Propiedades de los Materiales Resistencia a la rotura de la losa: kgf
f´closa := 210 ⋅
2
cm
Resistencia a la rotura de la viga: kgf
f´cviga := !50⋅
2
cm
Factor de Corrección de resistencia:
ηc :=
f´cviga
ηc = 1.291
f´closa
Cables de preesfuerzo f p
:= 18&29⋅
kgf
-2&0 /
2
cm
⋅p f pi := 0.&0 f f pi
= 1!110.! ⋅
kgf 2
cm
⋅p f pe := 0.82 f f pe
= 10&50.' ⋅
kgf 2
cm
Propiedades de la sección compuesta h
L la longitud de la viga, el espesor de la losa y s la separación entre vigas todo en metros! "l anc#o efectivo del pat$n %be& ser' el menor de: hf = 0.2m
L = !9. m
be :=
L
L NN := ⋅ f + bt 12 h
be
= 9.85 m
⋅ f + bt be := 12 h
be
= !.'m
be := S
be
= 2.5m
entonces
be := min - NN/
S = 2.5m
9.85 NN = !.' m 2.5
S be
= 2.5 m
Area "fectiva de la losa: be
= 2.5m
AL := be ⋅
hf = 0.2m
hf
AL
ηc
= 0.!8&m2
Para la seccion compuesta Acp ⋅ c2p c2c :=
,oordenadas del centro de gravedad de la seccion compuesta
+nercia de la seccion compuesta
Icc := Icp
+
Acp ⋅ ( c2c − c2p )
− c2c
c1c
= 0.'8' m
c3c := c1c + h
c3c
= 0.88' m
be hf
ηc
2
hf
= 1.51 m
c1c := h
+
h +
c2c
!
2
+ AL ⋅
⋅
12
Acp
+ AL ⋅ c1c +
*odulo de la seccion de la seccion compuesta
+ AL
2
2
hf
S 1c :=
S 2c :=
S 3c :=
Icc = 0.855 m
Icc c1c Icc c2c Icc c3c
f e = 1.92
!
S 1c = 1.2' m
!
S 2c = 0.5'5 m
!
S 3c = 0.9'5 m
Cargas
= 1821.' ⋅
kgf
:= 200⋅
kgf
rae prefaricada
Wo
"osa
W!p
m
!
⋅ hf ⋅ S
W!p = 1200 ⋅
m
Carga viva AA()*+ Factor de impacto 15.2 ⋅ m
= 0.19&
L + !8⋅ m
"inpacto := 1 +
L = !9. m
15.2 ⋅ m
"inpacto
L + !8⋅ m
= 1.19&
Momentos Ma,imos Por peso propio 2
#o := Wo ⋅
L
#o
8
= !5!&2.!&2 k ⋅ gf ⋅
Por losa #umeda 2
#!p
:= W!p ⋅
L
8
#!p
= 2!285 kgf ⋅ ⋅
Por diafragma h´ := ( h − tb)
h = 2.2m
Segn las lineas !e inflencia tenemos% #& := h´⋅ 0.20m⋅
S 1
⋅ - 5m + 10m + 5m/ ⋅ 200
kgf
#&
!
= 820 m⋅ kgf
m
Por capa de rodadura 2
#'o! := S ⋅ 5⋅
kgf L 2
m
⋅
8
#'o!
= 218!0.0'! k ⋅ gf ⋅
Por bordillo aceras y pasamanos (ace'a := 180 ⋅
kgf
(bo'!illo := 25!.8 ⋅ !00⋅
kgf m
acera
m
kgf m
ordillo arandado
kgf m
2
2 kgf L ⋅ ⋅ #sp := (ace'a + (bo'!illo + !00 ⋅ m 8 Nvigas
S 2p S 2p S 2c S 2c S 2c S 2c ⋅ gf ⋅ #sp + #'o! + #& + ( #!p ) + ( #o) = &98&8'.'55 k
kgf
= !50 ⋅
+
= 58.8 cm ⋅ 2
/sa'
= .9& m
"sfuerzo de Fle,ion
⋅ p (i := f pi A
(i
(e := f pe ⋅ Ap
= &&0885.' k ⋅ gf
⋅ gf (e = '!212'.225 k
"sfuerzos del Concreto en la transferencia t/0 "n el e,tremo
⋅ ee := 20 c f 1 :=
f 2 :=
−(i Acp
−(i Acp
+
(i ⋅
− (i ⋅
ee
f 1
S 1p
= −'&.502 ⋅
kgf 2
cm
ee
f 2
S 2p
= −1!'.1' ⋅
kgf 2
cm
"n el centro del claro f 1 :=
f 2 :=
−(i
+ (i ⋅
Acp
−(i
− (i ⋅
Acp
ec S 1p
ec S 2p
−
+
#o
f 1
S 1p
= −2&.'5 ⋅
kgf 2
cm
#o
f 2
S 2p
= −1&&.191 ⋅
kgf 2
cm
Contra los siguientes es fuerzos admisibles f ci := −0.8⋅ 0.'⋅ f´cvig
f ci
kgf
= −1'8 ⋅ -omp'esion 2
cm f ti := 1.1 ⋅
kgf
2
0ension
cm
Los esfuerzos calculados en la transferencia son satisfactorios "sfuerzos del Concreto despues de las perdidas con carga viva en el centro del claro */infinito "cuaciones 12 y 13 Parte superior de la seccion prefabricada
f 1 :=
−(e Acp
+ (e ⋅
ec S 1p
−
#o S 1p
−
#!p S 1p
−
#imp S 1c
−
#& S 1c
−
#'o! S 1c
−
#sp S 1c
f 1
= −1!1.09 ⋅
kgf 2
cm
Parte inferior de la seccion prefabricada
f 2 :=
−(e Acp
− (e ⋅
f 3 :=
f 4 :=
ec S 2p
+
#o S 2p
+
#!p S 2p
+
−#imp S 3c ⋅ η c
f 3
−#imp S 1c ⋅ η c
f 4
#imp S 2c
+
#& S 2c
= −25.8&8 ⋅
#'o!
+
S 2c
kgf 2
+
#sp
f 2
S 2c
= 1'.!92 ⋅
kgf 2
cm
f 3
Parte superior de la losa
f
Parte inferior de la losa
cm
= −20.0!8 ⋅
kgf 2
cm
Contra los siguientes esfuerzos admisibles
de la viga -comp./
f cs
−0.0 ⋅ f´cviga = −10⋅
kgf 2
cm
de la losa -comp./
f cs
−0.0 ⋅ f´closa = −8⋅
kgf 2
cm
de la viga -tens./
f ts
1.'⋅ f´cviga ⋅
kgf 2
= 29.9!! ⋅
cm
kgf 2
cm
Los esfuerzos calculados despues de las perdidas son satisfactorios Momento de agrietamiento
f ' := 1.989 ⋅ f´cviga ⋅
kgf
ecuacion 2
2
cm f ' = !&.211 ⋅
#c' := (e ⋅
kgf 2
cm S 2c Acp
+ (e ⋅ e c⋅
S 2c S 2p
+ f '⋅ S 2c
⋅ gf ⋅ #c' = 10100.859 k Calculo del factor de seguridad contra el agrietamiento:
"c' :=
#c' − #o
"c' = 1.8'8
− #!p − #& − #'o! − #sp #imp
Resistencia a fle,ion 4 Momento ultimo f pe f p
= 0.5&
! := c1p be
+
> 0.50
Por lo tanto usar ecuacion 2' para f ps
hf + ec
= 2.5m
! = 2.18 m
ρ ρ :=
Ap be ⋅ !
1 − ρ ⋅ ρ
f ps
:= f p ⋅
f ps
= 18188.!55 ⋅
f p
⋅ cviga 2 f´
kgf 2
cm a := ρ ρ ⋅ f ps ⋅
! 0.85 f´ ⋅ cviga
ecuacion 25 o !5
a = 1.!&9 ⋅ c a < 20
Por lo tanto usar ecuacion para vigas rectangulares f´closa
= 210⋅
kgf
be
2
= 2.5 m
cm
Ap ⋅
f ps
⋅ ! ⋅ f´ closa be
= 0.121
ecuacion !'
ηc
0.0&5 < 0.!0
usar ecuacion para vigas surefor)adas
#n := Ap ⋅ f ps ⋅ ! − #n
a
2
= 2255'!.5!' k ⋅ gf ⋅
φ := 1 # :=
1.!0
φ
⋅ #o +
#!p
#
= 1&!'808.9'1 k ⋅ gf ⋅
#n
>#
+
#&
+ #'o! +
#sp
ok !
+ ⋅ #ecuacion imp 18 ! 5
ecuacion 1'
Comparacion del re.uisito de la AA()*+
φ⋅
#n
#n
φ⋅
>
#c'
1.2
= 2255'!.5!' k ⋅ gf ⋅ #n
#c'
= 1.'09
mayo' e 12 ok
Cortante en el alma Cortante de los cuartos del claro Por peso propio o := Wo ⋅
L
o
= 1&92.&' k ⋅ gf
Por losa #umeda !p := W!p ⋅
L
!p
= 11820 k ⋅ gf
Por diafragmas
Segn lineas !e inflencia W& := h´⋅ 0.2m⋅
& := W& ⋅
S 1
⋅ 200 ⋅
kgf !
⋅ -1 + 0.&5 + 0.5 + 0.25/ ⋅ 1
W&
L
m
L
&
= 15!.0' ⋅
= 150&.5 k ⋅ gf
Por capa de rodadura W'o! := 125 ⋅
kgf
'o! := W'o! ⋅
m L
'o!
= 12!1.25 k ⋅ gf
Por acera bordillo y pasamanos Wsp := (ace'a + (bo'!illo + !00 ⋅
kg f
Wsp = &!!.8 ⋅
m
sp := Wsp ⋅
L
sp
kgf m
= &22&.9! k ⋅ gf
Por carga viva
)S *25 AAS)06
5 := 1.25⋅ !0850 ⋅ kg f
imp := ⋅ 0.5⋅ "inpacto ⋅ f
imp
= !!1.98 k ⋅ gf
Cortante ultimo φ := 1 :=
1.!0
φ
⋅ o + !p + & + 'o! + sp +
5 !
⋅ imp
= 12'250.82' k ⋅ gf
⋅ cviga ⋅ bw ⋅ 7 ⋅ c := 0.0' f´
c := 0.0'⋅ f´cviga⋅ bw ⋅ ! −
a
⋅ gf c = 8850.!05 k
2 2
Av := 2⋅ 0.&9 ⋅ cm f y := 2800 ⋅
kgf 2
cm
φ18
kgf m
a
!−
⋅ y ⋅ Av ⋅ s 'e := 2 f s ma9
2
s 'e
− c
f y
:= Av ⋅ &.0! ⋅
kgf 2
= 9.'2 c ⋅
s ma9
= !1.'5 c ⋅ e10 c 420
⋅ bw
cm
Cortante #orizontal
hf = 0.2m
: :=
bt be
ηc
⋅ hf ⋅
= 1.2m
c − hf 3c 2 !
: = 0.!05 m
:
v
:= ⋅
v
= !.&&⋅
Icc⋅ bt kgf
!.8'8 < 21.1 co''ecto!
2
cm
Armadura de piel h = 2.2m
100 ⋅
As
As := 0.05 ⋅ bw ⋅
As
≥ 0.05
⋅ − h/ bw ⋅ - 2 !
⋅ −h 2 ! 100
= 2.1' cm ⋅ 2 c 420
φ18
Por cara
5eterminación de Flec#as El cálculo de las deflexiones debidas a las cargas externas es similar al de las vigas no preesforzadas. Mientras el concreto no se agriete, la viga puede tratarse como un cuerpo homogeneo y se le aplica la teoría elástica usual para el cálculo de deflexiones. 5efle,ión Admisible #o L := 000 ⋅ c
Thank you for interesting in our services. We are a non-profit group that run this website to share documents. We need your help to maintenance this website.