Volume I

February 6, 2017 | Author: Eduardo Casarrubias Villanueva | Category: N/A
Share Embed Donate


Short Description

Download Volume I...

Description

MAN Diesel

1.00

UPDATES

1.01

GENERAL

1.02

FREE

1.03

REDUCTION GEARBOX

1.04

MAIN ENGINE

1.05

FREE

1.06

FUEL OIL SYSTEM

1.07

LUBRICATING OIL SYSTEM

1.08

COOLING WATER SYSTEM

1.09

STARTING AIR SYSTEM

1.10

EXHAUST GAS SYSTEM

DATA

MAN Diesel 13 July 2011

Logistic Ship for Mexican navy MAN Diesel, ref no: P-21178. 2 x 6L21/31, AMG 11EV, VBS640, AT2000PCS 1.01

General data

Drawing ident no

Description

Addendum 1.1

Addendum for General data

2 15 31 25-6.1

General Arrangement

2 05 19 68-9.2

Project Planning data for MGO/MDO. L21/31

2 04 79 48-0.2

List of symbols (4 pages)

1435000 1699891-5.

Quality of Marine Diesel Fuel (MDO) (2 Pages)

1435000 1699893-9.2

Viscosity temperature diagram of Fuel Oil (2 pages)

1440000 1699889-3.1

Quality of Lube Oil (SAE40) for Operation on gas Oil and Diesel Oil (MGO/MDO) and Biofuel

2 06 09 46-6.0

Gear Oil Specification (2 pages)

1400000 1699896 4 0 1699896-4.0

Quality of engine cooling water (8 pages)

2 04 77 49-0.2

Limits for crankshaft deflection

2 05 19 75-0.0

Flushing and cleaning (5 pages)

2 03 59 06-8.0

Cleaning and treating of pipes (3 pages)

912000 1699261-3.0

Dispatch condition of engine and reduction gear from MAN Diesel

912000 1699912-1.1

Storage of electronic equipment

1400000 1690751-8.0

Engine ventilation

Plate

Item no

Date of update

---oooOOOooo---

End of Section 1.01 - General data

 MAN Diesel Supply  Yard Supply

Edition 4

MAN Diesel 13 July 2011

Addendum 1.01.1

General data

The Installation Manual on the MAN Diesel extranet contains relevant information, instructions and drawings that notoriously have proven to be necessary to carry out the installation of the equipment supplied by MAN Diesel. The Installation Manual is made specifically for each project and to be used for the installation. After commissioning the Installation Manual will not be updated and the Instruction Manuals are to be used instead. We kindly draw your attention to the fact that the Installation Manual is the only relevant place you may find information for customizing the installation of your plant. All previous information sent to you must not be used for design of the installation. Documentation such as the Project Guides may only be used for guidance. However, the Installation Manual may contain sections of the Project Guides.

---oooOOOooo--End of General data

Edition 1

MAN Diesel 1699891-5.1 Page 1 (2)

1435000

Quality of Marine Diesel Fuel (MDO)

General Other designations

Specification

Diesel Fuel Oil, Diesel Oil, Bunker Diesel Oil, Marine Diesel Fuel.

The usability of a fuel depends upon the engine design and available cleaning facilities as well as on the conformity of the key properties with those listed in the table below which refer to the condition on delivery.

Marine Diesel Oil (MDO) is offered as heavy distillate (designation ISO-F-DMB) or as a blend of distillate and small amounts of residual oil (designation ISO-F-DMC) exclusively for marine applications. The commonly used term for the blend, which is of dark brown to black colour, is Blended MDO. MDO is produced from crude oil and must be free from organic acids and any non-mineral oil products. Property/feature

The key properties have been established to a great extent on the basis of ISO 8217-2005 and CIMAC-2003. The key properties are based on the test methods specified.

Unit

Test method

Specification ISOF Density at 15° C Cinematic viscosity at 40° C

DMB

DMC

kg/m3

ISO 3675

900

920

mm2/s cSt

ISO 3104

>2.5 < 11

>4 < 14

ISO 3016

35

ISO 2160



200

ASTM–D482

<

0.02

ASTM–D189

<

0.50

MAN Diesel ageing cabinet *

Weight %

ASTM–D4055 or DIN 51592

Weight %





MAN Diesel test

Table 1 Lube oil (MGO/MDO) - specified values * in-house method

 <

0.2

<

2

Must not allow to recognise precipitation of resin or asphaltlike ageing products

MAN Diesel Quality of Lube Oil (SAE40) for Operation on Gas Oil and Diesel Oil (MGO/MDO) and Biofuel

1440000

1699889-3.1 Page 2 (4)

L21/31 L27/38 Detergency The detergency must be so high that coke and tarlike residues from fuel combustion must not buildup. Dispersancy The dispersancy must be selected such that commercially available lube-oil cleaning equipment can remove the detrimental contamination from the used oil, i.e. the oil must have good separating and filtering properties. Neutralisation capacity The neutralisation capacity (ASTM-D2896) must be so high that the acidic products which result during combustion are neutralised. The reaction time of the additives must be matched to the process in the combustion chamber.

The content of additives included in the lube oil depends upon the conditions under which the engine is operated, and the quality of fuel used. If marine Diesel fuel is used, which has a sulphur content of up to 2.0 weight % as per ISO-F DMC, and coke residues of up to 2.5 weight % as per Conradson, a BN of approx. 20 is preferred. Ultimately, the operating results are the decisive criterion as to which content of additives ensures the most economic mode of engine operation. Cylinder lube oil In the case of engines with separate cylinder lubrication, the pistons and the cylinder liner are supplied with lube oil by means of a separate oil pump. The oil supply rate is factory-set to conform to both the quality of the fuel to be used in service and to the anticipated operating conditions. A lube oil as specified above is to be used for the cylinder and the lubricating circuit.

Evaporation tendency Speed governor The tendency to evaporate must be as low as possible, otherwise the oil consumption is adversely affected. Further conditions The lube oil must not contain agents to improve viscosity index. Fresh oil must not contain any water or other contamination.

The oil quality specified by the manufacturer is to be used for the remaining equipment fitted to the engine. SAE–Class

16/24, 21/31, 27/38, 28/32S, 32/40, 32/44, 40/54, 48/60, 58/64, 51/60DF Table 2

40

Viscosity (SAE class) of lube oils

For the engine L27/38 (propulsion) service experience have shown that the operation temperature of the Woodward governor UG10MAS and the corresponding actuator for UG723+ can exceed 93° C. In such case we recommend to use a synthetic oil like Castrol Alphasyn HG150. Engines delivered later than March 2005 are already filled with this oil.

08028-0D/H5250/94.08.12

Lube oil selection

Engine

In case of mechanic-hydraulic governors with separate oil sump, multi grade oil 5W-40 is preferably used. If this oil is not available for topping-up, an oil 15W-40 may exceptionally be used. In this context it makes no difference whether multicoloured oils based on synthetic or mineral oil are used. (Designation for armed forces of Germany: O-236)

Blended grade Blended lube oils (HD oils) corresponding to international specifications MIL-L 2104 or API-CD, and having a Base Number (BN) of 10 – 16 mg KOH/g are recommended by us (Designation for armed forces of Germany: O-278).

08.50

MAN Diesel 1699889-3.1 Page 3 (4)

Quality of Lube Oil (SAE40) for Operation on Gas Oil and Diesel Oil (MGO/MDO) and Biofuel

1440000 L21/31 L27/38

Lube-oil additives It is not allowed to add additives to the lube oil, or mixing the different makes (brands) of the lube oil, as the performance of the carefully matched package of additives which is suiting itself and adapted to the base oil, may be upset.

Manufacturer

Base Number 10161) [mgKOH/g]

AGIP

Cladium 120  SAE 40 Sigma S SAE 40 2)

BP

Energol DS 3154

CASTROL

Castrol MLC 40 Castrol MHP 154 Seamax Extra 40

CHEVRON (Texaco, Caltex)

Taro 12 XD 40 Delo 1000 Marine SAE 40 Delo SHP40

EXXON MOBIL

Exxmar 12TP40 Mobilgard 412 / MG 1SHC Mobilgard ADL 40 2) Delvac 1640

PETROBRAS

Marbrax CCD410

Oil in service

Q8

Mozart DP40

There are no defined oil change intervals for MAN Diesel medium-speed engines. The oil has to be analysed on a regular basis. As long as the oil characteristics are within the specified limits of Table 4, the oil is suitable for further use. An oil sample has to be analysed every 1-3 months (see maintenance plan). The quality of the oil can only be maintained if the oil is cleaned by an appropriate device (e.g. separator).

REPSOL

Neptuno NT 1540

SHELL

Gadinia 40 Sirius FB 40 2) Sirius/Rimula X40 2) Gadinia AL40

STATOIL

MarWay 1540 MarWay 1040

TOTAL Lubmarine

Disola M4015

Selection of lube oils / warranty Most of the mineral oil companies are in close and permanent consultation with the engine manufacturers and are therefore in a position to quote the oil from their own product line that has been approved by the engine manufacturer for the given application. Independent of this release, the lube oil manufacturers are in any case responsible for quality and performance of their products. If any questions, we are more than willing to provide you with further information.

Safety/environmental protection

08028-0D/H5250/94.08.12

Wrong handling of operating media may cause harm to health, safety and environment. Respective instructions of the manufacturer have to be followed.

08.50

Approved SAE40 lube oils

Table 3 Lubricating oils (SAE40) which have been approved for the use in MAN Diesel four-stroke engines running on gas oil and Diesel oil

1)

Examinations 2) We carry out the investigations on lube oil in our laboratories for our customers. A representative sample of about 0.5 litre is required for the examination.

If Marine Diesel fuel of poor quality (ISO-FDMC) is used, a Base Number (BN) of approx. 20 is of advantage. If the sulphur content of the fuel is < 1 %.

MAN Diesel do not take any reponsibility for difficulties that might be caused by these oils.

MAN Diesel Quality of Lube Oil (SAE40) for Operation on Gas Oil and Diesel Oil (MGO/MDO) Biofuel

1440000

1699889-3.1 Page 4 (4)

L21/31 L27/38 Limit value

Method

Viscosity at 40 °C

110-220 mm2/s

ISO 3104 or ASTM D445

Base Number (BN)

min. 50% of fresh oil BN

ISO 3771

Flash Point (PM)

min. 185 °C

ISO 2719

Water Content

max. 0.2% (for a short period max. 0.5%)

ISO 3733 or ASTM D1744

nHeptan Insoluble

max. 1.5%

DIN 51592 or IP 316

Metal Content

dependent upon the engine type and operating condition

only for guidance Fe Cr Cu Pb Sn Al For biofuel operation: biofuel content

max 12%

FT-IR

Limit value

08028-0D/H5250/94.08.12

Table 4

max. 50 ppm max. 10 ppm max. 15 ppm max. 20 ppm max. 10 ppm max. 20 ppm

08.50

MAN Diesel 1699896-4.0 Page 1 (8)

Quality of Engine Cooling Water

1400000 General

Preliminary remarks

Test device

The engine cooling water, like the fuel and lubricating oil, is a medium which must be carefully selected, treated and controlled. Otherwise, corrosion, erosion and cavitation may occur on the walls of the cooling system in contact with water and deposits may form. Deposits impair the heat transfer and may result in thermal overload on the components to be cooled. The treatment with an anti-corrosion agent has to be effected before the first commissioning of the plant. During subsequent operations the concentration specified by the engine manufacturer must always be ensured. In particular, this applies if a chemical additive is used.

The MAN Diesel water test kit includes devices permitting, i.a., to determine the above-mentioned water characteristics in a simple manner. Moreover, the manufacturer of anti-corrosion agents are offering test devices that are easy to operate. As to checking the cooling water condition, see Description "Checking cooling water".

Requirements Limiting values The characteristics of the untreated cooling water must be within the following limits: Property/ feature

Type of water

Characteristics

Unit

Distillate or freshwater, free from foreign matter. Not to be used: Sea water, brackish water, river water, brines, industrial waste water and rain water

-

max. 10

ûdH 1)

6,5 - 8

-

Total hardness pH-value

08028-0D/H5250/94.08.12

Chloride ion max. 50 mg/l 2) content Table 1 Cooling water - characteristics to be adhered to

1)

1°dGH = German hardness: = 10mg CaO/litre = 17.9mg CaCO3/litre = 0.357mval/litre = 0.179mmol/litre

2)

08.49

1 mg/l = 1 ppm

Supplementary information Distilate If a distillate (from the freshwater generator for instance) or fully desalinated water (ion exchanger) is available, this should preferably be used as engine cooling water. These waters are free from lime and metal salts, i.e. major deposits affecting the heat transfer to the cooling water and worsening the cooling effect cannot form. These waters, however, are more corrosive than normal hard water since they do not form a thin film of lime on the walls which provides a temporary protection against corrosion. This is the reason why water distillates must be treated with special care and the concentration of the additive is to be periodically checked. Hardness The total hardness of the water is composed of temporary and permanent hardness. It is largely determined by calcium and magnesium salts. The temporary hardness is determined by the carbonate content of the calcium and magnesium salts. The permanent hardness can be determined from the remaining calcium and magnesium salts (sulphates). The decisive factor for the formation of calcareous deposits in the cooling system is the temporary (carbonate) hardness. Water with more than 10ûdGH (German total hardness) must be mixed with distillate or be softened. A rehardening of excessively soft water is only necessary to suppress foaming if an emulsifiable anticorrosion oil is used.

MAN Diesel 1400000

Quality of Engine Cooling Water

1699896-4.0 Page 2 (8)

General Damage in the cooling water system Corrosion Corrosion is an electro-chemical process which can largely be avoided if the correct water quality is selected and the water in the engine cooling system is treated carefully.

Emulsifiable anti-corrosion oils fall more and more out of use since, on the one hand, their use is heavily restricted by environmental protection legislation and, on the other hand, the suppliers have, for these and other reasons, commenced to take these products out of the market. Treatment before operating the engine for the first time

Flow cavitation Flow cavitation may occur in regions of high flow velocity and turbulence. If the evaporation pressure is fallen below, steam bubbles will form which then collapse in regions of high pressure, thus producing material destruction in closely limited regions.

Treatment with an anti-corrosion agent should be done before the engine is operated for the first time so as to prevent irreparable initial damage. Warning! It is not allowed to operate the engine without cooling water treatment.

Erosion

Corrosion fatigue Corrosion fatigue is a damage caused by simultaneous dynamic and corrosive stresses. It may induce crack formation and fast crack propagation in water-cooled, mechanically stressed components if the cooling water is not treated correctly.

Treatment of the engine cooling water The purpose of engine cooling water treatment is to produce a coherent protective film on the walls of the cooling spaces by the use of anti-corrosion agents so as to prevent the above-mentioned damage. A significant prerequisite for the anti-corrosion agent to develop its full effectively is that the untreated water which is used satisfies the demands mentioned under Requirements .

Cooling water additives No other additives than those approved by MAN Diesel and listed in "Chemical additives - containing nitrite" up to "Anti-freeze agents with corrosion inhibiting effect" are to be used. Permission required A cooling water additive can be approved for use if it has been tested according to the latest rules of the Forschungsvereinigung Verbrennungskraftmaschinen (FVV), ”Testing the suitability of coolant additives for cooling liquids of internal combustion engines”. The test report is to be presented if required. The necessary testing is carried out by Staatliche Materialprüfanstalt, Department Oberflächentechnik, Grafenstraße 2, 64283 Darmstadt on request. In case the cooling water additive has been successfully tested at FVV, an engine test for the final approval has to be conducted.

08028-0D/H5250/94.08.12

Erosion is a mechanical process involving material abrasion and destruction of protective films by entrapped solids, especially in regions of excessive flow velocities or pronounced turbulences.

Protecting films can be produced by treating the cooling water with a chemical anti-corrosion agent or emulsifiable anti-corrosion oil.

08.49

MAN Diesel 1699896-4.0 Page 3 (8)

Quality of Engine Cooling Water

1400000 General

To be used only in closed circuits Additives can only be used in closed circuits where no appreciable consumption occurs except leakage and evaporation losses. • Chemical additives Additives based on sodium nitrite and sodium borate, etc. have given good results. Galvanised iron pipes or zinc anodes providing cathodic protection in the cooling systems must not be used. Please note that this kind of corrosion protection, on the one hand, is not required since cooling water treatment is specified and, on the other hand, considering the cooling water temperatures commonly practised nowadays, it may lead to potential inversion. If necessary, the pipes must be dezinced. • Anti-corrosion oil This additive is an emulsifiable mineral oil mixed with corrosion inhibitors. A thin protective oil film which prevents corrosion without obstructing the transfer of heat and yet preventing calcareous deposits forms on the walls of the cooling system. Emulsifiable anti-corrosion oils have nowadays lost importance. For reasons of environmental protection legislation and because of occasionally occurring emulsion stability problems, they are hardly used any more.

08028-0D/H5250/94.08.12

• Anti-freeze agent If temperatures below the freezing point of water may be reached in the engine, in the cooling system or in parts of it, an anti-freeze agent simultaneously acting as a corrosion inhibitor must be added to the cooling water. Otherwise the entire system must be heated. (Designation for armed forces of Germany: Sy-7025). Sufficient corrosion protection will be achieved by admixing the products listed in Anti-freeze agents with corrosion inhibiting effect taking care that the specified concentration is observed. This concentration will prevent freezing down to a temperature of about - 22 °C. The quantity of anti-freeze actually required, however, also depends on the lowest temperatures expected at the site.

Anti-freeze agents are generally based on ethylene glycol. A suitable chemical additive must be admixed if the concentration of the anti-freeze specified by the manufacturer for a certain application does not suffice to afford adequate corrosion protection or if, due to less stringent requirements with redard to protection from freezing, a lower concentration of anti-freeze agent is used than would be required to achieve sufficient corrosion protection. The manufacturer must be contacted for information on the compatibility of the agent with the anti-freeze and the concentration required. The compatibility of the chemical additives stated in Chemical additives - containing nitrite with anti-freeze agents based on ethylene glycol is confirmed. Anti-freeze agents may only be mixed with each other with the supplier’s or manufacturer’s consent, even if the composition of these agents is the same. Prior to the use of an anti-freeze agent, the cooling system is to be cleaned thoroughly. If the cooling water is treated with an emulsifiable anti-corrosion oil, no anti-freeze may be admixed, as otherwise the emulsion is broken and oil sludge is formed in the cooling system. For the disposal of cooling water treated with additives, observe the environmental protection legislation. For information, contact the suppliers of the additives. • Biocides If the use of a biocide is inevitable because the cooling water has been contaminated by bacteria, the following has to be observed: - It has to be ensured that the biocide suitable for the particular application is used. - The biocide must be compatible with the sealing materials used in the cooling water system; it must not attack them. - Neither the biocide nor its decomposition products contain corrosion-stimulated constituents. Biocides whose decomposition results in chloride or sulphate ions are not permissible. - Biocides due to the use of which the cooling water tends to foam are not permissible.

08.49

MAN Diesel 1400000

Quality of Engine Cooling Water

1699896-4.0 Page 4 (8)

General

Clean cooling system Before starting the engine for the first time and after repairs to the piping system, it must be ensured that the pipes, tanks, coolers and other equipment outside the engine are free from rust and other deposits because dirt will considerably reduce the efficiency of the additive. The entire system has therefore to be cleaned using an appropriate cleaning agent with the engine shut down (see Description "Cleaning cooling water"). Loose solid particles, in particular, have to be removed from the system by intense flushing because otherwise erosion may occur at points of high flow velocities. The agent used for cleaning must not attack the materials and the sealants in the cooling system. This work is in most cases done by the supplier of the cooling water additive, at least the supplier can make available the suitable products for this purpose. If this work is done by the engine user it is advisable to make use of the services of an expert of the cleaning agent supplier. The cooling system is to be flushed thoroughly after cleaning. The engine cooling water is to be treated with an anti-corrosion agent immediately afterwards. After restarting the engine, the cleaned system has to be checked for any leakages. Periodical checks of the condition of the cooling water and cooling system Treated cooling water may become contaminated in service and the additive will loose some of its effectively as a result. It is therefore necessary to check the cooling system and the condition of the cooling water at regular intervals. The additive concentration is to be checked at least once a week, using the test kit prescribed by the supplier. The results are to be recorded.

Note! The concentrations of chemical additives must not be less than the minimum concentrations stated in "Chemical additives - containing nitrite" . Concentrations that are too low may promote corrosive effects and have therefore to be avoided. Concentrations that are slightly too high do not cause damages. However, concentrations more than double as high should be avoided. A cooling water sample is to be sent to an independent laboratory or to the engine supplier for making a complete analysis every 2 – 6 months. For emulsifiable anti-freeze agents, the supplier generally prescribes renewal of the water after approx. 12 months. On such renewal, the entire cooling system is to be flushed, or if required to be cleaned (also see Description "Cleaning cooling water"). The fresh charge of water is to be submitted to treatment immediately. If chemical additives or anti-freeze agents are used, the water should be changed after three years at the latest. If excessive concentrations of solids (rust) are found, the water charge has to be renewed completely, and the entire system has to be thoroughly cleaned. The causes of deposits in the cooling system may be leakages entering the cooling water, breaking of the emulsion, corrosion in the system and calcareous deposits due to excessive water hardness. An increase in the chloride ion content generally indicates sea water leakage. The specified maximum of 50 mg/kg of chloride ions must not be exceeded, since otherwise the danger of corrosion will increase. Exhaust gas leakage into the cooling water may account for a sudden drop in the pH value or an increase of the sulphate content.

08028-0D/H5250/94.08.12

Prerequisites for efficient use of an anti-corrosion agent

Water losses are to be made up for by adding untreated water which meets the quality demands according to Requirements . The concentration of the anti-corrosion agent has subsequently to be checked and corrected if necessary.

08.49

MAN Diesel 1699896-4.0 Page 5 (8)

Quality of Engine Cooling Water

1400000 General

Checks of the cooling water are especially necessary whenever repair and servicing work has been done in connection with which the cooling water was drained.

Anti-corrosion agents are a contaminating load for the water in general. Cooling water must therefore not be disposed off by pouring it into the sewage system without prior consultation with the competent local authorities. The respective legal regulations have to be observed.

Protective measures Anti-corrosion agents contain chemical compounds which may cause health injuries if wrongly handled. The indications in the safety data sheets of the manufacturers are to be observed. Prolonged, direct contact with the skin should be avoided. Thoroughly wash your hands after use. Also, if a larger amount has been splashed onto the clothing and / or wetted it, the clothing should be changed and washed before being worn again.

08028-0D/H5250/94.08.12

If chemicals have splashed into the eyes, immediately wash with plenty of water and consult a doctor.

08.49

Marine GenSets If a marine auxiliar engine of the type 16/24, 21/31, 23/30H, 27/38 or 28/32H shares the cooling water system with a two-stroke main engine MAN B&W Diesel type, the cooling water recommendation from the main engine has to be followed.

Investigation Cooling water analysis are carried out in our chemical laboratory for our customers. For examination a sample of approxiamately 0.5 litre is required.

MAN Diesel 1400000

1699896-4.0 Page 6 (8)

Quality of Engine Cooling Water

General Permissible cooling water additives Chemical additives (Chemicals) - containing nitrite

Product designation

Minimum concentration ppm

litre

Product

Nitrite

Na-Nitrite

(NO2)

(NaNO)2

Ashland Water Technologies Drew Marine One Drew Plaza Boonton, New Jersey 07005 USA

Liquidewt Maxigard DEWT-NC

15 l 40 l 4.5kg

15,000 1) 40,000 4,500

700 1,330 2,250

1,050 2,000 3,375

Unitor Chemicals KJEMI-Service A.S. P.O. Box 49 3140 Borgheim Norway

Rocor NB Liquid Dieselguard

21.5 l 4.8kg

21,500 4,800

2,400 2,400

3,600 3,600

Nalfleet Marine Chemicals P.O. Box 11 Northwich Cheshire CW8DX, UK

Nalfleet EWT Liq (9-108) Nalfleet EWT 9-111 Nalcool 2000

3l 10 l 30 l

3,000 10,000 30,000

1,000 1,000 1,000

1,500 1,500 1,500

Maritech AB P.O. Box 143 29122 Kristianstad Sweden

Marisol CW

12 l

12,000

2,000

3,000

N.C.L.T.

12 l

12,000

2,000

3,000

Colorcooling

24 l

24,000

2,000

3,000

Marichem - Marigases 64 Sfaktirias Street 18545 Piraeus, Greece

D.C.W.T Non-Chromate

48 l

48,000

2,400

Vecom Schlenzigstrasse 7 21107 Hamburg Germany

Cool treat N.C.L.T.

16 l

16,000

4,000

Uniservice Via al Santurio di N.S. della Guardia 58/A 16162 Genova, Italy

Table 2

1)

08028-0D/H5250/94.08.12

Manufacturer

Initial dose per 1,000

4,000

Chemical additives - containing nitrite

The values in the marked areas can be determined with the test kit of the chemical manufacturer. 08.49

MAN Diesel 1699896-4.0 Page 7 (8)

1400000

Quality of Engine Cooling Water

General Chemical additives (Chemicals) - free from nitrite

Product designation

Initial dose per 1,000 l

Minimum concentration

Arteco Technologiepark Zwinaarde 2 B-9052 GentBelgium

Havoline XLI

75 l

7.5 %

Total Lubricants Paris, France

WT Supra

75 l

7.5 %

Drewgard CWT

8l

1%

Manufacturer

Ashland Water Technologies Drew Marine One Drew Plaza Boonton, New Jersey 07005 USA Table 3

Chemical additives - free from nitrite

Emulsifiable anti-corrosion oils

Manufacturer

BP Marine Breakspear Way Hemel Hempstead Herts HP2 UL, UK

08028-0D/H5250/94.08.12

Castrol Int. Pipers Way Swindon SN3 1RE, UK

08.49

Deutsche Shell AG Überseering 35 22284 Hamburg, Germany Table 4

Product (designation)

Diatsol M Fedaro M

Solvex WT 3

Oil 9156

Emulsifiable anti-corrosion oils

MAN Diesel 1400000

1699896-4.0 Page 8 (8)

Quality of Engine Cooling Water

General Anti-freeze agents with corrosion inhibiting effect

Manufacturer

BASF Carl-Bosch-Str. 67063 Ludwigshafen, Rhein, Germany

Product (designation)

Minimum concentration

Glysantin G48 Glysantin 9313 Glysantin G 05

Castrol Int. Pipers Way Swindon SN3 1RE, UK

Antifreeze NF,SF

BP, Brittanic Tower, Moor Lane, London EC2Y 9B, UK

Antifrost X 2270A 35 %

Deutsche Shell AG Überseering 35 22284 Hamburg, Germany

Höchst AG, Werk Gendorf 84508 Burgkirchen, Germany

Mobil Oil AG Steinstraße 5 20095 Hamburg, Germany

Arteco/Technologiepark, Zwijnaarde 2, B-9052 Gent, Belgium

Glycoshell

Genatin extra (8021 S)

Frostschutz 500

Havoline XLC

Total Lubricants Paris, France Table 5

08028-0D/H5250/94.08.12

50 % Glacelf Auto Supra Total Organifreeze

Anti-freeze agents with corrosion inhibiting effect

08.49

MAN Diesel 1699261-3.0 Page 1 (1)

Dispatch condition of engine and reduction gear from MAN Diesel

912000 General

The engine and reduction gear are situated on wooden foundation, covered with tarpaulins and equipped with lifting tools.

Where storage is for 8 months or more, lubricating oil must be applied to each cylinder every six months, during the monthly turning.

External components which are not varnished are protected with preservative (VCI-product) and internal unvarnished components are sprayed with same. This protective oil is totally soluble with lubricating oils and should not be removed when putting the engine and reduction gear into service.

For lubrication, lub oil or preservation (VCI-product) (max 1/4 litres per cylinder) can be introduced through the indicator valve.

Storage of engine and reduction gear at customers Engine and gearbox should always be stored indoor in a dry environment and at a minimum, covered with tarpaulins. Engine and gearbox should be stored indoors at a minimum of 5°C above outside temperatures to avoid condensation, or in a humidity controlled environment at a relative humidity of 45-55%.

When storing the engine longer than 24 months, bearing and piston inspection must be carried out before starting up the engine, and MAN Diesel must in all cases, be informed. During storage the reduction gear should be turned monthly and when storage exceeds 24 months, inspection of the bearings, gearwheels, servomotor, and clutch must be carried out. MAN Diesel must in all cases be informed.

Protection maintenance

Maintenance intervals Protection maintenance must be carried out at the following intervals: Storage conditions (dry and indoor at 5°C above outside temperature or relative Humidity of 45-55% every 4 months If the above conditions are not met every 1 month Exhaust must be covered until installation, and Indicator valves closed.

Turning of engine and reduction gear When storage of engines is for more than 60 days following dispatch from the factory, then engine must be turned 3 1/2 revolutions each month, and the “rest position” of the crank must be at a different position. Indicator valves should be opened prior to turning and then closed again on completion of turning.

09.22





- Remove the crankcase, camshaft and rocker arm covers. - Check the surfaces and maintain the preservation by painting thoroughly with preservative (VCI-product). - Check the top of the cylinder heads and paintwith preservation. - Replace covers. - Check the external surfaces and restore preservation, if necessary with preservative. - Check the paint work and repair, as necessary. - Remove the outlet pipe from the turbocharger exhaust and turn the rotor of the turbocharger. - Replace the pipe. - Restore the original packing as far as possible and cover with tarpaulins.

MAN Diesel 1699912-1.1 Page 1 (1)

Storage of electronic equipment

912000 General

Dispatch conditions of electronic equipment from MAN Diesel Panels and control unit are packed in well-sealed boxes and to protect the components from corrosion they are supplied with a Cor-trol VCI Vapour Corrosion Inhibitor giving an invisible protective ionic layer. Small electronic components are packed in poly bags supplied with Cor-trol VCI tablets.

Storage of electronic equipment at customers The equipment should always be stored in a dry environment. Under normal warehouse conditions the Cor-trol VCI will give long term protection provided they remain sealed and maintained in such a condition that prevents any air circulation within.

Protection maintenance Provided the sealing has been properly maintained no additional measures are needed for the entire period of protection. The electronic equipment can be put into operation without degreasing, coating removal or cleaning.

09.17

Installation works During the installation period the yard has to protect the cabinets and electrical equipments against water, dust and fire. It is not allowed to do any welding works near the cabinets. The cabinets have to be fixed to the floor or to the walls by means of screws. If it is inevitable to do wielding works near the cabinet the cabinets and panels have to be protected against heat, electric current and electromagnetic influences. For protection against current, all cabling has to be disconnected from affected components. Installation of additional components inside the cabinets is allowed upon approval by the responsible project manager of MAN Diesel only.

MAN B&W Diesel 1690751-3.0 Page 1 (1)

Engine ventilation

1400000 L21/31 L27/38

The air intake to the engine room should be dimensioned in such a way that a sufficient quantity of air is available not only for the main engine, auxiliaries, boilers etc, but also to ensure adequate ventilation and fresh air when work and service are in progress.

Approx 50% of the ventilating air should be blown in at the level of the top of the main engine close to the air inlet of the turbocharger. Air should not be blown directly onto heat emitting components or directly onto electric or other water sensitive apparature.

We recommend the ventilation capacity should be min 50% more than required air consumption (in tropical conditions more than 100% should be considered) for main engine, auxiliaries, boilers etc.

A small airflow should be evenly distributed around the engine and reduction gear in order to dissipate radiated heat.

It is important that the air is free of oil and sea water to prevent fouling of the ventilators and filters. The air consumption of the main engine appears from the planning data.

With closed engine room and all air consuming equipment operating, there should always be positive air pressure in the engine room. Surplus air should be led up through the casing via special exhaust openings. Alternatively extraction fans should be installed. Fire arresting facilities must be installed within the casings of the fans and ventilation trunkings to retard the propagation of fire.

03.43

MAN Diesel 13 July 2011

Logistic Ship for Mexican navy MAN Diesel, ref no: P-21178. 2 x 6L21/31, AMG 11EV, VBS640, AT2000PCS 1.03

Reduction gear

Drawing ident no

Description

2 15 33 04-2.0

Plate

Foundation drawing - epoxy chock

2 05 58 50-0.1

Technical data AMG11E/EV (3 pages)

amg11ev

Guiding epoxy calculation (2 pages) 

Side and end chocks with wedges are yard supply

 M24 Adjusting bolt. 4 off  Holding-down bolt. 6 off

2 15 06 23-6.1

5 EN926A24390

6

 M24 Nut. 6 off

EN91R24

1

 Washer. 6 off

187369.3

3

EN89D24.3

4

 Spherical washer. 6 off

EN31T24

12

 Distance Di t pipe. i 6 off ff

186618 186618-5 5

11

 M24 Self-locking nut. 6 off

186 618-5 618 5

Date of update

 Installation drawing - AMG11EV (3 pages)

2 05 88 09-9.2

See drawing no. 2153161-4 in section 1.04

Item no

Oil diagram - system

Alignment of reduction gear Please be referred to the drawing "Plant specific data and data for alignment" in chapter 2. Lubricating oil: Only approved lubricating oils of the type SAE40 are to be used for the gear Please see “Gear Oil Specification” in part 1.01

Lubricating oil system components: The pipelines between the individual components of the lubricating oil system must be carefully cleaned before start-up of the system. Check of flushing: An engineer from MAN Diesel, must approve the cleanliness of the external lubricating oil system, before the lubricating oil system is connected to the main engine. ---oooOOOooo---

End of Section 1.03 - Reduction gear

 MAN Diesel Supply  Yard Supply

Edition 1

PT

P2

3253

3 5 PT

7*

3252

M 3 8 PT PT

2230

2221

6

PSH

***

ALPHA REDUCTION GEAR

2222

PSH

TE 2244

TE 2245

TE

TE

TE

TE

2240

2241

2242

2243

TE

TO LUBRICATING

1

SERVO FORWARD

SERVO RETURN OIL

CLUTCH IN

2

CLUTCH OUT

LSL 2206

SERVO ASTERN

3251

**

Connection: see installation Arrangement.

2246 P1

E4 Cooling water to cooler E5 Cooling water from cooler P1 Oil stand-by pump-suction P2 Oil stand-by pump-pressure

3*** E4

* = Not built on ** = Only for AMG55EV *** = Only for AMG28EV, AMG55EV

4

PSL 2231

1 2 3 4 5 6 7 8

Description: Prefilter for pump Oil pump Non-return valve Oil cooler High pressure filter Prefilter for stand-by pump Oil stand-by pump Low pressure filter

E5 TE

PT

2231

Date

Des.

Chk.

A.C.

Revision change

Chg. Not.

2231A

03 02 01 00

PT 2231B

20100108

MEJE

SMJ

Basic Standards (MBD SB) EN21F-m Tolerances

Suppl. Drawing No. EN21C Surf. Roughness

Material / Blank:

Scale:

Size:

Final User Material:

Product Type:

A3 Info. No.:

Copyright 2010 MAN Diesel This drawing is the property of MAN Diesel and is to be treated as confidential by the party to whom it has been submitted by MAN Diesel and is not to be disclosed to any third party without the specific prior written permission of MAN Diesel

Item Name:

Final User Info No.: Final User Description:

Mass (Kg)

Page No.:

AMG EV

3G0092

Rev.

Projection:

MAN Diesel

1 (1) Item Id.:

Oil diagram - system

2150623-6 Final User Ident. No.:

MAN Diesel 13 July 2011

Logistic Ship for Mexican navy MAN Diesel, ref no: P-21178. 2 x 6L21/31, AMG 11EV, VBS640, AT2000PCS 1.04

Main Engine

Drawing ident no

Description

2 14 10 32-9.1

Item no

Part ident no

Date of update

 Installation drawing (2 pages)

2 15 31 61-4.2

Foundation for engine and gear (2 pages)

24/6-2010

2 15 33 02-9.0

Resilient Foundation, Engine (12 pages)

20/5-2010

 Starting Air - Inlet: A1

2510257-7

706 240-9

Flexible hose, DN38

706248-2

063434-5.0

Flange

063434-5.0

20/5-2010

 Overspeed stop air - inlet: A2 706 230-0

Flexible hose,DN6  Fuel Oil Primary Pump- Suction: B1

706 260-7

Flexible hose with flame guard  Fuel Oil Primary Stand-by pump: B3

706 260-7

706267-2

 Fuel Oil Circulation to Service Tank: B4

2507233-5

Flexible hose with flame guard, DN25

706267-2

706 260-7

Flexible hose. DN10  Lub. Oil stand-by Pump - Suction: D4

1 67 87 41-6.4

Compensator. DN150

706233-4

1678808-9

Intermediate Piece Compensator Lub. Oil, Centrifuge & Filling:  D7, D8 & D12

2058560-4. 1678806-5 2507219-3

2 04 83 43-2.0

Intermediate piece

2048343-2

1 67 87 41-6.4

Compensator

1678801-6

L.T. Cooling Water: E1, E2, E3, F1, F4 & F13

2510234-9

Compensator

1685552-3

 HT Cooling Water: F5 & F6

2510264-8

2 05 85 83-2.1

Intermediate flange

2058583-2

1 67 87 41-6.4

Compensator

1678805-3

L.T. Cooling Water, gear: E6 & E7

2510237-4

Compensator

1678804-1

 1 67 87 41-6.4

 LT Cooling Water to Expansion tank: E8 706 230-0

Flexible hose, DN8  HT Cooling Water to Expansion tank: F7

706 230-0   MAN Diesel Supply  Yard Supply

20/5-2010

2150233-7

2510238-6

1 67 55 81-7.1

20/5-2010

2507235 9 2507235-9

 Lub. Oil stand-by Pump - Pressure: D5



20/5-2010

2507233-5 706267-2

 Leak Oil to Drain Tank (with alarm): B7A

20/5-2010

2507233-5

Flexible hose with flame guard, DN25

2 04 86 84-6.0

2 05 85 60-4.0 1 67 87 41-6.4

706231-8

2510259-0 706232-6

20/5-2010

2510258-9

Flexible hose, DN10

706233-4

HT Cooling Water E Expansion pansion tank and preheater: F8 & F12

2510260-0 Edition 1

MAN Diesel 13 July 2011

Logistic Ship for Mexican navy MAN Diesel, ref no: P-21178. 2 x 6L21/31, AMG 11EV, VBS640, AT2000PCS 1.04

Main Engine

Drawing ident no

Description

706 230-0

Flexible hose. DN19

Item no

 Engine preheating - Inlet: F10

Part ident no

706236-7 2510262-4

2 05 85 81-9.0

Intermediate piece

2058581-9

706 230-0

Flexible hose. DN19

706236-7

 Venting of crankcase - H Cooler hose 

List of spare flexible hoses and compensators Conical mountings. Installation Instruction



Flexible coupling between engine and gear. Vulkardan-E 6014-4111 Installation and Operating Instruction for Flexible coupling

Rubber Design

1K60100129 311004728 1400000 1690749-1.1 1487000 1690746-6.0

Date of update

2502203-3 2140175-0

2143303-7

Space requirements (2 pages) Weight and dimensions of principal parts (2 pages)

Important: The protecting covers located inside the crankshaft covers must not be removed during installation of engine. The protecting covers insure that dirt cannot enter the crankshaft housing. The protecting covers are to be removed before start-up of the propulsion plant. ---oooOOOooo--End of Section 1.04 - Main Engine

 MAN Diesel Supply  Yard Supply

Edition 1

A1

A2

B!, B3, B4

B7A

D4, E6, E7

D5

D7, D8 & D12

**)

**) E1, E2, E3, F1, F4, F13

F5, F6

E6, E7

D4, E6, E7

E8

F7

F8, F12

F10

Page 1 of 1

Current Displaying Contents of 2502203-3.0-FLEX. CONN. FOR VENTING PIPE F&E (DesignView) x 1 2502203-3.0-FLEX. CONN. FOR VENTING PIPE F&E (DesignView) x 1 623044-5.0-COOLER HOSE, Ø76 X 5 MM x 0.9 702815-2.0-HOSE CLIP WITH WORM (DesignView) x 4 702810-3.1-HOSE CLAMP x 1

file://C:\DOCUME~1\aal\LOCALS~1\Temp\Tcprint55519.html

2010-05-21

SPARE PARTS

Conical mountings Installation Instruction

List of deviations Revision A Revision B

03-02-2004 23-06-2004

Revision C Revision D

30-08-2007 10-03-2009

Original issue List of deviations / Remarks added Additional instructions divided stud changed Lay-out X-dimensions added

Remarks

Rubber Design BV, Rev. D, 10-03-2009

Conical mountings – General information General The range of conical marine mountings were designed specially with medium speed engines in mind. The conical design provides high deflection and load capacity combined with long service life. Although originally designed for main engine, auxiliary engine and generator installations, the mountings are particularly versatile and can be equally used for exhaust gas boilers and silencers. For applications like the suspension of deckhouses, accommodation rooms and control cabins, this mounting is an excellent isolator against structure borne vibration and noise, passive isolation. The acoustic properties of this type of mounting are excellent. The result of the measured structure borne vibration and noise transmission are available. In both vertical and horizontal directions the transfer functions show in the low frequency range a decrease of 12 dB/octave, an ‘ideal mass-less spring characteristics’. Specification The characteristics of the mounting are provided by a conical rubber element designed to carry the vertical load in a combination of compression and shear. The rubber elements for the mountings are produced in several types. Type RD 113, 114, 214 and 314 are produced with extra interleaf rings and type RD 115, 215 and 315 without extra interleaf ring. The types RD 244 and 344 are produced with extra interleaf ring and opposite recesses to enable different stiffnesses in three directions. The rubber elements are manufactured in six ‘standard’ rubber mixes: 45NR11, 50NR11, 55NR11, 60NR11, 65NR11, 70NR11 and consequently cover a wide range of load / deflection requirements. Applicable up to 70°C continuous and 90°C peak temperatures. Next to that, for the high temperatures applications, there are the NR39 (90°C continuous and 110°C peak temperature) and the CR56 (110°C continuous and 130°C peak temperature) compounds, available in the above mentioned Shore hardnesses. All mounting inserts are both individual tested and selected on stiffness by Rubber Design. The mounting castings are manufactured in a seawater resisting aluminium-silicon alloy and / or nodular cast iron. They are designed to protect the rubber element against oil and physical damage. An adjustable central buffer (spindle), manufactured in high tensile steel, controls the mounted equipment displacements due to e.g. ship movements, both vertically and horizontally within defined limits and so eliminates the need for separate buffers. The cut out in the bottom casting allows the buffer adjustment to be checked. Shock The standard execution of the RD 113 in nodular cast iron can withstand shock loads up to 360 kN in all directions. The standard execution of the RD 114 - 115 in nodular cast iron can withstand shock loads up to 300 kN in all directions. The standard aluminium execution of the RD 214 - 215 - 244 mountings can withstand shock-loads up to 150 kN in all directions. On application we can supply a special non-magnetic type manufactured in inoxyda, adjustable in axial and radial direction and suitable for shock loads up to 300 kN. The aluminium execution of the RD 314 - 315 - 344 can withstand shock loads up to 70 kN in all directions. Approval The mountings and our calculation method have been approved on many applications by the following classification societies: - American Bureau of Shipping - Bureau Veritas - Class NK - Det Norske Veritas - Germanischer Lloyd - Korean Register of Shipping - Lloyd‘s Register of Shipping - Registro Italiano Navale - USSR Register of Shipping

Rubber Design BV, Rev. D, 10-03-2009

Instructions for fitting conical mountings General It is advisable to read the instructions completely, before starting to design and / or fit the resiliently mounted system. There are several possible ways to fit the conical mounting to the suspended equipment and / or foundation, the final choice being with the end user. Preparation It is critical that the correct vibration isolator is installed in the proper location. Clean the bracket and the conical bearing, especially on the contact surfaces. Clean the upper surface of the ships foundation from dust, rust, oil, dirt and particles at the intended positions of the mountings. Anti corrosion oil should be applied on the steel parts. Attach each mounting to the engine / installation brackets hand tight; simultaneous block the central buffer by applying a spanner to the top hexagon. Lower the installation load onto the mountings. Loosen the nut. Fitting Check that all central buffers can be turned easily by applying a spanner to the top hexagon. If this is not possible it will be necessary to partly remove the installation load, until the buffers can be turned freely. The central buffer should now be turned anti-clockwise (upwards) and the installation relowered onto the mountings. Check that all central buffers can be turned freely with full installation load on the mountings. If this is not the case then the above mentioned procedure should be repeated. Where practical, the mountings should be allowed to settle for a minimum of 48 hours before any attempt is made to line up drives, pipe-work, etc. The suspended installation may now be leveled if necessary by means of jacking bolts which can be placed into the tapped holes of the base casting of each mounting. Care must be taken, during leveling of the installation, to ensure that individual mountings are not overloaded. The variation in laden height should not exceed 2 mm and should ideally be less. The laden height can be measured between top- and base casting at X (or H3 / H4) on two sides. The difference between the two sides of a mounting should not be more than the value mentioned in the table. Vertical buffer adjustment The central buffer working clearance for each mounting can be set as follows: Turn the central buffer clockwise (downwards) to the maximum lower position until it contacts the filler plate or foundation. Turn the central buffer anti-clockwise (upwards) into its operating position and to set the working clearance (see table on the next page). The central buffer clearance can be checked by using a feeler gauge though the cut in the base casting of the mountings. A feeler gauge has to pass easily under the internal buffer. Final assembly The buffer can be fixed by means of an nut , while simultaneously blocking the buffer by applying a spanner to the top hexagon. The nut should be tightened with the maximum recommended torque. Further locking is not necessary. We recommend, as prevention against corrosion, to apply an amount of water-resistant grease in the supplied (nut) cap. Individual filler plate thickness can now be measured. Notice that the filling plate must at least have the dimensions of the mounting foot. Maintenance The central buffer clearance should be examined and reset if necessary after the first week, after three months and thereafter to fit in with normal maintenance programmes. The central buffer clearance can be checked by using a feeler gauge though the cut in the base casting of the mountings. A feeler gauge has to pass easily under the internal buffer.

Rubber Design BV, Rev. D, 10-03-2009

Instructions for fitting conical mountings (continued) Pouring Chocking of the foundation plate by means of synthetic cast resin is to be done by the manufacturer or its authorized agency. The type of the cast resin has to be approved by the resp. classification society. The supplier of the cast resin or its authorized personnel has to confirm the mechanical strength of the cast resin considering the tightening torque of the foundation bolts, engine weight and engine torque. In order to avoid an additional thermal shock of the rubber elements of the conical mountings, an additional heat treatment for speeding up the curing process of the cast resin is not permissible! After curing (curing time is stated by the manufacturer of the synthetic casting resin), the jacking bolts are to be removed. The foundation bolts have to be tightened in accordance with the required tightening torque.

Additional instructions for fitting conical mountings with divided stud Turn the central buffer clockwise (downwards) to the maximum lower position until it contacts the filler plate or foundation. The stud can be tightened onto the buffer (recommended torque : see table). Turn the central buffer anti-clockwise (upwards) into its operating position and to set the working clearance. If the stud loosens from the buffer while turning it anti-clockwise, the stud should be tightened again onto the buffer. The base casting of the conical mounting can be lifted by using four hexagon bolts to get the buffer clear off the foundation and the stud and buffer can move freely. When it is not possible to lift the base casting of the conical mounting by using four hexagon bolts, due to the limited space to apply a spanner, you will need an external hydraulic jack to lift the engine slightly and remove some of the installation load before turning the central buffer anti-clockwise (upwards) into its operating position and to set the working clearance. By turning the stud anti-clockwise it is possible to loosen the stud and remove it easily from the central buffer. After removing the stud it is easy to remove the conical mounting sideways after slightly lifting the installation. For specific instructions for fitting of conical mountings with divided stud, please contact Rubber Design. A copy of the instructions including a drawing will be send on request.

Mounting type

Allowable difference per mounting

No. of turns to set working clearance

Working clearance

Torque divided stud

RD 113 RD 114 / RD 115 RD 214 / RD 215 / RD 244 RD 314 / RD 315 / RD 344

0,9 mm 0,9 mm 0,6 mm 0,5 mm

1,5 (anti-clockwise) 2,0 (anti-clockwise) 2,0 (anti-clockwise) 2,0 (anti-clockwise)

6,0 mm 6,0 mm 4,0 mm 4,0 mm

120 Nm 80 Nm 40 Nm

Rubber Design BV, Rev. D, 10-03-2009

Key widths central buffers and nuts standard conical mountings Mounting type

Execution

Material

Thread

Key widths Central buffer

Nut

Adjusting nut

RD 113

Non height adjustable

Cast iron

M 56 x 4

36

85

-

RD 114

Non height adjustable

Cast iron

M 48 x 3

30

75

-

RD 114

Height adjustable

Cast iron

M 48 x 3

30

75

100

RD 115

Non height adjustable

Cast iron

M 48 x 3

30

75

-

RD 115

Height adjustable

Cast iron

M 48 x 3

30

75

100

RD 214

Non height adjustable

Aluminium

M 42 x 2

22

-

-

RD 214

Height adjustable

Aluminium

M 27 x 2 M 42 x 2

19 30

41 65

90 90

RD 215

Non height adjustable

Aluminium

M 42 x 2

22

-

-

RD 215

Height adjustable

Aluminium

M 27 x 2 M 42 x 2

19 30

41 65

90 90

RD 244

Non height adjustable

Aluminium

M 42 x 2

22

-

-

RD 244

Height adjustable

Aluminium

M 27 x 2 M 42 x 2

19 30

41 65

90 90

RD 314

Non height adjustable

Aluminium

M 27 x 2

19

41

-

RD 314

Height adjustable

Aluminium

M 27 x 2

19

41

65

RD 315

Non height adjustable

Aluminium

M 27 x 2

19

41

-

RD 315

Height adjustable

Aluminium

M 27 x 2

19

41

65

RD 344

Non height adjustable

Aluminium

M 27 x 2

19

41

-

RD 344

Height adjustable

Aluminium

M 27 x 2

19

41

65

Rubber Design BV, Rev. D, 10-03-2009

Tightening torques bolts and nuts standard conical mountings Mounting type

Execution

Material

Nut

Tightening torque

Bolts (4x)

RD 113

Non height adjustable

Cast iron

M 56 x 4

7600 Nm

M 30 – 8.8 (base) 1425 Nm

RD 114

Non height adjustable

Cast iron

M 48 x 3

4900 Nm

M 27 – 8.8 (base) 1030 Nm

RD 114

Height adjustable

Cast iron

M 48 x 3

4900 Nm

M 27 – 8.8 (base) 1030 Nm

RD 115

Non height adjustable

Cast iron

M 48 x 3

4900 Nm

M 27 – 8.8 (base) 1030 Nm

RD 115

Height adjustable

Cast iron

M 48 x 3

4900 Nm

M 27 – 8.8 (base) 1030 Nm

RD 214

Non height adjustable

Aluminium

M 42 x 2

-

M 20 – 8.8 (base) 400 Nm M 20 – 8.8 (top) 250 Nm

RD 214

Height adjustable

Aluminium

M 27 x 2 M 42 x 2

1000 Nm 1650 Nm

M 20 – 8.8 (base) 400 Nm M 20 – 8.8 (base) 400 Nm

RD 215

Non height adjustable

Aluminium

M 42 x 2

-

M 20 – 8.8 (base) 400 Nm M 20 – 8.8 (top) 250 Nm

RD 215

Height adjustable

Aluminium

M 27 x 2 M 42 x 2

1000 Nm 1650 Nm

M 20 – 8.8 (base) 400 Nm M 20 – 8.8 (base) 400 Nm

RD 244

Non height adjustable

Aluminium

M 42 x 2

-

M 20 – 8.8 (base) 400 Nm M 20 – 8.8 (top) 250 Nm

RD 244

Height adjustable

Aluminium

M 27 x 2 M 42 x 2

1000 Nm 1650 Nm

M 20 – 8.8 (base) 400 Nm M 20 – 8.8 (base) 400 Nm

RD 314

Non height adjustable

Aluminium

M 27 x 2

300 Nm

M 16 – 8.8 (base) 205 Nm

RD 314

Height adjustable

Aluminium

M 27 x 2

1000 Nm

M 16 – 8.8 (base) 205 Nm

RD 315

Non height adjustable

Aluminium

M 27 x 2

300 Nm

M 16 – 8.8 (base) 205 Nm

RD 315

Height adjustable

Aluminium

M 27 x 2

1000 Nm

M 16 – 8.8 (base) 205 Nm

RD 344

Non height adjustable

Aluminium

M 27 x 2

300 Nm

M 16 – 8.8 (base) 205 Nm

RD 344

Height adjustable

Aluminium

M 27 x 2

1000 Nm

M 16 – 8.8 (base) 205 Nm

Rubber Design BV, Rev. D, 10-03-2009

Tightening torque

Key widths central buffers and nuts special conical mountings (long spindles) Mounting type

Execution

Material

Thread

Key widths Central buffer

Nut

Adjusting nut

RD 113

Non height adjustable

Cast iron

M 48 x 3

30

75

-

RD 214

Non height adjustable

Aluminium Aluminium Aluminium Cast iron Cast iron

M 24 x 2 M 27 x 2 M 42 x 2 M 42 x 2 1 1/2”-12UNF

19 19 30 30 1 1/8” (28,6)

36 41 65 65 2 1/4” (57,2)

-

RD 214

Height adjustable

Aluminium Cast iron Cast iron

M 24 x 2 M 27 x 2 M 42 x 2

19 19 30

36 41 65

90 90 90

RD 215

Non height adjustable

Aluminium Aluminium

M 24 x 2 M 42 x 2

19 30

36 65

-

RD 215

Height adjustable

Cast iron Cast iron

M 27 x 2 M 42 x 2

19 30

41 65

90 90

RD 244

Height adjustable

Cast iron Cast iron

M 27 x 2 M 42 x 2

19 30

41 65

90 90

RD 314

Non height adjustable

Aluminium Aluminium Cast iron Cast iron

M 20 x 1,5 M 24 x 2 M 27 x 2 1”- 12 UNF

13 19 19 3/4” (19,05)

30 36 41 1 1/2” (38,1)

-

RD 314

Height adjustable

Aluminium Cast iron Aluminium Cast iron Cast iron

M 20 x 1,5 M 20 x 1,5 M 24 x 2 M 24 x 2 M 27 x 2

13 13 19 19 19

30 30 36 36 41

65 65 65 65 65

RD 315

Non height adjustable

Aluminium Aluminium Cast iron

M 16 x 1,5 M 24 x 2 M 27 x 2

10 17 19

24 36 41

-

RD 315

Height adjustable

Aluminium Cast iron Aluminium Cast iron Cast iron

M 20 x 1,5 M 20 x 1,5 M 24 x 2 M 24 x 2 M 27 x 2

13 13 19 19 19

30 30 36 36 41

65 65 65 65 65

RD 735

Height adjustable

Cast iron

M 27 x 2

19

41

65

Rubber Design BV, Rev. D, 10-03-2009

Tightening torques bolts and nuts special conical mountings (long spindles) Mounting type

Execution

Material

Nut

Tightening torque

Bolts (4x)

RD 113

Non height adjustable

Cast iron

M 48 x 3

4900 Nm

M 27 – 8.8 (base) 1030 Nm

RD 214

Non height adjustable

Aluminium Aluminium Aluminium Cast iron Cast iron

M 24 x 2 M 27 x 2 M 42 x 2 M 42 x 2 1 1/2”-12UNF

250 Nm 300 Nm 800 Nm 1400 Nm 1400 Nm

M 20 – 8.8 (base) M 20 – 8.8 (base) M 20 – 8.8 (base) M 20 – 8.8 (base) 7/8” UNC (base)

RD 214

Height adjustable

Aluminium M 24 x 2 Cast iron M 27 x 2 Cast iron M 42 x 2

400 Nm 600 Nm 1400 Nm

M 20 – 8.8 (base) 400 Nm M 20 – 8.8 (base) 400 Nm M 20 – 8.8 (base) 400 Nm

RD 215

Non height adjustable

Aluminium M 24 x 2 Aluminium M 42 x 2

250 Nm 800 Nm

M 20 – 8.8 (base) 400 Nm M 20 – 8.8 (base) 400 Nm

RD 215

Height adjustable

Cast iron Cast iron

M 27 x 2 M 42 x 2

600 Nm 1400 Nm

M 20 – 8.8 (base) 400 Nm M 20 – 8.8 (base) 400 Nm

RD 244

Height adjustable

Cast iron Cast iron

M 27 x 2 M 42 x 2

600 Nm 1400 Nm

M 20 – 8.8 (base) 400 Nm M 20 – 8.8 (base) 400 Nm

RD 314

Non height adjustable

Aluminium Aluminium Cast iron Cast iron

M 20 x 1,5 M 24 x 2 M 27 x 2 1”- 12 UNF

200 Nm 400 Nm 600 Nm 600 Nm

M 16 – 8.8 (base) M 16 – 8.8 (base) M 16 – 8.8 (base) 5/8” UNC (base)

205 Nm 205 Nm 205 Nm 205 Nm

RD 314

Height adjustable

Aluminium Cast iron Aluminium Cast iron Cast iron

M 20 x 1,5 M 20 x 1,5 M 24 x 2 M 24 x 2 M 27 x 2

200 Nm 280 Nm 400 Nm 500 Nm 600 Nm

M 16 – 8.8 (base) M 16 – 8.8 (base) M 16 – 8.8 (base) M 16 – 8.8 (base) M 16 – 8.8 (base)

205 Nm 205 Nm 205 Nm 205 Nm 205 Nm

RD 315

Non height adjustable

Aluminium M 16 x 1,5 Aluminium M 24 x 2 Cast iron M 27 x 2

150 Nm 400 Nm 600 Nm

M 16 – 8.8 (base) 205 Nm M 16 – 8.8 (base) 205 Nm M 16 – 8.8 (base) 205 Nm

RD 315

Height adjustable

Aluminium Cast iron Aluminium Cast iron Cast iron

M 20 x 1,5 M 20 x 1,5 M 24 x 2 M 24 x 2 M 27 x 2

200 Nm 280 Nm 400 Nm 500 Nm 600 Nm

M 16 – 8.8 (base) M 16 – 8.8 (base) M 16 – 8.8 (base) M 16 – 8.8 (base) M 16 – 8.8 (base)

RD 735

Height adjustable

Cast iron

M 27 x 2

600 Nm

M 16 – 8.8 (base) 205 Nm

Rubber Design BV, Rev. D, 10-03-2009

Tightening torque

400 Nm 400 Nm 400 Nm 400 Nm 400 Nm

205 Nm 205 Nm 205 Nm 205 Nm 205 Nm

Key widths central buffers and nuts conical mountings with divided stud Mounting type Execution

Material

Thread

Connection thread

Key widths Central buffer

Nut

Adjusting nut

RD 114

Non height adjustable

Cast iron

M 48 x 3

M 36 x 2

30

75

-

RD 114

Height adjustable

Cast iron

M 48 x 3

M 36 x 2

30

75

100

RD 115

Non height adjustable

Cast iron

M 48 x 3

M 36 x 2

30

75

-

RD 214

Non height adjustable

Aluminium M 27 x 2 Cast iron M 42 x 2

M 24 x 2 M 27 x 2

19 30

41 65

-

RD 214

Height adjustable

Aluminium M 27 x 2 Cast iron M 27 x 2

M 24 x 2 M 24 x 2

19 19

41 41

90 90

RD 215

Non height adjustable

Cast iron

M 42 x 2

M 27 x 2

30

65

-

RD 215

Height adjustable

Aluminium M 27 x 2

M 24 x 2

19

41

90

RD 244

Height adjustable

Cast iron

M 24 x 2

19

41

90

RD 314

Non height adjustable

Aluminium M 20 x 1,5 M 18 x 1,5 Aluminium M 27 x 2 M 18 x 1,5 Cast iron M 27 x 2 M 18 x 1,5

13 19 19

30 41 41

-

RD 314

Height adjustable

Aluminium M 27 x 2 Cast iron M 27 x 2

M 18 x 1,5 M 18 x 1,5

19 19

41 41

65 65

RD 315

Non height adjustable

Aluminium M 27 x 2

M 18 x 1,5

19

41

-

RD 315

Height adjustable

Aluminium M 24 x 2 Aluminium M 27 x 2

M 18 x 1,5 M 18 x 1,5

19 19

36 41

65 65

RD 344

Non height adjustable

Cast iron

M 18 x 1,5

19

41

-

Rubber Design BV, Rev. D, 10-03-2009

M 27 x 2

M 27 x 2

Tightening torques bolts and nuts conical mountings with divided stud Mounting type

Execution

Material

Nut

Tightening torque

Bolts (4x)

RD 114

Non height adjustable

Cast iron

M 48 x 3

2800 Nm

M 27 – 8.8 (base) 1030 Nm

RD 114

Height adjustable

Cast iron

M 48 x 3

2800 Nm

M 27 – 8.8 (base) 1030 Nm

RD 115

Non height adjustable

Cast iron

M 48 x 3

2800 Nm

M 27 – 8.8 (base) 1030 Nm

RD 214

Non height adjustable

Aluminium M 27 x 2 Cast iron M 42 x 2

700 Nm 700 Nm

M 20 – 8.8 (base) 400 Nm M 20 – 8.8 (base) 400 Nm

RD 214

Height adjustable

Aluminium M 27 x 2 Cast iron M 27 x 2

700 Nm 700 Nm

M 20 – 8.8 (base) 400 Nm M 20 – 8.8 (base) 400 Nm

RD 215

Non height adjustable

Cast iron

M 42 x 2

700 Nm

M 20 – 8.8 (base) 400 Nm

RD 215

Height adjustable

Aluminium M 27 x 2

700 Nm

M 20 – 8.8 (base) 400 Nm

RD 244

Height adjustable

Cast iron

700 Nm

M 20 – 8.8 (base) 400 Nm

RD 314

Non height adjustable

Aluminium M 20 x 1,5 Aluminium M 27 x 2 Cast iron M 27 x 2

200 Nm 300 Nm 300 Nm

M 16 – 8.8 (base) 205 Nm M 16 – 8.8 (base) 205 Nm M 16 – 8.8 (base) 205 Nm

RD 314

Height adjustable

Aluminium M 27 x 2 Cast iron M 27 x 2

300 Nm 300 Nm

M 16 – 8.8 (base) 205 Nm M 16 – 8.8 (base) 205 Nm

RD 315

Non height adjustable

Aluminium M 27 x 2

300 Nm

M 16 – 8.8 (base) 205 Nm

RD 315

Height adjustable

Aluminium M 24 x 2 Aluminium M 27 x 2

250 Nm 300 Nm

M 16 – 8.8 (base) 205 Nm M 16 – 8.8 (base) 205 Nm

RD 344

Non height adjustable

Cast iron

300 Nm

M 16 – 8.8 (base) 205 Nm

Rubber Design BV, Rev. D, 10-03-2009

M 27 x 2

M 27 x 2

Tightening torque

Maintenance of the conical mountings •

The life expectancy of the rubber elements will be approx. 20 years in ideal circumstances. Unfortunately ideal circumstances are not feasible, therefore the (working) life expectancy will be approx. 10 years. The life expectancy of the rubber elements is dependent on the environmental circumstances (weather influences, contaminants, etc).



A visual inspection of the conical mountings should be carried out six months after installation and should repeated every year. For better recognition of damages one can use a blunt pin. The use of a screwdriver is not advisable, because of the damage it can cause to the conical mountings.



The use of a natural rubber (NR) compound for the rubber elements means that they are not oil resistant. The occasional occurrence of oil-leaks does not effect the working of the conical mountings, because the oil will only damage the surface of the rubber elements. In case of oil contamination the rubber elements will show some signs of swelling.



To prevent damage caused by oil contamination, the rubber elements can be treated with an oil resistant coating.



When cleaning the engine or the engine room with a solvent cleansing agent, it is advisable to cover up the conical mountings. If the cleansing agent still contaminates the rubber elements, they should be cleaned as follows.



Storage, cleaning and maintenance of the rubber elements should be done in accordance with DIN 7716. The cleaning of the conical mountings should be done with a normal (household) cleansing agent. It is also advisable to use a glycerine-alcohol mixture (1:10). Do not use a solvent cleansing agent.



In cases where it is necessary to replace the rubber insert, we advise to return the complete conical mounting to Rubber Design BV.



If required, the conical mountings can be painted by the customer. Be aware that only the top- and base casting of the conical mounting can be painted. Do not use paint on the rubber element as the rubber element might be contaminated and therefore be damaged.



The central buffer clearance should be examined and reset if necessary after the first week, after three months, and thereafter to fit in with normal maintenance programmes.



Each conical mounting has a serial number for identification which will be used for replacement to deliver a complete new identical product or to replace the insert of the mountings in question with genuine inserts and / or parts.

Serial number Rubberhardness Type of mounting •

All deliveries are stored for over 20 years in a database including all relevant data and characteristics.

Rubber Design BV, Rev. D, 10-03-2009

Weight of the standard conical mountings Mounting type

Execution

Material

Approximate weight

RD 113

Non height adjustable

Cast iron

64,5 kg

RD 114

Non height adjustable

Cast iron

59,5 kg

RD 114

Height adjustable

Cast iron

62,0 kg

RD 115

Non height adjustable

Cast iron

58,0 kg

RD 115

Height adjustable

Cast iron

60,5 kg

RD 214

Non height adjustable

Cast iron Aluminium

25,5 kg 13,5 kg

RD 214

Height adjustable

Cast iron Aluminium

27,0 kg 14,0 kg

RD 215

Non height adjustable

Cast iron Aluminium

25,0 kg 13,0 kg

RD 215

Height adjustable

Cast iron Aluminium

26,5 kg 13,5 kg

RD 244

Non height adjustable

Cast iron Aluminium

25,5 kg 13,5 kg

RD 244

Height adjustable

Cast iron Aluminium

27,0 kg 14,0 kg

RD 314

Non height adjustable

Cast iron Aluminium

16,0 kg 8,0 kg

RD 314

Height adjustable

Cast iron Aluminium

16,3 kg 8,3 kg

RD 315

Non height adjustable

Cast iron Aluminium

15,2 kg 7,2 kg

RD 315

Height adjustable

Cast iron Aluminium

15,5 kg 7,5 kg

RD 344

Non height adjustable

Cast iron Aluminium

15,6 kg 7,6 kg

RD 344

Height adjustable

Cast iron Aluminium

15,9 kg 7,9 kg

Rubber Design BV, Rev. D, 10-03-2009

Thermo shock, thermal expansion and creep effect of the conical mountings The typical creep rate of the conical mountings will vary with compound, rubber hardness, dynamic loads and strain. A typical figure for a natural rubber compound in ° Shore A for loads in between the maximum static load marine application and half that load will be 2% of the static deflection increase per decade. 48 hours after loading, more than half of the total creep figure over 20 years will be achieved. Every temperature exceeding the latest achieved peak temperature will cause a permanent set of the conical mounting of approximately 0,01 mm /°C in the range from 20° to 70° C. For instance the first thermal load from surrounding temperature to normal working temperature will cause an extra set of the deflected height next to the normal creep. Every time the mounting temperature is raised to the normal working temperature, no extra set will occur. Once the normal working temperature is exceeded, an extra set will occur again. The permanent set is directly related to the temperature of the rubber element. The typical thermal expansion rate of the conical mounting will be approx. 0,03 mm / °C increase in height depending on compound, rubber hardness and strain. The expansion rate is directly related to the temperature of the rubber element. On the next page you will find a sketch with the explanation of the deflections, thermo shock, thermal expansion and extra deflections caused by creep. The numbers correspond with the numbers in the sketch. The values as mentioned are all assumptions. 1) After assembly of the mountings, we will preset the mountings for 4 mm to simplify the installation of the mountings underneath the diesel engine. 2) After the engine is installed on the mountings, the weight of the diesel engine will be distributed over the mountings and a deflection of 10 mm is reached. 3) Due to the pre-heating of the diesel engine form 15° C to 35° C and supposed that the mountings will follow after a period of time to the same level of temperature, the mountings will have a thermo shock over the difference of 20° C. Based on our experience this will be 20 x 0,01 mm = 0,2 mm. This will result in a permanent extra deflection. 4) In the meantime the conical mounting will grow due to the thermal expansion over the same range of 20° C. Based on our experience this will be 20 x 0,03 mm = 0,6 mm. 5) After cool down of the installation, the mountings will follow and the conical mountings become the same height before the pre-heating of the diesel engine. Only the 0,2 mm of the thermo shock remains. 6) Due to the full operation of the engine, the mountings will reach a temperature of let’s say 55° C. The thermo shock effect will cause an extra deflection; however, only from 35° C to 55° C !! Based on our experience this will be 20 x 0,01 mm = 0,2 mm. This will again result in a permanent extra deflection. 7) In the meantime the conical mounting will grow due to the thermal expansion over the same range of 40° C. Based on our experience this will be 40 x 0,03 mm = 1,2 mm. 8) After cool down of the installation, the mountings will follow and the conical mountings become the same height before the pre-heating of the diesel engine. Only the 0,2 mm of the thermo shock remains. 9) In the meantime we have an extra deflection caused by creep; this starts already at point 1 and will be after a period of approx. 2 years 1,49 mm. The extra deflection per decade will be 2 % and can be calculated as follows. 6 sec 10,00 mm deflection 60 sec 10,00 x 1,02 10,20 mm deflection 600 sec 10,20x 1,02 10,40 mm deflection 7

1,9 year 10,00 x 1,02 11,49 mm deflection 10) So, when the engine is not running and supposed that the environment temperature is 15° C, the deflection will be 11,90 mm. During running the conical mountings can reach a temperature of 55° C and the deflection will be 10,70 mm due to thermal expansion.

Rubber Design BV, Rev. D, 10-03-2009

Thermo shock, thermal expansion and creep effect of the conical mountings

Rubber Design BV, Rev. D, 10-03-2009

Data sheet for loaded height

Unloaded condition

Loaded condition

Before measuring the loaded height; please make sure that the internal buffer (spindle) can be turned freely. As a minimum; please measure or H1 + H2 or H3 + H4 Pos

Serial number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Rubber Design BV, Rev. D, 10-03-2009

H1

H2

H3

H4

Minimum dimensions to reject a flexible mounted system Marine application

Stationary application

Mounting type

Tolerance Shore A. Mounting Height H1 (Unloaded)

X-dimension H3 (Unloaded) GGG Alu

Max. Deflection

X-dimension H4 (Loaded)

Mounting height H2 (Loaded)

RD 114 RD 114 RD 114 RD 114 RD 114

45 50 55 60 65

181,0 181,0 181,0 181,0 181,0

+1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5

44,0 44,0 44,0 44,0 44,0

16,0 15,0 15,0 14,0 13,0

28,0 29,0 29,0 30,0 31,0

165,0 * 166,0 * 166,0 * 167,0 * 168,0 *

RD 115 RD 115 RD 115 RD 115 RD 115

45 50 55 60 65

181,0 181,0 181,0 181,0 181,0

+1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5

44,0 44,0 44,0 44,0 44,0

18,0 18,0 18,0 18,0 17,0

26,0 26,0 26,0 26,0 27,0

163,0 * 163,0 * 163,0 * 163,0 * 164,0 *

Mounting type

Shore A. Mounting Tolerance Height H1 (Unloaded)

X-dimension H3 (Unloaded) GGG Alu

Max. Deflection

X-dimension H4 (Loaded)

Mounting height H2 (Loaded)

RD 114 RD 114 RD 114 RD 114 RD 114

45 50 55 60 65

181,0 181,0 181,0 181,0 181,0

+1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5

44,0 44,0 44,0 44,0 44,0

18,0 17,0 16,0 16,0 14,0

26,0 27,0 28,0 28,0 30,0

163,0 * 164,0 * 165,0 * 165,0 * 167,0 *

RD 115 RD 115 RD 115 RD 115 RD 115

45 50 55 60 65

181,0 181,0 181,0 181,0 181,0

+1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5

44,0 44,0 44,0 44,0 44,0

20,0 20,0 20,0 19,0 18,0

24,0 24,0 24,0 25,0 26,0

161,0 * 161,0 * 161,0 * 162,0 * 163,0 *

* : The mounting height H2 (Loaded) is related to the mounting height H1 (Unloaded) without observing the tolerance.

Rubber Design BV, Rev. D, 10-03-2009

Minimum dimensions to reject a flexible mounted system Marine application

Stationary application

Mounting type

Tolerance Shore A. Mounting Height H1 (Unloaded)

X-dimension H3 (Unloaded) GGG Alu

Max. Deflection

X-dimension H4 (Loaded)

Mounting height H2 (Loaded)

RD 214 RD 214 RD 214 RD 214 RD 214 RD 214 RD 214

45 50 55 60 65 70 MDX

175,0 175,0 175,0 175,0 175,0 175,0 175,0

+1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5

44,5 44,5 44,5 44,5 44,5 44,5 44,5

43,5 43,5 43,5 43,5 43,5 43,5 43,5

16,0 16,0 15,0 15,0 14,0 13,0 15,0

28,5 28,5 29,5 29,5 30,5 31,5 29,5

159,0 * 159,0 * 160,0 * 160,0 * 161,0 * 162,0 * 160,0 *

RD 215 RD 215 RD 215 RD 215 RD 215

45 50 55 60 65

175,0 175,0 175,0 175,0 175,0

+1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5

44,5 44,5 44,5 44,5 44,5

43,5 43,5 43,5 43,5 43,5

18,0 18,0 18,0 18,0 17,0

26,5 26,5 26,5 26,5 27,

157,0 * 157,0 * 157,0 * 157,0 * 158,0 *

RD 244 RD 244 RD 244 RD 244 RD 244

45 50 55 60 65

175,0 175,0 175,0 175,0 175,0

+1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5

44,5 44,5 44,5 44,5 44,5

43,5 43,5 43,5 43,5 43,5

16,0 16,0 15,0 15,0 14,0

28,5 28,5 29,5 29,5 30,5

159,0 * 159,0 * 160,0 * 160,0 * 161,0 *

Mounting type

Shore A. Mounting Tolerance Height H1 (Unloaded)

X-dimension H3 (Unloaded) GGG Alu

Max. Deflection

X-dimension H4 (Loaded)

Mounting height H2 (Loaded)

RD 214 RD 214 RD 214 RD 214 RD 214 RD 214 RD 214

45 50 55 60 65 70 MDX

175,0 175,0 175,0 175,0 175,0 175,0 175,0

+1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5

44,5 44,5 44,5 44,5 44,5 44,5 44,5

43,5 43,5 43,5 43,5 43,5 43,5 43,5

18,0 17,0 17,0 16,0 15,0 14,0 16,0

26,5 27,5 27,5 28,5 29,5 30,5 28,5

157,0 * 158,0 * 158,0 * 159,0 * 160,0 * 161,0 * 159,0 *

RD 215 RD 215 RD 215 RD 215 RD 215

45 50 55 60 65

175,0 175,0 175,0 175,0 175,0

+1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5

44,5 44,5 44,5 44,5 44,5

43,5 43,5 43,5 43,5 43,5

20,0 20,0 19,0 19,0 18,0

24,5 24,5 25,5 25,5 26,5

155,0 * 155,0 * 156,0 * 156,0 * 157,0 *

RD 244 RD 244 RD 244 RD 244 RD 244

45 50 55 60 65

175,0 175,0 175,0 175,0 175,0

+1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5

44,5 44,5 44,5 44,5 44,5

43,5 43,5 43,5 43,5 43,5

17,0 17,0 17,0 16,0 15,0

27,5 27,5 27,5 28,5 29,5

158,0 * 158,0 * 158,0 * 159,0 * 160,0 *

* : The mounting height H2 (Loaded) is related to the mounting height H1 (Unloaded) without observing the tolerance.

Rubber Design BV, Rev. D, 10-03-2009

Minimum dimensions to reject a flexible mounted system Marine application

Stationary application

Mounting type

Tolerance Shore A. Mounting Height H1 (Unloaded)

X-dimension H3 (Unloaded) GGG Alu

Max. Deflection

X-dimension H4 (Loaded)

Mounting height H2 (Loaded)

RD 314 RD 314 RD 314 RD 314 RD 314 RD 314

45 50 55 60 65 MDX

132,5 132,5 132,5 132,5 132,5 132,5

+1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5

32,5 32,5 32,5 32,5 32,5 32,5

31,5 31,5 31,5 31,5 31,5 31,5

15,0 14,0 14,0 13,0 13,0 14,0

17,5 18,5 18,5 19,5 19,5 18,5

117,5 * 118,5 * 118,5 * 119,5 * 119,5 * 118,5 *

RD 315 RD 315 RD 315 RD 315 RD 315

45 50 55 60 65

132,5 132,5 132,5 132,5 132,5

+1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5

32,5 32,5 32,5 32,5 32,5

31,5 31,5 31,5 31,5 31,5

17,0 17,0 16,0 16,0 16,0

15,5 15,5 16,5 16,5 16,5

115,5 * 115,5 * 116,5 * 116,5 * 116,5 *

RD 344 RD 344 RD 344 RD 344 RD 344

45 50 55 60 65

132,5 132,5 132,5 132,5 132,5

+1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5

32,5 32,5 32,5 32,5 32,5

31,5 31,5 31,5 31,5 31,5

15,0 14,0 14,0 14,0 13,0

17,5 18,5 18,5 18,5 19,5

117,5 * 118,5 * 118,5 * 118,5 * 119,5 *

RD 735 RD 735

60 65

132,5 132,5

+1,0 / -1,5 32,5 +1,0 / -1,5 32,5

16,0 16,0

16,5 16,5

116,5 * 116,5 *

Mounting type

Shore A. Mounting Tolerance Height H1 (Unloaded)

X-dimension H3 (Unloaded) GGG Alu

Max. Deflection

X-dimension H4 (Loaded)

Mounting height H2 (Loaded)

RD 314 RD 314 RD 314 RD 314 RD 314 RD 314

45 50 55 60 65 MDX

132,5 132,5 132,5 132,5 132,5 132,5

+1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5

32,5 32,5 32,5 32,5 32,5 32,5

31,5 31,5 31,5 31,5 31,5 31,5

16,0 16,0 15,0 15,0 14,0 15,0

16,5 16,5 17,5 17,5 18,5 17,5

116,5 * 116,5 * 117,5 * 117,5 * 118,5 * 117,5 *

RD 315 RD 315 RD 315 RD 315 RD 315

45 50 55 60 65

132,5 132,5 132,5 132,5 132,5

+1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5

32,5 32,5 32,5 32,5 32,5

31,5 31,5 31,5 31,5 31,5

19,0 18,0 18,0 18,0 17,0

13,5 14,5 14,5 14,5 15,5

113,5 * 114,5 * 114,5 * 114,5 * 115,5 *

RD 344 RD 344 RD 344 RD 344 RD 344

45 50 55 60 65

132,5 132,5 132,5 132,5 132,5

+1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5 +1,0 / -1,5

32,5 32,5 32,5 32,5 32,5

31,5 31,5 31,5 31,5 31,5

16,0 16,0 15,0 15,0 14,0

16,5 16,5 17,5 17,5 18,5

116,5 * 116,5 * 117,5 * 117,5 * 118,5 *

RD 735 RD 735

60 65

132,5 132,5

+1,0 / -1,5 32,5 +1,0 / -1,5 32,5

18,0 17,0

14,5 15,5

114,5 * 115,5 *

* : The mounting height H2 (Loaded) is related to the mounting height H1 (Unloaded) without observing the tolerance

Rubber Design BV, Rev. D, 10-03-2009

Rubber Design B.V. - Industrieweg 21 - P.O. Box 15 - 2995 ZG Heerjansdam - The Netherlands Telephone +31 (0)78 677 87 78 - Telefax +31 (0)78 677 10 38 www.rubberdesign.nl – [email protected]

Comisión 311004728 Nro. de plano 1K60100129

Instrucciones de instalación y de mantenimiento para acoplamiento independiente VULKARDAN-E/Rato-R de VULKAN Serie constructiva 4110, 4111, 4400/2400 Índice: 1 1.1 1.2 1.3 2 3 4 4.1 4.2 5 6 6.1 6.2 6.3 6.4 6.5 7 7.1 7.2 8 9 10 10.1 10.2 10.3 10.4 10.5 11 12

Indicaciones generales de seguridad ......................................................................................................... 2 Símbolo de seguridad de trabajo ..............................................................................................................2 Indicación de atención ..............................................................................................................................2 Disposiciones de seguridad ......................................................................................................................2 Generalidades ............................................................................................................................................ 2 Datos técnicos ............................................................................................................................................ 2 Series constructivas y ejecuciones............................................................................................................. 3 Serie constructiva 4110 y 4111.................................................................................................................3 Serie constructiva 4400/2400 ...................................................................................................................4 Seguro contra resbalamiento ..................................................................................................................... 6 Montaje del acoplamiento........................................................................................................................... 7 Montaje del acoplamiento VULKARDAN-E/RATO-R, tamaño constructivo 4010 - 5710.........................7 Montaje del acoplamiento VULKARDAN-E/RATO-R, tamaños constructivos 5410 –5710 y 6010 .........7 Montaje del acoplamiento VULKARDAN-E/RATO-R, tamaño constructivo 4020....................................8 Montaje del acoplamiento VULKARDAN-E/RATO-R, tamaño constructivo 4920....................................8 Montaje del acoplamiento VULKARDAN-E/RATO-R, tamaño constructivo 5420, 5720..........................9 Acoplamientos con cubos para un apriete hidráulico................................................................................. 9 Colocación del cubo..................................................................................................................................9 Desmontaje del cubo ..............................................................................................................................10 Alineación del acoplamiento..................................................................................................................... 10 Puesta en servicio y previsiones de seguridad ........................................................................................ 11 Reemplazo del elemento VULKARDAN-E/RATO-R ................................................................................ 11 Reemplazo del elemento, tamaño constructivo 4010-5710................................................................11 Reemplazo del elemento, tamaño constructivo 5410-5710 y 6010 ....................................................12 Reemplazo del elemento, tamaño constructivo 4020 .........................................................................12 Reemplazo del elemento, tamaño constructivo 4920 .........................................................................13 Reemplazo del elemento, tamaño constructivo 5420 y 5720 .............................................................13 Garantía.................................................................................................................................................... 13 Mantenimiento .......................................................................................................................................... 14

VULKAN Kupplungs- und Getriebebau B. Hackforth GmbH & Co. KG Postfach 200462, 44634 Herne / Germany Heerstraße 66, 44653 Herne / Germany Tel. ++49-2325/922-0 Fax ++49-2325/71110 E-Mail: [email protected] http://www.vulkan.com

Tema Vulkardan-E/RATO-R 4110, 4111, 4400/2400 Título Instr. de instalación y de mantenimiento Vulkardan-E RATO-R Sector Elaborado Controlado y aprobado Documento: E&W 4110, 4111, 4400 spanischresponsable 07.02.2007 07.02.2007 Versión: 010 TB 20

S. Prübner

T. Schoppe

Página: 1/16

1 1.1

Indicaciones generales de seguridad Símbolo de seguridad de trabajo Este símbolo se encuentra en todas las indicaciones de seguridad de trabajo de esta documentación, en las que exista peligro para el cuerpo y la vida de personas. Observe estas indicaciones y compórtese en forma especialmente cuidadosa en estos casos. Transmita todas las indicaciones de seguridad de trabajo también a otros usuarios.

1.2

Indicación de atención

¡Atención! 1.3

Este “¡Atención!” está escrito en todos los sitios de esta documentación que deban ser especialmente observados para que sean cumplidas las directivas, prescripciones, indicaciones y el correcto desarrollo de los trabajos, así como para evitar el daño y la destrucción del acoplamiento.

Disposiciones de seguridad

El acoplamiento debe ser cubierto de acuerdo a las prescripciones válidas para la prevención de accidentes. Según EN 292, parte 1 “Seguridad de máquinas” es admisible una cubierta contra el movimiento mecánico de partes de máquinas (protección contra contacto), si está garantizado el “uso conforme” durante todos los estados de operación. Para ello debe asegurarse una buena ventilación del acoplamiento (empleo de chapas perforadas). Si no es posible descartar completamente la posibilidad técnica de sobrepasar la velocidad máxima admisible del acoplamiento nKmax indicada en el catálogo, p.ej. en caso de perturbación o por ineficacia de un equipo de limitación del número de giros en la instalación, debe ejecutarse el dispositivo de protección de tal manera, que puedan ser retenidos con seguridad fragmentos del acoplamiento. Para el uso del acoplamiento en barcos rápidos (Dynamically Supported Craft) valen las prescripciones de seguridad de la publicación A373 de la IMO (International Maritime Organization). Estas instalaciones de máquinas contienen por motivos de diseño, componentes con alta energía de rotación. En tanto el acoplamiento marche fuera de una carcasa, debe colocarse un dispositivo de protección externo, que retenga con seguridad eventuales fragmentos del acoplamiento.

2 Generalidades El acoplamiento VULKARDAN-E es un acoplamiento de alta elasticidad. Todas las piezas transmisoras de par están colocadas sin juego. El acoplamiento VULKARDAN-E/RATO-R debe ser protegido contra aceite y radiación de calor. Los elementos de alta elasticidad (Pos. 7) están diseñados para temperaturas ambiente desde –45°C hasta +90°C (elementos de silicona desde –45°C hasta +120°C). En el acoplamiento VULKARDAN-E/RATO-R básicamente se conservan antes del suministro las superficies de conexión así como las perforaciones de ajuste y las perforaciones terminadas con Tectyl. Antes del montaje del acoplamiento deben limpiarse estas superficies con disolventes convencionales.

Preste atención para que durante trabajos con agentes disolventes se vista ropa de protección (guantes, gafas de protección, etc.). Una vez que las superficies limpias estén completamente secas deberán ser engrasadas ligeramente. Para garantizar un funcionamiento impecable del acoplamiento, deben observarse determinadas prescripciones de instalación. Cada unión atornillada que participe en la transmisión del par, debe básicamente ser apretada con una llave dinamométrica. Los momentos de apriete para los tornillos (pos. 9, 10, 11, 12, 14) están indicados en el plano general del acoplamiento.

3 Datos

técnicos

Los datos técnicos válidos obténgalos por favor de las informaciones actuales de producto en catálogos o bien de las páginas de Internet.

Tema Vulkardan-E/RATO-R 4110, 4111, 4400/2400 Título Instr. de instalación y de mantenimiento Vulkardan-E RATO-R Sector Elaborado Controlado y aprobado Documento: E&W 4110, 4111, 4400 spanischresponsable 07.02.2007 07.02.2007 Versión: 010 TB 20

S. Prübner

T. Schoppe

Página: 2/16

4

Series constructivas y ejecuciones

Acoplamientos VULKARDAN-E/RATO-R son suministrables en las siguientes ejecuciones:

4.1

Serie constructiva 4110 y 4111 

Para la conexión de un volante SAE con un eje



Cambio de elementos sin desplazamiento de los equipos conectados



Serie constructiva 4110 sin seguro contra resbalamiento



Serie constructiva 4111 así como 4110, pero con seguro contra resbalamiento

Figura 1 4110

Figura 2

Tamaño 40, 49, 54, 57

Tamaño 40, 49 4111

Tamaño 60 – 4110

Tamaño 54, 57 4111

Tamaño 60 - 4111

Tema Vulkardan-E/RATO-R 4110, 4111, 4400/2400 Título Instr. de instalación y de mantenimiento Vulkardan-E RATO-R Sector Elaborado Controlado y aprobado Documento: E&W 4110, 4111, 4400 spanischresponsable 07.02.2007 07.02.2007 Versión: 010 TB 20

S. Prübner

T. Schoppe

Página: 3/16

4.2

Serie constructiva 4400/2400 

Para la conexión de dos ejes 18

17

Figura 3

Tamaño 40, 49, 54, 57

Figura 4

Tamaño 60

Tema Vulkardan-E/RATO-R 4110, 4111, 4400/2400 Título Instr. de instalación y de mantenimiento Vulkardan-E RATO-R Sector Elaborado Controlado y aprobado Documento: E&W 4110, 4111, 4400 spanischresponsable 07.02.2007 07.02.2007 Versión: 010 TB 20

S. Prübner

T. Schoppe

Página: 4/16

Figura 5

Tamaño 40

Figura 6

Tamaño 49

Tema Vulkardan-E/RATO-R 4110, 4111, 4400/2400 Título Instr. de instalación y de mantenimiento Vulkardan-E RATO-R Sector Elaborado Controlado y aprobado Documento: E&W 4110, 4111, 4400 spanischresponsable 07.02.2007 07.02.2007 Versión: 010 TB 20

S. Prübner

T. Schoppe

Página: 5/16

Figura 7

5

Tamaño 54 y 57

Seguro contra resbalamiento

En la serie constructiva 4111 se suministra el acoplamiento VULKARDAN-E/RATO-R con un seguro contra resbalamiento. Este seguro contra resbalamiento permite una operación de emergencia. En operación de emergencia debe operarse la instalación de tal manera que no se produzca un impacto entre las levas. Un reemplazo de elementos debe efectuarse lo antes posible. Después de una rotura del elemento del VULKARDAN-E/RATO-R y de aplicarse el seguro contra resbalamiento, debe ser reemplazado además del elemento mismo, también el anillo de levas.

¡Atención!

En el seguro contra resbalamiento debe prestarse especial atención a que las levas estén desplazadas 90° entre sí.

Figura 5

Tema Vulkardan-E/RATO-R 4110, 4111, 4400/2400 Título Instr. de instalación y de mantenimiento Vulkardan-E RATO-R Sector Elaborado Controlado y aprobado Documento: E&W 4110, 4111, 4400 spanischresponsable 07.02.2007 07.02.2007 Versión: 010 TB 20

S. Prübner

T. Schoppe

Página: 6/16

6

Montaje del acoplamiento

Para el transporte observe que los elementos de izaje tengan la suficiente capacidad de carga. Utilice sólo elementos de transporte aprobados. Fije cuidadosamente los elementos de transporte.

¡Atención! 6.1

Asegúrese que al levantar no sean dañados el elemento elástico y los elementos adicionales.

Montaje del acoplamiento VULKARDAN-E/RATO-R, tamaño constructivo 4010 - 5710

(ver Figura 1) El acoplamiento VULKARDAN-E/RATO-R es suministrado premontado por VULKAN. Para la instalación se separa el acoplamiento entre el grupo constructivo membrana (pos. 3) y el disco de brida (pos. 4). Para ello deben quitarse los elementos de fijación (pos. 10, 16, 18). A continuación se extraen los elementos de fijación (pos. 9, 15) y el disco de brida (pos.4) es apoyado sobre el eje sobre el que se debe instalar el cubo de montaje (pos.1).

¡Atención!

El disco de brida (pos. 4) debe ser apoyado sobre el eje antes de instalar el cubo de montaje (pos.1). El cubo de montaje (pos. 1) se instala sobre el extremo del eje según un proceso que esté de acuerdo al estado actual de la técnica. El elemento elástico (pos. 7) con el grupo constructivo membrana (pos. 3) es colocado ahora como unidad en la instalación y conectado con el volante. A continuación se monta el disco de brida (pos. 4) al cubo de montaje (pos. 1) con elementos de fijación adecuados (pos. 9, 15). Para ello debe observarse la identificación. A continuación puede unirse el disco de brida (pos. 4) y el grupo constructivo membrana (pos. 3) con los elementos de fijación (pos. 10, 16, 18). La alineación de la instalación y el control de alineación se describen en forma separada. El montaje del cubo mediante apriete hidráulico se describe en forma separada.

6.2

Montaje del acoplamiento VULKARDAN-E/RATO-R, tamaños constructivos 5410 –5710 y 6010

(ver Figura 2, Figura 3, Figura 4) El acoplamiento VULKARDAN-E/RATO-R es suministrado premontado por Vulkan. Para la instalación se separa el acoplamiento entre el grupo constructivo membrana (pos. 3) y el cubo (pos. 1). Para ello deben quitarse los elementos de sujeción (pos. 9, 15), para poder desmontar también el anillo de 2 partes (pos. 6) y quitarlo del cubo. El cubo (pos. 1) se instala sobre el extremo del eje según un proceso que esté de acuerdo al estado actual de la técnica. En la serie constructiva 4400 se separan los elementos de fijación (pos. 12, 15) del elemento elástico (pos. 7) y del cubo (pos. 5). En la serie constructiva 6010 se quitan adicionalmente los elementos de fijación (pos. 13, 14, 19) y se separa el plato de brida (pos. 2) del cubo (pos. 5). El cubo (pos. 5) se instala igualmente sobre el otro extremo libre del eje según un proceso que esté de acuerdo al estado actual de la técnica. El elemento elástico (pos. 7) se separa del grupo constructivo membrana (pos. 3) quitando los elementos de fijación (pos. 10, 16) El grupo constructivo membrana es colocado en la instalación y apoyado sobre el cubo (pos. 1). El elemento elástico (pos. 7) es ahora colocado en la instalación y conectado con el grupo constructivo membrana (pos. 3) y con el volante. En la serie constructiva 4400 se coloca en la instalación el elemento elástico (pos. 7). Para ello debe desplazarse el grupo constructivo membrana (pos. 3) contra la superficie de conexión del cubo (pos. 1) de manera que pueda colocarse el elemento elástico (pos. 7) y en el tamaño constructivo 6010 ser colocada y ajustada con los elementos de fijación (pos. 13, 14, 19) la brida de plato (pos. 2) antes del cubo (pos. 5) con el elemento elástico (pos. 7). Ahora se conectan el grupo constructivo membrana (pos. 3) con el elemento elástico (pos. 7) así como el elemento elástico (pos. 7) o bien el plato de brida (pos. 2) con el cubo (pos. 5). Para ello deben emplearse los elementos de fijación (pos. 10, 16 y 12, 15). Tema Vulkardan-E/RATO-R 4110, 4111, 4400/2400 Título Instr. de instalación y de mantenimiento Vulkardan-E RATO-R Sector Elaborado Controlado y aprobado Documento: E&W 4110, 4111, 4400 spanischresponsable 07.02.2007 07.02.2007 Versión: 010 TB 20

S. Prübner

T. Schoppe

Página: 7/16

A continuación debe colocarse el anillo de 2 partes (pos. 6) entre el grupo constructivo membrana (pos. 3) y el cubo (pos. 1) y volver a establecer la conexión con los elementos de fijación adecuados (pos. 9, 15). La alineación de la instalación y el control de alineación se describen en forma separada. El montaje del cubo mediante apriete hidráulico se describe en forma separada.

6.3

Montaje del acoplamiento VULKARDAN-E/RATO-R, tamaño constructivo 4020

(ver figura 5) El acoplamiento VULKARDAN-E/RATO-R es suministrado premontado por VULKAN. Para la instalación se separa el acoplamiento entre el grupo constructivo membrana (pos. 3) y el disco de brida (pos. 4). Para ello deben quitarse los elementos de fijación (pos. 10, 16, 18). A continuación se extraen los elementos de fijación (pos. 9, 15) y el disco de brida (pos.4) es apoyado sobre el eje sobre el que se debe instalar el cubo de montaje (pos.1).

¡Atención!

El disco de brida (pos. 4) debe ser apoyado sobre el eje antes de instalar el cubo de montaje (pos.1). El cubo de montaje (pos. 1) se instala sobre el extremo del eje según un proceso que esté de acuerdo al estado actual de la técnica. A continuación desmontar los elementos de fijación (pos. 12), de tal manera que el cubo (pos. 5) pueda soltarse del resto del acoplamiento. El cubo (pos. 5) se instala igualmente sobre el otro extremo libre del eje según un proceso que esté de acuerdo al estado actual de la técnica. A continuación, el resto del acoplamiento puede ser incorporado a la instalación como una unidad consistente de las pos. 2, 3, 6, 7, 8, 11, 13, 14, 17, 19 y mediante los elementos de fijación (pos. 12) ser unido al cubo (pos. 5). El par de apriete requerido para la calidad de tornillos seleccionada está indicado sobre el plano. Finalmente se une el disco de brida (pos. 4) con el grupo constructivo membrana (pos. 3) y el cubo de montaje (pos. 1). Para ello deben emplearse los elementos de fijación (pos. 9, 10, 15, 16, 18). El par de apriete requerido para la calidad de tornillos seleccionada está indicado sobre el plano. La alineación de la instalación y el control de alineación se describen en forma separada. El montaje mediante apriete hidráulico se describe asimismo en forma separada.

