Villena Ecuaciones 2do Orden
July 8, 2022 | Author: Anonymous | Category: N/A
Short Description
Download Villena Ecuaciones 2do Orden...
Description
0/10/1=>?
Xbff`c n-@kunkbd c `s1ld Drl`c.plh-sfbl`plh.kde
EdbsâsXbff`cnEuþdz
1
1.> @kunkbûcLbh`r`ckbnf`sl`s`gucld drl`ckdckd`hbkb`ct`skdcstnct`s. 1.>1.1 @kunkbdc`slbh`r`ckbnf`sl`drl`c sup`rbdr 1.; NcîfbsbsKunfbtntbvd
[`p`rsbgu`qu``f`stulbnct`9 • @cku`ctr` sdfukbdc`s g`c`rnf`s y/d pnrt pn rtbk bkuf ufnr nr`s `s l` l` @kun @kunkb kbdc dc`s `s Lb Lbh` h`r` r`ck ckbn bnf` f`s s l` s`guclddrl`c • L`t L`t`reb `rebc` c` @stnabf @stnabfbln blnl l lbcîebk lbcîebkn n kunctbt kunctbtntbv ntbvnn y/dkunfbtntbvne`ct`.
> ottp9 p9/ //sfbl`plh.kde de/ /r`n r`nl`r/ r/h huff/vbff`cn cn-`kunkbdc dc` `s-1ld-dr d-drl l`cpl cplh
>/>0
0/10/1=>?
Xbff`c n-@kunkbd c `s1ld Drl`c.plh-sfbl`plh.kde
EdbsâsXbff`cnEuþdz
1.> @KPNKBDC@[ LBH@Q@CKBNF @[ L@ [@GPCLD DQL@ DQ L@C CKD KDC C KD@HB KD@HBKB KB@C @C\@ \@[ [ KD KDC[ C[\N \NC\ C\@[ @[.. Pcn`kunkbûclbh`r`ck Pcn`kunkb ûclbh`r`ckbnfl`s`guclddrl` bnfl`s`guclddrl`c`sl`fnhdren9 c`sl`fnhdren9
y¼¼+p (x )y¼+ q (x)y
5 g ( x)
) 5 = s` ffnen @kunk [b g (x @kunkbûc bûc odedg odedgâc`n âc`n knsd knsd kdct kdctrn rnrb rbd: d: `s `s l`kb l`kbr, r, sb g (x ) ≭ = s`ffnen @kunkbûccdodedgâc`n. Pcn `kun Pcn `kunkbû kbûc clbh lbh`r`c `r`ckbn kbnf fl`s`gucld l`s`gucld drl` drl`c ckdckd`hbk kdckd`hbkb`ct b`ct`skdcstn `skdcstnct`s ct`s `s l`fnhdren9
ny¼¼+ ay ¼+ ky 5 g ( x ) ldcl` n , a y k ∏ BQ y n ≭ =
1.>.> .> @KPNKB NKBDC@[ @[ LBH@Q@CK @CKBNF@[ L@ [@ [@GP GPC CLD DQ DQL L@C KDC KD@HBKB@C\@[KDC[\NC\@[ODEDGÂC@N Pcn Pc n `ku `kunkb nkbûc ûc lb lbh`r h`r`ck `ckbn bnf f l` [` [`guc gucld ld Dr Drl`c l`c kdc kdc kd` kd`hb hbkb kb`ct `ct`s `s kdcst kdcstnct nct`s `s odedgâc`n`sl`fnhdren9
ny¼¼+ay ¼+ky 5 = Fnhuckbû Fnhuc kbûc" c" y ",sdf ",sdfukbû ukbûcg`c` cg`c`rnfl`f rnfl`fn`kun n`kunkbûclb kbûclbh`r`ckbn h`r`ckbnfnct` fnct`rbdr rbdr,`sl`f ,`sl`fn n (´]drqu quâ4).L â4).Ldcl` dcl`"" j "`sucnk "`sucnkdcstnct dcstnct`qu`l `qu`lnfng`c nfng`c`rn `rnfblnl fblnl hdren y ( x ) 5 j` (´]dr l`fnsdfukbûc. rx
@ctdck`s`fdai`tbvdnodr @ctdck`s `fdai`tbvdnodrns`rîonffnr ns`rîonffnr`fvnfdrl` `fvnfdrl` r . Ab`c,l`fnsdfukbûcg`c`rnft`c`eds9
¼+ky Q``epfnzncld`c ny¼¼+ ay
y ‱ 5 jr` rx y ‱‱ 5 jr1 ` rx
5 = t`c`eds9
+ ajr` rx + kj` rx 5 = j` rx Znr1 + ar + k U 5 =
njr1 ` rx
Nodrn ab`c, j ≭ = pdrqu` sb cd ttu uvbârneds fns sdfukbûc trbvbnf y kded rx 1 tneabâc ` ≭ = , `ctdck`s nr + ar + k 5 = . N `stn `xpr`sbûc s` fn l`cdebcn @kunkbûcNuxbfbnry`sùtbfpnrnonffnr y`sùtbfpnrnonffnr r . Das`rv`qu`fn`kunkbûcnuxbfbnr`sucn`kunkbûckunlrîtbknkuynsrnbk`s s`fnspu`l`l`t`rebcnr`epf s`fnspu`l`l`t`r ebcnr`epf`ncldfnhdreu `ncldfnhdreufng`c`rnf fng`c`rnf
1 ottp9 p9/ //sfbl`plh.kde de/ /r`n r`nl`r/ r/h huff/vbff`cn cn-`kunkbdc dc` `s-1ld-dr d-drl l`cpl cplh
1/>0
0/10/1=>?
Xbff`c n-@kunkbd c `s1ld Drl`c.plh-sfbl`plh.kde
EdbsâsXbff`cnEuþdz
r> , r1
∑a ¾
5
∑ (x) 5 j>`
rx >
y 1 (x) 5 j1 `
rx 1
Fn Fnsd sdfu fukb kbûc ûcG`c G`c`r `rnf nf`s `stn tnrå rånln nlnln lnpd pdrf rfnk nkde deab abcn cnkb kbûc ûcfbc fbc`n `nfl` fl`fn fnss ssdf dfuk ukbd bdc` c`s s huclne`ctnf`s
>` y (x) 5 j
r>x
+ j1` rx 1
KnsdBB Lbskrbebc Lbskrb ebcnct` nct` k`r k`rd d a 1 ∑ y r1 sdc rnåk`s r`nf`s ` bgunf`s. @c`st`knsdfnsdfukbûcG`c`r @c`st`knsdfnsdf ukbûcG`c`rnfs`rån9 nfs`rån9 y (x ) 5 j > ` rx + j1x` rx
KnsdBBB
+ °b y r1 Lbskrbebcnct` Lbskrbebcnc t` c`gntbvd a 1 ∑ 5 κ rnåk`skdepf`inskdciugnlns
5 κ ∑ °b sdc
Q``epfnzncld `c y (x) 5 K >` rx + K1 ` rx t`c`eds9 >
1
y (x) 5K>` (κ +°b )x
+ K1 ` (κ∑°b )x x bx x bx y (x) 5K>` κ ` ° + K1 ` κ ` ∑° y (x) 5 ` κx Z K>` °bx + K1 ` ∑°bx U
b x
b x
°x 5 kds °x ∑ b s`c
°x y ` ∑ ° 5 kds °x + b s`c Q``epfnzncldt`c`eds9
Kded ` °
κx
ZK>(kds °x + b s`c °x) + K1 (kds °x ∑ b s`c °x)U κ y (x) 5 ` x Z(K>+K1 ) kds °x + (K>b + K1b ) s`c °x U y (x) 5 `
` κx Zj> s`c( °x ) + j1 kds(°x )U ]drfdtnctdfnsdfukbûcs`rån y (x ) 5
@cku`ctr`fnsdfukbûcg`c`rnfpnrn y ‱‱ ∑ 1 y 5 = [DFPKBÛC9 1
@c`st`knsdfn`kunkbûcnuxbfbnrs`rån r
∑ 1 5 =
ottp9 p9/ //sfbl`plh.kde de/ /r`n r`nl`r/ r/h huff/vbff`cn cn-`kunkbdc dc` `s-1ld-dr d-drl l`cpl cplh
; ;/>0
0/10/1=>?
Xbff`c n-@kunkbd c `s1ld Drl`c.plh-sfbl`plh.kde
EdbsâsXbff`cnEuþdz
(r ∑ 8)(r + 1) 5 =
Onffncldfnsrnåk`st`c`eds
r 5 8
r 5 ∑1
]drtnctd9
y> (x) 5 j>`
8x
∑1x y 1 (x)
5
j1 ` 8x
y (x) 5 j `
+ j ` ∑1x
>
1
]dl`edskdeprdanr qu``h`ktbvne qu``h`ktbvne`ct``stn`sfnhuckbûcqu`sntbshnk` `ct``stn`sfnhuckbûcqu`sntbshnk`fn`kunkbûclbh`r`c fn`kunkbûclbh`r`ckbnflnln. kbnflnln. Dat`cgnedsfnprbe`rnyfns`guclnl`rbvnln
y ‱ 5 8j>`
8x
∑ 1j1 ` ∑1x + ` 8x Fu`gd,r``epfnzncld
;8j>` 8x
j ` 8 x + ?j ` ∑1x + 1j>` 8x ∑ >1j1 ` ∑1 x 5 = > 1
=5=
@cku`ctr`fnsdfukbûcg`c`rnfpnrn 1y‱‱ ∑ ;y ‱ + y 5 = , y(=) 5 > y ‱(=) 5 > [DFPKBÛC9 1
@c`st`knsdfn`kunkbûcnuxbfbnrs`rån 1r
∑ ; r + > 5 =
Onffncldfnsrnåk`st`c`eds
r 5
; ¾ 2 ∑ ) <
r 5 ; ¾ > < r>
5 >
r1
5
> 1 x
]drtnctd,fn sdfukbûcg`c`rnf s`rån9
> 1
y(x) 5 j>`
+ j1 `
x
Kdedfnskd dfnskdclb clbkbdc`sbc kbdc`sbcbkbnf`s`stî bkbnf`s`stîcln clnlns lnsl`a l`a`e `eds`c ds`ckdc kdctrnr trnrfnskdcs fnskdcstnct tnct`s `s j> y j1
x
+ j1 `
>
=
+ j1 `
>
y(x) 5 j>` Kded y (= ) 5 >
`ctdck`s
y(=) 5 j>`
1
1
x
=
> 5 j> + j1 Dat`cb`cldfnprbe`rnl`rbvnln9 x
>` y ‱(x) 5 j
+
> j1 ` 1
> 1
x
< ottp9 p9/ //sfbl`plh.kde de/ /r`n r`nl`r/ r/h huff/vbff`cn cn-`kunkbdc dc` `s-1ld-dr d-drl l`cpl cplh
0
0/10/1=>?
Xbff`c n-@kunkbd c `s1ld Drl`c.plh-sfbl`plh.kde
EdbsâsXbff`cnEuþdz
x
y ‱(x) 5 j>` Kded y ‱(= ) 5 > `ctdck`s y ‱(=) 5 j>`
=
> 5 j> +
>
+
1 >
+ >
1
j1 `
1
x
j1 ` = >
1
j1
1
⎧ > 5 j + j > 1 Q`sdfvb`cld fvb`cldsbeu sb euftftîc`ne îc`ne`ct` ⎩ ⎯ > ⎩⎢ > 5 j> + 1 j1 ]drtnctd,fn sdfukbûcpnrtbkufnr `s9 y( x )
>
j1 5 = y j> 5 >
t`c`eds9 t`c`eds9
5 `x
@cku`ctr`fnsdfukbûcg`c`rnfpnrn y ‱‱ + `
+ j1x` ∑1x
@cku`ctr`fnsdfukbûcg`c`rnfpnrn y ‱ + 8y ‱ + >; y 5 = : y(=) 5 > : y ‱(=) 5 > [DFPKBÛC9 @c`st`knsdfn`kunkbûcnuxbfbnrs`rån
5
r> , r1
5 ∑ 8 ¾ ∑ >8 5
r> , r1
5
r>
1 1
Onffncldfnsrnåk`st`c`eds9 r> , r1
@c`st`knsd
∑ 8 ¾ ;8 ∑ )(>;)
r> , r1
∑> 5 b
∑ 8 ¾ >8 ∑ >
1 ∑ 8 ¾ s`c(1x) + j1 kds(1x)U y (x) 5 `
Kded y(= ) 5 > `ctdck`s
y (=) 5 ` ∑;(=) Zj> s`c(1(=)) + j1 kds(1(=))U
> 5 (>)Zj>(=) + j1 (>) U
> 5 j1
0 ottp9 p9/ //sfbl`plh.kde de/ /r`n r`nl`r/ r/h huff/vbff`cn cn-`kunkbdc dc` `s-1ld-dr d-drl l`cpl cplh
0/>0
0/10/1=>?
Xbff`c n-@kunkbd c `s1ld Drl`c.plh-sfbl`plh.kde
EdbsâsXbff`cnEuþdz
∑;x Z1 j kds(1x) ∑ 1j s`c(1x )U∑ ;`∑;x Zj s`c(1x) + j kds(1x)U > 1 > 1 Kdedy ‱(= ) 5 > `ctdck`s y‱(=) 5 `∑;(=) Z1 j kds(=) ∑ 1j s`c( =)U∑ ;`∑;(=) Zj s`c( =) + j kds( =)U y‱(x) 5 `
> > 5 1j> ∑ ;j1
> 1
+
>
1
1
; j15 j> 1
Q`sdfvb`cldsbeuftîc`ne`ct` > + ; (>) 5 j> 1
1
j> 5 1
]drtnctd,fnsdfukbûcg`c`rnfs`rån y(x) 5 `
∑; x Z1 s`c(1x) + kds(1x)U
@cku`ctr`fnsdfukbûcl`fnssbgub`ct`s`kunkbdc`slbh`r`ckbnf`sl`s`guclddrl`c >. y ‱‱ y
: y (=) 5 > , y¼(=) 5 >
∑ y‱‱ ∑ y 5 = y‱‱ ∑ y ¼5 = : y (=) 5 > , y¼(=) 5 >
1. ;. , y¼(=) 5 >
+ y ¼55 == y‱‱ + > 1
y‱ + 1 y
5 =
>=. y ‱‱ ∑ 8y ‱ + 2 y
5=
1.>.>.>NCÎFB[B[L@@[\NABFBLNLLBCÎEBKN @c `f @c `f kn knpå påtu tufd fd nc nct` t`rb rbdr dr s` s` e` e`ck ckbd bdcû cû qu qu` ` fn fn `s `stn tnab abfb fbln lnl l lbcî lbcîeb ebkn kn l` l` uc ucn n (t) . trny`ktdrbn y (t) s`fnl`t`re bcnk kd dc fåe y t↑ ∓
]dl`edsbrncnfbzncldpdrknsds.
r>t
r1 t
>
1
[b fns ns rnåk rnåk`s `s sdc sdc r`nf r`nf`s `s y lbh` lbh`r` r`ct ct`s `s, , `stn `stns s y (t) 5 j ` + j ` [b Knsd Kn sd B,c`gntbvns pnrnqu`fntrny`kt tb`c`cqu`s`r c`gntbvns pnrnqu`fntrny`ktdrbns`nlbcîe drbns`nlbcîebkne`ct bkne`ct``stnaf`. ``stnaf`.
KnsdBB, y (t) 5 j ` + j t` .[bfnsrnåk`s .[bfnsrnåk`s sdcr`nf sdcr`nf`s` `s`bgun bgunf`s f`s `ctd `ctdck`s ck`s r tb`c`qu`s`r c`gntbvn( r 6 = ) pn pnrn rnqu qu` `fn fntr trny ny`k `ktd tdrb rbn ns` s`n nlb lbcî cîeb ebkn kne` e`ct ct` ``s `stn tnaf af` `
rt
rt
>
1
Knsd BBB y (t) 5 ` κ Zj kds ut+ j s`c utU [b fns rnåk`s sdc kdepf`ins kdciugnlns`ctdck`sfn pnrt`r`nf κ tb`c`qu`s`rc`gntbvn ( κ 6 = ) p pnrn q qu` ffn
t
>
1
trny`ktdrbns`nlbcîebkne`ct``stnaf`.
8 ottp9 p9/ //sfbl`plh.kde de/ /r`n r`nl`r/ r/h huff/vbff`cn cn-`kunkbdc dc` `s-1ld-dr d-drl l`cpl cplh
8/>0
0/10/1=>?
Xbff`c n-@kunkbd c `s1ld Drl`c.plh-sfbl`plh.kde
EdbsâsXbff`cnEuþdz
1.>.1@KPNKBDC@[LBH@Q@CKBNF@[L@[@GPCLDDQL@C KDCKD@HBKB@C\@KDC[\NC\@CDODEDGÂC@N[ Pcn `ku Pcn `kunkb nkbûc ûc lbh`r lbh`r`ck `ckbn bnf f l` s` s`guc gucld ld drl`c drl`c kd kdc c kd` kd`hb hbkb kb`ct `cts` s` kdc kdcst stnct nct` ` y târebcd g (x ) vnrbnaf``sl`fnhdren9
ny ‱‱ + ay ‱ + ky
5 g (x)
Fn[dfukbûcG`c`rnf`sucnkdeabcnkbûcfbc`nfl`ldstbpdsl`sdfukbdc`s, ucns sd dfukbûck kd depf`e`ctnrbn y K yuc ucns sd dfukbûcp pn nrtbkufnr y ] . ) + y p ( x) y (x ) 5 y k (x
> 1 ;
[DF KDE]F
> 1 ;
[DF ]NQ\
Fn [dfukbûckdepf`e`ctnrbn yK sn sntb tbsh shnk nk`f `fn n`k `kun unkb kbûc ûco ode dedg dgâc âc`n `n
※
nyk + ay k
‱ + ky 5 = k
]drtnctd,pnrnl`t`rebcnrfns`l`a`r`sdfv`rl`nku`rldnfde`ckbdcnld nct`rbdre`ct`. Fn [dfukbûcpnrtbkufnr y ] sntbshnk`fn`kunkbûccdodedgâc`n
ny p
※ + ay ‱ + ky 5 g (x) p p
@stnsdfukbûc,sb`s @stnsdfukb ûc,sb`s l`hdrenpdfb l`hdrenpdfbcûeb cûebknd knd `xpd `xpdc`ck c`ckbnf bnf d dtrb trbgdcde gdcdeâtrb âtrbknl` knl` s`cds s`cd s y kds kds`cds `cds, , s` fn fnpu`l` pu`l` l`t` l`t`reb rebcnr cnr `epf `epf`ncld `ncld `f `fffn ffnenld enld Eâtdldl`fds kd`hbkb`ct`sbcl`t`rebcnlds . @c`stdsknsds,l`nku`rldnfnhdrenl` g ( x ) ,fnsdfukbûcpnrtbkufnr y p (x ) `sl`lukbaf`.Das`rv``fsbgub`ct`kunlrd. [b
c c ∑> g (x) 5 n cx + n c ∑ >x + J + n>x + n = `ctdck`s yp (x) 5 x s N cx c + N c∑ >x c∑ > + J + N>x + N=
[b
s ξx ξx p g (x) 5 n` `ctdck`s y (x ) 5 x N`
[b
g (x)
s ZN s`c αx + A kds αxU 5 n> s`c α x + n 1 kds αx `ctdck`s yp ( x) 5 x
s
Cdt`qu`fnsdfukbûcpnrtbkufnrnpnr`k`euftbpfbknlnpdr x ,`std`spnrn`f k sdp`cl clb` l`b`ct ct`s q`s u` l` `x bfn sts ncsd fukb sdkbdc fudc`s kbd c`s epf` pnf`e` rtbe`ct kufctnr nrnrbn `sbns. s. q u@s ` l` cdkbr, r, s`n ncc` k`sb fbc` nlnl fel `cs` t` bcl` bcnl`p` l` fns sdfu `s kd kdep @s l`kb c`k` sbln pu`l`utbfbznr s 5 =, >, 1
7 ottp9 p9/ //sfbl`plh.kde de/ /r`n r`nl`r/ r/h huff/vbff`cn cn-`kunkbdc dc` `s-1ld-dr d-drl l`cpl cplh
7/>0
0/10/1=>?
Xbff`c n-@kunkbd c `s1ld Drl`c.plh-sfbl`plh.kde
EdbsâsXbff`cnEuþdz
[`ny"+, r1
5
r>, r1
5
r>, r1
5
∑ < ¾ >8 ∑ 1
r>, r1
5
r , r
5
∑ < ¾ (0).< ∑ > ∑ < ¾ 1 0b
> 1 r> 5 r1
5
1 1
∑ < + 1 0b 1
∑ < ∑ 1 0b 1
⇑ r> 5 ∑1 + 0b ⇑ r1 5 ∑1 ∑ 0b
Z
U
∑1 x ` j> s`c( 0x) + j1 kds( 0x) ]drtnctd yk (x ) 5
[`gucld
] ,onff`eds y
1 Kded g (x) 5 x
+ ; x (pdfbcdebdl`grnld1)`ctdck`sfnsdfukbûcpnrtbkufnr`sl`fnhdren
1 yp (x) 5 Nx + Ax + K (pdfbcdebd g`c`rnfb rnfbz znl nld l` grnld 1). ). Fu`gd l`a`eds
l`t`rebcnrfdskd`hbkb`ct`s N ,A y K . Fn sdfukbûc pnrtbkufnr l`a` sntbshnk`r fn `kunkbûc cd odedgâc`n: `s l`kbr,
yp "+=/>0
0/10/1=>?
Xbff`c n-@kunkbd c `s1ld Drl`c.plh-sfbl`plh.kde
EdbsâsXbff`cnEuþdz
Onff`edsfnprbe`rnyfns`guc Onff`eds fnprbe`rnyfns`guclnl`rbvnl lnl`rbvnln n x
yp ' 5 1Nx + A + L` x
yp " 5 1N + L`
Q``epfnzncldyngrupncld 1N + L`x
+ 2
Kdc y (= ) 5 = t`c` eds j1
5 ∑ `
∑1 x
yBXp
+ 8yp‱‱ + >8y'+? y 5 =
[DFPKBÛC9 @epf`ncld`f\`dr`enl`Qduto.Fn`kunkbûcnuxbfbnr`s r< + 8 r; + >8 r + ? 5 = n=
5>
n> 5 8 @c`st`knsd c 5 < ynl`eîs n 1 5 >< n;
5 >8
n<
5?
Fdskuntrdsl`t`rebcnct`ss`rånc9 n> 5 8 :
n>
n;
n0
n=
n1
n<
=
n>
n;
n>
n;
n=
n1
8 >8
5
8 >8
> ><
5 ?< ∑ >8 5 8? : 8 >8
=
8
=
> >< ? = = 8 >8 =
5 > >< ? 5 ?== =
=
>8
=
>
5 8< ?
Kded Kded tdlds tdldsfds fds l` l`t`r t`rebc ebcnc nct`s t`s sdc sdcpd pdsbt sbtbvd bvds s`c `ctdc tdck`s k`s tdlns tdlns fn fns srnå rnåk` k`s s sdc sdcc` c`gn gntbv tbvns ns: : pdr pdrtnc tnctd tdfn fn sdfukbûc`s lbcîebkne`ct``stnaf`
L`t`rebc`kunfbtntbvne`ct`fn`stnabfblnllbcîebknpnrn y ‱‱‱ ∑ >= y"+ 17y '∑>? y 5 ; [DFPKBÛC9 @epf`ncld`f\`dr`enl`Qduto.Fn`kunkbûcnuxbfbnr`s r; ∑ >= r 1 + 17 r ∑ >? 5 =
5> n> 5 ∑>= @c`st`kn knsd c 5 ; ynl`eîs n1 5 17 n; 5 ∑>? n=
Fdskuntrdsl`t`rebcnct`ss`rånc9
∑>= : n> 5
n> n=
n; 5 n1
∑>= ∑>? 5 ∑101 : >
17
>< ottp9 p9/ //sfbl`plh. plh.k kde de/ /r`n r`nl`r/ r/hu huf ff/vbff`cn cn-`kunkbdc dc` `s-1ld-drl d-drl` `cpl cplh
>0
0/10/1=>?
Xbff`c n-@kunkbd c `s1ld Drl`c.plh-sfbl`plh.kde
EdbsâsXbff`cnEuþdz
∑ >= ∑ >?
n>
n;
n0
n=
n1
n<
5 >
=
n>
n;
=
17
=
5 0>?<
=
∑ >= ∑ >?
Kded fdsl`t`rebcn fdsl`t`rebcnct`scdtdldssdcpdsbtbvds ct`scdtdldssdcpdsbtbvds`ctdck`scdtdlnsfnsrnåk`ssdcc`g `ctdck`scdtdlnsfnsrnåk`ssdcc`gntbvns:pdrt ntbvns:pdrtnctdfn nctdfn sdfukbûc`sCDlbcîebkne`ct``stnaf`.
L` L`t` t`re rebc bc` ` sb sb fn fns s sd sdfu fukb kbdc dc`s `s l` l` fns fns `k `kun unkb kbdc dc`s `s lbh lbh`r`c `r`ckb kbnf nf`s `s sd sdc c trny` rny`kt ktdr drbn bnss t`epdrnf`skdcv`rg`ct`sdcd.@epf```f t`epdrnf`skdcv`rg`ct`sdcd. @epf```ft`dr`enl` t`dr`enl`Qduto Qduto >. >. 1. 1. ;. ;.
y mmm∑>=y mm +17 ym∑>? y
5; y mmm+>>y mm +;< y m+1< y 5 0 y mmm+. Onffnrfns`rb`l`\nyfdrnfr`l`ldrl`fn x= 5 = l`fnhuckbûc h (x ) 5 1. @cku`ctr`fnsdfukbûcl`fnssbgub`ct`s`kunkbdc`slbh`r`ckbnf`s`bclbqu`sbfnsdfukbûc kdepf`e`ctnrbnkdcv`rg`dcd. n) y¼¼+= x a) y¼¼¼+;y¼¼∑ y¼∑;y 5 :
y (=)
5 ∑>,y¼(=) 5 >
;. Pc`stulbdl``xpfdtnkbûcl`ucr`kursdcnturnf,utbfbznfn`kunkbûclbh`r`ckbnf9 lx
1
lt1
1 ⎚1 ∑ α⎓ lx n ∑ ⎖⎕⎕> ∑ α⎭⎔n lt + > ∑ α x 5 ;
n) ]rdanr qu` x> (t) 5 `
nt
y x 1 ( t) 5
nt ` >∑ α
ldcl ldcl` `
n ≭ = ,
sdc c sdfu fukb kbdc`s l` fn α ≭ > sd
`kunkbûcodedg `kunkbûc odedgâc`n. âc`n. a) [b n 5 ∑0 y α 5 ∑2 `ck `cku`c u`ctr`fn tr`fnsdfu sdfukbûc kbûcg`c`rn g`c`rnff`bclbqu `bclbqu`sb `sbfnsdfukb fnsdfukbûckdcv`rg`n ûckdcv`rg`nfnrg fnrgd d pfnzd.
>0 ottp9 p9/ //sfbl`plh. plh.k kde de/ /r`n r`nl`r/ r/hu huf ff/vbff`cn cn-`kunkbdc dc` `s-1ld-drl d-drl` `cpl cplh
>0/>0
View more...
Comments