May 9, 2017 | Author: Sherif Yehia Al Maraghy | Category: N/A
In this chapter, we are discussing vectors and solving examples on them as well as Moments...
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Vectors and Moments First: Vectors As we said before, Vectors is a physical quantity which has both magnitude and direction
Shapes of vectors 1st shape: We can write vector as a ,b
2nd shape: we can write vector as a aiˆ b ˆj So for example: F 2 ,3 means F 2iˆ 3 ˆj Or H -4 ,-1 means H -4iˆ ˆj -4 3
-1
2
This is called the position vector for any point ----------------------------------------------------------------------------------------------------------------------
The length of the vectors “ Norm of the vector” If A x , y Then
A x 2 y 2 is the length of vector A and it is denoted by Norm A
Example : If A 3 ,-4 Then the norm length of
A
3
2
-4 5 2
----------------------------------------------------------------------------------------------------------------------
The unit vectors " i " and " j " y The unit vector: A vector whose norm is 1
0 ,1
it is denoted by " i " vector and " j " vector where : i 1,0
i x y
j 0 ,1
2
2
j x y 2
2
1
2
0
0 1 2
2
1 1 2
x'
j
O
x i 1,0
y' ---------------------------------------------------------------------------------------------------------------------Very important note: If A x1 , y1 And B x2 , y2 AB B A x2 , y2 x1 , y1 x2 x1 , y2 y1 x2 x1 i y2 y1 j
Static – 3rd secondary
- 55 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
In this chapter, we will discuss the two kinds of vector multiplication which are:
Scalar Algebraic Product
Vector Product
First kind: Algebraic Product It is denoted by Some definitions (1) The angle between the two vectors: Let A and B be two non Zero vectors , Let us represent them by OC and OD ,Then the C angle COD where 180 o is called the smallest angle D Between these two vectors while the angle COD of measure more than 180 o is called the biggest angle between them. b a O fig 1 Very important note: We can get the small angle between the two vectors A and B by C D Representing them by drawing the angle between two vectors : Outwards Or Inwards the same point " see figures 1 and 2 " Small angle b a o If is the measure of the small angle the two vectors 0 180 O fig 2 o So the measure of the big angle between them 360
But we prefer to use the small angle (2) The scalar product of two vectors : The scalar product of two vectors is a scalar quantity which is equal to the norm of the first vector multiplied by Cosine the angle between them .
B A
A
B Cos
where 0 180 o
---------------------------------------------------------------------------------------------------------------------Example (1) Find A B where A is a vector of magnitude 5 and direction 30o north of west and B is a vector of magnitude 8 towards south Answer A A 5 And B 8 , and the measure of the small angle between o
A and B is 120 So A Static – 3rd secondary
A
B A
B Cos
B 5 8 Cos120 o -20 - 55 -
30 o
B Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (2) If A and B are two vectors such that A 15 , B 12 and A
B -135 , Then find
The measure of the angle between A and B Answer A B A B Cos -135 15 12 Cos Cos -0.75 138 o36' ---------------------------------------------------------------------------------------------------------------------Example (3) The vector A is of magnitude 65 towards west , B is a vector of magnitude 40 and direction 5 east of south and with angle where Tan , Then find A B 12 Answer o A B A B Cos 90 A B A B - Sin -5 A B 65 40 -1000 A 65 13 13 5 B 40
12 ---------------------------------------------------------------------------------------------------------------------Example (4) ABC is a right angled triangle at B where AB 6 cm , BC 8 cm , The vectors F1 , F2 and
F3 of magnitude 150 , 200 , 250 gm.wt act along BA , BC and CA , Find : 1 F1 F2 2 F2 F3 3 F1 F3 Answer 1 ABC 90 o : F1 F2 150 200 Cos 90 o 0 Note When F1 F2 F1
2 The angle between F2 and
3 F1
F3 F1
Static – 3rd secondary
D
C
8 cm
F1 B
F2
ACD is the angle between F2 and F3 F3 F2
F3
Between F2 and F3 , we have to draw the ray BC
6 cm
10 cm
F3 must be inward Or outward
So to get the measure of the smaller angle
F2
E A
F2 0 directly
-8 F3 Cos 180 o 200 250 -Cos 50000 -40000 10 6 F3 Cos 150 250 22500 10
- 55 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
The Algebraic Projection of a vector in the direction of another vector Definition The algebraic projection of vector B in the direction of the vector A is defined to be the scalar Quantity B Cos , where B B and is the measure of the smaller angle between A and B D
D
B
B
O
A
O
C
C
A
The projection of B in the Direction of A is B Cos D
B
A
B
B
O
A
D
C
The projection of B in the direction of A is B
C A
The projection of B in the direction
Cos 90 o 0
of A is B
Cos 180 o - B
Conclusion: The algebraic Projection of a vector in the direction of another vector:
The magnitude of the first vector × Cos the angle between the two vectors So
A
B ABCos
A B A BCos A The algebraic projection of B in the direction of A ---------------------------------------------------------------------------------------------------------------------Example (5) A is a vector where A 30 and B is a vectors B 20 and the angle between A and
B is 75o , then find the algebraic projection of A in the direction of B and also the algebraic Projection of B in direction of A . Answer The algebraic projection of A in the direction of B A Cos 30 Cos75o 7.768 The algebraic projection of B in the direction of A B Cos 20 Cos75o 5.176 Static – 3rd secondary
- 55 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (6) A is a vector of magnitude 18 and direction 60 o north of east , B is another vector of magnitude 12 and direction 30o south of west , Find the algebraic projection of the two vectors A and B in the direction of the other . Answer A 18 The smaller angle between the two vectors 30 o 90 o 30 o 150 o The algebraic projection of A in the direction of B : A Cos 18 Cos150 o -9 3
30
60 o
o
B 12
The algebraic projection of B in the direction of A :
B Cos 12 Cos150 o -6 3 ---------------------------------------------------------------------------------------------------------------------Example (7) ABCD is a rectangle in which AB 7.5 cm , BC 10 cm , Find : a The algebraic projection of the vector CB in the direction of AC
b The algebraic projection of the vector BD
in the direction of BA Answer A a Don' t forget that the direction of the two vectors must be either inwards Or outwards , so we must
D
7.5
extend AC and get the angle , so the algebraic
B
projection of CB in the direction of AC :
10
CB Cos CB Cos 180 o - CB Cos where AC
7.5
2
10 12.5 cm And Cos 2
-4 So - CB Cos 10 -8 5
b The algebraic projection of BD
direction of BA : BD Cos 12.5
Static – 3rd secondary
10 4 12.5 5 A
in the
D
12.5
7.5 7.5 7.5 12.5
- 55 -
C
B
C 10
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Properties of the Scalar Product between two vectors Rule (1) A
B A
B Cos B
A Cos B
Note (1): The units for measuring the scalar quantity A
A
B is equal to the unit of :
A multiplied by the unit of B
For example: If A is a unit vector , whose norm is the Newton and B is a displacement whose norm is meter Then the unit of the calr Product A
B is Newton meter
Note (2): The scalar product of two Non Zero vectors is ve Or -ve quantity Or zero according to the measure of the between the two vectors
a If
is an acute angle 0 < θ < 90 o Then A
b If
is an obtuse angle 90 o < θ < 180 o Then A
c If
is a right angle θ =
π Then A 2
B is ve B is ve
B is Zero and if :
A B 0 , Then either A 0 Or B 0 Or A B ----------------------------------------------------------------------------------------------------------------------
Rule (2) The scalar product of any vector into itself is equal to the square of its magnitude a a 2 where a a
So for any vector a
---------------------------------------------------------------------------------------------------------------------For any two vectors a and b and for any scalar m: Rule (3)
m a Example: 3 a
b a
2b 6 a
m b m a
b a
6 b 6
a
b
b
---------------------------------------------------------------------------------------------------------------------Rule (4) For any three vectors a , b and c , The distributive law holds:
a b
c a
c b
c
----------------------------------------------------------------------------------------------------------------------
Static – 3rd secondary
- 56 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
i i j j 1 , i j j i 0 ---------------------------------------------------------------------------------------------------------------------If a a1 ˆi a2 ˆj and b b1ˆi b2 ˆj Then a b a1 b1 a2 b2 Rule (6)
Rule (5)
Proof : b a1 ˆi a2 ˆj
b ˆi b ˆj a ˆi b ˆi a ˆi b ˆj a ˆj b ˆi a ˆj a b ˆi ˆi a b ˆi ˆj a b ˆj ˆi a b ˆj ˆj a b a b Conclusion : a b a ˆi a ˆj b ˆi b ˆj 1 1 2 2 a
1 1
1
1
2
1
2
1
2
1
1
2
2
st
1
2
1
2
1
2
2
1 1
st
nd
2
b2 ˆj
2
nd
2
Don' t forget : i i j j 1 , i j j i 0 ----------------------------------------------------------------------------------------------------------------------
Rule (7)
Perpendicular resolution of vector “ Geometric Component” a
a Cos i
a Sin j
a
a Sin
a Cos
Example : if the magnitude of the vector a is 3 and 110 o , find the Component form. a 3 Cos 110 o i 3Sin 110 o j -1.026 i 2.82 j ----------------------------------------------------------------------------------------------------------------------
Rule (8) a
The algebraic Component of F in the direction of a is equal to F
a
Example: Find the algebraic component of the vector F 4i 2 j in the direction of the vector AB where A -2 ,3 And B 1,-1 Answer The algebraic Component of F in the direction of AB is F
AB AB
And
AB B A i j - 2i 3 j 3i 4 j And
F
AB AB
4i 2 j
Static – 3rd secondary
AB
3
2
-4 5 2
3i 4 j 12 8 0.8 5
5
- 56 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Mixed examples on the whole lesson The analysis being referred to two perpendicular directions and i and j are the unit vectors in these two directions Example (1) A 3i 4 j and B 5i 12 j , Then find A B and the measure of the angle
If
included between the two vectors . Answer B 3iˆ 4 ˆj
There is no angle given, then : A A
3
2
4 5 2
And
5
B
2
5iˆ 12 ˆj 15i
2
48 j 2 15 48 63
12 13
63 63 63 Cos -1 14 o15' 13 5 65 65 A B ------------------------------------------------------------------------------------------------------------------Example (2)
A
B A
B Cos Cos
A
2
B
If A 3 i j and B 4 j , Then find the algebraic projection of each of the two vectors In the direction of each other .
