Upheaval Buckling Calculation
Short Description
Download Upheaval Buckling Calculation...
Description
ATTACHMENT - 1 Document No. 081113B-CL-302 Rev. B Upheaval Buckling Calculation (48" Hassyan Gas Pipeline, Location Class = 4) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
As per OTC Paper 6335 by A.C. Palmer, C.P.Ellinas, D.M. Richards and J.Guijt, 1990 Non Corroded pipe Input Data Pipe diameter, D Nominal pipe thk, t Corrosion Allowance Design pressure, P Steel density Soil density, Y Youngs modulas of steel, E Poisson ratio, n Thermal expansion, a Installation (backfill) Temp, T1 Design Temp (U/G), T2 Pipeline Cover depth, H Fluid density (0.65 s.g) Uplift coefficient
= = = = = = = = = = = = = =
1.219 0.0238 0 960 7850 1600 207000 0.3 0.0000117 13 60 1.2 0 0.1
Unit m
39.37008
Conv.fact 39.37008
48 0.938
Unit inch inch
m
703.0696
674947
Kg/m 2
101971.62
2 2.1108E+10 kg/m
Pipe Properties Pipe cross sectional area, A Pipe Section modulus, I Pipe flexural rigidity Weight of pipe Pipe contents sectional area Weight of contents
= = = = = =
π/4(D2-d2) π/64(D4-d4) EI Sect area x L x density π/4(D-2xt)2 Sect area x L x density
Pipeline Axial force
=
(P) = A {0.5 Sh + Eα(T2-T1) - ٧Sh }
Axial stress due hoop stress Axial stress due to pressure Thermal stress So the Axial force (P)
= = = =
٧(PD)/(2t) 0.5xSh Eα(T2-T1)
m PSI Kg/m3 Kg/m3 Mpa
Per oC o
C
o
C
m Kg/m3 (Consider zero for conservative reason)
(for loose soil or 0.5 for dense material)
= 0.08949 = 0.01599 = 3.4E+08 702.499 = 1.07796 0
= = = =
5179785 8632975 1.2E+07 1347774
Kg/m 2 Kg/m 2 Kg/m 2 kg
(+) (-) (-)
The required down force from OTC Paper W = [1.16 – 4.76 (EI Wo / d)0.5 / P] P ( d Wo / EI) 0.5
Kg/m
The Uplift resistance from Soil & Pipe weight
Q = H x D x Ƴx [1+f x (H / D)]
Wo = Weight of Pipe + Contents
Condition for Stability = W < Wo + Q Imperfection height Req. Down force (W) 0.1 -2630.65 0.2 -2335.21 0.3 -2108.51 0.4 -1917.40 0.5 -1749.02
Uplift soil resistance(Q) 2339.39 2110.72 1885.25 1662.98 1443.90
G
50 51 52 53 54
m2 m4 kg-m2 Kg/m m2 Kg/m
55 56 57
\\vboxsrv\conversion_tmp\scratch_3\[217024329.xls.ms_office.xls]48" has nc
Page 1 of 6
Wo 702.50 702.50 702.50 702.50 702.50
Q + Wo 3041.89 2813.22 2587.75 2365.48 2146.40
Stability Stable Stable Stable Stable Stable
ATTACHMENT - 1 Document No. 081113B-CL-302 Rev. B Upheaval Buckling Calculation (48" Hassyan Gas Pipeline, Location Class = 4) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
As per OTC Paper 6335 by A.C. Palmer, C.P.Ellinas, D.M. Richards and J.Guijt, 1990 Corroded pipe Input Data Pipe diameter, D Nominal pipe thk, t Corrosion Allowance Design pressure, P Steel density Soil density, Y Youngs modulas of steel, E Poisson ratio, n Thermal expansion, a Installation (backfill) Temp, T1 Design Temp (U/G), T2 Pipeline Cover depth, H Fluid density (0.65 s.g) Uplift coefficient
= = = = = = = = = = = = = =
1.219 0.0238 0.001 960 7850 1600 207000 0.3 0.0000117 13 60 1.2 0 0.1
Unit m
39.37008
Conv.fact 39.37008
48 0.938
Unit inch inch
m
703.0696
674947
Kg/m 2
101971.62
2 2.1108E+10 kg/m
Pipe Properties Pipe cross sectional area, A Pipe Section modulus, I Pipe flexural rigidity Weight of pipe Pipe contents sectional area Weight of contents
= = = = = =
π/4(D2-d2) π/64(D4-d4) EI Sect area x L x density π/4(D-2xt)2 Sect area x L x density
Pipeline Axial force
=
(P) = A {0.5 Sh + Eα(T2-T1) - ٧Sh }
Axial stress due hoop stress Axial stress due to pressure Thermal stress So the Axial force (P)
= = = =
٧(PD)/(2t) 0.5xSh Eα(T2-T1)
m PSI Kg/m3 Kg/m3 Mpa
Per oC o
C
o
C
m Kg/m3 (Consider zero for conservative reason)
(for loose soil or 0.5 for dense material)
= 0.08581 = 0.01536 = 3.2E+08 673.583 = 1.08165 0
= = = =
5179785 8632975 1.2E+07 1292296
Kg/m 2 Kg/m 2 Kg/m 2 kg
(+) (-) (-)
The required down force from OTC Paper W = [1.16 – 4.76 (EI Wo / d)0.5 / P] P ( d Wo / EI) 0.5
Kg/m
The Uplift resistance from Soil & Pipe weight
Q = H x D x Ƴx [1+f x (H / D)]
Wo = Weight of Pipe + Contents
Condition for Stability = W < Wo + Q Imperfection height Req. Down force (W) 0.1 -2522.92 0.2 -2239.88 0.3 -2022.69 0.4 -1839.59 0.5 -1678.28
Uplift soil resistance(Q) 2339.39 2110.72 1885.25 1662.98 1443.90
G
50 51 52 53 54
m2 m4 kg-m2 Kg/m m2 Kg/m
55 56 57
\\vboxsrv\conversion_tmp\scratch_3\[217024329.xls.ms_office.xls]48" has nc
Page 2 of 6
Wo 673.58 673.58 673.58 673.58 673.58
Q + Wo 3012.97 2784.30 2558.83 2336.56 2117.49
Stability Stable Stable Stable Stable Stable
ATTACHMENT - 2 Document No. 081113B-CL-302 Rev. B Upheaval Buckling Calculation (48" RM2 Gas Pipeline, Location Class = 4) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
As per OTC Paper 6335 by A.C. Palmer, C.P.Ellinas, D.M. Richards and J.Guijt, 1990 Non Corroded pipe Input Data Pipe diameter, D Nominal pipe thk, t Corrosion Allowance Design pressure, P Steel density Soil density, Y Youngs modulas of steel, E Poisson ratio, n Thermal expansion, a Installation (backfill) Temp, T1 Design Temp (U/G), T2 Pipeline Cover depth, H Fluid density (0.65 s.g) Uplift coefficient
= = = = = = = = = = = = = =
1.219 0.0159 0 600 7850 1600 207000 0.3 0.0000117 13 60 1.2 0 0.1
Unit m
39.37008
Conv.fact 39.37008
48 0.625
Unit inch inch
m
703.0696
421842
Kg/m 2
101971.62
2 2.1108E+10 kg/m
Pipe Properties Pipe cross sectional area, A Pipe Section modulus, I Pipe flexural rigidity Weight of pipe Pipe contents sectional area Weight of contents
= = = = = =
π/4(D2-d2) π/64(D4-d4) EI Sect area x L x density π/4(D-2xt)2 Sect area x L x density
Pipeline Axial force
=
(P) = A {0.5 Sh + Eα(T2-T1) - ٧Sh }
Axial stress due hoop stress Axial stress due to pressure Thermal stress So the Axial force (P)
= = = =
٧(PD)/(2t) 0.5xSh Eα(T2-T1)
m PSI Kg/m3 Kg/m3 Mpa
Per oC o
C
o
C
m Kg/m3 (Consider zero for conservative reason)
(for loose soil or 0.5 for dense material)
= 0.06001 = 0.01086 = 2.3E+08 471.103 = 1.10744 0
= = = =
4859617 8099362 1.2E+07 891022
Kg/m 2 Kg/m 2 Kg/m 2 kg
(+) (-) (-)
The required down force from OTC Paper W = [1.16 – 4.76 (EI Wo / d)0.5 / P] P ( d Wo / EI) 0.5
Kg/m
The Uplift resistance from Soil & Pipe weight
Q = H x D x Ƴx [1+f x (H / D)]
Wo = Weight of Pipe + Contents
Condition for Stability = W < Wo + Q Imperfection height Req. Down force (W) 0.1 -1773.98 0.2 -1579.94 0.3 -1431.04 0.4 -1305.51 0.5 -1194.92
Uplift soil resistance(Q) 2339.39 2110.72 1885.25 1662.98 1443.90
G
50 51 52 53 54
m2 m4 kg-m2 Kg/m m2 Kg/m
55 56 57
\\vboxsrv\conversion_tmp\scratch_3\[217024329.xls.ms_office.xls]48" has nc
Page 3 of 6
Wo 471.10 471.10 471.10 471.10 471.10
Q + Wo 2810.50 2581.82 2356.35 2134.08 1915.01
Stability Stable Stable Stable Stable Stable
ATTACHMENT - 2 Document No. 081113B-CL-302 Rev. B Upheaval Buckling Calculation (48" RM2 Gas Pipeline, Location Class = 4) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
As per OTC Paper 6335 by A.C. Palmer, C.P.Ellinas, D.M. Richards and J.Guijt, 1990 Corroded pipe Input Data Pipe diameter, D Nominal pipe thk, t Corrosion Allowance Design pressure, P Steel density Soil density, Y Youngs modulas of steel, E Poisson ratio, n Thermal expansion, a Installation (backfill) Temp, T1 Design Temp (U/G), T2 Pipeline Cover depth, H Fluid density (0.65 s.g) Uplift coefficient
= = = = = = = = = = = = = =
1.219 0.0159 0.001 600 7850 1600 207000 0.3 0.0000117 13 60 1.2 0 0.1
Unit m
39.37008
Conv.fact 39.37008
48 0.625
Unit inch inch
m
703.0696
421842
Kg/m 2
101971.62
2 2.1108E+10 kg/m
Pipe Properties Pipe cross sectional area, A Pipe Section modulus, I Pipe flexural rigidity Weight of pipe Pipe contents sectional area Weight of contents
= = = = = =
π/4(D2-d2) π/64(D4-d4) EI Sect area x L x density π/4(D-2xt)2 Sect area x L x density
Pipeline Axial force
=
(P) = A {0.5 Sh + Eα(T2-T1) - ٧Sh }
Axial stress due hoop stress Axial stress due to pressure Thermal stress So the Axial force (P)
= = = =
٧(PD)/(2t) 0.5xSh Eα(T2-T1)
m PSI Kg/m3 Kg/m3 Mpa
Per oC o
C
o
C
m Kg/m3 (Consider zero for conservative reason)
(for loose soil or 0.5 for dense material)
= 0.05628 = 0.01021 = 2.2E+08 441.794 = 1.11117 0
= = = =
4859617 8099362 1.2E+07 835588
Kg/m 2 Kg/m 2 Kg/m 2 kg
(+) (-) (-)
The required down force from OTC Paper W = [1.16 – 4.76 (EI Wo / d)0.5 / P] P ( d Wo / EI) 0.5
Kg/m
The Uplift resistance from Soil & Pipe weight
Q = H x D x Ƴx [1+f x (H / D)]
Wo = Weight of Pipe + Contents
Condition for Stability = W < Wo + Q Imperfection height Req. Down force (W) 0.1 -1663.98 0.2 -1482.15 0.3 -1342.63 0.4 -1225.01 0.5 -1121.39
Uplift soil resistance(Q) 2339.39 2110.72 1885.25 1662.98 1443.90
G
50 51 52 53 54
m2 m4 kg-m2 Kg/m m2 Kg/m
55 56 57
\\vboxsrv\conversion_tmp\scratch_3\[217024329.xls.ms_office.xls]48" has nc
Page 4 of 6
Wo 441.79 441.79 441.79 441.79 441.79
Q + Wo 2781.19 2552.51 2327.04 2104.77 1885.70
Stability Stable Stable Stable Stable Stable
ATTACHMENT - 3 Document No. 081113B-CL-302 Rev. B Upheaval Buckling Calculation (24" DFO Pipeline, D.F = 0.72) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
As per OTC Paper 6335 by A.C. Palmer, C.P.Ellinas, D.M. Richards and J.Guijt, 1990 Non Corroded pipe Input Data Pipe diameter, D Nominal pipe thk, t Corrosion Allowance Design pressure, P Steel density Soil density, Y Youngs modulas of steel, E Poisson ratio, n Thermal expansion, a Installation (backfill) Temp, T1 Design Temp (U/G), T2 Pipeline Cover depth, H Fluid density (0.65 s.g) Uplift coefficient
= = = = = = = = = = = = = =
0.610 0.0095 0 720 7850 1600 207000 0.3 0.0000117 13 60 1 0 0.1
Unit m
39.37008
Conv.fact 39.37008
24 0.375
Unit inch inch
m
703.0696
506210
Kg/m 2
101971.62
2 2.1108E+10 kg/m
Pipe Properties Pipe cross sectional area, A Pipe Section modulus, I Pipe flexural rigidity Weight of pipe Pipe contents sectional area Weight of contents
= = = = = =
π/4(D2-d2) π/64(D4-d4) EI Sect area x L x density π/4(D-2xt)2 Sect area x L x density
Pipeline Axial force
=
(P) = A {0.5 Sh + Eα(T2-T1) - ٧Sh }
Axial stress due hoop stress Axial stress due to pressure Thermal stress So the Axial force (P)
= = = =
٧(PD)/(2t) 0.5xSh Eα(T2-T1)
m PSI Kg/m3 Kg/m3 Mpa
Per oC o
C
o
C
m Kg/m3 (Consider zero for conservative reason)
(for loose soil or 0.5 for dense material)
= 0.01796 = 0.00081 = 1.7E+07 140.958 = 0.27391 0
= = = =
4859617 8099362 1.2E+07 266601
Kg/m 2 Kg/m 2 Kg/m 2 kg
(+) (-) (-)
The required down force from OTC Paper W = [1.16 – 4.76 (EI Wo / d)0.5 / P] P ( d Wo / EI) 0.5
Kg/m
The Uplift resistance from Soil & Pipe weight
Q = H x D x Ƴx [1+f x (H / D)]
Wo = Weight of Pipe + Contents
Condition for Stability = W < Wo + Q Imperfection height Req. Down force (W) 0.1 -389.89 0.2 -273.47 0.3 -184.13 0.4 -108.82 0.5 -42.47
Uplift soil resistance(Q) 1007.42 882.69 761.15 642.82 527.68
G
50 51 52 53 54
m2 m4 kg-m2 Kg/m m2 Kg/m
55 56 57
\\vboxsrv\conversion_tmp\scratch_3\[217024329.xls.ms_office.xls]48" has nc
Page 5 of 6
Wo 140.96 140.96 140.96 140.96 140.96
Q + Wo 1148.38 1023.65 902.11 783.77 668.64
Stability Stable Stable Stable Stable Stable
ATTACHMENT - 3 Document No. 081113B-CL-302 Rev. B Upheaval Buckling Calculation (24" DFO Pipeline, D.F = 0.72) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
As per OTC Paper 6335 by A.C. Palmer, C.P.Ellinas, D.M. Richards and J.Guijt, 1990 Corroded pipe Input Data Pipe diameter, D Nominal pipe thk, t Corrosion Allowance Design pressure, P Steel density Soil density, Y Youngs modulas of steel, E Poisson ratio, n Thermal expansion, a Installation (backfill) Temp, T1 Design Temp (U/G), T2 Pipeline Cover depth, H Fluid density (0.65 s.g) Uplift coefficient
= = = = = = = = = = = = = =
0.610 0.0095 0.001 720 7850 1600 207000 0.3 0.0000117 13 60 1 0 0.1
Unit m
39.37008
Conv.fact 39.37008
24 0.375
Unit inch inch
m
703.0696
506210
Kg/m 2
101971.62
2 2.1108E+10 kg/m
Pipe Properties Pipe cross sectional area, A Pipe Section modulus, I Pipe flexural rigidity Weight of pipe Pipe contents sectional area Weight of contents
= = = = = =
π/4(D2-d2) π/64(D4-d4) EI Sect area x L x density π/4(D-2xt)2 Sect area x L x density
Pipeline Axial force
=
(P) = A {0.5 Sh + Eα(T2-T1) - ٧Sh }
Axial stress due hoop stress Axial stress due to pressure Thermal stress So the Axial force (P)
= = = =
٧(PD)/(2t) 0.5xSh Eα(T2-T1)
m PSI Kg/m3 Kg/m3 Mpa
Per oC o
C
o
C
m Kg/m3 (Consider zero for conservative reason)
(for loose soil or 0.5 for dense material)
= 0.0161 = 0.00073 = 1.5E+07 126.37 = 0.27577 0
= = = =
4859617 8099362 1.2E+07 239009
Kg/m 2 Kg/m 2 Kg/m 2 kg
(+) (-) (-)
The required down force from OTC Paper W = [1.16 – 4.76 (EI Wo / d)0.5 / P] P ( d Wo / EI) 0.5
Kg/m
The Uplift resistance from Soil & Pipe weight
Q = H x D x Ƴx [1+f x (H / D)]
Wo = Weight of Pipe + Contents
Condition for Stability = W < Wo + Q Imperfection height Req. Down force (W) 0.1 -349.95 0.2 -245.75 0.3 -165.79 0.4 -98.38 0.5 -39.00
Uplift soil resistance(Q) 1007.42 882.69 761.15 642.82 527.68
G
50 51 52 53 54
m2 m4 kg-m2 Kg/m m2 Kg/m
55 56 57
\\vboxsrv\conversion_tmp\scratch_3\[217024329.xls.ms_office.xls]48" has nc
Page 6 of 6
Wo 126.37 126.37 126.37 126.37 126.37
Q + Wo 1133.79 1009.06 887.52 769.19 654.05
Stability Stable Stable Stable Stable Stable
View more...
Comments