6.4

Montaje del acoplamiento VULKARDAN-E/RATO-R, tamaño constructivo 4920

(ver figura 6) El acoplamiento VULKARDAN-E/RATO-R es suministrado premontado por VULKAN. Para la instalación se separa el acoplamiento entre el grupo constructivo membrana (pos. 3) y el disco de brida (pos. 4). Para ello deben quitarse los elementos de fijación (pos. 10, 16, 18). A continuación se extraen los elementos de fijación (pos. 9, 15) y el disco de brida (pos.4) es apoyado sobre el eje sobre el que se debe instalar el cubo de montaje (pos.1).

¡Atención! El disco de brida (pos. 4) debe ser apoyado sobre el eje antes de instalar el cubo de montaje (pos.1). El cubo de montaje (pos. 1) se instala sobre el extremo del eje según un proceso que esté de acuerdo al estado actual de la técnica. A continuación aflojar y quitar los elementos de fijación (pos. 13, 14, 19), para que el elemento elástico (pos. 7) con el grupo constructivo membrana (pos. 3) conectado pueda ser separado del anillo de centrado (pos. 8). Ahora separar el anillo de centrado (pos. 8) y el elemento elástico (pos. 6) del cubo de montaje (pos. 5) Para ello deben quitarse los elementos de fijación (pos. 12, 17). El cubo de montaje (pos. 5) puede ser instalado ahora igualmente sobre el otro extremo libre del eje según un proceso que esté de acuerdo al estado actual de la técnica. A continuación se une nuevamente el elemento elástico (pos. 6) junto con el anillo de centrado (pos. 8), mediante los elementos de fijación (pos. 12, 17), con el cubo de montaje (pos. 5). Asimismo colocar la unidad de acoplamiento restante, el elemento elástico (pos. 7) y el grupo constructivo membrana (pos. 3) en la instalación y unirlos usando los elementos de fijación (pos. 13, 14, 19) con el anillo de centrado. El par de apriete requerido para la calidad de tornillos seleccionada está indicado sobre el plano. Finalmente se une el disco de brida (pos. 4) con el grupo constructivo membrana (pos. 3) y el cubo (pos. 1). Para ello deben emplearse los elementos de fijación (pos. 9, 10, 15, 16, 18). El par de apriete requerido para la calidad de tornillos seleccionada está indicado sobre el plano. La alineación de la instalación y el control de alineación se describen en forma separada. El montaje mediante apriete hidráulico se describe asimismo en forma separada. Tema Vulkardan-E/RATO-R 4110, 4111, 4400/2400 Título Instr. de instalación y de mantenimiento Vulkardan-E RATO-R Sector Elaborado Controlado y aprobado Documento: E&W 4110, 4111, 4400 spanischresponsable 07.02.2007 07.02.2007 Versión: 010 TB 20

S. Prübner

T. Schoppe

Página: 8/16

6.5

Montaje del acoplamiento VULKARDAN-E/RATO-R, tamaño constructivo 5420, 5720

(ver figura 7) El acoplamiento VULKARDAN-E/RATO-R es suministrado premontado por VULKAN. Para la instalación se separa el acoplamiento entre el grupo constructivo membrana (pos. 3) y el disco de brida (pos. 4). Para ello deben quitarse los elementos de fijación (pos. 10, 16, 18). A continuación se extraen los elementos de fijación (pos. 9, 15) y el disco de brida (pos.4) es apoyado sobre el eje sobre el que se debe instalar el cubo de montaje (pos.1).

¡Atención!

El disco de brida (pos. 4) debe ser apoyado sobre el eje antes de instalar el cubo de montaje (pos.1). El cubo de montaje (pos. 1) se instala ahora sobre el extremo del eje según un proceso que esté de acuerdo al estado actual de la técnica. A continuación aflojar los elementos de fijación (pos. 12, 15) y separar el elemento elástico (pos. 7) con el grupo constructivo membrana (pos. 3) conectado, del cubo de montaje (pos. 5). El cubo (pos. 5) puede ser instalado ahora igualmente sobre el otro extremo libre del eje según un proceso que esté de acuerdo al estado actual de la técnica. Ahora montar juntos la unidad de acoplamiento, el elemento elástico (pos. 7) y el grupo constructivo membrana (pos. 3) en la instalación y unirlos mediante los elementos de fijación (pos. 12, 15) con el cubo de montaje (pos. 5). El par de apriete requerido para la calidad de tornillos seleccionada está indicado sobre el plano. Finalmente se une el disco de brida (pos. 4) con el grupo constructivo membrana (pos. 3) y el cubo (pos. 1). Para ello deben emplearse los elementos de fijación (pos. 9, 10, 15, 16, 18). El par de apriete requerido para la calidad de tornillos seleccionada está indicado sobre el plano. La alineación de la instalación y el control de alineación se describen en forma separada. El montaje mediante apriete hidráulico se describe asimismo en forma separada.

7 7.1

Acoplamientos con cubos para un apriete hidráulico Colocación del cubo

En los acoplamientos arriba mencionados es conveniente antes del montaje separar el elemento VULKARDAN-E/RATO-R del cubo. Antes del montaje deben comprobarse que no existan rebabas en las transiciones de las superficies cónicas y en las ranuras de aceite. El ajuste puede ser controlado aplicando una delgada capa de pasta de entintar azul y apretando las piezas. A continuación limpiar la superficie cónica y secar. Para determinar la medida de deslizamiento se desliza el cubo sobre el eje. No montar las piezas fijamente. La medida de deslizamiento se calcula a partir del punto en el que las superficies cónicas tienen contacto, sin efectuar presión. Para establecer una medida de referencia se emplea el borde del cubo y de la tuerca hidráulica. Antes de la instalación se aplica sobre la superficie cónica aceite SAE 10 (viscosidad aprox. 20 cSt a 50°C). Después de colocar la tuerca hidráulica puede conectarse la alimentación hidráulica. La medida de deslizamiento incluyendo la tolerancia está marcada por impacto sobre el frente del cubo. Después de la conexión a la alimentación hidráulica se aplica presión sobre la conexión A para deslizar el cubo y sobre la conexión B para ampliarlo.

¡Atención! El posicionamiento del cubo debiera efectuarse sin interrupción. La presión de deslizamiento (conexión A) para la tuerca hidráulica depende del diámetro del cubo de la pieza a ser deslizada. Después de que la pieza ha sido prensada hasta su posición, reduzca lentamente la presión de ampliación, manteniendo la presión de deslizamiento, para que pueda distribuirse el aceite (aprox. 30 minutos). ¡Atención! La presión de deslizamiento debe mantenerse durante todo el tiempo en que se reduce la presión de ampliación, para que la pieza quede en su posición. Es necesario un tiempo de espera de 24 horas antes de que el apriete hidráulico pueda ser solicitado con el número completo de giros del motor. Tema Vulkardan-E/RATO-R 4110, 4111, 4400/2400 Título Instr. de instalación y de mantenimiento Vulkardan-E RATO-R Sector Elaborado Controlado y aprobado Documento: E&W 4110, 4111, 4400 spanischresponsable 07.02.2007 07.02.2007 Versión: 010 TB 20

S. Prübner

T. Schoppe

Página: 9/16

Esto es necesario para asegurar que el aceite haya escurrido completamente del cubo ajustado.

Aceite a alta presión puede causar lesiones. En trabajos con sistemas de aceite a alta presión debe observarse el empleo de equipamiento adecuado de protección. Aceite a alta presión no debe entrar en contacto con la piel. Después de la instalación del cubo puede efectuarse el control de alineación:

7.2

Desmontaje del cubo

La tuerca hidráulica se instala y se pone bajo presión como en el caso del montaje. La rosca de la tuerca debe ser enroscada completamente sobre el pivote del eje.

Piezas ajustadas están sometidas a alta presión y pueden causar lesiones al ser desmontadas. La tuerca hidráulica sirve de tope para que la pieza a ser extraída pueda ser retenida. El cubo debe ser ampliado para su extracción, es decir debe llevarse presión sobre la conexión B. Por presión sobre la conexión B y reducción simultánea de la presión de aceite en la conexión A se separa el cubo en forma brusca del pivote del eje.

La pieza a ser extraída se afloja bruscamente cuando la presión de aceite en la conexión A se ha reducido a cero. Por ello observar el correcto montaje de la tuerca hidráulica. Si el cubo no se aflojara debe repetirse el proceso de extracción con las siguientes modificaciones.

8



Aumento de la presión de aceite en la conexión B,



Mantener el cubo una hora bajo presión,



Calentamiento del cubo,



Empleo de un dispositivo de extracción.

Alineación del acoplamiento

Al comienzo del montaje del acoplamiento debe alinearse la instalación. Cuánto más exactamente esté alineada la instalación, tanto mayores son las reservas del acoplamiento para absorber el desplazamiento durante la operación. Durante la alineación de la instalación deben respetarse las siguientes tolerancias de alineación. Tolerancia radial Tolerancia axial Tolerancia angular de alineación de alineación de alineación -Instalación elástica Kr =  0.5 [mm] (después del asentamiento del motor)

-Instalación elástica Kr = +0.5*  0.5 [mm]

Ka=

Kw=

 0.25 [mm]

 0.05 [°]

(antes del asentamiento del motor)

-Instalación rígida Kr =  0.5 [mm] La apertura angular admisible X se calcula a partir de la tolerancia angular Kw y del diámetro de referencia D:

X 

D  tan( K ) 2 w

1

*) Corrección contra asentamiento de los apoyos de cojinetes

Una vez que el acoplamiento ha sido montado en la instalación de acuerdo a las instrucciones de montaje y de mantenimiento suministradas, recomendamos un control de la alineación recorriendo un giro con un comparador para determinar las desviaciones radiales y angulares. Tema Vulkardan-E/RATO-R 4110, 4111, 4400/2400 Título Instr. de instalación y de mantenimiento Vulkardan-E RATO-R Sector Elaborado Controlado y aprobado Documento: E&W 4110, 4111, 4400 spanischresponsable 07.02.2007 07.02.2007 Versión: 010 TB 20

S. Prübner

T. Schoppe

Página: 10/16

Una superficie mecanizada en el volante o en la carcasa del volante sirve en las series constructivas 4110, 4111 como superficie de referencia.

En la serie constructiva 4400 se mide de cubo a cubo (ver figura).

9

Puesta en servicio y previsiones de seguridad

Una vez finalizados los trabajos de montaje, por parte del acoplamiento la instalación está lista para la operación.

¡Atención!

Deseamos hacer hincapié de que antes de la puesta en servicio, Ud. se cerciore de que todos los elementos auxiliares para el montaje hayan sido quitados del acoplamiento VULKARDAN-E.

10 Reemplazo del elemento VULKARDAN-E/RATO-R

¡Atención!

¡En caso de un eventual reemplazo de elementos sólo deben emplearse elementos originales VULKAN con datos técnicos coordinados y autorización de las Sociedades de Clasificación! El elemento VULKARDAN-E/RATO-R puede ser reemplazado sin desplazamiento de los equipos.

10.1 Reemplazo del elemento, tamaño constructivo 4010-5710 Pasos de trabajo: 

Quitar elementos de fijación (pos. 9, 15 y 10, 16, 18)



Separar disco de brida (pos. 4) del cubo (pos. 1) y apoyarlo sobre éste.



Quitar elementos de fijación entre volante y elemento elástico. Para serie constructiva 4400 deben desmontarse los elementos de fijación (pos. 12, 15 y 13,14,19) (ver página 4).



Desmontar como unidad el elemento (pos. 7) y el grupo constructivo membrana (pos. 3) y apoyar sobre el lado del elemento.



Quitar elementos de fijación (pos. 11) y separar elemento (pos. 7) del grupo constructivo membrana (pos. 3)



En la serie constructiva 4111: Desmontar los elementos de fijación (pos. 22 y 23). Separar el anillo de levas (pos.21) del elemento elástico (pos. 7). Tema Vulkardan-E/RATO-R 4110, 4111, 4400/2400 Título Instr. de instalación y de mantenimiento Vulkardan-E RATO-R Sector Elaborado Controlado y aprobado Documento: E&W 4110, 4111, 4400 spanischresponsable 07.02.2007 07.02.2007 Versión: 010 TB 20

S. Prübner

T. Schoppe

Página: 11/16



Ahora puede reemplazarse el elemento elástico (pos. 7).



El ensamblado se efectúa en secuencia inversa.



La alineación de la instalación se describe en forma separada.

10.2 Reemplazo del elemento, tamaño constructivo 5410-5710 y 6010 Pasos de trabajo: 

Desmontar elementos de fijación (pos. 9, 15).



Desmontar anillo de 2 partes (pos. 6).



Quitar elementos de fijación (pos. 10, 16) y desplazar grupo de membrana (pos. 3) contra la superficie de conexión del cubo (pos.1).



Quitar elementos de fijación entre volante y elemento elástico. Para serie constructiva 4400 vale: Desmontar elementos de fijación pos. 12, 15 - en tamaño 6010 (pos. 13, 14, 19) (ver página 4).



Extraer elemento (pos. 7) de la instalación y apoyar. En tamaño 6010 desmontar los tornillos de retención (pos. 20, 21, 22)



En la serie constructiva 4111: Desmontar los elementos de fijación (pos. 22 y 23). Separar el anillo de levas (pos.21) del elemento elástico (pos. 7).



Ahora puede reemplazarse el elemento elástico (pos. 7).



El ensamblado se efectúa en secuencia inversa.



La alineación de la instalación se describe en forma separada.

10.3 Reemplazo del elemento, tamaño constructivo 4020 Pasos de trabajo: 

Quitar elementos de fijación (pos. 9, 15 y 10, 16, 18)



Separar disco de brida (pos. 4) del cubo (pos. 1) y apoyarlo sobre éste.



Desmontar los elementos de fijación (pos. 12).



Extraer la unidad de acoplamiento (pos. 2, 3, 6, 7, 8, 13, 14, 17, 19) de la instalación y colocar con el frente sobre el anillo distanciador (pos. 2).



Quitar los elementos de fijación (pos. 11) y separar el grupo constructivo membrana (pos. 3) del elemento elástico (pos. 7).

  

Quitar los elementos de fijación (pos. 13, 14, 19).

  

Ahora pueden reemplazarse los elementos elásticos (pos. 6 y 7).

Separar el elemento elástico (pos. 7) y el anillo de centrado (pos. 8) del resto del acoplamiento. Desmontar los elementos de fijación (pos. 17) y separar el anillo intermedio (pos. 2) del elemento elástico (pos. 6).

El ensamblado se efectúa en secuencia inversa. La alineación de la instalación se describe en forma separada. Tema Vulkardan-E/RATO-R 4110, 4111, 4400/2400 Título Instr. de instalación y de mantenimiento Vulkardan-E RATO-R Sector Elaborado Controlado y aprobado Documento: E&W 4110, 4111, 4400 spanischresponsable 07.02.2007 07.02.2007 Versión: 010 TB 20

S. Prübner

T. Schoppe

Página: 12/16

10.4 Reemplazo del elemento, tamaño constructivo 4920 Pasos de trabajo: 

Quitar elementos de fijación (pos. 9, 15 y 10, 16, 18)



Separar disco de brida (pos. 4) del cubo (pos. 1) y apoyarlo sobre éste.



Quitar elementos de fijación (pos. 13, 14, 19).



Separar el elemento elástico (pos. 7) con el grupo membrana (pos. 3) y el anillo de centrado (pos. 8) y desmontarlo de la instalación.



Quitar los elementos de fijación (pos. 11) de tal manera que pueda separarse el grupo constructivo membrana (pos. 3) del elemento elástico (pos. 7).

    

Quitar elementos de fijación (pos. 12, 17) Separar el elemento elástico (pos. 6) del cubo de montaje (pos. 5) y quitarlo de la instalación. Ahora pueden reemplazarse los elementos elásticos (pos. 6 y 7). El ensamblado se efectúa en secuencia inversa. La alineación de la instalación se describe en forma separada.

10.5 Reemplazo del elemento, tamaño constructivo 5420 y 5720 Pasos de trabajo: 

Quitar elementos de fijación (pos. 9, 15 y 10, 16, 18)



Separar disco de brida (pos. 4) del cubo (pos. 1) y apoyarlo sobre éste.



Quitar los elementos de fijación (pos. 12, 15).



Separar los elementos elásticos (pos. 7) con el grupo constructivo membrana (pos. 3) del cubo de montaje (pos. 5) y quitarlos como unidad de la instalación.



Quitar los elementos de fijación (pos. 11) de tal manera que pueda separarse el grupo constructivo membrana (pos. 3) de los elementos elásticos (pos. 7).



Quitar los elementos de fijación (pos. 7.4, 7.6).



Ahora pueden reemplazarse los elementos elásticos (pos. 7).



El ensamblado se efectúa en secuencia inversa.



La alineación de la instalación se describe en forma separada.

11 Garantía Por encargo de las Sociedades de Clasificación damos la siguiente indicación para acoplamientos clasificados: El comportamiento de la instalación de accionamiento a vibraciones torsionales está comprobado y aprobado por la Sociedad de Clasificación. El comportamiento satisfactorio esperado sólo es garantizado si todos los componentes responden a los valores sobre los que se basa el cálculo de vibraciones de torsión. Para el acoplamiento ello significa el cumplimiento exacto de la rigidez torsional y amortiguamiento dinámicos. En caso Tema Vulkardan-E/RATO-R 4110, 4111, 4400/2400 Título Instr. de instalación y de mantenimiento Vulkardan-E RATO-R Sector Elaborado Controlado y aprobado Documento: E&W 4110, 4111, 4400 spanischresponsable 07.02.2007 07.02.2007 Versión: 010 TB 20

S. Prübner

T. Schoppe

Página: 13/16

de un eventual reemplazo de elementos sólo deben emplearse elementos originales VULKAN con datos técnicos coordinados y autorización de las Sociedades de Clasificación.

12 Mantenimiento Normalmente no es necesario un mantenimiento del acoplamiento VULKARDAN-E /RATO-R. En muchos casos, sin embargo, el acoplamiento VULKARDAN-E/RATO-R es un indicador de un funcionamiento defectuoso de la instalación. Recomendamos una comprobación de la pieza elástica en caso de circunstancias extraordinarias como p.ej. contacto de la hélice, operación con fallos, cortocircuito, fallo de sincronización o paradas de emergencia. En caso de instalaciones montadas elásticamente y en el marco de los intervalos de inspección de los rodamientos de motor, debiera efectuarse un control de alineación y una comprobación de la pieza elástica, dado que desalineaciones influyen sustancialmente sobre la vida útil. En caso de que durante el control visual el elemento VULKARDAN-E/RATO-R presentase fisuras que excediesen las profundidades de fisura indicadas en la Tabla 1, deberá reemplazarse el elemento VULKARDAN-E/RATO-R. Tamaño Fisuras en el centro Fisuras en la zona constructivo del cuerpo elástico del borde [mm] [mm] 4010/4020 4910/4920 5410/5420 5710/5720 6010

3,0 3,0 3,0 4,0 4,5

5,5 5,5 5,5 6,5 8,0

Aclaraciones más detalladas se encuentran en la publicación “Criterios para la evaluación de acoplamientos VULKAN-RATO-S/R” que puede ser solicitado a VULKAN-Service. Tabla 1 Una recomendación de reemplazo del elemento se rige de acuerdo al caso de aplicación diferenciándose groseramente en dos categorías principales (ver Tabla 2). Caso de aplicación Recomendación Accionamiento principal con condiciones 15000 h ilimitadas, es decir sin conocimiento de un perfil de carga Accionamiento principal con condiciones Se define en coordinación con VULKAN limitadas, es decir con conocimiento de un perfil Se pretende una selección del de carga acoplamiento de acuerdo al intervalo de Accionamientos PTO con exigencias de la inspección principal del motor alineación Tabla 2

Tema Vulkardan-E/RATO-R 4110, 4111, 4400/2400 Título Instr. de instalación y de mantenimiento Vulkardan-E RATO-R Sector Elaborado Controlado y aprobado Documento: E&W 4110, 4111, 4400 spanischresponsable 07.02.2007 07.02.2007 Versión: 010 TB 20

S. Prübner

T. Schoppe

Página: 14/16

1

1

1

1

24

12

12

24

12

12

4

4

4

3

6

7

9

10

13

15

16

19

20

21

22

Menge

1

Po

7020116000

7033616000

7001116060

7033618000

7033616000

7033620000

7000118100-C

7001116030

7000120080-C

2K6014A002

3G21R9000M-C

2K6062000M-C

4G21R4050M-C

Material

Fert-Artikel: 1K60140129-C VULKARDAN-E Zeichnung: 1K60100129

Tuerca Hexagonal

DISCO

SKT.SCHRAUBE

DISCO

DISCO

DISCO

TORNILLO DE CAB.HEXA.

TORNILLO DE CAB.HEXA.

TORNILLO DE CAB.HEXA.

VE-ELEMENTO

ANILLO INTERMEDIO

GRUPO MEMBRANA

CUBO

Bezeichnung

Status:

18

16

20

X100

X 30

X 80

X 17

16

X 60

M

16

FM 27 X 16.2 X 4.5

M

FM 30 X 18.2 X 4.5

FM 27 X 16.2 X 4.5

FM 33 X 20.2 X 4.5

M

M

M

6014

FM 353X 268

FM 348 X 180 X 185

Abmessungen

11

VULKAN: PRODUKTIONSSTÜCKLISTE

10

siehe Zeichnung

10.9

siehe Zeichnung

siehe Zeichnung

siehe Zeichnung

10.9

10.9

10.9

ST/GUMMI

C45+N

42CrMo4V

Werkstoff

Datum: 28.09.2010 Seite: 1 gedruckt von: MARSCHALL

934

933M

931M

933M

931M

Bemerkung

LV

MAN B&W Diesel 1690749-1.1 Page 1 (2)

Space requirements

1400000 L21/31

Dismantling space Sufficient space for pulling the pistons, cylinder liners, cylinder heads, and charging air cooler must be available.

Fig 1 Lifting height for pistons

Fig 2 Lifting height for cylinder heads

Fig 3 Lifting height for cylinder liners

04.47

MAN B&W Diesel 1400000

Space requirements

1690749-1.1 Page 2 (2)

L21/31

Fig 4 Dismantling lub oil filter

Fig 5 Dismantling lub oil pump

Fig 6 Dismantling charging air cooler

Fig 7 Dismantling complete cylinder unit

04.47

MAN B&W Diesel 1690746-6.0 Page 1 (2)

Weight and dimensions of principal parts

1487000 L21/31

03.43

Fig 1 C ylinder head incl. rocker arms Approx 225 kg

Fig 2 Piston Approx 40 kg

Fig 3 Cylinder liner Approx 80 kg

Fig 4 Connecting rod Approx 62 kg

MAN B&W Diesel 1487000

Weights and dimensions of principal parts

1690746-6.0 Page 2 (2)

L21/31

Fig 5 Cylinder unit Approx 485 kg

Fig 6 Charging air cooler Approx 267 kg

03.43

MAN B&W Diesel 1690751-3.0 Page 1 (1)

Engine ventilation

1400000 L21/31 L27/38

The air intake to the engine room should be dimensioned in such a way that a sufficient quantity of air is available not only for the main engine, auxiliaries, boilers etc, but also to ensure adequate ventilation and fresh air when work and service are in progress.

Approx 50% of the ventilating air should be blown in at the level of the top of the main engine close to the air inlet of the turbocharger. Air should not be blown directly onto heat emitting components or directly onto electric or other water sensitive apparature.

We recommend the ventilation capacity should be min 50% more than required air consumption (in tropical conditions more than 100% should be considered) for main engine, auxiliaries, boilers etc.

A small airflow should be evenly distributed around the engine and reduction gear in order to dissipate radiated heat.

It is important that the air is free of oil and sea water to prevent fouling of the ventilators and filters. The air consumption of the main engine appears from the planning data.

With closed engine room and all air consuming equipment operating, there should always be positive air pressure in the engine room. Surplus air should be led up through the casing via special exhaust openings. Alternatively extraction fans should be installed. Fire arresting facilities must be installed within the casings of the fans and ventilation trunkings to retard the propagation of fire.

03.43

MAN Diesel 13 July 2011

Logistic Ship for Mexican navy MAN Diesel, ref no: P-21178. 2 x 6L21/31, AMG 11EV, VBS640, AT2000PCS 1.06

Fuel oil system

Drawing ident no

Description

2 14 34 77-4.1

Fuel oil system, MDO

1435000 1690730-9.1

Fuel oil system

1435000 1690731-0.4

Fuel oil system- MDO (3 pages)

2 00 38 22-8.1

Item no

 3/4" Back pressure valve

10

Part ident no

Date of update

2003822-8

Fuel oil system components: The pipelines between the individual components of the fuel oil system must be carefully cleaned before start-up of the system. Check of flushing: An engineer from MAN Diesel, must approve the cleanliness of the external fuel oil system, before the fuel oil system is connected to the main engine. ---oooOOOooo---

End of Section 1.06 - Fuel oil system

 MAN Diesel Supply  Yard Supply

Edition 1

MAN Diesel 1690730-9.1 Page 1 (1)

Fuel oil system

1435000 L21/31 L27/38

General The engine can be equipped with different equipment depending on fuel oil quality. The standard engine, for operation on MDO (Marine Diesel Oil), is equipped with built-on:

The built-on equipment is designed for use of fuel oil modules, normally referred to as booster modules. For multi engine installations a common fuel oil feed system should cover all engines.

Fuel oil quality Fuel oil primary pump Double filter with paper inserts Lubrication of fuel oil pumps Fuel oil pumps with leak oil seal Uncooled fuel injection valves The MDO built-on equipment is designed for single engine installation. For multi engine installations it is recommended to have either two separate fuel supplies or the built-on pumps have to be replaced by electrical pumps.

o

We recommend to use heavy fuel up to 380 cSt/50 C, even though the engine is designed for operation on o HFO up to 700 cSt/50 C, depending on the actual fuel quality. For fuel oil quality, see Quality Requirements 1435000. The maximum injection viscosity is 12-14 cSt. Velocity recommendations for fuel oil pipes:

The standard engine, for operation on HFO (Heavy Fuel Oil), is equipped with built-on: Fuel oil duplex filter Fuel oil back pressure valve Lubrication of fuel oil pumps Fuel oil pumps without leak oil seal Uncooled fuel injection valves Equipment for cleaning of turbocharger turbine side during operation

08.45

Marine Diesel Oil:

Suction pipe: 0.5 - 1.0m/s Delivery pipe: 1.5 - 2.0 m/s

Heavy Fuel Oil:

Suction pipe: 0.3 - 0.8 m/s Delivery pipe: 0.8 - 1.2 m/s

MAN Diesel 1690731-0.4 Page 1 (3)

Fuel oil system - MDO

1435000 L21/31

2053276-2.0

Fuel oil system for operation on gas/diesel oil

Item 1 2 3 4 5 6 7 8 9

Description Prefilter for purifier Transfer pump Purifier MDO service tank Sightglass for MDO overflow Duplex filter (magnetic insert) Hand pump Primary pump Double filter with metal insert

Connections: B1 B3 B4 B7A

Fuel oil primary pump - suction Fuel oil primary stand-by pump - pressure Fuel oil circulation to service tank Leak oil to drain tank (with alarm)

Shut-off valve at B4 is to be placed as close to the connections as possible

MDO service tank (item 4): Min capacity in m3 for 8 hours operation: CYL. 6L21/31 7L21/31 8L21/31 9L21/31

The lowest oil level of the service tank must be min 500 mm above centerline of crankshaft

Fig 1 Fuel oil system - MDO

09.35

WITH PURIFIER OR SETTLING TANK 2.4 2.6 3.2 3.6

MAN Diesel 1435000

1690731-0.4 Page 2 (3)

Fuel oil system - MDO

L21/31 Fuel oil storage

Purifier, item 3

The storage and handling system comprises of bunker tanks, pipe systems and transfer systems

For engines operating on MDO we recommend cleaning of the oil by a purifier to remove water. For the blended fuel oil (M3 in accordance to BS MA100 fuel oil specification) which can be expected in some bunker places, the purifier is also an important cleaning device. We recommend the automatic self-cleaning type.

Cleaning systems The cleaning system normally comprises of a settling tank, pipe system and equipment for cleaning of the MDO prior to use in the engine. The settling tank should be designed to provide the most efficient sludge and water separation. The tank should be provided with baffles to reduce mixing of sludge with the fuel. The bottom of the tank should have a slope toward the sludge drain valve(s), and the pump suction must not be in the vicinity of the sludge space. We recommend that the capacity of a single settling tank is sufficient to ensure minimum 24 hours operation.

Prefilter, item 1 To protect the purifier pump (item 2), a prefilter should be inserted before the pump. Design data: Capacity: Mesh size:

See oil pump, item 2 0.8_1.0 mm

Oil pump to purifier, item 2 The pump can be driven directly by the purifier or by an independent motor. Design data: Capacity: According to purifier Pressure: Max 2.5 bar Temperature: Max 40oC

As a guideline for the selection of purifier, the following formula can be used: Design data: Capacity:

V = C x (24/T)

V: The nominal capacity of the purifier in litres/hour C: Consumption at MCR in liters/hour T: Daily separating time, depending on purifier (20_22 hours) Guidance given by the manufacturer of the purifier must be observed. If aux engines are fed from the same fuel oil system, the fuel oil consumption has to include all engines. Pre-heating is normally not necessary, but a purifying temperature of approx 40oC is recommended for better separation. Some Marine Diesel Oils have a high content of “paraffin” which cloggs up filters and can cause unintended engine stopping. To avoid this preheating can be necessary. A heat exchanger and a thermostatic valve using the main engine HT cooling water as heating media can be installed, if necessary.

09.35

MAN Diesel 1690731-0.4 Page 3 (3)

Fuel oil system - MDO

1435000 L21/31

Service tank, item 4

Fuel oil consumption

The service tank shall be dimensioned to contain purified MDO for operating minimum 4 hours at MCR.

For calculating the necessary tank size, purifier, stand-by pumps, etc, the consumption stated in the planning data, based on engine MCR, should be used. These values include an addition for engine driven pumps plus 5% tolerance in accordance with ISO requirements.

Attention must be paid that the fuel oil inlet pipe is connected to the side of the tank in a position to avoid sludge and water contamination of the MDO. A vent pipe from the tank should be led up to the deck level minimum 500 mm above the tank. Precaution should be taken that water does not enter the tank through the vent pipe. To ensure satisfactory suction when starting up the main engine, the lowest oil level in the service tank should be at least 500 mm above the suction to the primary pump (item 8 in fig 6.1) and the stand-by primary pump.

Cooler requirements Fuel oil temperatures before engine / fuel oil injection pumps (MDO/MGO): If the fuel oil temperature before engine / fuel injection pumps exceeds 40° C or the viscosity is below 2,2 cSt ooler must be built-in, in order to ensure the lubricating properties for the injection pumps.

Duplex suction filter, item 6 Notes A duplex suction filter with magnetic inserts should be installed in the suction line of the fuel oil primary pump to protect the pump. The filter should be designed for the capacity of the built-on primary pump with a mesh size of 0.5−0.8 mm.

Stand-by primary pump, item 7 Design data: Capacity: 4 x MCR consumption Pressure: 2.5 bar

09.35

We recommend that the total pressure drop in the piping system is calculated in order to ensure that the pump capacity is sufficient and the flow velocity is as recommended by us. We should be pleased to review your piping diagrams and give our comments and recommendations. The shipyard is responsible for the choice of method, design and execution.

MAN Diesel 13 July 2011

Logistic Ship for Mexican navy MAN Diesel, ref no: P-21178. 2 x 6L21/31, AMG 11EV, VBS640, AT2000PCS 1.07

Lubricating oil system

Drawing ident no

Description

2 15 33 65-2.0

Lubrication oil system

1440000 1690729-9.2

Lubricating oil system (4 pages)

Item no

Part ident no

Date of update

Lubricating oil: Only approved lubricating oils of the type SAE30 are to be used for the main engine type 6L21/31 Please see “Quality Quality of Lube Oil (SAE40) for Operation on gas Oil and Diesel Oil (MGO/MDO) and Biofuel” in part 1.01 Lubricating oil system components: The pipelines between the individual components of the lubricating oil system must be carefully cleaned before start-up of the system. Check of flushing: An engineer from MAN Diesel, must approve the cleanliness of the external lubricating oil system, before the lubricating oil system is connected to the main engine. ---oooOOOooo---

End of Section 1.07 - Lubricating oil system

 MAN Diesel Supply  Yard Supply

Edition 1

MAN B&W Diesel 1690729-9.2 Page 1 (4)

Lubricating oil system

1440000 L21/31

General

Lub oil consumption

The engine features an entirely closed wet sump lub oil system, ensuring easy installation and no risk of dirt entering the lub oil circuit.

The lub oil consumption is 0.5_0.8 g/kWh (always referring to MCR).

The helical gear type lub oil pump is installed in the front_end box and draws the oil from the sump. Via a double check valve with connection for stand_by pump, the oil flows to the pressure regulator, through the built_on lub oil plate cooler and the integrated automatic lub oil filter to the engine. The back_flush oil from the filter is drained to the sump. A purifier must be connected to maintain proper condition of the lub oil. Integrated thermostatic elements ensure a constant lub oil temperature to the engine.

It should, however, be observed that during the running_in period the lub oil consumption may exceed the values stated:

Engine type

Lub oil consumption litres / hour

6L21/31

0.7 _ 1.2 0.8 _ 1.3

7L21/31 8L21/31 9L21/31

1.0 _ 1.5 1.1 _ 1.7

Lub oil requirements Only lub oils meeting the requirements in the “List of Lubricating Oils” may be used. Within the guarantee period, only lub oils approved by us should be used, unless a written statement has been given.

05.50

MAN B&W Diesel 1440000

1690729-9.2 Page 2 (4)

Lubricating oil system

L21/31 Lub oil system The lub oil system is the same for both MDO and HFO operation.

Connections:

Pipe dimension: Cyl. DN x DN xx

6 125 100

Item 1 2 3 4 5 6 7 20 21 22 23

Description

7 125 100

Lub oil pump, attached Lub oil pump, stand-by Lub oil cooler Thermostatic valve Automatic backflush filter Lub oil pressure control valve Strainer (magnetic insert) Prefiler for lub. oil purifier Lub oil purifier pump Preheater for lub. oil purifier Lub oil purifier

8 150 125

9 150 125

D4 D5 D7 D8 D12 H

Lub oil stand-by pump, suction Lub oil stand-by pump, pressure Lub oil to purifier Lub oil from purifier Lub oil filling Venting of crankcase

Automatic backflush filter (item 5): Flushing outlet to sump

5A 5B 5C

Filter

Filter

outlet

inlet

Backflush filter unit, 30 mm Pressure controlled by-pass valve Back-up filter in line, 100 mm

05.50

MAN B&W Diesel 1690729-9.2 Page 3 (4)

Lubricating oil system

1440000 L21/31

Lub oil stand_by pump, item 2

Automatic lub oil,back_flushing filter,item5

To ensure good suction conditions for the lub oil pump, the pump should be placed as low as possible.

The built_on automatic lub oil filter has 2 filtering stages:

The suction pipe should be as short and with as few bends as possible in order to prevent cavitation of the pump. The lub oil stand_by pump also acts as a priming

The primary filter contains several filter candles with a filter mesh of 30 µm corresponding to a nominal filtration degree of 20 µm. The back_flushing facility operates continuously by

pump for the engine prior to start.

means of the oil pressure. The back flushing oil is led to the oil sump,

Design data: Capacity: See planning data Pressure: Min 5 bar Temperature: Max 85°C Viscosity at normal operation: 40 cSt (corresponding to 70°C) Max viscosity for dimensioning of el-motor: 1000 cSt (corresponding to 12oC for SAE 40 oil) The turbocharger is connected into the same piping system and must not be primed for more than 5 minutes. The motor starter for the stand_by pump must be fitted with time and auxiliary relays limiting the stand_by pump to run for 5 minutes only.

valves in the filter will open. The filtered oil is always passing the secondary filter with a filter mesh of 100 µm. This filter also acts as a safety filter in case the by_pass valves are open.

Lub oil pressure control valve, item 6 The control valve ensures a correct lub oil pressure also in case of operation with the lub oil stand_by pump.

When we are to supply the motor starter, the function described is built_in. When the motor starter is not included in our scope of supply, a drawing showing the components and connections required will be forwarded.

Strainer with magnetic insert, item 7

Lub oil cooler, item 3

Prefilter, item 20

The lub oil cooler with stainless steel plates is built_on to the engine. All connections are integrated in cooler/ front_end box.

To protect the purifier pump, item 21, a prefilter should be inserted before the pump.

The heat dissipation appears from the planning data.

Lub oil thermostatic valve, item 4 The integrated thermostatic valve has 4 elements and controls the inlet temperature to the engine. The nominal set-point is 66°C. Manual override is featured when required by the classification society concerned.

05.50

The pressure drop across the filter candles is approx 0.2 bar with clean filter. In case the pressure drop exceeds 2 bar, by_pass

The strainer is part of the suction pipe in the oil sump.

Design data: Capacity: Mesh size:

See oil pump, item 21 0.8 _ 1.0 mm

MAN B&W Diesel 1440000

1690729-9.2 Page 4 (4)

Lubricating oil system

L21/31 Lub oil pump to purifier, item 21

Lub oil preheating

The pump can be driven directly by the purifier or by an independent motor.

In case engine stopped for a larger period it can be required to install a preheater which can maintain at least 40 °C in case engine has a longer stand still period.

Design data: Capacity: V: F: P:

V=FxP

Pump capacity in litres/hour MDO - 0.32 HFO - 0.38 Power of the engine in kW at MCR

Pressure:

Max 2.5 bar

Temperature: Max 95°C

Preheater before lub oil purifier, item 22 The preheater must be able to raise the temperature of the oil from approx 65°C to approx 95°C, which is the temperature of the oil for purifying. Capacity:

C = V x t/1800

C: V:

Capacity of the preheater in kW Flow through preheater in litres/hour - defined from the capacity of the purifier. t: Temperature difference 35°C (engine operating) Max pressure 4 bar Max pressure loss 0.5 bar Specific load on heating surface for an electric preheater must not exceed 0.8 W/cm2 .

Preheating the lub oil to 40 °C is effected by the preheater of the seperator via the free-standing pump. The preheater must be enlarged in size if necessary, so that it can heat the content of the service tank to 40 °C within 4 hours.

Lub oil purifier, item 23 The circulating oil will gradually be contaminated by products of combustion, water and/or acid. In some instances cat_fines may also be present. In order to prolong the interval between the exchange of oil it is necessary to install an automatic self_cleaning lub oil purifier dimensioned to handle a flow of approx 0.32-0.38 l/kWh. As a guideline for the selection of purifier, the following formula can be used: V = F x P x (24/T) V: F: P: T:

The nominal capacity of the purifier in litres/ hour MDO - 0.32 HFO - 0.38 Power of the engine in kW at MCR Daily separating time, depending on purifier (22_24 hours)

Guidance given by the manufacturer of the purifier must be observed.

05.50

MAN Diesel 13 July 2011

Logistic Ship for Mexican navy MAN Diesel, ref no: P-21178. 2 x 6L21/31, AMG 11EV, VBS640, AT2000PCS 1.08

Cooling water system

Drawing ident no

Description

2 15 34 09-7.0

Central cooling water system

1400000 1690733-4.2

Cooling water system (8 pages) 

M10-MFM

 HT Freshwater cooler

17

2024839-9

37

2143691-7

29/49

2153772-5

Date of update

Instruction Manual. Plate Heat Exchangers M3, M6, M10, TS6, T2, T5

2 00 27 76-7.0

 LT/HT CW expansion tank. 100 litre

2 04 21 42-2.1

 Dimensions for level switch

Heatpac CBM 26/78

 MDO cooler. Alfa Laval. CBM 26-40

1818091-02V1

Part ident no

FW Thermostatic valve with manual override (35º C)

2 02 48 39-9.0

1644725-01

Item no

193 824-0 55

2140810-1

Heatpac CBM. Braces plate heat exchanger. Component Description

Preheating arrangement: The engine must be fitted with a cooling water preheating arrangement. Preheating is required to avoid shock loads if the engine is started from cold. Preheating is also required to avoid the forming of condensation in the crank case. Cooling water treatment: The fresh water used as coolant should be as clean as possible and must be treated with additives in order to reduce the risk of corrosion in the engine. The fresh water cooling system should be treated prior to carrying out sea trails. ---oooOOOooo---

End of Section 1.08 - Cooling water system

 MAN Diesel Supply  Yard Supply

Edition 1

MAN B&W Diesel 1690733-4.2 Page 1 (8)

Cooling water system

1400000 L21/31

34

C

29

49

38

35

B A

39

M

31 M 33 F10

F12

F4

F1

F8

F6

F5

F7

B TE 1104A

9

30

TE 1104B

36

A C

PSL 1102 PT 1102A

F13

37

E2

18

PT 1102B TE 1102

32 13

TE 1002

E7

E7

E8

1103 TE

Gearbox

TE 1004

PT 1002

15 E6

TE 1003

2054053-8.1

E6

14

16

TE 1005

PSL 1002

A

C

17

B M

4

10

3 M

E3

11

4

E1

M

2

3 1

Item 1 2 3 4 9 10 11 13 14 15 16 17 18 29 30 31 32 33 34 35 36 37 38 39 49

Connections:

Description Seachest low Seachest high Sea water filter Sea water pump Overboard discharge valve LT pump _ LT stand by pump Charging air cooler, LT section Orifice for cooling water to gearbox Gear oil cooler Engine lubricating oil cooler LT thermostatic valve Central cooler LT expansion tank HT pump _ HT stand by pump Charging air cooler HT section Adjustment valve for heat recovery Thermostatic valve for heat recovery Heat recovery HT thermostatic valve HT fresh water cooler Circulating pump for preheater Preheater HT expansion tank

E1 E2 E3 E6 E7 E8 F1 F4 F5 F6 F7 F8 F10 F12 F13

Sea water filters (item 3): We recommend a filter with max 3 mm meshsize to prevent clogging of the central cooler.

Thermostatic valves (items 17, 34 and 36): A, B and C refer to port position (diverting mode)

Expansion tank (items 29 and 49): The lowest water level in the expansion tanks should be min 6 meters above centerline of crankshaft. Inlet to expansion tank to be beneath the lowest water level.

Fig 1 Cooling water diagram 05.49

_

LT cooling water inlet _ LT cooling water outlet (to cooler) _ LT cooling water stand-by pump pressure LT cooling water to gear cooler (on gear/engine) LT cooling water from gear cooler (on gear/engine) LT cooling water tp expansion tank (venting) _ HT cooling water inlet _ HT cooling water stand-by pump pressure HT cooling water to heat recovery system HT cooling water from heat recovery system HT cooling water to expansion tank (venting) HT cooling water from expansion tank _ Engine preheating inlet _ Engine preheating outlet _ HT cooling water outlet (to cooler)

MAN B&W Diesel 1400000

1690733-4.2 Page 2 (8)

Cooling water system

L21/31 Cooling water system

The pH value should be between 6.5 and 8 at 20°C.

The engine is designed for freshwater cooling only. Therefore the cooling water system has to be arranged as a centralised or closed cooling water system. All recommendable types are described in the following.

The total hardness of the water must be max 10dH (German hardness degrees). If the hardness is higher, the water should be diluted with some soft water.

The engine design is almost pipeless, ie the water flows through internal cavities inside the front_end box and the cylinder units. The front-end box contains all large pipe connections. On the aft_end, the water to the gear oil cooler has to be connected by the yard. The engine is equipped with built_on freshwater pumps for both the high and low temperature cooling water systems. To facilitate automatic start_up of stand_by pumps, non_return valves are standard. Thermostatic valve elements which controls the high and low temperature cooling water system are also integrated parts of the front_end box. The engine is equipped with a two stage charge air cooler. The first stage is placed in the high temperature cooling water system. The charging air temperature after the turbocharger is at its maximum, making a higher degree of heat recovery possible, when the heat is dissipated to the high temperature cooling water. The second stage of the charge air cooler is placed in the low temperature system. It will cool the charging air further down before entering the combustion chamber. For special applications ie sailing in arctic waters with low air temperatures and direct air intake from deck, a regulating system can be applied to control the water flow to the second stage of the charge air cooler in order to increase the charging air temperature, at low load.

Water quality

The contents of chlorine, chloride, silicate and sulphate must be as low as possible and must not exceed the following values: Chlorine:

10 PPM

Chloride:

50 PPM

Silicate:

150 PPM

Sulphate:

100 PPM

The fresh water must be treated with additives in order to reduce the risk of corrosion in the engine. Anti corrosive agents are not included in our usual scope of supply. The freshwater cooling system should be treated prior to carrying out sea trials. There are two basic types of chemical additives: Chromate base Nitrite base or similar Additives of chromate base are often considered to be more effective, but we advise against using them due to their extreme poisonousness and they are not permitted if a freshwater generator is incorporated in the plant. For information on additives recommended by us, please refer to “Cooling water inhibitors”, which can be forwarded on request. New engines, supplied by us are cleaned and nitrated. Providing the freshwater inhibiting is correctly maintained then future cleaning of the system should hardly be necessary. However if it should be required, we would be pleased to assist with recommendations for degreasing, descaling with acid and inhibiting.

The fresh water used as coolant, should be as clean as possible.

05.49

MAN B&W Diesel 1690733-4.2 Page 3 (8)

Cooling water system

1400000 L21/31 1.8 _ 2.0 bar

Velocity recommendations for freshwater and sea water pipes: freshwater: Suction pipe: 2.0 _ 2.5 m/s Delivery pipe: 2.0 _ 2.5 m/s Sea water: Suction pipe: 1.0 _ 1.5 m/s Delivery pipe: 1.5 _ 2.5 m/s

Pressure: Sea water temperature:

Central cooling water system

The relation between sea water temperature and the necessary water flow in the central cooler is shown in fig 3.

Sea water filter, item 3

Max 32°C

The volume of sea water required to circulate through a known sized cooler to remove a known amount of heat, is very sensitive and dependent on the sea water temperature.

Design data: Capacity: Pressure drop across clean filter: Pressure drop across dirty filter: Mesh size: Free filter hole area:

See sea water pump Max 0.05 bar Max 0.1 bar φ3 _ φ5 mm Min two times the normal pipe area.

Sea water pumps, item 4 The pumps should always be installed below sea water level when the ship is unloaded.

Fig 3 Necessary water flow Depending on the actual characteristic of the system resistance curve and the pump characteristic curve, the sea water flow with only one pump in service will be approx 75%. This means that the cooling capacity can be obtained with only one pump until reaching a sea water temperature of approx 30°C.

Fig 2 Pump characteristic The pumps in parallel, layout point 2 (see fig 2), are as standard designed to fulfil: Capacity:

05.49

Determined by the cooler manufacturer. Approx 100 _ 175% of fresh water flow in the cooler, depending on the central cooler.

The back pressure in single pump operation must be observed as a low back pressure may lead to unfavourable operation and cavitation of impeller. We are pleased to advise on more specific questions concerning the layout of pumps and location of orifices, etc.

Central cooler(s), item 18 If we are to supply the central cooler(s) it will be a plate cooler with titanium plates.

MAN B&W Diesel 1400000

1690733-4.2 Page 4 (8)

Cooling water system

L21/31 Design data: Heat transfer: Pressure drop LT: Pressure drop SW:

See planning data Max 0.5 bar Max 0.5 bar standard Max 1.0 bar if HT cooler is in LT system

Design data: Heat transfer: See planning data Pressure drop HT: Max 0.5 bar Pressure drop SW: Max 0.5 bar

HT fresh water cooler (option) Two central coolers in parallel For an extra investment of 20_25% for the central cooler a much greater safety margin can be achieved by installing two central coolers each of 50% required capacity, operating in parallel instead of one cooler at 100% capacity. With such flexibility it is possible to carry out repair and maintenance during a voyage especially in temperate climates where the sea water temperature is below the design temperature.

LT freshwater pump, item 10 The built_on low temperature pump is of the centrifugal type. The maximum back pressure in the low temperature section with clean cooler must not exceed 2.5 bar. For multi engine installations with a common centralised cooling water system the built-on pumps should be replaced with common electrically driven pumps for full flow. Design data:

See planning data

LT stand_by pump, item 11 The stand_by pumps should be of the centrifugal type. Design data: Capacity: Pressure:

See planning data,for the built_on freshwater pump See planning data, for the built_on freshwater pump

HT sea water cooler, item 37 The HT sea water cooler will be a plate cooler in titanium as standard.

The HT cooler can as an alternative be installed as a part of the LT cooling water system. This will require a separate thermostatic valve for the LT cooling water system. The HT freshwater cooler will be a plate cooler in stainless steel. Design data: Heat transfer: Pressure drop HT: Pressure drop LT:

See planning data Max 0.5 bar Max 0.5 bar

LT thermostatic valve, item 17 The temperature of the LT cooling water to the charge air cooler is normally controlled by thermostatic valve elements of the expanding agent type. The function of the thermostatic valve is to maintain the outlet temperature of the low temperature water within 35°C to 45°Cdepending on operating conditions, by re_circulating the water to the suction of the pump or let it in through the central cooler (item 18). This will ensure that the fresh water inlet temperature to the charging air cooler will not be lower than 25°C at MCR, in order to reduce condensation of water in the charging air receiver. The re_circulated water is led directly to the suction side of the built-on pumps. The thermostatic elements are replaceable and set at a fixed temperature of 35°C.

Expansion tanks, items 29 and 49 Separate expansion tanks for the LT and HT system should be installed to accommodate for changes of volume due to varying temperatures and possible leakage in the LT and HT systems. The separated HT and LT systems facilitates trouble shooting.

05.49

MAN B&W Diesel 1690733-4.2 Page 5 (8)

Cooling water system

1400000 L21/31

The minimum water level in the expansion tank should be no less than 6 m above the centre line of the crankshaft. This will ensure sufficient suction head to the freshwater pump and reduce the possibility of cavitation, as well as local “hot spots” in the engine. The expansion tank should be equipped with a vent pipe and flange for filling the tank with water and inhibitors. The vent pipe should be installed below the minimum water level to reduce oxidation of the cooling water due to splashing from the vent pipe. Volume: Min 10% of water volume, however, min 100 litres.

HT stand-by pump, item 31

Preheater, item 39 The engine must be fitted with preheating facilities. Preheating is required to avoid producing unnecessary shock loads that may arise as a result of temperature differences if the engine is started from cold. Design data: Preheating temperature MDO engine: Min 50°C Preheating temperature HFO engine: 60_70°C The heating power required for electrical preheating is stated below: Engine type

Heating power

The stand-by pumps should be of the centrifugal type.

6L21/31

7 kW

Design data:

7L21/31

8 kW

8L21/31

9 kW

9L21/31

10 kW

Capacity: Pressure: Temperature:

See planning data, for the built-on freshwater pump See planning data, for the built_on freshwater pump Max 95C

Circulating pump for preheater, item 38 For preheating the engine a pump should be installed to circulate high temperature cooling water through the preheater. Design data: Capacity:

m=

Q x 3,6 Cp x t

Q:

m3/h

Heat radiation from engine in kW, see below Cp:Specific heat for water 4.187 kJ/kg°C t: The desired temperature drop across engine = 5C Pressure: Temperature:

Max 2 bar Max 85°C

The figures are based on raising the engine temperature to 50°C (20_60°C) for a period of 10 hours including the cooling water contained within the engine. We will be pleased to make calculations for other conditions on request. The preheater can be of the electrical type. If sufficient central heating capacity is available, a plate type heat exchanger can be installed. It is important that the inhibited fresh water, used in the main engine cooling system, is not mixed with water from the central heating system.

Thermostatic valve for heat recovery, item 34 If the heat recovery is below 25% of the heat rejection from engine jacket water the heat recovery equipment (item 35) can be connected in series with the HT freshwater cooler. By utilisation of more than 25% of the heat in the HT cooling water section, an additional thermostatic valve, item 34, should be installed for by_passing of the HT fresh water cooler thus avoiding unnecessary cooling after the heat recovery equipment (item 35).

05.49

MAN B&W Diesel 1400000

Cooling water system

1690733-4.2 Page 6 (8)

L21/31 Connection of heat recovery or freshwater generator By layout of the freshwater generator we recommend that no more than 90% of the heat available at MCR is utilised due to safety margins, part load operation and deviations in ambient conditions, The expected obtainable freshwater production using a normal generator of the single vacuum evaporator type can be estimated. Design data: 3

Capacity:

m = 0.03 x Q m /24h

Q: Pressure: Pressure drop: Temperature:

Utilised heat in kW Max 2.5 bar Max 0.5 bar 80°C

Different arrangements of central cooling systems There are many variations of centralised cooling systems and we are available to discuss various changes to suit an owner’s or builder’s specific wishes. For each plant, special consideration should be given to the following design criteria: Sea water temperatures, pressure loss in coolers, valves and pipes, pump capacities etc, for which reason these components have not been specified in this guide.

Closed cooling systems Several systems have been developed to avoid sea water. The benefits are: Minimising the use of expensive corro sion resistant pipes, valves and pumps Sea water pumps at reasonable costs No cleaning of plate type central heat exchangers

Such systems are advantageous in the following conditions: Sailing in shallow waters Sailing in very cold waters Sailing in corrosive waters (eg some harbours) Sailing in water with high contents of solids (dredging and some rivers) A disadvantage of most closed cooling water systems is the poor heat transfer coefficient. LT coolers with very small temperature differences between the cooling water and the sea or raw water, require a relatively large heat exchanger to enable sufficient heat transfer. The L21/31 engine is a high efficient main engine calling for high efficient coolers. Therefore some designs cannot be recommended. We are available to offer advice for specific cooler types, but the final responsibility for design, pressure losses, strength and system maintenance remains with the yard and the ship owner. We reserve the right not to accept proposed coolers, which seems to be insufficient for its purpose. Also when using other types of closed cooling water systems the HT and LT cooling water systems have to be separated.

Box cooler The box cooling system has through many years proven to be a reliable closed cooling water system. The box cooler is a pre_manufactured tube bundle for mounting in a sea chest. The movement of the sea water across the heat exchanger is initiated by the movement of the heated sea water upwards because of the lower density compared with that of the surrounding water. This means that the heat transfer is less dependant on the ship’s speed, compared to coolers mounted on the shell of the vessel. However the speed of the vessel does have some influence on the cooling area. For vessels sailing at below 3 knots at MCR, ie tugs, dredgers etc, the speed has to be considered when designing the cooler.

05.49

MAN B&W Diesel 1690733-4.2 Page 7 (8)

Cooling water system

1400000 L21/31

The temperature of the sea water has influence on the heat exchanger efficiency as well. We recommend that a temperature of 25°C or 32°C is used, depending on the vessel’s operating area. The tube bundle is normally of corrosion resistant material with a non_metallic coating. The coating protects the vessel from galvanic corrosion between the sea chest and the box cooler. Uncoated coolers may be used, but special consideration has to be given to the galvanic separation of the box cooler and the hull.

In waters with mussels and shell fish these might want to live on the tube bundle, which the different box cooler manufacturers have different solutions to avoid. If the box cooler is supplied by us, it consists of a steel frame for welding to the hull, a tube bundle and a topbox, delivered complete with counter flanges, gaskets and bolts. Design data: Heat transfer: Pressure drop through all coolers: Min vessel speed at MCR:

Fig 4 Box cooling diagram 05.49

See planning data Max 0.5 bar Normally more than 3 knots

MAN B&W Diesel 1445000

Cooling water system

1690733-4.1 Page 8 (8)

L21/31 Other cooler types Some traditional, low efficient coolers fitted to the hull and often referred to as keel cooling, skin cooling or tank cooling is not recommended for the L21/31 engine. The layout of such coolers is difficult and changes due to lack of efficiency is very complicated and expensive. The low temperature difference between the sea water and the LT cooling water results in a very large cooling water surface. Depending on the design of the cooler, the waterflow around the hull and to the propeller will be disturbed, causing increased hull resistance and lower speed for the same power.

05.01

Plate Heat Exchanger

Technical Specification Customer : MAN Diesel Model : M10-MFM Project: : DKVEJHN-337/P 21065 - HTCooler 620kW Item : Date

: 2008-12-18

_________________________________________________________________________ Hot Side Cold side Fluid Water Water Density kg/m³ 974.6 986.3 Specific heat capacity kJ/(kg*K) 4.18 4.17 Thermal conductivity W/(m*K) 0.666 0.643 Viscosity inlet cP 0.353 0.590 Viscosity outlet cP 0.407 0.492 Volume flow rate Inlet temperature Outlet temperature Pressure drop Heat Exchanged L.M.T.D. O.H.T.C clean conditions O.H.T.C service Heat transfer area Fouling resistance* 10000 Duty margin Relative directions of fluids Number of plates effective plates Number of passes Extension capacity Plate material / thickness Sealing material Connection material Connection diameter Nozzle orientation Pressure vessel code Fluid danger group Has risky vapour pressure Flange rating Design pressure Test pressure Design temperature

m³/h °C °C kPa kW K W/(m²*K) W/(m²*K) m² m²*K/W %

mm

bar bar °C

50.9 80.0 69.2 48.2 620.0 23.6 7639 7009 3.7 0.12 9.0 Countercurrent 19 17 1 4

50.0 45.6 56.4 49.5

1

ALLOY 304 / 0.40 mm NBRB CLIP-ON Unlined 100 S1 -> S2

NBRB CLIP-ON Unlined 100 S4
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF