vertederos rectangulares
Short Description
Download vertederos rectangulares...
Description
VERTEDEROS RECTANGULARES
MECÁNICA DE FLUIDOS I
INTRODUCCIÓN Se llama vertedero a la estructura hidráulica sobre la cual se efectúa una descarga de scarga a superficie libre. El vertedero puede tener diversas formas según las finalidades a las que se destine. Los vertederos son estructuras complementarias utilizadas para diferentes funciones; por ejemplo, en la ingeniería de presas se utilizan para pasar el agua de las inundaciones de una manera segura aguas abajo cuando el embalse está lleno, también se utilizan para obras de desagüe en presas y en obras de desviación en ríos, donde los vertederos son presas con niveles relativamente bajos construidas para elevar suficientemente el nivel y desviar la totalidad o parte del flujo hacia un canal de suministro o conducto de irrigación, generación hidroeléctrica, usos domésticos e industriales, etc. Los vertederos también se utilizan para desviar inundaciones repentinas hacia áreas de irrigación o para recarga de acuíferos subterráneos. Para los canales lo vertederos se emplean como estructuras estructuras para controlar y medir caudales.
Los vertederos ofrecen las siguientes ventajas en la medición del agua:
Se logra presión en los aforos.
La construcción de la estructura es sencilla.
No son obstruidos por los materiales que flotan en el agua. La duración del dispositivo es relativamente larga.
UNPRG 1
MECÁNICA DE FLUIDOS I
VERTEDEROS RECTANGULARES
OBJETIVOS
Medir en forma sencilla y eficaz el caudal en canales abiertos a través del uso de Vertederos rectangulares.
Determinar el coeficiente de descarga para un vertedero rectangular
Analizar las características del flujo de un vertedero rectangular cuando es sometido a diferentes magnitudes de caudal.
Determinar la línea que nos represente el coeficiente de gasto o descarga, y verificar si este coeficiente de gasto o descarga se mantiene constante a los largo del ensayo.
Elaborar la grafica que relaciona la altura con el gasto.
MARCO TEÓRICO Vertederos El vertedero es una estructura hidráulica destinada a permitir el pase, libre o controlado, del agua en los escurrimientos superficiales. Los vertederos son utilizados, intensiva y satisfactoriamente, en la medición del caudal de pequeños cursos de agua y conductos libres, así como en el control del flujo en galerías y canales.
Tipo de vertederos: Rectangulares Triangulares Trapezoidal Circular
UNPRG 2
MECÁNICA DE FLUIDOS I
VERTEDEROS RECTANGULARES
Vertederos rectangulares Son una estructura con una entalladura, la cual se coloca transversalmente en el canal y perpendicular a la dirección del flujo.
Figura 1. Vertedero rectangular
A su vez, los vertederos rectangulares se clasifican en v ertederos sin contracción lateral, si el ancho del vertedero es igual al ancho del canal (Figura a) y vertederos con contracción lateral en caso contrario (Figura b).
a)
b)
Figura 2. Vertedero a) sin contracción lateral; b) con contracción lateral.
UNPRG 3
VERTEDEROS RECTANGULARES
MECÁNICA DE FLUIDOS I
Vertedero rectangular con contracción lateral: Cuando el vertedero no abarca completamente el ancho del canal, como el vertedero de la Figura 1, la lámina de agua que fluye por encima del vertedero se ve sujeta a una contracción lateral aún más pronunciada que la correspondiente al ancho del propio vertedero. Ello es debido al efecto de vena contracta, es decir, la mínima sección transversal de la lámina descargada, para la que el vector velocidad ya no tiene componente paralela al plano del vertedero, tiene lugar a una cierta distancia aguas debajo de la cresta del vertedero. En realidad este efecto de vena contracta también afecta a la arista horizontal inferior del vertedero, pero normalmente en menor medida. El resultado del efecto de vena contracta es que, para unos valores fijos de la altura H aguas arriba y del ancho L de vertedero, el caudal derramado decrece al aumentar la diferencia entre el ancho del canal y el ancho L.
Figura 3. Vertedero con contracción lateral.
ECUACIÓN DE GASTO Para obtener la ecuación general del gasto de un vertedero de pared delgada y sección geométrica rectangular, se considera que su cresta está ubicada a una altura
, medida desde la plantilla
del canal de alimentación. El desnivel entre la superficie inalterada del agua, antes del vertedor
y la cresta, es y la velocidad uniforme de llegada del agua es
, de tal modo que:
UNPRG 4
VERTEDEROS RECTANGULARES
MECÁNICA DE FLUIDOS I
Si
es muy grande, es despreciable y H = h.
El vertedero rectangular tiene como ecuación que representa el perfil de forma, la cual es normalmente conocida,
. Donde b es la longitud de la cresta. Al
aplicar la ecuación de Bernoulli para una línea de corriente entre los puntos 0 y 1, de la figura, se tiene.
es despreciable, la velocidad en cualquier punto de la sección 1 vale, Si
UNPRG 5
MECÁNICA DE FLUIDOS I
VERTEDEROS RECTANGULARES
Finalmente la ecuación de gasto será igual a:
es el coeficiente de gasto o coeficiente de descarga. es la anchura del vertedero. Es la altura de carga o altura de la lámina de agua sobre la cresta o umbral del vertedero. La cual es la ecuación general para calcular el gasto (Caudal) en un vertedero rectangular cuya carga de velocidad de llegada es despreciable. En la deducción de las ecuaciones para vertederos de pared delgada en general se han considerado hipótesis únicamente aproximadas, como la omisión de la perdida de energía que se considera incluida en el coeficiente
, pero quizá la más importante que se ha
supuesto, es la que en todos los puntos de la sección 1 las velocidades tienen dirección horizontal y con una distribución parabólica, efectuándose la integración entre los limites 0
y h. Esto equivale a que en la sección el tirante debe alcanzar la magnitud . Por otra parte, al aplicar la ecuación de Bernoulli entre los puntos 0 y 1 se ha supuesto una distribución hidrostática de presiones. Esto implica una distribución uniforme de las velocidades
y
para todos los puntos de las secciones 0 y 1, respectivamente.
UNPRG 6
VERTEDEROS RECTANGULARES
MECÁNICA DE FLUIDOS I
MATERIALES Y EQUIPOS Banco hidráulico “fme 00” Descripción: El Banco Hidráulico es una unidad simple en la cual una pequeña bomba centrífuga abastece agua (desde un tanque hacia un sistema básico o complejo de hidráulica);
utilizado
para
el
estudio
del
comportamiento de los fluidos, la teoría hidráulica y las propiedades de la mecánica de fluidos.
Vertedero rectangular
Limnímetro Un limnímetro es, simplemente, una escala tal como una mira de topógrafo, graduada en centímetros. Se puede utilizar para este fin la mira clásica del topógrafo, pero, por lo general, se pinta o se inserta una escala en una de las paredes del río. Entonces, basta con leer, en la escala o mira, el nivel que alcanza el agua para saber el caudal de agua que pasa en este momento por la conducción libre, pero previamente se tiene que calibrar la escala o mira reseñada. Limnimetro
UNPRG 7
VERTEDEROS RECTANGULARES
Probeta
MECÁNICA DE FLUIDOS I
Cronometro
PROCEDIMIENTO Procedimiento del ensayo Liberar el agua del banco hidráulico a un valor de caudal arbitrario. Luego colocar los vertederos en el canal del banco hidráulico, ajustando adecuadamente los tornillos del vertedero rectangular, al final del canal. Detener el flujo del agua del banco hidráulico y hacer que el agua se estabilice en el canal, haciendo que el agua quede al ras del filo del vertedero. Colocar luego en Limnimetro sobre el banco hidráulico. Colocar la lectura de la regla en 0.00 mm y luego hacer que la aguja del Limnimetro choque en el agua del canal. Obteniendo así la altura referencial. Liberar nuevamente el agua a un caudal arbitrario, hacer que la punta de la regla choque en la superficie del agua, y hacer la correspondiente lectura del Limnimetro, obteniendo así una nueva altura. Tomar nota luego, con un cronometro la cantidad de volumen que sale en determinado tiempo, para así obtener el valor del caudal. Repetir este paso 6 veces. Desarrollar luego los cálculos para encontrar el valor de las cargas hidráulicas y el valor de los diferentes caudales.
Toma de Datos
UNPRG 8
VERTEDEROS RECTANGULARES
MECÁNICA DE FLUIDOS I
1. Se coloca la placa de escotadura rectangular en el equipo asegurando cuidadosamente, para evitar posibles fugas de agua.
2. Se coloca las dos pantallas tranquilizadoras o rompeolas a una distancia prudente para evitar que el flujo sea turbulento.
3. Se coloca el medidor de nivel aproximadamente a la mitad del Banco.
4. Se suministra agua al canal hasta que descargue por el vertedero.
5. Se cierra la válvula para que el agua en el canal se estabilice.
UNPRG 9
VERTEDEROS RECTANGULARES
MECÁNICA DE FLUIDOS I
6. Se establece con precisión el mínimo contacto entre el agua y la punta del medidor de altímetro, para luego ajustar en el altímetro del calibre a cero. Luego se procede a la lectura las diferentes alturas.
7. Luego, procedemos la medición de caudales, con ayuda de una probeta esto cuando se trata de caudales pequeños y al ser lo contrario nos ayudaríamos del sistema de medición de caudales del banco hidráulico.
UNPRG 10
MECÁNICA DE FLUIDOS I
VERTEDEROS RECTANGULARES
DATOS OBTENIDOS Los datos que se han obtenido al término de la Práctica de Laboratorio son los siguientes. El valor de la altu r a referencial f ue de 94.2 mm
Cuadro nº 01
MEDICION1 VOLUMEN TIEMPO 5000 ml 5000 ml 5000 ml
26.14 25.92 25.92
MEDICION 3 VOLUMEN TIEMPO 5000 ml 5000 ml 5000 ml
8.71 8.78 8.73
MEDICION 5 VOLUMEN TIEMPO 5000 ml 5000 ml 5000 ml
5.78 5.87 5.90
MEDICION 2 VOLUMEN TIEMPO 5000 ml 5000 ml 5000 ml
9.85 9.81 9.99
MEDICION 4 VOLUMEN TIEMPO 5000 ml 5000 ml 5000 ml
6.66 6.75 6.66
MEDICION 6 VOLUMEN TIEMPO 5000 ml 5000 ml 5000 ml
5.13 5.25 5.13
Cuadro nº 02 ALTURAS DETERMINADAS CON EL LIMNIMETRO
h REFERENCIAL
94.2 mm
h1
75.3 mm
h2
57.4 mm
h3
54.1 mm
h4
47.3 mm
h5
41.1 mm
h6
38.5 mm
UNPRG 11
MECÁNICA DE FLUIDOS I
VERTEDEROS RECTANGULARES
CÁLCULOS Y RESULTADOS Determinación de Caudales MEDICION
VOLUMEN ml
1
2
3
4
5
6
TIEMPO s
CAUDAL ml/s
5000
26.14
191.278
5000
25.92
192.901
5000
25.92
192.901
5000
9.85
507.614
5000
9.81
509.684
5000
9.99
500.501
5000
8.71
574.053
5000
8.78
569.476
5000
8.73
572.738
5000
6.66
750.751
5000
6.75
740.741
5000
6.66
750.751
5000
5.78
865.052
5000
5.87
851.789
5000
5.90
847.458
5000
5.13
974.659
5000
5.25
952.381
5000
5.13
974.659
CAUDAL PROMEDIO m3/s
192.360*
505.933*
572.089*
747.414*
854.766*
967.233*
UNPRG 12
MECÁNICA DE FLUIDOS I
VERTEDEROS RECTANGULARES
Determinación de la carga hidráulica Determinada por la siguiente fórmula:
CARGA HIDRÁULICA (mm) h1
18.9
h2
36.8
h3
40.1
h4
46.9
h5
53.1
h6
55.7
Calculo de los coeficientes de descarga ( ): Sabiendo que:
Donde: 3
Q = Caudal, en m /seg g = gravedad en m/seg 2 b = ancho de escotadura del vertedero rectangular (3 cm) Despejamos
:
PRIMERA MEDICION CAUDAL
192.360*
CARGA HIDRAULICA
m
18.9 *
0.836
UNPRG 13
MECÁNICA DE FLUIDOS I
VERTEDEROS RECTANGULARES SEGUNDA MEDICION CAUDAL
505.933*
CARGA HIDRAULICA
m
36.8 *
0.809
TERCERA MEDICION CAUDAL
572.089*
CARGA HIDRAULICA
m
40.1 *
0.804
CUARTA MEDICION CAUDAL
747.414*
CARGA HIDRAULICA
m
46.9*
0.831
QUINTA MEDICION CAUDAL
854.766*
CARGA HIDRAULICA
m
53.1*
0.789
UNPRG 14
MECÁNICA DE FLUIDOS I
VERTEDEROS RECTANGULARES
SEXTA MEDICION CAUDAL
967.233*
CARGA HIDRAULICA
m
55.7*
0.831
Con los valores de los coeficientes de descargas obtenemos un promedio para luego hacer una comparación entre los resultados obtenidos y los que se debieron obtener:
Con este valor del coeficiente de descarga promedio determinamos los valores que deberíamos haber obtenido para los caudales medidos en laboratorio:
Calculo de los Caudales usando el coeficiente de descarga Se sabe que:
Luego “
” por ser constante:
Entonces:
UNPRG 15
MECÁNICA DE FLUIDOS I
VERTEDEROS RECTANGULARES
Caudales con el promedio (m3/s) MUESTRAS
PRIMERA SEGUNDA TERCERA CUARTA QUINTA SEXTA
187.079* 508.281* 578.161* 731.294* 880.997* 946.488*
Cuadro comparativo de caudales. CAUDALES TEÓRICOS QT (m3/s)
505.933* 572.089* 747.414* 854.766* 967.233* 192.360*
578.161* 731.294* 880.997* 946.488* 508.281*
37.71
1.5765
1.2765
0.6300
0.836
36.8
63.69
1.8041
1.5658
1.2267
0.809
578.161 731.294
40.1
1.8414 1.9094
1.6031 1.6712
1.3367 1.5633
0.804
46.9
69.401 81.17
5.850
880.997
53.1
91.9
1.9633
1.7251
1.7700
0.789
5.170
946.488
55.7
96.4
1.9841
1.7459
1.8567
0.831
Volumen
Tiempo
Caudal
Altura mm
5000
25.993
187.079
18.9
5000
9.883
508.281
5000 5000
8.740 6.690
5000 5000
CAUDALES CON EL m PROMEDIO(m3/s) 187.079*
0.831
UNPRG 16
MECÁNICA DE FLUIDOS I
VERTEDEROS RECTANGULARES
GRAFICOS CURVA ALTURA-GASTO. 60 50 40 m m A R30 U T L A
CURVA ALTURA - GASTO
20 10 0 0
200
400
600
800
1000
CAUDAL ml/s
COMPARACION DE CAUDALES 1000 900 800 s / l m S E L A D U A C
700 CAUDAL MEDIDO EN LABORATORIO
600 500
CAUDAL USANDO EL COEFICIENTE DE DESCARGA
400 300 200 100 0 1
2
3
4
5
6
7
8
9
10
11
12
UNPRG 17
MECÁNICA DE FLUIDOS I
VERTEDEROS RECTANGULARES
GRAFICA DE
EN FUNCION DE
120 100 s / l m s e l a d u a C
80 60 40 20 0 0
10
20
30
40
50
60
h (mm)
GRAFICA DE EN FUNCION DE . 2.5000
2.0000
1.5000 Q g o l
LogQ en funcion de h
1.0000
0.5000
0.0000 0
10
20
30
40
50
60
h (mm)
UNPRG 18
MECÁNICA DE FLUIDOS I
VERTEDEROS RECTANGULARES
GRAFICA DEL COEFICIENTE DE DESCARGA EN FUNCION DE . 0.84 0.83 a g r a 0.82 c s e d e d 0.81 e t n e i c i f e 0.8 o c
coeficiente de descarga en funcion de h
0.79 0.78 0
10
20
30
40
50
60
h (mm)
UNPRG 19
MECÁNICA DE FLUIDOS I
VERTEDEROS RECTANGULARES
CONCLUSIONES 1. Debido a los diversos coeficientes de descarga, es necesario tomar un promedio, en nuestro caso, el coeficiente de descarga promedio que se obtuvo es
.
2. En general el coeficiente de descarga de un vertedero rectangular depende del ancho de escotadura y de la carga Hidráulica.
REFERENCIAS LINKOGRÁFICAS
http://repositorio.espe.edu.ec/bitstream/21000/1681/1/T-ESPE-029265.pdf
http://content.alterra.wur.nl/Internet/webdocs/ilripublicaties/publicaties/Pub38/pub3 8-h7.0.pdf
http://www.slideshare.net/meliaviladavila/vertederos-triangular-y-rectangular
UNPRG 20
VERTEDEROS RECTANGULARES
MECÁNICA DE FLUIDOS I
ANEXOS
UNPRG 21
View more...
Comments