Answer The algebraic projection of A in the direction of B : A
B
A
3
A
2
3 ˆi ˆj
0iˆ 4 ˆj
1 2
B A
2
And
A Cos So we have to get Cos
3 0 1 4 4
B
B Cos Cos
0
2
4 4
A
B
A
B
2
4 1 1 Cos -1 60 o 24 2 2
1 1 2 1 The algebraic projection of B in the direction of A : B Cos 4 2 2 ------------------------------------------------------------------------------------------------------------------Example (3) The algebraic projection of A in the direction of B :
A Cos 2
If A 3i j and B 2i k j , Then find the value of k so that A B Answer A B 3iˆ ˆj 2iˆ k ˆj 3 2 1 k 6 k And A B 90 o Cos 90 o 0 A
B A
B Cos A
B 0
6 k 0 k 6 Static – 3rd secondary
- 56 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (4) A 2i 5 j and B i k j , Then find the value of k so that A // B Answer
If
A // B Where And
A A
0 o And B 2i 5 j
2
2
B A
A
B Cos
i k j 2 5k
5 29 2
B
And
1
k k 2 1
2
2
2 5k 29 k 2 1 Cos0 o 2 5k 29 k 2 1 So by squaring both:
2 5k
2
29 k 2 1 4 20k 25k 2 29k 2 29
4k 2 20k 25 0 2k 5 0 2k 5 k 2.5 ---------------------------------------------------------------------------------------------------------------------Example (5) 2
If A k i j and B 12i 5 j , Then find the value of k that makes the measure of the Angle between A and B equals 45o A Where And
B A A A
B Cos 45 o 1
B k i j
k
Answer
2
12i 5 j 12 k 5
-1 k 2 1 2
And
B
12
2
-5 13 2
1 169 2 2 So by squaring both: 12 k 5 k 1 2 2 169k 2 169 144 120k 25 288 240k 50 169k 2 169 0 2 2 119k 240k 119 0 17k 7 7k 17 0 12 k 5 13 k 2 1
k
7 "agreed" And 17
k
-17 "refused" 7
b b 2 4ac 2a -------------------------------------------------------------------------------------------------------------------
Note : We can use formula to find k :
Static – 3rd secondary
k
- 56 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (6)
ABCD is a trapezium in which AD // BC , m A m B
2
, AD 16 cm , BC 21 cm
And AB 12 cm , Find :
1The algebraic projection of
AD in the direction of CB
2 The algebraic projection of
BD in the direction of CB
3 The algebraic projection of
CD in the direction of AB
Answer 1 The measure of the angle between AD and CB is equal 180 o Thus the algebraic projection of AD in the direction of CB is
AD Cos The angle between AD and CB
A
16 cm
D
12 cm
16Cos180 o -16
B
2 Don' t forget that the direction of the two vectors
A
must be either inwards Or outwards , so we must extend CB and get the angle , so the algebraic
C
21 cm 16 cm
12 cm
D
12 cm
projection of BD in the direction of CB : BD Cos BD Cos 180 o - BD Cos where BD
16
2
12 20 cm And Cos 2
B
16 4 20 5
-4 So - BD Cos 20 -16 5
3 We must extend CD
A
, so that angle EDF is
5 cm
16 cm
16 cm
D 12 cm
12 cm
C
13 cm
the angle between CD And AB The algebraic projection of CD in the direction of AB :
B
12 CD Cos 180 o - CD Cos -13 -12 cm 13
Static – 3rd secondary
- 56 -
16 cm
5 cm
C
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (7) ABCD is a square , the length of whose side is 8 cm , find :
2 BC
1 c BC -2 DB AD 4 Answer CD AB CD Cos 8 8 Cos180 o 64 -1 -64
a
AB
a
AB
b
2 BC
CD
b
1 1 AD 2 BC 4 4
AD
d
A
BC
-2 DB -2 BC
8 cm
D
8 cm
C D
1 BC AD Cos 2 1 8 8 Cos0 o 32 2 B A
c
AC BD
8 2
DB Cos -2 8 8 2 Cos135 o 128 B
C
A
d
AC BD
AC
8 cm
D
BD Cos 8 8 Cos 90 o 0
C B -------------------------------------------------------------------------------------------------------------------
Static – 3rd secondary
- 55 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (8) ABCD is a rectangle which AB 6 cm , BC 8 cm , find :
a
-2 AB
AC
a
b
8
-2 AB BC
2
c
AC
BC
5 DB 2 Answer
6 10 cm 2
AC
-2 AB
AC
6
2
AC Cos
So in AMB :
AC BD
10 cm
6 cm
B A
8 cm
B
2
8 cm
6 cm
M
2
B
C
D
A
2
5 6 7 2 5 5 25
C D
10 cm
6 cm
8 10 cm
1 AC 5 cm Median from right angle 2 Also BM AM 5 cm Properties of a rectangle 2
D
AM
5 Cos
8 cm
A
6 -2 6 10 -72 10 5 5 DB DB BC 2 2 5 BC BD Cos 180 o 2 5 - BC BD Cos 2 5 -8 8 10 -160 2 10
c In AMB:
AC BD
d
8 cm
C
7 28 25 -------------------------------------------------------------------------------------------------------------------
Static – 3rd secondary
AC
BD Cos 10 10
- 55 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (9) ABCD is a parallelogram in which m BAC 90o , BC 2AB 8 cm , find:
a
CA
8 4
AC
a CA b
c
b
CB 2
CB
1 c AB DC 2 Answer
3 AD 3 AB
-32 3
MB
7 BD
AM
2 3
2
B
4 3
B
C
8 cm
A
8 cm
D
4 3
B
C
8 cm
A
B
D
8 cm
4 cm
4 cm
C
8 cm
A
4 -16 3 8
BD 4 7 BD
4 3
4 cm
2
D
AD Cos 90 o
4 2 7 cm
7 BD AC 8 cm
4 cm
1 AC 2 3 cm 2
AC 7
d A
3 4 8 - Sin
d In AMB:
3 AD
4 3 cm
4 3 CA CB Cos 4 3 8 48 8 1 1 DC DC AD 2 6 1 AD DC Cos 180 o 6 1 - AD DC Cos 6 1 4 8 - 84 6 8 3
1 AD 3
AB
2
1 AD 3
8 cm
D
2 3
8 cm
C
AC Cos
2 3 336 2 7 ------------------------------------------------------------------------------------------------------------------7 4 7 4 3
Static – 3rd secondary
- 55 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (10) If ABCD is a square , then prove that : AB BC
BD Zero
Answer
AB BC AB
BD AB
BD Cos135o BC
BD BC
8 cm
A
BD
D
BD Cos 45 o
-1 1 88 2 88 2 Zero 2 2
C
B
------------------------------------------------------------------------------------------------------------------Example (11) Prove that for any two vectors a and b : a b a b a 2 b 2 where a a
and b b
a b a b a
a a
Answer b b a b
b a 2 b2
------------------------------------------------------------------------------------------------------------------Example (12) Let a 3i 2 j , b -i 4 j And c -2 j
1 Then find with respect to i and j the vector: - c 2 b -3a c 5 Answer Let a 3i 2 j , b -i 4 j And c -2 j 1 Then find with respect to i and j the vector: - c 2 b -3a c 5
2 b -3a -6 b a -6 3 -1 2 4 -30 1 1 - c 2 b -3a c - c -30 c - c 6 c 5 5
-7 c -7 -2j 14 j
-------------------------------------------------------------------------------------------------------------------
Static – 3rd secondary
- 55 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (13) ABC is a triangle in which A 3,2 , B -4 ,3 and C -3,-6 , Then find m BAC Answer AB
AC AB
Cos BAC
AC Cos BAC
AB
AC
AB
AC
B
AB B A -4 ,3 3 ,2 -7 ,1 -7 i j AB
-7
2
A
1 50 2
AC C A -3 ,-6 3 ,2 -6 ,-8 -6 i 8 j AC AB
C
-6 -8 10 2
2
AC -7 i j
-6 i 8 j 42 8 34
34 61o16' 10 50 ------------------------------------------------------------------------------------------------------------------Example (14) If A 1,1 , B 2 ,3 and C 5 ,-1 , Then prove that AB AC , Then find the algebraic Cos BAC
Component of F 7i 4 j Newton in the two directions AB and AC .
Answer AB B A 2 ,3 1,1 1,2 i 2 j And
AB
And AC C A 5 ,-1 1,1 4 ,-2 4i 2 j And AB
AC i 2 j
4i 2 j 4 4 0
1
2
2 5
AC
2
4
2
2 2 5 2
90 o AB AC
The algebraic component of F in the direction of AB is equal to : F
AB AB
7i 4 j
i 2 j 3 5
5 Newton
And The algebraic component of F in the direction of AC is equal to : F
AC
7i 4 j
4i 2 j 2
5 Newton 2 5 AC -------------------------------------------------------------------------------------------------------------------
Static – 3rd secondary
- 55 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (15) If A 4 ,1 , B 7 ,5 and C -5 ,-4 , Find Cos where is the angle between the two Vectors AB and BC , Then determine the algebraic Component of each of the two vectors in the direction of the other .
Answer AB
BC AB
BC Cos where :
AB B A 7 ,5 4 ,1 3 ,4
AB
And
And BC C B -5 ,-4 7 ,5 -12 ,-9 Cos
AB
BC
AB
BC
And
3
2
4 5
BC
2
-12
2
-9 15 2
3 ,4 -12 ,-9 -36 36 -24 5 15
75
25
The algebraic component of AB in the direction of BC is equal to : AB
BC BC
3 ,4
-12 ,-9 3 -12 4 -9 -4.8 15
15
The algebraic component of BC in the direction of AB is equal to : BC
AB
-12 ,-9
3 ,4 3 -12 4 -9 -14.4
5 5 AB -------------------------------------------------------------------------------------------------------------------
Static – 3rd secondary
- 56 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Second kind: Vector Product It is denoted by Rule A A
And B B
A B A
B
Sin kˆ where :
and is the measure of the small angle between A and B and kˆ is
the unit vector perpendicular to the plane containing the two vectors A and B . The direction of the unit vector kˆ is determined according to the right hand rule which states that: If the curved fingers of the right hand indicates the rotation of the vector A towards vector B Throught the smaller angle , then the thumb will indicate the direction of kˆ as shown in figures
Note that : the vector product A B is a vector And not scalar
and its direction is
Perpendicular to the plane containing the vectors A and B in the direction which is determined according to the right hand rule and the unit vector in the direction of A B A B is the vector kˆ which is equal to kˆ AB Sin
Static – 3rd secondary
- 56 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Properties of the Vector Product between two vectors Rule (1)
A B - B A A
Note : For the two vectors A B
B Sin kˆ
and B A have the same magnitude But have different direction
----------------------------------------------------------------------------------------------------------------------
Rule (2) If A // B , Then A B 0 for , In this case is equal to Zero or 180 o and hence Sin 0o Sin 180o 0 Note : If A B 0 , Then either A 0 Or B 0 Or A // B ----------------------------------------------------------------------------------------------------------------------
Rule (3)
The vector product of any vector into itself is equal zero as Sin0 o 0 So for any vector : a a zero Proof:
a a
a
a Sin 0 o kˆ Zero
---------------------------------------------------------------------------------------------------------------------Rule (4) The Right hand system
In the given figure: OX and OY are two perpendicular directions ˆi and ˆj are two unit vectors in these directions respectively: So ˆi ˆj ˆi
ˆj Sin90 o 1 1 Sin90 o kˆ kˆ
Where kˆ is the unit vector perpendicular to plane OXY containing ˆi and ˆj And in the direction of the right hand rule. From this: we can say : ˆi ˆj kˆ
kˆ ˆi ˆj
ˆj kˆ ˆi
And when they are in the anticlock wise : From this: we can say : ˆj ˆi -kˆ
ˆi kˆ - ˆj
kˆ ˆj -iˆ
But ˆi ˆi ˆj ˆj kˆ kˆ 0 اى ح اج ة ش ب ه ب ع ض
Static – 3rd secondary
- 56 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Rule (5)
Email :
[email protected]
For any two vectors a and b and for any scalar m:
Example:
m a b a m b m a b 3 a 2b 6 a b a 6 b 6 a b
---------------------------------------------------------------------------------------------------------------------For any three vectors a , b and c , The distributive law holds: Rule (6)
a b
c a c b c
---------------------------------------------------------------------------------------------------------------------Rule (7) If a a ˆi a ˆj and b b ˆi b ˆj Then a b a b a b kˆ 1
2
1
2
1
2
2
1
Or a b 1st 2 nd 2 nd 1st kˆ
Proof : a b a1 ˆi a2 ˆj b1ˆi b2 ˆj a1 ˆi b1ˆi a1 ˆi b2 ˆj a2 ˆj b1ˆi a2 ˆj b2 ˆj a1 b1 ˆi ˆi a1 b2 ˆi ˆj a2 b1 ˆj ˆi a2 b2 ˆj ˆj
0 a1 b2 kˆ a2 b1 - kˆ 0 a1 b2 a2 b1 kˆ Don' t forget : i i j j 1 , i j kˆ & j i - kˆ Where ˆi , ˆj , kˆ are the right system of unit vectors
----------------------------------------------------------------------------------------------------------------------
Important Remark
N
D
B We know that A B AB Sin
O
If OC represents the vector A And if OD represents the vector B And
AB Sin OC
OD
A
C
Sin The surface area of the parallelogram OCND
Twice the surface area of OCD ----------------------------------------------------------------------------------------------------------------------
Static – 3rd secondary
- 56 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Comparison between Scalar and Vector products
Static – 3rd secondary
- 56 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Let A 6 ˆi 15 ˆj ,
B 5iˆ 3 ˆj
Email :
[email protected]
,
Example (1) C -iˆ ˆj , find :
b A B C A B C c B A C d C B A Answer Let ˆi , ˆj , kˆ be a right system of unit vectors a A B 6 ˆi 15 ˆj 5iˆ 3 ˆj 11iˆ 12 ˆj A B C 11iˆ 12 ˆj -iˆ ˆj 1 2 2 1 kˆ -11 12 kˆ kˆ b A B 6 ˆi 15 ˆj 5iˆ 3 ˆj -18 75 kˆ -93kˆ A B C -93kˆ -iˆ ˆj -93kˆ -iˆ -93kˆ ˆj a
st
93 kˆ
nd
nd
st
ˆi Cos 90 o 93 kˆ
ˆj Cos 90 o 0 0 0
A C 6 ˆi 15 ˆj -iˆ ˆj -6 15 kˆ 9kˆ B A C 5iˆ 3 ˆj 9kˆ 45 ˆi kˆ 27 ˆj kˆ 45 - ˆj 27 ˆi -27iˆ 45 ˆj d C B -iˆ ˆj 5iˆ 3 ˆj 6 ˆi 15 ˆj 3 5 kˆ 6 ˆi 15 ˆj 48 kˆ ˆi 120 kˆ ˆj c
48 ˆj 120iˆ ------------------------------------------------------------------------------------------------------------------Example (2) ˆ ˆ ˆ ˆ If A i 3 j , B mi 2 j , A B -14kˆ , Then find the value of m .
Answer ˆ A B -14 k ˆi 3 ˆj miˆ 2 ˆj -14 kˆ -2 3m kˆ -14 kˆ -2 3m -14 m 4 ------------------------------------------------------------------------------------------------------------------Example (3) If A -2iˆ 5 ˆj and B 3iˆ 4 ˆj , find the vector C in the plane A and B such that: A C -14kˆ And C B 6kˆ Answer Let C miˆ n ˆj And A C -19 kˆ -2iˆ 5 ˆj miˆ n ˆj kˆ -14 kˆ -2n 5m kˆ -14 kˆ -2n 5m -14 1 And
C B 6 kˆ miˆ n ˆj 3iˆ 4 ˆj kˆ 6 kˆ 4m 3n 6 2
From 1 and 2 and by simultanous : m 3 Static – 3rd secondary
And n 2 - 55 -
C 3iˆ 2 ˆj Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (4) If A 2 ,3 and B 1,-1 , Then find the vector C such that: A C 21 & C B -8 kˆ Answer Let C miˆ n ˆj And A C 21 -2iˆ 5 ˆj miˆ n ˆj 21 -2m 5n 21 1 And
C B -8 kˆ miˆ n ˆj ˆi ˆj kˆ -8 kˆ - m n -8 2
From 1 and 2 and by simultanous : m 3 And n 5 C 3iˆ 5 ˆj ------------------------------------------------------------------------------------------------------------------Example (5) If A 2 ,1 , B -1,5 and C -4 ,-1 Then prove that: AB AC BA CB BC CA Answer AB B A -1,5 2 ,1 -3 ,4 -3iˆ 4 ˆj BA - AB 3iˆ 4 ˆj
AC C A -4 ,-1 2 ,1 -6 ,-2 -6 ˆi 2 ˆj CA - AC 6 ˆi 2 ˆj BC C B -4 ,-1 -1,5 -3 ,-6 -3iˆ 6 ˆj CB - BC 3iˆ 6 ˆj AB AC -3iˆ 4 ˆj -6 ˆi 2 ˆj 6 24 kˆ 30kˆ BA CB 3iˆ 4 ˆj 3iˆ 6 ˆj 18 12 30kˆ BC CA -3iˆ 6 ˆj 6 ˆi 2 ˆj -6 36 30kˆ ------------------------------------------------------------------------------------------------------------------Example (6) If A 3 ,-2 , B -1,1 , C 1,5 and D 6 ,0 , Then find:
a AB
CD
b AC
BA DC
c BC
AB
AC BD
Answer A 3iˆ 2 ˆj , B -iˆ ˆj , C ˆi 5 ˆj And D 6iˆ a AB B A -4iˆ 3 ˆj And CD D C 5iˆ 5 ˆj AB CD 20 15 kˆ 5kˆ
b AC
C A -2iˆ 7 ˆj & BA A B 4iˆ 3 ˆj
BA DC -iˆ 2 ˆj
c BC
C B 2iˆ 4 ˆj
BC AB BC AB
& DC C D -5iˆ 5 ˆj
AC BA DC -2iˆ 7 ˆj -iˆ 2 ˆj -4 7 3kˆ And
AB
AC -4iˆ 3 ˆj -2iˆ 7 ˆj 8 21 29
58iˆ 116 ˆj AC BD 58iˆ 116 ˆj 7 ˆi ˆj -58 812 kˆ -870 kˆ
AC 29 2iˆ 4 ˆj
------------------------------------------------------------------------------------------------------------------Static – 3rd secondary
- 55 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Let A i j
a A
C
,
Email :
[email protected]
B -i 2 j and
B
b A
B C
Example (7) C 4 j , Then find:
a a c i j 4 j 4 0 kˆ 4kˆ
a c
b
b 4kˆ
-i 2 j -4 kˆ
b c -i 2 j 4 j -i 2 j
c a
b i j
d b
c -i 2 j
c B
A
B C
d B
C A A
B C
Answer
j -4 0 8 0 0 a b c i j -iˆ 2 j - 2 1 kˆ -3kˆ ˆi 8 kˆ
-i 2 j -1 2 -3 b -3c -3 b c -3 -i 2 j 4 j -3 -4 0 kˆ 12kˆ
4 j 0 8 8
a
b -3
b c a a b c 8 a -3 c -24 a c -24 4kˆ -96kˆ ------------------------------------------------------------------------------------------------------------------Example (8) If A 3i 4 j , B 4i 5 j , Then find the vector C where C // A , C B 62kˆ Answer Let C ai b j , So C // A C A 0 ai b j 3i 4 j -4 a 3b kˆ - kˆ 4 a 3b 0 4 a 3b 0 1 C B 62kˆ ai b j 4i 5 j 62kˆ
5a 4b kˆ 62kˆ
5a 4b 62 2 , Then from 1 and 2 : b -8 & c 6 C 6 i 8 j ------------------------------------------------------------------------------------------------------------------Example (9) If A 2 ,3 And B m ,2 , find the value of m in each of the following cases: a A B -5 kˆ b A B
c The measure of the angle between A a b
and B equals 45o Answer 2i 3 j mi 2 j -5kˆ 4 3m kˆ -5kˆ 4 3m -5 m 3
2i 3 j mi 2 j 0 2m 6 0 m -3 A B 2i 3 j mi 2 j Cos 45o 1 2m 6 c Cos 2 2 2 2 2 A B 13 m 2 4 2 3 m 2 2 By squaring both sides : 13 m2 4 2 2m 6 13m2 52 2 4m 2 24m 36 A B
5m 2 48 m 20 0 Static – 3rd secondary
m 10 5m 2 0 m 10 - 55 -
Or m
-2 5
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (10) If A 0 ,-2 , B 6 ,-4 , C 7 ,4 and D -2 ,4 are vertices of a quadrilateral , then find AC BD and calculate the area of ABCD Answer A -2 ˆj , B 6 ˆi 4 ˆj , C 7iˆ 4 ˆj And D -2iˆ 4 ˆj AC C A 7 ˆi 6 ˆj And BD D B -8iˆ 8 ˆj
AC BD 7 ˆi 6 ˆj -8iˆ 8 ˆj 56 48 kˆ 104 kˆ Area of ABCD Area of ABC Area of ACD Where Area of ABC
1 AB AC Sin 2
But we know that : AB AC Sin AB BC 1 AB BC 2 AB B A 6 ˆi 2 ˆj And BC C B ˆi 8 ˆj AB BC 6 ˆi 2 ˆj ˆi 8 ˆj 48 2 kˆ 50 kˆ Area of ABC
1 1 AB BC 50 25 1 2 2 1 1 Also Area of ACD AC AD Sin AC AD 2 2 AC C A 7 ˆi 6 ˆj And AD D A -3iˆ 6 ˆj AC AD 7 ˆi 6 ˆj -3iˆ 6 ˆj 42 18 kˆ 60 kˆ Area of ABC
1 1 AC AD 60 30 2 2 2 Area of ABCD Area of ABC Area of ACD 25 30 55 --------------------------------------------------------------------------------------------------------------------- Area of ACD
Static – 3rd secondary
- 55 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Second :
Moments (Torque)
Vector Moment
Algebraic Moment
Introduction : One person is sitting at the end of a see - saw Can balance the weight of the two people sitting closer in The turning effect produced by a force depends on its distance from the pivot point. It is easier to close the door if you push at the edge , this is because you are applying force further away from the pivot point The hinge you would need a greater force closer to the hinge to produce the same turning effect. The moment of a force measures turning effect of the force on the body on which it is acting the moment of a force depends on the magnitude of the force and its distance from the axis of rotation . -------------------------------------------------------------------------------------------------------------------
1st : Vector Moment of a force about a point The moment of a force F about O denoted by M o is defined to be a vector quantity r F
F
Rule: M o r F OA F
O
Where r is the position vector for any point A Say on the
A
r
line of action of the force F with respect to O . Notes :
1 The above definition makes M o
is equal to r F and not F r because : r F - r F
2 OA A O 3 The magnitude of a moment :
F
d
Rule: M o F d
O
A
r Where d is the perpendicular distance from the point to the line of action of F Static – 3rd secondary
- 55 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (1)
Let ˆi and ˆj are two unit vectors in the two perpendicular directions OX and OY respectively A force F 4i 3 j acts at the point A 2 ,3 , Calculate the moment of this force about : The point B -1,2 , Also find the magnitude of this moment .
Answer ˆ Let k be a unit vector perpendicular to both ˆi and ˆj such that ˆi , ˆj ,kˆ form a right hand
system of unit vectors . M B r F BA F Where BA A B 2 ,3 -1,2 3 ,1 3iˆ ˆj M r F 3iˆ ˆj 4iˆ 3 ˆj -9 4 kˆ -13kˆ B
Then the magnitude of
M B 13
F 4iˆ 3 ˆj
d B -1,2
r
A 2 ,3
Note : To find the magnitude of any moment : Remove kˆ and the -ve Sign ------------------------------------------------------------------------------------------------------------------Example (2) A force F 3i 4 j acts at the point C 1,2 ,Then find :
1The Moment of this force about point A 5 ,4 2 The length of the perpendicular from A on the line of action of this force . Answer M A r F AC F Where AC C A 1,2 5 ,4 -4 ,-2 -4iˆ 2 ˆj M r F -4iˆ 2 ˆj 3iˆ 4 ˆj -16 6 kˆ -10 kˆ
F 3iˆ 4 ˆj
A
Then the magnitude of
M A 10
And the magnitude of F
3
d 2
4 5 2
A 5 ,4
r
C 1,2
10 2 5 -------------------------------------------------------------------------------------------------------------------
So
M F d 10 5d d
Static – 3rd secondary
- 56 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (3)
A force F -2i j acts at the point B 7 ,2 ,Then find : The length of the perpendicular from A 3 ,-1 on the line of action of this force .
Answer M A r F AB F Where AB B A 7 ,2 3 ,-1 4 ,3 4iˆ 3 ˆj M r F 4iˆ 3 ˆj -2iˆ ˆj 4 6 kˆ 10 kˆ
F -2iˆ ˆj
A
Then the magnitude of
M A 10
And the magnitude of F
-2
d 2
1 5 2
A 3,-1
B 7 ,2
r
10 2 5 5 ------------------------------------------------------------------------------------------------------------------Example (4) The two forces F1 2i j and F2 mi 2 j acts at A 3 ,-1 and B -1,3 respectively M F d 10 5d d
So
Find m such that the sum of the moments of these two forces vanishes at O 0 ,0
Answer M OA r1 F1 OA F1 Where OA A O 3 ,-1 0 ,0 3 ,-1 3iˆ ˆj M r F 3iˆ ˆj 2iˆ ˆj 3 2 kˆ 5 kˆ OA
And
1
1
M OB r2 F2 OB F2
F2 miˆ 2 ˆj
B -1,3
r2
F1 2iˆ ˆj
r1
A 3,-1
O 0 ,0
Where OB B O -1,3 0 ,0 -1,3 -iˆ 3 ˆj
M OB r2 F2 -iˆ 3 ˆj miˆ 2 ˆj 2 3m kˆ
The sum of the moments vanishes : M OA M OB 0
5 kˆ 2 3m kˆ 0 5kˆ 2kˆ 3m kˆ 0 7kˆ 3m kˆ 0 by kˆ
7 3 ------------------------------------------------------------------------------------------------------------------ 7 3m 0 m
Static – 3rd secondary
- 56 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (5)
The two forces F1 mi 3 j and F2 Li 5 j acts at A 2 ,5 and B 1,-3 respectively Determine the value of m and L such that the sum of the moments of these two forces with respect to the origin and with respect to D 5 ,-2 vanishes .
First : With respect to the Origin 0 ,0
Answer
M A r1 F1 OA F1 Where OA A O 2 ,5 0 ,0 2 ,5 2iˆ 5 ˆj M r F 2iˆ 5 ˆj miˆ 3 ˆj 6 5m kˆ A
1
B 1,-3
r1
r2
A 2 ,5
O 0 ,0
1
M B r2 F2 OB F2
And
F1 miˆ 3 ˆj
F2 Liˆ 5 ˆj
Where OB B O 1,-3 0 ,0 1,-3 ˆi 3 ˆj M r F ˆi 3 ˆj Liˆ 5 ˆj -5 3L kˆ B
2
2
The sum of the moments vanishes : M A M B 0 6 5m kˆ -5 3L kˆ 0 6kˆ 5 m kˆ 5kˆ 3L kˆ 0
by kˆ
3L 5m -1 1 Second : With respect to the D 5 ,-2 M A r1 F1 DA F1 Where DA A D 2 ,5 5 ,-2 -3 ,7 -3iˆ 7 ˆj M r F -3iˆ 7 ˆj miˆ 3 ˆj -9 7m kˆ A
1
B 1,-3
r2
r1
A 2 ,5
D 5 ,-2
1
M B r2 F2 OD F2
And
F1 miˆ 3 ˆj
F2 Liˆ 5 ˆj
Where DB B D 1,-3 5 ,-2 -4 ,-1 -4iˆ ˆj M r F -4iˆ ˆj Liˆ 5 ˆj 20 L kˆ B
2
2
The sum of the moments vanishes : M A M B 0 -9 7m kˆ 20 L kˆ 0 by kˆ -9 7m 20 L 0
by kˆ
L 7m -11 2 From 1 and 2 : By simultanous
-1 L 7m -11 3
3L 3m -1
-3L 5m 1
3L 21m -33 -16 m -32
m 2 And by substitution in any equation: L 3 Static – 3rd secondary
- 56 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (6)
Find the force F which acts at A 3 ,-2 such that its moment at the origin vanishes and the Algebraic measure of its moment about B -1,2 equals -8 kˆ .
Answer Let the force F xiˆ y ˆj
F xiˆ y ˆj
First : with respect to the Origin 0 ,0 M O r1 F OA F Where OA A O 3 ,-2 0 ,0 3 ,-2 3iˆ 2 ˆj M r F 3iˆ 2 ˆj xiˆ y ˆj 3 y 2x kˆ O
B -1,3
1
M O 0 3 y 2x kˆ 0
And
A 3,-1
r2
3 y 2x 0 1
Second : with respect to the B -1,2
r1 O 0 ,0
M B r2 F BA F Where BA A B 3 ,-2 -1,2 4 ,-4 4iˆ 4 ˆj M r F 4iˆ 4 ˆj xiˆ y ˆj 4 y 4x kˆ B
And
1
M B -8 kˆ 4 y 4x kˆ -8 kˆ
4 y 4x -8 2
2 y 2x -4 2 Then by subtracting 2 1 : - y -4 y 4 And x -6
Then F -6 ˆi 4 ˆj
-------------------------------------------------------------------------------------------------------------------
Static – 3rd secondary
- 56 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Theorem of Coplanar forces The algebraic sum of the moments of a system of forces acting at a point about any point in the space is equal to the moment of the resultant of these forces about the same point . Proof Let F1 , F2 , F3 , ............ Fn be a finite number of forces acting at A and Let O be any point in the space . M o r F1 r F2 r F3 .......... r Fn
M o r F1 F2 F3 .......... Fn Mo r R
Where R
A
r
is the resultant of the forces
F3
F2
O
F1
R
The sum of the moments of forces about O is equal to the moment of the resultant of these forces about O . The length of the perpendicular from any point to the line of action of the Resultant of forces M Where M= M And R F1 F2 F3 .......... Fn R ------------------------------------------------------------------------------------------------------------------M Rd
d
Very important remarks If the moment of F about A M A The moment of F about B M B Then AB // The line of action of F
If the moment of F about A M A - The moment of F about B M B Then the line of action of F passes through the mid - point of AB
MA
MB
A
B
Steps to solve different kinds of moment's problem :
1 To prove that the line of action of the resultant forces R bisect AB , Then : Find the sum of moments of the given forces at A Find the sum of moments of the given forces at B So if the Sum of M A - the sum of M B Then the line of action of the resultant forces R bisect AB
2 To prove that R // AB We must prove that : M A M B Then M A Zerooo 3 If the line of action of the forces R passes through A Then Also If the line of action of the forces R passes through B M B Zerooo Static – 3rd secondary
- 56 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (7)
The forces F1 2i j , F2 -i 2 j And F3 2i 7 j act at A 1,-2 , Find the moment of each of these forces about the origin and hence find the length of the perpendicular from the origin to the line of action of the resultant .
Answer R F1 F2 F3 2iˆ ˆj -iˆ 2 ˆj 2iˆ 7 ˆj 3iˆ 4 ˆj Where r OA A O 1,-2 0 ,0 1,-2 ˆi 2 ˆj M r R ˆi 2 ˆj 3iˆ 4 ˆj -4 6 kˆ 2 kˆ O
And
A 1,-2
r
M R d where M M O 2 And R R
3
2
F2 -iˆ 2 ˆj
O 0 ,0
-4 5 2
F3 2iˆ 7 ˆj
F1 2iˆ ˆj M 2 The length of the perpendicular from O to the line of action of the resultant R : d 0.4 R 5 ------------------------------------------------------------------------------------------------------------------Example (8) The forces F1 i j , F2 -5i 2 j And F3 2i act at A 2 ,-3 i Prove that : The algebraic sum of the moments of these forces about B 1,1 is equal to the moment of their resultant about B . ii Prove that the line of action of the resultant of these forces passes through the origin O .
Answer To prove that the algebraic sum of the moments The moment of their resultant We must solve in details "Proof of the theorem" A 2 ,-3 M B r F1 F2 F3
And
F3 2iˆ
R F1 F2 F3 ˆi ˆj -5iˆ 2 ˆj 2iˆ -2iˆ 3 ˆj
r
And as the force act at A : r BA A B 2 ,-3 1,1 1,-4 ˆi 4 ˆj M B r R ˆi 4 ˆj -2iˆ 3 ˆj 3 8 kˆ -5 kˆ 1 B 1,1
F2 -5iˆ 2 ˆj F1 ˆi ˆj
Also M 1 r F1 ˆi 4 ˆj ˆi ˆj 1 4 kˆ 5kˆ
M 2 r F2 ˆi 4 ˆj -5iˆ 2 ˆj 2 20 kˆ -18kˆ M 3 r F3 ˆi 4 ˆj 2iˆ 0 8 kˆ 8kˆ
M B M 1 M 2 M 3 5kˆ 18kˆ 8kˆ -5kˆ 2
From 1 and 2 : The sum of the moments about B is equal to the moment of the resultant about B To prove that the line of action of the resultant of these forces passes through O
We must prove that : M O Zeroo
And MO r R Where r OA A O 2 ,-3 0 ,0 2iˆ 3 ˆj M O 2iˆ 3 ˆj -2iˆ 3 ˆj 6 6 kˆ 0 The line of action passes through O Static – 3rd secondary
- 55 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (9) The forces F1 4i j , F2 -2i 3 j , F3 i 5 j and F4 3i 7 j act at the origin
Point O , Prove that the line of resultant of these forces passes through A -3 ,4 , find also
the sum of the moments of these forces about C 2 ,-5 , then determine the length of the perpendicular drawn from C to the line of action of the resultant of these two forces . Answer To prove that the line of resultant of these forces passes through A -3 ,4 F1 4iˆ ˆj
We must prove that : M A Zeroo And M A r1 R Where r1 AO O A 0 ,0 -3 ,4 3iˆ 4 ˆj And
O 0 ,0
R F1 F2 F3 F4
r1
R 4iˆ ˆj -2iˆ 3 ˆj ˆi 5 ˆj 3iˆ 7 ˆj 6 ˆi 8 ˆj M A 3iˆ 4 ˆj 6 ˆi 8 ˆj -24 24 kˆ 0
A -3,4
The line of action passes through A
r2 C 2 ,-5
F2 -2iˆ 3 ˆj F3 ˆi 5 ˆj
F4 3iˆ 7 ˆj
And as the force act at C : M C r2 R CO R Where CO O C 0 ,0 2 ,-5 -2iˆ 5 ˆj
M C r R -2iˆ 5 ˆj 6 ˆi 8 ˆj 16 30 kˆ -14 kˆ M C R d where M C M C 14 And R R
6 8 2
2
10
M A 14 1.4 R 10 ------------------------------------------------------------------------------------------------------------------d
Static – 3rd secondary
- 55 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (10) If F1 14i 4 j , F2 Li 6 j are two forces and the sum of their moment about A 0 ,0 is equal to -40 kˆ and the sum of their moments about B 0 ,9 is equal to 176 kˆ , find the value of L and the length of the perpendicular drawn from A to the line of action of the resultant of these two forces . Answer M -40 kˆ And M 176 kˆ A
B
Let the two forces F1 and F2 act at point x , y
M A r1 R
C x ,y
M A r1 R Where r1 AC C A x , y 0 ,0 xiˆ y ˆj
r2
And R F1 F2 14iˆ 4 ˆj Liˆ 6 ˆj 14 L ˆi 10 ˆj
M A r1 R xiˆ y ˆj 14 L ˆi 10 ˆj -40 kˆ 10 x 14 y y L kˆ
r1
B 0 ,9
F1 14iˆ 4 ˆj F2 Liˆ 6 ˆj
A 0 ,0
10 x 14 y y L -40 1
M B r2 R Where r2 BC C B x , y 0 ,9 xiˆ y 9 ˆj
M B r2 R xiˆ y 9 ˆj 14 L ˆi 10 ˆj 176 kˆ 10 x 14 y y L 126 9L kˆ
10 x 14 y y L 126 9L 176 2
By substituting 1 in 2 : -40 126 9L 176 9L 90 L 10 F1 14i 4 j And F2 10i 6 j M A R d where M A M A 40 And R R
24 10 2
2
26
M A 40 20 R 26 13 ------------------------------------------------------------------------------------------------------------------d
Static – 3rd secondary
- 55 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (11) The force F -2i 3 j acts at A 1,1 , Let B 2 ,4 and C 4 ,7 , By using moments Prove that the line of action of F is parallel to BC and find the distance between them . Answer
To prove that the line of action of F is parallel to BC Then we must prove that M B M C
A 1,1
M B r1 F BA F -iˆ 3 ˆj - 2iˆ 3 ˆj 3 6 kˆ -3kˆ
r2
M C r2 F CA F -3iˆ 6 ˆj - 2iˆ 3 ˆj 9 12 kˆ -3kˆ So M B M C
F1 -2iˆ 3 ˆj
r1
the line of action of F is parallel to BC
B 2 ,4
The distance between the line of action of F and the straight line BC
C 4 ,7
Is the distance between any point B or C to F M B F d where M B -3kˆ 3 And R R
2 3 2
2
13
MB 3 3 13 F 13 13 ------------------------------------------------------------------------------------------------------------------Example (12) The force F 4i 3 j acts at A -3 ,2 , Let B -1,-2 and C -5 ,6 , By using moments d
Prove that the line of action of F Bisects BC . Answer
To prove that the line of action of F Bisects BC
A -3,2
Then we must prove that M B -M C
M B r1 F BA F -2iˆ 4 ˆj 4iˆ 3 ˆj -6 16 kˆ -22 kˆ M C r2 F CA F 2iˆ 4 ˆj 4iˆ 3 ˆj 6 16 kˆ 22 kˆ
So
M B - MC
the line of action of F Bisects BC
F1 4iˆ 3 ˆj
r2 r1 B -1,-2
C -5 ,6
-------------------------------------------------------------------------------------------------------------------
Static – 3rd secondary
- 55 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (13) Two forces F1 3i 4 j acts at A 1,2 and F2 5i j acts at B -1,3 , Then find The resultant of the moment about the origin and the equation of the line of action of this Resultant .
Answer The Moment about O 0 ,0 with A
A 1,2
M O r1 F1 OA F1
M O ˆi 2 ˆj 3iˆ 4 ˆj 4 6 kˆ -2 kˆ
F1 3i 4 j
r1
The Moment about O 0 ,0 with B
O 0 ,0
M O r2 F2 OB F2
B -1,3
M O -iˆ 3 ˆj 5iˆ ˆj 1 15 kˆ -14 kˆ
F2 5i j
Then the resultant of the moment Note : There is a big difference between : "The moment of the resultant" and "The resultant of moment" M -2 kˆ 14 kˆ -16 kˆ
r2 O 0 ,0
O
To find the equation of the line of action about A 3 first : R 3iˆ 4 ˆj 5iˆ ˆj 8iˆ 3 ˆj Then Tan The slope m And A 1,2 8 3 3 3 And y y1 m x x1 y 2 x 1 y x 2 8 8 8 8 Then the equation of action of R about A is : 8 y 3x 13 -------------------------------------------------------------------------------------------------------------------
Static – 3rd secondary
- 55 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
2nd : Algebraic Moment of Coplanar forces In this section , we will change :
Vector Moment M O
To Algebraic Moment " Magnitude" M O
In order to do that , we must add the sign of the moment of any force with respect to any point if : O O
F
d
O
d
O passes through the
F F Rotation is Anti Clockwise
line of action of F No rotation
Rotation is Clockwise
"from arrow of the force to point"
"from arrow of the force to point"
M O Zero
MO F d
M O -F d
try to rotate a door from its hinge
Conclusion From the opposite figure : Moment of F about B F d 2
O
Moment of F about A F d1 Moment of F about O Zero
d2
B
ve
A
d1 -ve
Static – 3rd secondary
- 56 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Properties of Some Geometrical Shapes n2
o Rule : The angle of any regular polygon is : 180 n Equilateral traingle
A
Properties m A m B m C 60 o
30 o 30 o
AB BC AC
x
CX AB AX XB AY BC BY YC
1 2
M
o
BZ AC AZ ZC M is the point of intersection of medians
30 30 o
B
CM BM AM 2 CM BM AM MX MZ MY 1 To get the sides or angles of the triangle :
z
30 o 30 o
C
y
and MX MZ MY
Sin law a b c Sin A Sin B SinC
Cos law
a 2 b 2 c 2 2bcCos A b 2 a 2 c 2 2a cCos B
c 2 a 2 b 2 2abCosC -------------------------------------------------------------------------------------------------------------------
Square K
D
C
Properties m A m B m C m D 90 o AB BC CD AD BD AC "Diagonals"
L
J M
MA MB MC MD m MAB m MAD 45 MX MJ MK ML
o
A
1 AB 2
45o 45o
B X
AC 2 AB
Static – 3rd secondary
- 56 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Rectangle
K
D
C
Properties m A m B m C m D 90 o
L
AB CD And BC AD
AC
2
AB BC 2
2
And AC BD
J
M
A D
B
X
MA MB MC MD C 1 1 O ML MJ AB and MK MX AD 2 2 1 MX MJ MK ML AB 2 Z B AB BC A DZ BO AC ------------------------------------------------------------------------------------------------------------------D C Parallelogram Properties
M
Diagonals bisects each other And Not equal
A
m A m C And m B m D
B
AB CD And BC AD MA MC And MB MD ------------------------------------------------------------------------------------------------------------------C
Rhombus
z
o
Properties Sides are equal Diadonals bisect each other
B
D
Diagonals are perpendicular " AC BD " y x MB MA MX MY MZ MT AB A --------------------------------------------------------------------------------------------------------------------L C B Regular hexagon o o 30
120
Properties
L
L
n 2 180 o 4 180 o 120 o Each angle 2
30 o o 30 30 o 30 o
A
6
L 3
Static – 3 secondary
- 56 -
D
L 3
L rd
60 o 60 o
2L
L F
120
o
30
L
o
E
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Examples
Email :
[email protected]
Calculate the moment about P of each of these forces : (1) 3N P
M P F d -3 2 -6 Newton meter
2m
----------------------------------------------------------------------------------------------------------------------
(2) P
2m
M P F d 2 6.5 13 Newton meter 6.5 N
----------------------------------------------------------------------------------------------------------------------
(3) M P F d -8 0 0 Newton meter
8N P
---------------------------------------------------------------------------------------------------------------------We must draw a line perpendicular from P to (4) the line of action of the force x 4N So draw PX o 30 2.5 cm M P F d 2.5 4 10 Newton meter 5 cm P ---------------------------------------------------------------------------------------------------------------------We must draw a line perpendicular from P to the line of action (5) 3.5 N of the force d 140 o o So draw PX Sin 40 d 5 Sin 40 o 3.214 m o 40 5 5m x M P F d -3.6 3.214 -11.57 Newton meter 50 o
Static – 3rd secondary
- 56 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (1) ABCD is a square of side length 2 m , The forces of magnitude 8 , 12 , 16 , 10 , 6 2 , 4 2 Newton Act along AB , BC , DC , AD , CA and BD respectively , Find the sum of their moment about :
i The vertex A ii About the Mid - point of BC iii The intersection point of the two diagonals . Answer
i
10
A
2m
D
M A -10 0 16 2 12 2 8 0 6 2 0 4 2 2
2m M A -32 24 8 Zero
8
4 2
B
ii To get Y F :
2m
C
12 10 2 m
A 1 1 1 YF 2 2 :y f:1m 1 1 M y -16 1 12 0 8 1 10 2 6 2 4 2 2 2
D
6 2
16
4 2
8
F o
B
iii
16
2m
45o 45o
1: 1 : 2
M y -16 8 20 6 4 -26 Newton meter
6 2
M O -10 1 16 1 12 1 8 1
45 45o
12 10
A
y
45o 45o 1m
2m
C
D
M O -10 16 12 8 -6 Newton meter 16
O 8
B Static – 3rd secondary
- 56 -
6 2
4 2
45o 45o
C 12
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (2) ABCD is a rectangle in which AB 12 cm , BC 16 cm , The forces of magnitude F , 2 F , 3 F And 4 F kg.wt. act along AB , CB , CD and AD respectively , Find N BC such that the sum of The moment about N vanishes .
Answer Sum of M N 0 "Vanishes" Everyline from N must be to each force M N -4 F 12 3F 16 x F x
12 cm M N 0 -48 F 48 F 3F x F x 0
4F
M
A
D
F
3F
-2F x 0 x 0
N
2F
B C The distance between B and N is Zero x 16 x So N lies on B ---------------------------------------------------------------------------------------------------------------------Example (3) A lamina in the form of a circle whose diameter AC is of length 10 cm , AB and AD are two
Chords in the lamina whose lengths are 6 and 8 cm respectively and in two different sides of AC The two forces 5 and 9 Newton act along AB and AD , what is the direction of rotation of the lamina about an axis perpendicular to the lamina and passes through :
i The center M
ii The point C . Answer
In ABC : m B 90 o " Semi - circle"
B
Draw ME AB , MF AD 1 ME // BC ME BC 4 cm 2 1 Also MF CD 3 cm 2 M M -5 4 9 3 7 Newton . cm
8
E 5
A F
M C -5 8 9 6 14 Newton . cm
M
C
5
5
6
9
D
The lamina rotates about M in the direction ADCB And rotates about C in direction ADCB also ----------------------------------------------------------------------------------------------------------------------
Static – 3rd secondary
- 55 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (4) ABC is an equilateral triangle , The length of whose side is 18 cm , Forces of magnitude 8 , 6 , 13 Newton act along AB , BC , AC , Find the algebraic sum of the moments of these forces about :
i The vertex A
ii The point of intersection of the three medians Answer
i
AX
18
2
9 9 3 2
A
M A 6 9 3 54 3 N.cm
ii
AX 9 3
13
M is a point of intersection of medians "Concurrent" XM 1 1 1 XM XA XM 9 3 3 3 XA 3 3 3 XM YM ZM 3 3
y
z
1
8
2
M
B
x
6
M M -13 3 3 6 3 3 8 3 3 3 3 Newton . cm
30 o 30 o
C
18 cm ------------------------------------------------------------------------------------------------------------------Example (5) ABC is an equilateral triangle , The length of whose side is 16 cm , D is the mid - point of AB ,
Forces of magnitude 2 3 , 4 3 , 10 Newton act along AB , CB , CD , Find the algebraic sum of the moments of these forces about the mid - point of AC Answer 1 DE BC 8 cm Draw EX AD 2 EX is a median where XD 4 cm
A
x
EX 4 3 cm And
4 3
D
EY // XD EY XD
EY 4 cm And EZ 4 3 cm
8
2 3
10
M E -4 3 4 3 10 4 2 3 4 3 -64 Newton . cm B
E
8
o
y
z
4
C
4 3 -------------------------------------------------------------------------------------------------------------------
Static – 3rd secondary
- 55 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (6) ABCD is a rectangle in which AB 5 cm and BC 12 cm , The forces of magnitude 8 , 15 , 17 10 , 26 Newton act along BA , BC , CD , DA and CA respectively , Find :
i A point H AB such that the algebraic sum of the moments about H equal 317 Newton.cm in ABCD direction .
ii O BC such that the algebraic sum of the moments about O equal 116 Newton.cm in DCBA direction .
Answer
i AC 5
2
12 13 cm 2
HM In AHM : Sin AH HM AH Sin 12 HM 5 x 13
5x
x 3 cm EO ii In EOC : Sin OC
26
8
x
5
15 B
C 12 cm
12 13
AH 5 3 2 cm in the direction ABCD 19
A
5 EO OC Sin EO 12 x 13 5 M O 10 5 17 12 x 26 12 x 8x 13 -116 254 17 x 2 12 x 2 8x 35 x 490
M
17
317 50 10x 204 15x 2 5 x 12
19 x 57
D
H
M H 10 5 x 17 12 15 x 26 5 x
19
A
D
26 E
8 B
O x
15
12 x
17
5
C
x 14 cm
CO 12 14 - 2 cm O BC , O BC Where CO 2 cm ----------------------------------------------------------------------------------------------------------------------
Static – 3rd secondary
- 55 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (7) ABCD is a square with side length 10 cm , The forces of magnitude 6 , 8 , 9 and F Newton act along AB , CB , CD and AC respectively , Find F if the sum of the algebraic moments of these forces about B and C are equal in magnitude and differ in signs . Answer 1 M B -M C And AC 10 2 cm And BE AC 5 2 cm 2 A M B 9 10 F 5 2
And And
10 cm
M C 6 10 60 N.cm
F
M B -M C 90 5F 2 -60
5F 2 150 F
D
9
E
6
150 15 2 Newton 5 2 45o
B
C
8 ------------------------------------------------------------------------------------------------------------------Example (8)
ABC is a right angled triangle at B were AB 20 cm , AC 25 cm , D AC where AD 4cm , let DH AC where H AB , The forces of magnitude 4 , 6 , 7 and 10 Newton act along AB , BC AC and DH respectively , Find the sum of the algebraic moments of these forces about A , B and C Answer
BC
25
2
20 15 cm 2
A
DH 15 In AHD : Tan DH 4 3 cm AD 20 AH 5 cm And HB 15 cm OB 4 In HOB : Sin OB 15 12 cm HB 5 15 20 In ABC : BX 12 cm 25 M A -10 4 6 20 8 N .cm
4 cm D
5 cm 4
h
3
O
15 cm
7
x 21 cm
10 12 cm
6
B
15 cm
C
M B -7 12 10 12 36 N .cm M C 4 15 10 21 8 270 N .cm -------------------------------------------------------------------------------------------------------------------
Static – 3rd secondary
- 55 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (9) ABCDHO is a regular hexagon whose side length is 10 cm , the forces of magnitude 3 , 7 , 4 and 2 Newton act along AB , CB , CD and HD respectively , Find the algebraic sum of moments of these forces about O .
Answer In AHD : AD 2HD 20 cm AH 10 3 cm 1 OX AH 5 3 cm 2 OB OD 10 3 cm
2
H
y
D 60
10 cm
o
4
10
5 3
10 3
20 cm
O
C
OY 5 3 cm M O 3 5 3 7 10 3 4 10 3 2 5 3
5 3
M O -25 3 N .cm
10
7
30 o
x
B 3 ---------------------------------------------------------------------------------------------------------------------Example (10) ABCDHO is a regular hexagon whose side length is 20 cm , the forces of magnitude 1 , 2 , 3 , 4 , 5 A
And 6 Newton act along AB , BC , CD , DH , HO and OA respectively , Find the algebraic sum of moments of these forces about A and M The center of the hexagon . Answer HB 2HO 40 cm 4 H OB 20 3 cm 1 5 20 AY AX OB 10 3 cm 20 2 30 o AH AC 20 3 cm M O 40 cm M A 2 10 3 3 20 3 4 20 3 5 10 3 6 20 3 y M A 210 3 N .cm 10 10 3
D 60 o
10 cm
3 10 cm
10 3
C
2
20
A
1
B
10 3
x ----------------------------------------------------------------------------------------------------------------------
Static – 3rd secondary
- 55 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (11) ABCD is a parallelogram in which m ABC 60o and AC BC , AC 12 cm , the forces of magnitude 14 , 18 , 9 , 6 and 2 3 Newton act along AB , CB , CD , DA and AC respectively . Find the algebraic sum of moments of these forces about each of A , B , C , D . Answer F In ACD : Let AD x AC 3 AD 12 cm 12 AD 4 3 cm DC 2 AD 8 3 cm 3 14 A y B M A 18 12 9 6 162 N .cm 60 o M B 2 3 4 3 9 6 6 12 -102 N .cm M C -14 6 6 12 -156 N .cm
2 3
6
4 3
12 60 o
M D -14 6 18 12 2 3 4 3 108 N .cm
18
30 o
D
H
x
C
9
E ---------------------------------------------------------------------------------------------------------------------Example (12) ABCD is a trapezuim in which AD // BC , m A 90 o , AD AD 10 cm , BC 20 cm , the
forces of magnitude k , 5 , F , 5 and 10 2 Newton act along BA , CB , DC , DA and BD Respectively , If the sum of the forces moment about A vanishes and if the sum of the forces moment about B equals that about D , find the values of F and K . Answer MA 0 20 cm In ABD : BD 10 2 cm
5
1 AH BD 5 2 cm 2 AE HD 5 2 cm "Square"
B 45
o
45o 10 cm
M B M D 1 Where
M B F 10 2 5 10
M B 5 2 10 2 5 10 50 N .cm And Static – 3rd secondary
10
C
F
10 2
A
50 5 2 Newton 5 2
Then from 1 : 50 10K 50
10 2
5 2
50 5F 2 100 0 5 2F 50
And
H
k
M A 5 10 F 5 2 10 2 5 2
F
45o
5 2
D
E
M D 5 10 K 10
10K 0 K 0 - 666 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (13) ABC is a right angled triangle at B and AB 10 cm , AC 26 cm , A force F acts in the plane of The triangle and the moment of F about A is equal to its moment about B is equal to 30 Newton.cm If the moment of F about C is equal to -30 Newton.cm , Then find F and its direction . Answer M A M B 30 N.cm A The line of action of F is parallel to AB 13 cm And M C -M A
The line of action of F Bisects AC In ABC : BC
26
2
D
10 cm
10 24 cm 2
13 cm F
D is the mid point of AC , DE // AB E is the mid point of BC And
B
Moment about B is ve Then F must be ve
12 cm
12 cm
C
24 cm 30 M B F 12 30 12 F F 2.5 Newton 12 ---------------------------------------------------------------------------------------------------------------------Example (14) ABCD is a rectangle where AB 12 cm , BC 16 cm , A force F acts in the plane of the rectangle
and the moment of F about B is equal to its moment about D is equal to -240 Newton.cm . If the moment of F about A is equal to 240 Newton.cm , Then find F and its direction . Answer M B M D -240 N.cm 8 cm A O The line of action of F is parallel to BD And
6 cm
M B -M A
The line of action of F Bisects AB
In EHB :
Sin
2
C
B
6 10 cm 2
HB 8 HB Sin EB 6 4.8 cm EB 10
M B - F 4.8 -240 -4.8 F F
Static – 3rd secondary
4F
6 cm
Then F must be ve M B - F BH
8
10
H
Moment about B is ve
In AEO : EO
D
240 50 Newton 4.8
- 666 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (15) Important ABCD is a rhombus with side length 8 cm and m B 60 o , the forces of magnitude 6 , 5 , 13 , F and 6 Newton act along BA , CB , CD , AD and AC respectively , If the sum of the algebraic mesures of moments of these forces about D equals the sum of the algebraic measures of moments of these forces about the point of intersection of the rhombus diagonals , Find the magnitude of F . Also find the magnitude and the direction of the resultant of the forces which are acting at A only . Answer
M D M M 1 Where And
D
M D 6 4 3 5 4 3 6 4 3 -20 3 N.cm M M 13 2 3 5 2 3 6 2 3 F 2 3
So from 1 : -20 3 4 3 2 3 F 2 3F 24 3
4 3 30 30 30 30
F 4 3 2 3 2 o o 60 o 4 4 60 60 o 4 6 60 30 A 60 o 30 M 4 60 o C 2 3
6
To find the resultant at A :
9
2
9 3
2
8 cm
6
x 6 12Cos60 o 6 Cos60 o 9 ve y 12 Sin60o 6 Sin60 o 9 3 ve R
13
8
2
F 12 Newton
4 3
30 30
5
B 12 Sin60
18 Newton
o
F 12
6 Sin60 o
y 9 3 3 Tan 1 3 60 o x 9 R has a direction along AD Tan
6
60 o
6 Cos 60 o
60 o
12 Cos 60 o 6
Very important Note : There is a difference between when we find the resultant at a point and When we find the moment of the resultant at a point ----------------------------------------------------------------------------------------------------------------------
Static – 3rd secondary
- 666 -
Chapter Three – Vectors and Moments
Facebook page : https://www.facebook.com/MrSherifYehiaAlMaraghy Mr . Sherif Yehia Al Maraghy
https://twitter.com/Mr_Sherif_yehia
01009988836 – 01009988826
Email :
[email protected]
Example (16) ABCD is a trapezuim in which AD // BC , m B 90 o , AB 12 cm , BC 8 cm , AD 9 cm . Forces of magnitude F1 , 60 , F2 and 30 gm.wt act along AB , BC , CD and DA respectively , find the values of F1 ,F2 given that M A M C 0 . Answer Draw AH DC and Draw DX to join BC at x
In XCD : DC
12
2
1 145 cm 2
AH 12 In AHD : Sin AH 9 AD 145 12 M A F2 9 60 12 0 145
9 cm
A
30 F2
12 cm F1 60
B
C
8 cm
D
12 cm
H
x
1 cm
108 -720 145 F2 -720 F2 F2 -80 N 108 145
-360 -45 N 8 ---------------------------------------------------------------------------------------------------------------------Example (17) M C 30 12 F1 8 8 F1 360 0 F1
ABCD is a rectangle in which AB 8 cm and BC 6 cm , H AB such that BH 3 cm , forces Of magnitude F , 4 , 9 , K , 5 and 4 5 Newton act along DA , AB , BC , DC , CA and HC Respectively , Find : F and K given that the algebraic measure of the moments of these forces About C 72 N.cm in the direction ABC and vanishes about B . Answer M C 72 N.cm where M C F 8 4 6 8F 24 72 F 6 Newton
k
D
C
For Moment about B In ABC : CH
O
6
2
3 3 5 cm 2
6 3 6 BX cm 3 5 5 Also AC BO
8
2
A
6 10 cm 2
9
5
F
x
5 cm
4
H
4 5
6 cm
B
3 cm
6 8 4.8 cm 10
M B -K 6 5 4.8 4 5
6 F 8 5
-6 K 24 24 8 F 0 -6 K 8 6 0 K 8 Newton Static – 3rd secondary
- 666 -
Chapter Three – Vectors and Moments