UOP Engineering Design - Fractionation.pdf

August 1, 2017 | Author: Thienthan100 | Category: Distillation, Laboratory Techniques, Mechanical Engineering, Gases, Nature
Share Embed Donate


Short Description

UOP design document...

Description

2006 Engineering Design Seminar

Fractionation Joe Haas and Paul Steacy UOP LLC

Fractionation „

Fractionation Concepts – Equilibrium and Relative Volatility – Heat and Material Balance

„

Shortcut/Approximate Methods – Concept of Equimolar Overflow – McCabe - Thiele Graphical Method – Analytical Methods

„ „ „ „ „

Rigorous Methods Tray Efficiency Column Design and Optimization Design Cases Help in using programs EDS-2006/Frac-2

Importance of Distillation „

Key Separation Process – Used extensively in all refineries and chemical plants (probably the primary separation unit operation) – Capital and Energy Intensive – (Generally) non-proprietary

EDS-2006/Frac-3

Equilibrium Stages Cooling

V1 Distillate V2

2

Feed

V4

V3 L3

Feed

L1 L2

Heating

V1 Distillate L1

3 4 V5

V5 L4 L5 Bottoms

L5 Bottoms From “Distillation Design” H. Kister EDS-2006/Frac-4

Equilibrium „

Most distillation is modeled using “equilibrium stages” (which can be thought of a series of equilibrium flash calculations strung together).

„

A component has a vapor liquid equilibrium K value that is defined as the mole ratio of its vapor concentration to its liquid concentration when these phases are in equilibrium.

⎛ y⎞ K =⎜ ⎟ ⎝ x⎠ EDS-2006/Frac-5

Equilibrium Stage

EDS-2006/Frac-6

Equilibrium K Value Definition

y K= x EDS-2006/Frac-7

T-x Diagram Dew Point Curve, Saturated Vapor

T3 Bubble Point Curve, Saturated Liquid

T2 T1

y K= x

x3 x2

x1

y3

y2

y1

Mole Fraction (x or y) Vapor or Liquid Phase EDS-2006/Frac-8

Equilibrium – Relative Volatility „

„

Alpha (relative volatility) is a measure of the intrinsic difficulty in using fractionation to separate two components It is the ratio of the vapor liquid equilibrium K values for two components LK = Light Key Component HK = Heavy Key Component

⎛ K LK α = ⎜⎜ ⎝ K HK

⎞ ⎟⎟ ⎠ EDS-2006/Frac-9

Equilibrium Curve or x-y Diagram y=

α x 1 + (α − 1)x

Equilibrium Curves

α =5 α = 2.5 α = 1.5 α =1

0.9 0.8 0.7 0.6

y, composition in 0.5 the vapor phase

45o line

0.4 0.3 0.2 0.1

0.1 0.2 0.3 0.4 0.5

0.6 0.7 0.8 0.9

x, composition in the liquid phase

EDS-2006/Frac-10

Equilibrium Curve from Equilibrium Data 0.9 T3

0.8

T2

0.7

T1

0.6 0.5 0.4 0.3 0.2 0.1

x3 x2

x1

y3 Mole Fraction (x or y) Vapor or Liquid Phase

y2

y1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x, composition in the liquid phase

EDS-2006/Frac-11

Equilibrium Pressure Constant

T

y

T1

y1

x, y

x1

x1

x

Ideal Vapor/Liquid Equilibria: Systems that conform to Raoult's Law (i.e. p* = P vx, ∴ α = Pv1 = constant) Pv2 BF-R00-06 EDS-2006/Frac-12

Equilibrium Pressure Constant

y

T

x, y

x Large Deviation from Ideality: e.g. Minimum boiling azeotrope BF-R00-07 EDS-2006/Frac-13

Alpha Variation „

A knowledge of the alpha value behavior is an important piece of information for designing distillation columns.

„

Alpha varies by how K-values change. – Pressure – Composition

„

K = f(T, P, x, y)

EDS-2006/Frac-14

Pseudo-Critical Properties Multi-Component Mixture

P2

Liquid

Pressure

True Critical C Pseudo- Critical

C'

P1

Two Phases B

Vapor H

A

Temperature EDS-2006/Frac-15 EDS-R00-1906

Alpha Variation 2.05 2 Tol/EB Alpha

1.95 1.9 1.85 1.8 1.75 1.7 1.65 1.6 0

10

20

30

40

50

Stage

EDS-2006/Frac-16

Water K Values Y K= X

Y= and

P o (1 − X HW )

π

X = X wh Kw =

(1 − X hw )P o X whπ

EDS-2006/Frac-17

Water Equilibrium Curve αX Y= 1 + (α − 1) X

As X goes to 0 Y=αX and, therefore: ln (Y ) = ln (α ) + ln ( X )

EDS-2006/Frac-18

Approximate/Shortcut/Simplified Methods

EDS-2006/Frac-19

Approximate/Shortcut/Simplified Methods „

Fundamental Relations – – – –

„

Heat balance Material balance Equilibrium McCabe-Thiele Method

Approximate Methods – – – – –

Fenske equation Underwood equation Gilliland graph Kremser for absorbers and strippers Naphtha fractionation EDS-2006/Frac-20

BF-R00-01 EDS-2006/Frac-21

Distillation Method Basics ENVELOPE (1) - Overall Material and Heat Balance

Mass Balance

F = D+B X iF F = X iD D + X iB B (i = 1 to N components)

Heat Balance

hF F + QR = hD D + hB B + Qc

EDS-2006/Frac-22

Distillation Method Basics Envelope 4 – A single tray V

L

FV F

V'

L

FL L' V'

BF-R00-02 EDS-2006/Frac-23

Distillation Method Basics ENVELOPE (4) – A single tray

Mass Balance

Heat Balance

V n + 1 + Lo = V 1 + Ln

hvn +1V n +1 + hLo Lo = hv1V 1 + hLn Ln

EDS-2006/Frac-24

BF-R00-01 EDS-2006/Frac-25

Distillation Shortcut Method Basics ENVELOPE (1) - Overall Material and Heat Balance

Mass Balance

F = D+B X iF F = X iD D + X iB B (i = 1 to N components)

Heat Balance

hF F + QR = hD D + hB B + Qc

EDS-2006/Frac-26

Distillation Shortcut Method Basics ENVELOPE (2) - Rectifying Section

Mass Balance

V n +1 = Ln + D Yin +1V n +1 = X in Ln + X iD D

Heat Balance

hvn + 1V n +1 = hLn Ln + hD D + Qc

EDS-2006/Frac-27

Internal vs. External Reflux

BF-R00-03 EDS-2006/Frac-28

Internal vs. External Reflux

hV 2 V2 + hR R = hV 1 V1 + hL1 L1 V1 = R + D V2 = L1 + D

EDS-2006/Frac-29

Distillation Shortcut Method Basics ENVELOPE (3) - Stripping Section

Mass Balance

Ln' = V n +1' + B xin Ln' = yin +1V n +1' + X iB B

Heat Balance

QR + hL Ln ' = hvV n +1' + hb B

EDS-2006/Frac-30

Distillation Shortcut Method Basics Envelope 4 – A single tray

V

L

FV F

V'

L

FL L' V'

BF-R00-02 EDS-2006/Frac-31

Distillation Shortcut Method Basics ENVELOPE (4) - A single tray

Mass Balance

Heat Balance

V n + 1 + Lo = V 1 + Ln n +1 v

h V

n +1

+h L =hV +h L o L

o

1 v

1

n L

n

EDS-2006/Frac-32

Distillation Shortcut Method Basics ENVELOPE (4) Rearranging the mass balance yields V n + 1 = V 1 + Ln − Lo

Inserting this into the heat balance hVn +1V 1 + hVn + 1 Ln − hVn + 1 Lo + hLo Lo = hV1 V 1 + hLn Ln

EDS-2006/Frac-33

Distillation Shortcut Method Basics ASSUME Sensible Heat Changes are Negligible i) hLo = hL1 = hLn = hL Molal Heats of Vaporization are Constant ii) λ0 = λ1 = ... = λn Since λn = hVn − hLn iii) hVo = hV1 = ... = hVn = hV EDS-2006/Frac-34

Distillation Shortcut Method Basics Heat Balance hV V 1 + hV Ln − hV Lo + hL Lo = hV V 1 + hL Ln

(hv − hL )Ln = (hv − hL )Lo Therefore

Ln = Lo = Constant

EDS-2006/Frac-35

Distillation Shortcut Method Basics Constant Molal Overflow Ln = Constant „

Sensible Heat Changes are Negligible

„

Molal Heats of Vaporization are Constant

EDS-2006/Frac-36

Equilibrium „

For constant molal overflow in a binary system, the equilibrium relationship of K=y/x simplifies to:

⎞ ⎛ V ⎟⎟ ⎜⎜ ⎝ K (R + D) ⎠

EDS-2006/Frac-37

Distillation Shortcut Method Basics Constant Molal Overflow VALIDITY? „

Boiling Point Range of Components is Narrow

„

Molecular Characteristics of Components are Similar – For example: all paraffinic hydrocarbons or all aromatic hydrocarbons not mixture of paraffins and aromatics

EDS-2006/Frac-38

Distillation Shortcut Method Basics McCabe-Thiele Method ENVELOPE 2 - Rectifying Section Mass Balance

yin + 1V n +1 = xin Ln + xid D

Equimolal Overflow L = Constant V = Constant yin + 1 = ( L V )xin + ( D V )xiD EDS-2006/Frac-39

Binary Distillation Shortcut Methods McCabe-Thiele Method BINARY Separations xi

x1, x2

x2 = 1 - x1

Used convention of dropping subscript i x = x1 y = y1

Mole fraction of more volatile (lower boiling point) component

yn+1 = (L/V) xn + (D/V) xD

Trays above feed EDS-2006/Frac-40

Binary Distillation Shortcut Methods McCabe-Thiele Method ENVELOPE 3 - Stripping Section Mass Balance

xin Ln = yin + 1V n +1' + xiB B

Equimolal Overflow L' = Constant ≠ L V' = Constant ≠ V yn+1 = (L'/V') xn + (B/V') xB

Trays below feed EDS-2006/Frac-41

Binary Distillation Shortcut Methods McCabe-Thiele Method Feed Stage Mass Balance Heat Balance

F + V ' + L = V + L' hF F + h'V V ' + hL L = hV V + h' L L' V = L+D

V ' = L' − B EDS-2006/Frac-42

Binary Distillation Shortcut Methods McCabe-Thiele Method ASSUME h'V = hV

and

h' L = hL

Then hF F + hV ( L' − B ) + hL L = hV ( L + D ) + hL L' Rearranging (hV − hL )L' = (hV − hL )L + hV ( D + B ) − hF F Since D + B = F ⎛ hV − hF ⎞ Then L' = L + ⎜⎜ ⎟⎟ F ⎝ hV − hL ⎠ EDS-2006/Frac-43

Binary Distillation Shortcut Methods McCabe-Thiele Method hFV − hF Define: q = V hF − hFL

Then:

L' = L + q F

Also: y n +1 = ⎡⎢ q ⎤⎥ x n − ⎢⎡ 1 ⎤⎥ xF At Feed Tray (q − 1) (q − 1) ⎣







EDS-2006/Frac-44

Q Values Condition

Value of q

BP Liquid

1.0

DP Vapor

0

Sub Cooled Liquid

>1.0

Superheated Vapor

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF