VITROS 4600
Short Description
Descripción: VITROS 4600...
Description
J39931EN
Specification for Automation Interface VITROS® 4600 Chemistry System
Export authorized under general license GTDA (General Technical Data Available)
IMPORTANT The information contained herein is based on the experience and knowledge relating to the subject matter gained by Ortho-Clinical Diagnostics, Inc. prior to publication. No patent license is granted by the information. Ortho-Clinical Diagnostics, Inc. reserves the right to change this information without notice, and makes no warranty, express or implied, with respect to the information. The company shall not be liable for any loss or damage, including consequential or special damages resulting from the use of this information, even if loss or damage is caused by its negligence or other fault.
VITROS® is a registered trademark of Ortho-Clinical Diagnostics, Inc.
© Ortho-Clinical Diagnostics, Inc., 2011. All rights reserved.
Specification for Automation Interface VITROS® 4600 Chemistry System
Pub. No.: J39931EN Issued: 2011-01-10
Section 1. Introduction ........................................................................................................ 1 Overview ......................................................................................................................................... 1 References and Definitions ............................................................................................................ 1 Document Structure ........................................................................................................................ 3 Revision History .............................................................................................................................. 3 Assumptions and Dependencies .................................................................................................... 3
Section 2. Software Interfaces ............................................................................................ 5 Operational Overview ..................................................................................................................... 5 Specifications ................................................................................................................................. 6 Lab Automation Protocol .......................................................................................................... 6 Datalink/Session Layer ............................................................................................................ 7 Presentation Layer ................................................................................................................. 10 Query Analyzer Status .................................................................................................................. 23 Sample Metering Handshaking .................................................................................................... 23 Reinitialize Metering ..................................................................................................................... 26 Reinitialize Communications ........................................................................................................ 28 Query Analyzer Inventory/Resources ........................................................................................... 28 Illegal Commands ......................................................................................................................... 29 Internationalization and Language Support .................................................................................. 30 Timing Requirements ................................................................................................................... 30 Lab Automation Communication Scenarios ................................................................................. 31 Interface Initialization Sequence ............................................................................................ 31 Run Two Samples .................................................................................................................. 32 Remote Sample Startup Interrupted by Local Sample ........................................................... 33 Non Fatal Error Condition (Insufficient Inventory) .................................................................. 34 Non Fatal Error Condition (Unknown Sample ID) .................................................................. 35 Non Fatal Error Condition (Sample In Position Not Received in Time) .................................. 36 Fatal Error Condition .............................................................................................................. 37 Sample Routed Notification ....................................................................................................38 Query Analyzer Inventory ....................................................................................................... 39
Section 3. Hardware Interfaces ......................................................................................... 40 Electrical Interfaces ...................................................................................................................... 40 Analyzer Dimensions .................................................................................................................... 41 Site Specifications ........................................................................................................................ 42 Service Access ............................................................................................................................. 42 Analyzer Heat Rejection and Air Intake Zones ...................................................................... 43 Positional Requirements ............................................................................................................... 43 Analyzer to Track Positioning/Floor Mounts or Anchors ............................................................... 44 Floor Mounts/Anchors ............................................................................................................ 45 Sample Positioning and Adjustments ........................................................................................... 46 Sample Center Device Adjustments: Positioning Responsibilities ......................................... 46 VITROS® 4600 Metering Proboscis Alignment ..................................................................... 47 Point Of Reference (POR) ..................................................................................................... 48
Sample Tube Height: Vertical Dimension for POR ................................................................ 51 Analyzer Dimensions with AT Configuration ................................................................................ 52 Regulations and Safety Standards ............................................................................................... 53
Section 4. Sample Handling .............................................................................................. 54 Supported Containers ................................................................................................................... 54 Containers that are not Supported ............................................................................................... 54 Sample Quality Recommendations ..............................................................................................54 Environmental Issues ................................................................................................................... 54
Section 5. Guidelines for Laboratory Automation System Protocol Tests .................. 55 Introduction ................................................................................................................................... 55 Purpose .................................................................................................................................. 55 Audience ................................................................................................................................ 55 Approach ................................................................................................................................ 55 Material Resources ................................................................................................................ 55 Skills Required ....................................................................................................................... 56 Protocol Tests ............................................................................................................................... 56 LAS Communication Initialization Test ................................................................................... 56 Analyzer Status Test .............................................................................................................. 57 Sampling Complete Test ........................................................................................................58 Error Recovery Test ............................................................................................................... 59 Sample Routed/Host Query Test ........................................................................................... 61 Request Inventory Test .......................................................................................................... 61 Request Resources Level Test ..............................................................................................62 Instrument-Based Testing ............................................................................................................ 62 Normal Operations Sample Handling ..................................................................................... 62 Physical Interfaces ....................................................................................................................... 63 Sample Positioning ................................................................................................................ 64
Section 6. LAS/LIS Architecture ....................................................................................... 65 Methods to Download Test Orders ...............................................................................................65 Single Instrument Download .................................................................................................. 65 Broadcast Download .............................................................................................................. 65 Host Query ............................................................................................................................. 65 Interface Topology ........................................................................................................................ 65 Case 1 .................................................................................................................................... 65 Case 2 .................................................................................................................................... 66 Case 3 .................................................................................................................................... 67
Section 7. Safety and Precautions ................................................................................... 69 Patient Safety Considerations ...................................................................................................... 69 Operator Considerations .............................................................................................................. 71 Environmental Considerations ...................................................................................................... 72
ii
Specification for Automation Interface VITROS® 4600 Chemistry System
Pub. No.: J39931EN Issued: 2011-01-10
Overview
Laboratory Automation Specification Section 1. Introduction Overview The Automation Interface Guide contains interface specifications to assist Lab Automation manufacturers in adapting Lab Automation systems to the Ortho Clinical Diagnostics VITROS® 4600 Chemistry System (VITROS® 4600 System). This document is intended for Lab Automation Vendors and Ortho Clinical Diagnostics personnel who create interfaces between an automated sample delivery system and the VITROS® 4600 System. Laboratory Automation System (LAS) refers to the subsystems that support the capability to control an automated track and coordinate sample movement to a processing station, for example, a system. The LAS includes the VITROS® 4600 Chemistry System (VITROS® 4600 System), the Lab Automation Computer (LAC), and the hardware that connects them. This specification provides an explanation of interfaces between the Lab Automation Vendors and Ortho Clinical Diagnostics. Topics include: •
Information to be transmitted between the Lab Automation System and the VITROS® 4600 System
•
Format of information to be transmitted between the Lab Information System and the system
•
Physical relationships between the system and the sample container
•
Sample container sizes and aspiration depths
•
System footprints and space requirements
•
Operator and service access requirements to the system
•
Environmental specifications for the system
•
System sample throughput specifications
•
Electrical interconnects between a Lab Automation System and the system
•
Automation interface guidelines for accurate implementation of the Automation Interface Specification
•
Summary of considerations for Lab Automation System and Lab Information System architecture
•
Summary of Lab Automation Interface risk assessment
References and Definitions Site Specifications for the VITROS® 5,1 FS Chemistry System and the VITROS® 4600 Chemistry System, J39897. Laboratory Information System (LIS) Guide for the VITROS® 5600 Integrated System, the VITROS® 3600 Immunodiagnostic System and the VITROS® 4600 Chemistry System, J32799EN. Unpacking and Installlation Instructions for VITROS® 5,1 FS Chemistry System and VITROS® 4600 Chemistry System: Intact System, J39894
Pub. No.: J39931EN Issued: 2011-01-10
Specification for Automation Interface VITROS® 4600 Chemistry System
1
References and Definitions
Unpacking and Installation Instructinos for VITROS® 5,1 FS Chemistry System and VITROS® 4600 Chemistry System: Split System, J39895 Installation Instructions for the VITROS® 5,1 FS Chemistry System and the VITROS® 4600 Chemistry System: Automation (AT) Accessory, J39893 Installation Instructions for the VITROS® 5,1 FS Chemistry System and VITROS® 4600 Chemistry System: AT Seismic Anchorages, J39896 ISO 8859-1 8-bit single-byte coded graphic character sets -- Part 1: Latin alphabet No. 1 ACK (Acknowledgement Code) A signal passed between computers to signal a receipt of a message. Analyzer For the purpose of this specification, the VITROS® 4600 Chemistry System. ASCII: American Standard Code for Information Interchange A system that is used for character encoding. ASTM: American Society for Testing and Materials In the context of this document, the communication protocols defined by the E-1381 and E1394 specifications for the communications between clinical laboratory instruments and lab computer systems. Asynchronous LIS Messages A feature that enables the system to send unsolicited status updates to the LIS. CRC: Cyclical Redundancy Checking An error checking algorithm used to verify the integrity of an electronic message. Extended ASCII A set of codes that extends the basic ASCII set. The basic ASCII set uses 7 bits for each character, giving it a total of 128 unique symbols. The extended ASCII character set uses 8 bits, which gives it an additional 128 characters. Extended ASCII uses the ISO8859-1 implementation to support Western European languages. See ISO 8859-1 8-bit single-byte coded graphic character sets -- Part 1: Latin alphabet No. 1. GUI: Graphical User Interface A computer-user interface based on graphics (icons and pictures and menus) instead of text. HL7: Health Level Seven A standard message protocol for electronic data exchange in all health care environments including clinical laboratories with automation. LAC: Lab Automation Computer A computer used in the LAS to control the track and coordinate sample movement to a processing station. LAS: Lab Automation System The subsystems that support the capability to control an automated track and coordinate sample movement to a processing station, for example, an Analyzer. POR: Point of Reference A point in space at which the sample tube is placed for external metering. LIS: Lab Information System The computer system responsible for data management, for example, sample results and patient history.
2
Specification for Automation Interface VITROS® 4600 Chemistry System
Pub. No.: J39931EN Issued: 2011-01-10
Document Structure
Sample Proboscis Aspiration probe on the system. Sample Carrier The device that holds the sample container and interfaces with the transport track to facilitate movement from one location to another. Sample Container The tube that holds patient samples. UTF-8 Unicode Transformation Format-8 that is an octet (8-bit) lossless encoding of Unicode characters.
Document Structure The Automation Interface Specification is organized into the following sections: Section 1. Introduction on page 1 Provides general information about the specification Section 2. Software Interfaces on page 5 Describes the software commands and responses exchanged between the system and the lab automation system during sample processing Section 3. Hardware Interfaces on page 40 Describes the physical interfaces between the lab automation system and VITROS® 4600 Chemistry System Section 4. Sample Handling on page 54 Describes requirements for containers used in sample processing with lab automation systems Section 5. Guidelines for Laboratory Automation System Protocol Tests on page 55 Provides guidelines for automation system personnel to use in verifying the correct implementation of an automation interface Section 6. LAS/LIS Architecture on page 65 Discusses considerations applicable in lab automation interfaces in an LIS environment Section 7. Safety and Precautions on page 69 Explains considerations for minimizing risks
Revision History Date
Page
Revision Details
2011-01-10
N/A
Initial release of the specification
Assumptions and Dependencies
Pub. No.: J39931EN Issued: 2011-01-10
•
Manual (walk up) samples take priority over samples delivered by the automation system.
•
Calibration with fluids delivered by the automation track is not supported. (Controls are not prevented from being delivered by the automation track.)
Specification for Automation Interface VITROS® 4600 Chemistry System
3
Assumptions and Dependencies
•
Whole blood samples for use on the VITROS® 4600 System require processing from cups not tubes. These samples should be processed on the VITROS® 4600 System directly.
•
The system uses two types of interfaces. The LAS interfaces for sample coordination and the LIS interface for prsystemogram, results, etc.
•
The automation system handles movement of all samples not placed manually on the system.
•
The automation system stops, captures, positions, and steadies the sample for fluid aspiration.
•
All required information for processing a sample will be supplied to the system. The Lab Automation System for each sample will supply the two items listed below before it is placed in position for metering but after the “SAMPLING COMPLETE” message for the previous sample. — Sample ID — Container type (diameter)
•
Sample programming for an individual sample must be downloaded prior to its presentation to the system if host query is not enabled.
•
When using host query mode, the SAMPLE ROUTED message should be sent to the system as soon as the decision to route the sample to that system has been made by the automation system. This will maximize the time the system has to complete the host query.
•
The automation system ensures the integrity of the sample identification for the sample being aspirated.
•
If the LAS has not just received a status message or SAMPLE COMPLETE response, the LAS queries the system for its current status before sending a PREPARE TO RUN SAMPLE command.
•
The automation system must complete the following steps within the required time period after the SAMPLING COMPLETE message is sent by the system to guarantee maximum system throughput: — Send the Sample ID information within a PREPARE TO RUN SAMPLE message for the next sample within 100 milliseconds of SAMPLE COMPLETE. — Place the next sample into the aspiration position. — Send the SAMPLE IN POSITION message to the system (no more than 6.4 seconds after the PREPARE TO RUN SAMPLE command). The sample must be in position when this message is sent. Failure to meet this 6.3-second time window will result in the sample not being processed by the system.
4
•
The automation system must supply a “setup” mode used with the system's setup and adjustment mode. In this mode, empty tubes are used to adjust the system's metering system to the location where aspiration will be performed.
•
The VITROS® 4600 System does not control devices mounted on the automation track.
Specification for Automation Interface VITROS® 4600 Chemistry System
Pub. No.: J39931EN Issued: 2011-01-10
Operational Overview
•
The automation system must comply with the site specifications in order for system doors and lids to open and for waste containers to be easily emptied. Refer to Site Specifications for the VITROS® 5,1 FS Chemistry System and the VITROS® 4600 Chemistry System, J39897.
•
This document does not contain the description of the Graphical User Interface (GUI) but only the functionality of the feature.
•
No GUI specifications are detailed in this document.
•
The system software is backward compatible with existing VITROS® LAS communications.
•
Communication between the System and the LAC requires an RS-232 compatible serial communications port.
Section 2. Software Interfaces This section contains the detailed specifications that define the software interface between the VITROS® 4600 System and the LAC.
Operational Overview Query Analyzer Status 1. The LAC sends a QUERY ANALYZER STATUS command to the system. 2. The system sends a ANALYZER STATUS response to the LAC.
Sample Metering Handshaking 3. The sample tube is loaded onto automation track. 4. The LIS downloads test order to the system. 5. The sample tube is carried to system. 6. The LAC sends a PREPARE TO RUN SAMPLE command to the system. The command contains a sample ID and the container type. 7. The system retrieves a sample program and builds a worklist for the sample. 8. The LAC sends a SAMPLE IN POSITION command to the system, handing over control to the system. 9. The system aspirates fluid from the sample tube. 10. The system sends a SAMPLE COMPLETE response to the LAC, releasing the sample back into the control of the LAC.
Reinitialize Metering 11. The LAC sends a REINITIALIZE METERING command to the system. 12. The system reinitializes any reduced subsystems. 13. The LAC periodically queries the system status until an “ANALYZER IS READY TO SAMPLE” code is received.
Pub. No.: J39931EN Issued: 2011-01-10
Specification for Automation Interface VITROS® 4600 Chemistry System
5
Specifications
Reinitialize Communications 14. The LAC sends a REINITIALIZE COMMUNICATIONS command to the system. 15. If an error occurs and it is recoverable, the system will respond by issuing the READY sequence. 16. The initialization sequence is repeated.
Query Analyzer Inventory/Resources 17. The LAC sends a QUERY ANALYZER INVENTORY command to the system. 18. The system retrieves inventory information from the Inventory Manager. 19. The system sends a series of ANALYZER INVENTORY responses to the LAC until all the inventory data has been sent. 20. The LAC sends a QUERY ANALYZER RESOURCES command to the system. 21. The system retrieves resource information from the Inventory Manager. 22. The system sends a QUERY ANALYZER RESOURCES response to the LAC.
Note: Similar functionality is also available with the LIS interface.
Error Handling The Lab Automation System handles errors encountered during communication. These errors include physical communication errors, framing errors, and logical state transition errors.
Specifications Lab Automation Protocol The functions involved in transferring data from the Lab Automation System (system) to the lab computer and the lab computer to the system are divided into these components: Physical Layer - This is comprised of the actual hardware and software configuration used to communicate between the two systems. Datalink Layer - This handles the framing and error detection for the sending and receiving of messages. Session Layer - This handles to establishment of communication, sequence numbering, and error recovery in the sending and receiving of messages. Presentation Layer - This specifies the content and format of the records to be implemented in this application.
Physical Layer The system uses 1 start bit. The system supports 1 or 2 stop bits. The system supports EVEN, ODD, and NONE parity.
6
Specification for Automation Interface VITROS® 4600 Chemistry System
Pub. No.: J39931EN Issued: 2011-01-10
Specifications
The system supports the following baud rates: •
9600
•
19200
•
38400
The system uses 8 data bits.
Datalink/Session Layer Message Format The following special control characters are used: STX = 0x02 ETX = 0x03 The following forms of message frames are supported: Byte 1:
STX
Byte 2:
Message Length
Byte 3:
Message Type
Byte 4:
Sequence Number
Byte 5 to N-2:
Message Body
Byte N-1:
CRC
Byte N:
ETX
Message lengths are the total number of bytes in the message excluding the STX and ETX. The following message types are supported: 0x00
Data
0x01
ACK
0x02
NAK
Cyclical Redundancy Checks The algorithm for computing the Cyclical Redundancy Check (CRC) is the following C code fragment: unsigned char crc; crc = 0x84; for (i = 0; i > 1) | (crc
View more...
Comments