 958 400 15 958 400 60 000 000 3,8

Congo

BOT 25  500 TPD WTE years

To be negociated  End of  between 120 and 160  2011 USD/MWH

19 958 400 15 958 400 60 000 000 3,8

Brazzaville

To be negociated  Septemb 19 958 400 15 958 400 60 000 000 3,8 between 120 and 160  er 2011 USD/MWH

47

OUR VISION

48

Satarem’s positionning: Walking the talk

Recognized  expertise

Role in local  economic  development

Focus on  environmental  priorities

Carbon credit eligibility Cement plants  and waste  management Developing  countries

Hiring and training  local staff Transfer of Know  how

Reflected in  our contracts/  guarantees

Turnkey  contracts Performance  and availability  guarantee

SATAREM’s vision of its impact on the environment ‰

SATAREM’s core values include (i) minimizing the environmental impact due to our activities and (ii) supporting sustained economic growth ƒ We adopt a unique positioning to ensure complete fulfillment of our commitments ƒ We develop environmentally friendly projects integrate local population to their implementation

and

ƒ We pay special attention to defending our values all along our value chain Sharing the same values along the value chain

Our partners  

SATAREM

and suppliers

Our team

Our clients

The values we share with our partners

Cement,  Waste,  Power  sector

Our difference Ö Respect and promotion  of  the highest  environmental standards Ö Equipments strictly compliant with European  Norms / standards  (emissions, water  contamination, noise... Ö Ensure eligibility to  carbon credit mechanism  where possible

A step further… Ö Development of  environmentally friendly  technologies Ö Low environmental  impact projects ÖLocal population  empowerment through  employment and  training of local staff Ö Contribution to  higher education of local  engineering students to  form next generations of  plant managers

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF