Unit 2 Chapter 1 Answers PDF
February 4, 2023 | Author: Anonymous | Category: N/A
Short Description
Download Unit 2 Chapter 1 Answers PDF...
Description
Page 1 of 58
Chapter 1 Complex numbers Try these 1.1
(a) (i) Re (5 + 4i) = 5 Im(5 + 4i) = 4 (ii) Re(4 + 7i) = 4 Im(4 + 7i) = 7 (iii) Re(5 x + i (3 xy) = 5 x Im(5 x + i (3 xy) = 3 xy (iv) Re(7 x2 + y + i (3 x – 2 y)) = 7 x2 + y Im(7 x2 + y + i (3 x – 2 y)) = 3 x – 2 y (v) 7i2 – 4i = –7 –4i since i2 = –1 Re(7i2 – 4i) = –7 Im(7i2 – 4i) = –4 (b) (i) 4 xi + 3 yi – 2 x = –2 x + i (4 x + 3 y) Real part = –2 x Imaginary part = 4 x + 3 y (ii) (cosθ )i + sinθ θ
Real part =part sin = cosθ Imaginary (iii) 4 sin θ – – (3 cosθ )i Re(4 sinθ – – (3 cosθ )i) = 4 sinθ Im(4 sinθ – – (3 cosθ i)) = –3 cosθ 2 (iv) 8 cos θ + + 7cos θ + + i sin3 θ – – i sin4 θ Real part = 8 cos2θ +7 +7 cosθ Imaginary part = sin3θ – – sin4 θ (v) 8 cos2θ i2 + 7 sin3θ i3 + 4i4 cos2θ + + 7 sinθ 2 3 = – 8 cos θ – – i7 sin θ + + 4 cos2θ + + 7 sinθ 2 = – 8 cos θ + + 4 cos 2θ + + 7 sinθ – – i 7 sin3 θ Real part = – 8 cos 2θ + + 4 cos2θ + + 7 sinθ 3 Imaginary part = –7 sin θ
Try this 1.2
Let 3 − 4i = x + iiyy 2 2 ∴ 3 – 4i = x – y + i (2 xy) Equating real and imaginary parts: 2 2 x – y =3 2 xy = 4 From [2] y =
[1] [2]
4 2 = 2 x x
Substituting for y in [1] x 2 − x
4
= 3
x 2
4
− 4 = 3x 2
4
2
x 2− 3 x −24 = 0 ( x − 4)( x + 1) = 0
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 2 of 58
x = 4 since x, y x = ± 2 2
∈
2 = 1 2 2 When x = −2, y = = 1 −2 ∴ 3 + 4i = 2 + i, − 2 − i When x = 2, y =
Exercise 1A 1
z1 = 2 + 4i, z2 = 3 + 5i (a) z1 + z2 = 2 + 4i + 3 + 5 i = (2 + 3) + (4i + 5i) = 5 + 9i (b) z1 – z2 = (2 + 4i) – (3 + 5i) = (2 – 3) + (4i – 5i) = –1 – i (c) z1 zz2 = (2 + 4i) (3 + 5i) = 6 + 10i + 12i + 20i2 = 6 – 20 + 22i
= –14 + 22i z 2 + 4 i (d) 1 = z 2 3 + 5i 2 + 4 i 3 − 5i = × 3 + 5i 3 − 5i
2
3
6 − 10 10 i + 12i − 20i 2 = 9 + 25 6 + 20 + 2i = 34 26 2 = + i 34 34 13 1 = + i 17 z =1(3 7 + i) – (4 – 3i) (a) z1 – 2 = 3 – 4 + i + 3i = –1 + 4i (b) z1 + z3 – z4 = 3 + i + (–1 + 2i) – (–2 – 5i) = 3 – 1 + 2 + i + 2i + 5i = 4 + 8i (c) z1* z2 = (3 – i) (4 – 3i) = 12 – 9i – 4i + 3i2 = 12 – 3 – 9 i – 4i = 9 – 13i (a) z1 + z2 = 3 + i + 4 – 3i = 7 – 2i (b) z3 zz4 = (–1 + 2i) (–2 – 5i) 2
= 22 + + 10 5i –+4ii – 10i =
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 3 of 58
= 12 + i z3* − 1 − 2i (c) = z4* − 2 + 5i − 1 − 2 i − 2 − 5i = × − 2 + 5i − 2 − 5i 2 + 5i + 4i + 10i 2 4 + 25 =
=
4
− 8 + 9i
29 −8 9 = + i 29 29 (a) z1 zz2 zz3 = (3 + i) (4 – 3i) (–1 + 2i) = (12 – 9i + 4i – 3i2) (–1 + 2i) = (15 – 5i) (–1 + 2i) = –15 + 30i + 5i – 10i2 = –5 + 35i (b) z2 zz3 + z1 zz4 = (4 – 3i) (–1 + 2i) + (3 + i) (–2 – 5i) = –4 + 8i + 3i – 6i2 – 6 – 15i – 2i – 5i2 = –4 + 6 – 6 + 5 + 8 i + 3i – 15i – 2i i
= z *1+–z6* 3 − i + 4 + 3i (c) 1 * * 2 = z 3 z 4 (–1 – 2i ) (−2 + 5i ) 7 + 2i 2 − 5i + 4i − 10 i 2 7 + 2i = 12 − i 7 + 2i 12 + i = × 12 − i 12 + i =
84 + 7i + 24 i + 2 i 2 = 144 + 1 82 + 31i =
5
82145 31 i = + 145 145 z 1 3 + i (a) = z 2 4 − 3i 3 + i 4 + 3i = × 4 − 3i 4 + 3i 12 + 9i + 4i + 3i 2 = 16 + 9 9 + 13i 9 13 = = + i 25 25 25 25 z + z 2 (b) 1 z z 3
4
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 4 of 58
3 + i + 4 − 3i (−1 + 2i ) (−2 − 5i ) 7 − 2i = 2 + 5i − 4i − 10 i 2 7 − 2i = 12 + i 7 − 2i 12 − i = × 12 + i 12 − i =
84 − 7i − 24 i + 2 i 2 = 144 + 1 82 31 i = − 145 145 z 1 z 2 (4 − 3i ) (3 + i ) (4 (c) = 3 + i + 4 − 3i z 1 + z 2 12 − 9 i + 4 i − 3i 2 = 7 − 2i 15 − 5i 7 + 2i = × 7 − 2i 7 + 2i
(d)
6
(a) (b) (c) (d) (e)
105 + 30i − 35i − 10 i 2 = 49 + 4 115 − 5i = 53 115 5i = − 53 53 z 1 + z 2 3 + i + 4 − 3i = z 3 + z 4 − 1 + 2i − 2 − 5i 7 − 2i = − 3 − 3i − 3 + 3i 7 − 2i = × − 3 − 3i − 3 + 3i −21 + 21 21i + 6i − 6i 2 = 9+9 −15 27 = + i 18 18 −5 3 = + i 6 2 2 6 12 i = (i ) = (–1)6 = 1 15 2 7 7 i = i × (i ) = i (–1) = – i i21 = i × (i2)10 = i (–1)10 = i 4 4 4 = 2 4 = = 4 8 i (i ) ( − 1)4 5 5 5 = = =5 20 2 10 10 i (i ) (−1)
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 5 of 58
7
1 + 3i 1 − 2i 1 + 3i 1 + 2 i = × 1 − 2i 1 + 2 i
(a) z =
1 + 2i + 3i + 6 i 2 12 + 22 −5 + 5i = = −1 + i 5 z2 = (–1 + i)2 = (–1 + i) (–1 + i) = 1 – i – i + i2 = –2i 1 1 (b) z – = − 1 + i − −1+ i z (−1 − i ) = −1 + i − (−1 − i)(−1 + i)
=
−1− i = − 1+ i − 2 2 1 +1 = − 1+ i + 1 + 1 i 2
2
1 3 i 2 2 2 8 z = – 5 + 12 i ⇒ zz = − 5 + 12i
=− +
Now
− 5 + 12i = a + bi
⇒ –5 + 12i = (a + bi)2 ⇒ –5 + 12i = a2 + 2abi + b2i2 ⇒ –5 + 12i = a2 – b2 + 2abi Equating real and imaginary parts: 2 2 a – b = –5 [1] 2ab = 12 [2] From [2]: b = 12 = 6 2a a Substitute into [1] 2
6 ⇒ a − = −5 a 36 ⇒ a2 − 2 = − 5 2
a
⇒ a − 36 = − 5a 2 ⇒ a4 + 5a2 – 36 = 0 ⇒ (a2 + 9) (a2 – 4) = 0 ∴ a2 + 9 = 0, a2 – 4 = 0 Since a is real, a = ±2 4
6 When a = 2, b = 2 = 3
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 6 of 58
6 = −3 −2 ∴ zz = 2 + 3 i, zz = –2 – 3i 1 1 1 = +
When a = –2, b =
9
u
1
v
=
w
1
+
1
1 − 2i 3 + i 1 + 2i 3−i = 2 2+ 2 2 1 +2 3 +1 1 2 3 1 = + i+ − i 5 5 10 10 10 1 3 = + i 2 10 1 1 3 Since = + i u 2 10 1 ⇒ u = 1 3 + i 2 10 1 3 2 − 10 i = 2 2 1 3 + 2 10 1 3 − i 2 10 = 1 9 + 4 100 1 3 − i 2 10 = 34 100 100 1 3 = − i 34 2 10 50 30 = − i 34 34 25 15 = − i 17 17 2 − i 6 + 8i − 10 z = 1+ i x + i 2 − i 1 − i 6 + 8i x − i = × − × 1+ i 1− i x + i x − i 2 − 2 i − i + i 2 6 x − 6 i + 8x i − 8i 2 = − 1+1 x 2 + 12 1 − 3i 6x + 8 + i (8x − 6) = − x 2 + 1 2 u
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 7 of 58
1 6 x + 8 −3 8 x − 6 = − 2 +i − 2 2 x + 1 2 x + 1 1 6 x + 8 − 2 x 2 + 1 −3 8 x − 6 − 2 Im ( zz) = + 2z) = x Since Re ( z Im ( zz1) 1 6 x + 8 − 3 8 x − 6 ⇒ − 2 = − 2 2 x + 1 2 x +1 6 x + 8 6 − 8 x ⇒2− 2 = 2 x + 1 x +1 ⇒ 2 x2 + 2 – 6 x – 8 + 8 x – 6 = 0 ⇒ 2 x2 + 2 x – 12 = 0 x2 + x – 6 = 0 ( xx + 3) ( xx – 2) = 0 x = –3, 2 bii 11 (a) 3 + 4 i = a + b 3 + 4i = (a + bi)2 Re ( zz) =
2
2 2
bi 2 33 + + 44ii = = a a + – b22abi + + 2abi Equating real and imaginary parts: [1] ⇒ a2 – b2 = 3 2ab = 4 4 2 From [2] ⇒ b = = 2a a Substitute into [1] 2 2 2 a – = 3 a 4 a2 – 2 = 3
[2]
a a – 3a2 – 4 = 0 (a2 – 4) (a2 + 1) = 0 a2 = 4, a2 = –1 4
Since a is real, a = ±2 2 When a = 2, b = = 1 2 2 When a = –2, b = = −1 −2 ∴ 3 + 4i = 2 + i, − 2 − i (b)
24 − 10i = a + bbii 24 – 10i = (a + bi)2 24 – 10i = a2 – b2 + 2abi ∴ a2 – b2 = 24 2ab = –10 −5 b From [2] ⇒ = a
Unit 2 Answers: Chapter 1
[1] [2]
© Macmillan Publishers Limited 2013
Page 8 of 58
Substitute into [1] 2 −5 2 a – = 24
2
a –
a
25
= 24
a2 4 2 a – 24a – 25 = 0
(a22 – 25) (2a2 + 1) = 0 a = 25, a = –1 Since a is real, a = ±5 −5 When a = 5, b = = − 1 5 −5 When a = –5, b = = 1 −5 ∴ 24 − 10 10i = 5 − i , –5 + i
Exercise 1B 1
2
z + 16 = 0
z2 = –16
z = ± − 16 = 4i, – 4i
2
z2 – 8 z + 17 = 0 z =
8 ± 64 − (4) (4) (17) (1) 2(1)
8 ± −4 2 8 ± 2i = =4±i 2 ∴ zz = 4 + i or 4 – i 3 z2 – 4 z + 5 = 0 4 ± 16 − 20 20 z = 2 4 4 = ± − 2 4 ± 2i = 2 = 2 ± i ∴ zz = 2 + i or 2 – i 4 z2 – 6 z + 13 = 0 6 + 36 − (4) (13) (1) z = 2(1)
=
= =
6 ± −16 2 6 ± 4i
= 3 ±22i Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 9 of 58
5
z = 3 + 2 i or 3 – 2i 2 z – 10 z + 31 = 0. z =
10 ± 100 − 4(31) (1) 2(1)
10 ± −24 2 10 ± 2 6i = = 5 ± 6i 2 ∴ zz = 5 + 6i or 5 – 6 i 2 z + 1 = ( z + i) ( zz – i) 2 z – 2 z + 2 = ( z – 1 – i) ( zz – 1 + i) z2 – 6 z + 25 = ( z – (3 + 4i)) ( zz – (3 – 4i)) = ( zz – 3 – 4i) ( zz – 3 + 4i) 4 2 2 z – z – 2 z + 2 = ( z – 1) ( zz + 1 + i) (z + 1 − i). Let 2 i = a + bi ⇒ 2i = (a + bi)2 2i = a2 + 2abi + b2i2 2i = a2 – b2 + 2abi Equating real and imaginary parts
=
6 7 8 9 10
2
2
a b 2 = 0 – = 2ab
From [2] b =
[1]
[2]
2 1 = 2a a
2
1 a – = 0 a 2
2
a – 4
1 a2
= 0
a – 1 = 0 (a2 – 1) (a2 + 1) = 0 2 2 a – 1 = 0, a + 1 = 0 Since a is real, a = ± 1
When a = 1, b =
1
= 1
11 When a = –1, b = = –1 −1 ∴ 2i = 1 + i or –1 – i z2 – (3 + 5 i) zz – 4 + 7i = 0 3 + 5i ± (3 + 5i )2 − 4 ( −4 + 7i ) 3 + 5i ± −16 + 30i + 16 − 28 z = = 2 2 3 + 5i ± 2 i 3 + 5i + 1 + i 3 + 5i − 1 − i = ∴ z = , 2 2 2 = 2 + 3i or 1 + 2i 2 u = –60 – 32i 11 ⇒ ( xx + iy)2 = –60 + 32i ⇒ xx2 – y2 + 2 xyi = –60 + 32i Equating real and imaginary parts
x2 – y2 = – 60
Unit 2 Answers: Chapter 1
[1]
© Macmillan Publishers Limited 2013
Page 10 of 58
2 xy = + 32
[2]
32 16 = 2 x x Substituting into [1]
From [2] y = 2
16 x – = – 60 x 2
x2 – 256 = – 60 x 2 x4 + 60 x2 – 256 = 0 ( xx2 – 4) ( x2 + 64) = 0 2 2 x = 4, x = –64 Since x ∈ ℝ, x = ±2
When x = 2, y =
16 =8 2
16 = −8 −2 ∴ u = 2 + 8i or –2 – 8i 2 z – (3 – 2i) z + 5 – 5i = 0 x = –2, y
z =
=
3 − 2i ± (3 − 2i )2 − 4(5 − 5i )
2 3 − 2 i ± 9 − 12 i + 4 i 2 − 20 + 20 i = 2 3 − 2 i ± −15 + 8i = 2 Since −60 + 32i = ± (2 + 8i) 4 (−15 + 8i ) = ± (2 + 8i ) ∴ −15 + 8i = ± (1 + 4i )
3 − 2i + 1 + 4i 3 − 2i − 1 − 4i ∴ z = or 2
2
4 + 2i 2 − 6i or 2 2 = 2 + i or 1 – 3i 3 2 3z – 23 z + 52 z + 20 = 0 12 2 f ( zz) = 3 z3 –23 z + 52 z + 20 f (4 (4 + 2i) = 3(4 + 2i)3 + 23(4 + 2i)2 + 52 (4 + 2 i) + 20 = 3(16 + 88i) – 23(12 + 16i) + 208 + 104i + 20 = 48 + 26 4i – 27 2766 – 36 3688i + 208 + 104 i + 20 =0 (4 + 2i)2 = 16 + 16i + 4i2 = 12 + 16i (4 + 2i)3 = (12 + 16i) (4 + 2i) = 48 + 24i + 64i + 32i2 = 16 + 88i Since f (4 (4 + 2i) = 0 ⇒ 4 + 2i is a root of the equation. Since all the coefficients are real, complex roots occur in conjugate pairs. Therefore 4 – 2i is a root of f ( zz) = 0 A quadratic factor of f ( zz) is: ( zz – (4 + 2i)) ( zz – (4 – 2i)) = z2 – (4 – 2i) z – (4 + 2i) z z + (16 + 4)
=
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 11 of 58
= z 2 − 4z + 2iz − 4 z − 2iz + 20 = z2 – 8 z + 20 Now: 3 z3 – 23 z2 + 52 z + 20 = ( z2 – 8 z + 20) (3 z + 1) ∴ zz2 – 8 z + 20 = 0, 3 z + 1 = 0 1 z = 4 + 2 i or 4 – 2i or − 3 3
13
2
4 z – 7 z + 6 z + 2 = 0 Let f ( zz) = 4 z3 – 7 z2 + 6 z + 2 f (1 (1 + i) = 4(1 + i)3 – 7(1 + i)2 + 6(1 + i) + 2 = 4(1 + i)(1 + i)2 – 7(1+ 2i + i2) + 6 + 6i + 2 = 4(1 + i)(2i) – 14i + 6i + 8 = 8i + 8i 2 – 14i + 6i + 8 =0 Since f (1 (1 + i) = 0 ⇒ 1 + i is a root of f ( zz) = 0 Since all coefficients are real, complex roots occur in conjugate pairs ∴ 1 – i is also a root A quadratic factor is: ( zz – (1 + i)) ( zz – (1 – i)) = z2 – (1 – i) zz – (1 + i) zz + 12 + 12 = z 2 – z + iz – z – iz + 2 = z2 – 2 z + 2
4 z3 –2 7 z2 + 6 z + 2 = ( z2 – 2 z + 2) (4 z + 1) ∴ ( zz – 2 z + 2) (4 z + 1) = 0 ⇒ zz2 – 2 z + 2 = 0, 4 z + 1 = 0 1 z = 1 + i or 1 – i or − 4 Since 3 – 2i is a root and all coefficients are real, 3 + 2 i is also a root 14 A quadratic factor is: ( zz – (3 – 2i)) ( zz – (3 + 2i)) = z2 – (3 + 2i) z – (3 – 2i) zz + (3 – 2i) (3 + 2i) = z 2 − 3z − 2iz − 3 z + 2iz + 9 + 4 = z2 – 6 z + 13 f ( zz) = z3 – 8 z2 + 25 z – 26 = ( zz2 – 6 z + 13) ( zz – 2) ∴ zz = 3 – 2i or 3 + 2i or 2 z3 – 5 z2 + 8 z – 6 = 0 15 z = 3, (3)3 – 5(3)2 + 8(3) – 6 = 27 – 45 + 24 – 6 = 51 – 51 = 0 ∴ zz – 3 is a factor z 2 − 2 z + 2 z − 3 z 3 − 5 z 2 + 8 z − 6 z 3 − 3z 2
− 2 z 2 + 8 z − 6 −2 z 2 + 6 z 2 z − 6 2 z − 6 0
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 12 of 58
∴ ( zz – 3) ( zz2 – 2 z + 2) = 0 ⇒ zz = 3, z2 – 2 z + 2 = 0 2 ± 4 − 8 2 2 ± 2i = =1± i 2 ∴ zz = 3 or 1 + i or 1 – i
z =
Try these 1.3
(a) (i)
| 5 + i |= 52 + 12 = 26 1 arg(5 + i) = ttaan −1 = 0.197 rad 5
(ii) | 3 − i |= 2
arg( 3 − 1) = tan −1 ((0 0) = 0 (iii) | − 3 − i |=
2
( − 3 ) + (−1)2 = 4 = 2
arg (− 3 − i) = −π + tan −1 −1 = − 5π 6 − 3 (iv) | − 3 + i |= 3 + 1 = 2
5π 1 +π= 6 − 3
arg(− 3 + i) = tan −1 (b) (i)
| 3 + 4i |= 32 + 42 = 5 4 arg(3 + 4i) = tan −1 = 0.927 rad 3
(ii) | 2 − 4i |= 4 + 16 = 20
4 arg(2 − 4i) = ttaan −1 − = −1.107 rad 2 (iii) | −2 + 5i |= (−2) 2 + 52 = 29 5 arg(−2 + 5i ) = π + tan −1 = 1.951 rad −2 (iv) | −4 − 7i |= 16 + 4 49 9 = 65 −7 arg(−4 − 7i) = −π + tan −1 = −2.09 rad −4 Exercise 1C 1
(a)
2 + 5i =
22 + 52 = 29
(b)
3 + 7 i =
32 + 72 = 58
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 13 of 58
(c)
−1− 4 i = ( −1)2 + (−4)2 = 17
(d)
−1+ 2 i = ( −1)2 + 22 = 5
(e)
cosθ + i 2 sin θ =
cos2 θ + (2 ssiin θ )2
= cos 2 θ + 4 ssiin 2 θ = cos2 θ + 4 (1 − cos2 θ ) = 4 − 3 co cos 2 θ 2
4 (a) arg (2 + 4i) = tan −1 2 = 1.107 radians
−1 (b) arg (3 – i) = tan −1 3 = –0.322 radians
(c) arg (–1 + 2i) = tan – 1 (–2) + π = 2.034 radians.
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 14 of 58
−2 (d) arg (–4 – 2i) = tan −1 − π −4 = –2.678 radians
3
We need the modulus and argument of each number: (a) r = | 2 − 3i | = (2) 2 + (− 3 3))2 = 7 − 3 2 = − 0.714 radians
θ = arg (2 − 3i ) = ta tan −1
Substituting into r [cos [cosθ + + i sinθ ] and reiθ : 2 − 3 i = 7 [cos ( − 0.714) + i sin ( − 0. 0.714)]
= 7 [cos (0.714) − i sin (0.714)] i = 7 e − 0.714
(b)
r
= | − 3 + 2i | =
2
( − 3 ) + 22 = 7 2 +π 3
θ = arg ( − 3 + 2i ) = tan −1 −
= 2.285 radians
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 15 of 58
∴ − 3 + 2i = 7 [cos (2.285) + i sin (2.285)] i = 7 e2.285
2 2 r = |1 − i | = (1) + (− 1) =
(c)
2
π 1 4 1 π π ∴ 1 − i = 2 cos − + i sin − 4 4 θ = arg (1 − i) = tan −1 − = −
= 2e
π − i 4
9
4
π π (a) cos 3 + i sin 3 9π 9π = cos + i sin 3 3 = cos 3π + i sin 3π = –1 + 0i
10
2π 2π (b) 2 cos + i sin 5 5 20π 20π = 210 cos + i sin 5 5 = 210 [cos 4π + i sin 4π] = 210 + 0i = 1024 6
π π + (c) cos 18 i sin 18
= cos = cos =
6π 18
π 3
+ i sin
6π 18
π + i sin 3
1 3 i + 2 2 8
π π (d) cos + i sin 2 2 8π 8π = cos + i sin 2 2 = cos 4 π + i sin 4 π
5
= 1 + 0i (a) Let us write 1 + i in the form r (cos (cosθ + + i sinθ ). ).
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 16 of 58
Then use de Moivre’s theorem. 1 + i = 2 arg (1 + i) = tan –1 (1) =
π 4
π π ∴ 1 + i = 2 cos + i sin 4 4 20
π π Now (1 + i ) = 2 co cos + i sin 4 4 20
20π 20π = ( 2 ) 20 co + i sin cos 4 4 = 210 (cos 5 π + i sin 5π) = 1024 (–1 + 0i) = –1024 + 0i
(using de Moivre’s theorem)
(b) | 3 − 3i | = (3)2 + (− 3 ) 2 = 9 + 3 = 12
3 arg (3 − 3i ) = tan − 1 − 3 π =− 6 −π −π ∴ 3 − 3i = 12 cos + i sin 6 6 12
( )
Now 3 − 3i 12
=
( 1 2 )
=
(
12
12
−π −π = 12 cos + i sin 6 6
12π −12π − + c o s i s i n 6 6
12
) [cos (− 2π) + i sin (− 2π)]
= 2 985 984 + 0i (c) | − 3 + i | =
(
− 3
)
2
+1 = 2
1 arg − 3 + i = t an −1 − + π 3
( )
5π = 6 Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 17 of 58
5π 5π ∴ − 3 + i = 2 cos + i sin 6 6 9
5π 5π Now ( − 3 + i ) = 2 cos + i sin 6 6 45π 45π = 29 cos + i sin 6 6 9
15π 15π = = 29 cos + i sin 2 2 = 29(0 – i) = 0 – 512i (d) | 1 − i | = (1)2 + (− 1) 2 = 2 π 1 arg (1 − i ) = tan −1 − = − 1 4
− π π ∴ (1 − i) = 2 cos + i sin − 4 4 5 π π 5 (1 − i ) = 2 cos − + i sin − 4 4 5π −5π = ( 2 )5 cos − + i sin 4 4
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 18 of 58
2 2 = ( 2 )5 − + i 2 2 = –4 + 4i −3
6 7
cos π + i sin π = cos −3π + i sin − 3π 6 6 6 6 = – ide Moivre’s theorem: By cos 4θ + i sin 4θ = = (cos θ + i sin θ )4 = cos4θ + 4C1 cos3θ ((i sinθ ) + 4C2 cos2θ ((i sinθ )2 + 4C3 cos θ ((i sin θ )3 + (i sin θ )4 ⇒ cos 4θ + i sin 4θ = cos4θ + i 4 cos3θ sin sinθ – 6 cos2θ sin sin2θ – i 4 cos θ sin sin3θ + sin4θ Equating real and imaginary parts: cos 4θ = cos4θ – 6 cos2θ sin sin2θ + sin4θ sin 4θ = 4 cos3θ sin sin θ – 4 cos θ sin sin3θ . So cos4θ = cos4θ – 6 cos2θ sin sin2θ + sin4θ = cos4θ – 6 cos2θ (1 (1 – cos2θ ) + (1 – cos2θ )2 = cos4θ – 6 cos2θ + 6 cos4θ + + 1 – 2 cos 2θ + cos4θ = 8 cos4θ – 8 cos2θ + 1. sin 4θ = 4 cos3θ sin sin θ – 4 cos θ sin sin3θ 3
8
2
= 4 sin θ (cos (cos3θ – cos θ sin sin θ ). ). = 4 sin θ [cos [cos θ – cos θ (1 (1 – cos2θ )] )] 3 = 4 sin θ (2 (2 cos θ – cos θ ) By de Moivre’s theorem cos 7θ + i sin 7θ = (cos θ + i sin θ )7 = cos7θ + 7C1 cos6θ ((i sin θ ) + 7C2 cos5θ ((i sin θ )2 + 7C3 cos4θ ((i sin θ )3 + 7C4 cos3θ ((i sin θ )4 + 7C5 cos2θ ((i sin θ )5 + 7C6 cos θ ((i sin θ )6 + (i sin θ )7 ⇒ cos 7θ + i sin 7θ = = cos7θ + i 7 cos6θ sin sin θ – 21 cos5θ sin sin2θ – i 35 cos4θ sin sin3θ + 35 cos3θ sin sin4θ + i 21 cos2θ sin sin5θ – 7 cos θ sin sin6θ – i sin7θ Equating real parts: cos 7θ = cos7θ – 21 cos5θ sin sin2θ + 35 cos3θ sin sin4θ – 7 cos θ sin sin6θ = cos7θ – 21 cos5θ (1 (1 – cos2θ ) + 35 cos3θ (1 (1 – cos2θ )2 – 7 cos θ (1 (1 – cos2θ )3 (1 – 2 cos2θ + cos4θ ) – + 35 cos3θ (1 = cos7θ – 21 cos5θ + 21 cos7θ + 2
4
6
7 cos θ (1 (1 – 3 cos θ + 3cos θ – – cos θ ) = 64 cos7θ – 112 cos5θ + 56 cos3θ – 7 cos θ 9 By de Moivre’s theorem: cos 3θ + i sin 3θ = (cos θ + + i sin θ )3 = cos3θ + 3 cos2θ ((i sin θ ) + 3 cos θ ((i sin θ )2 + (i sin θ )3 = cos3θ + i 3 cos2θ sin sin θ – 3 cos θ sin sin2θ – i sin3θ = cos3θ – 3 cos θ sin sin2θ + i (3 cos2θ sin sin θ – sin3θ ) Equating real and imaginary parts: cos 3θ = cos3θ – – 3 cos θ sin sin2θ sin 3θ = 3 cos2θ sin sin θ – sin3θ sin3θ Now tan3θ = cos3θ 3 co cos2 θ sin θ − sin 3 θ = 3 cos θ − 3 ccoosθ sin 2 θ Dividing numerator and denominator by cos 3θ
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 19 of 58
3 cos 2 θ sin θ sin 3 θ − 3 θ c o s cos3 θ tan3θ = cos3 θ 3 cosθ sin 2 θ − cos3 θ cos3 θ 3 ta t an θ − tan 3 θ = 1 − 3 t an an 2 θ 10 By de Moivre’s theorem cos 5θ + i sin 5θ = (cos θ + + i sin θ )5 = cos5θ + 5C1 cos4θ ((i sin θ ) + 5C2 cos3θ ((i sin θ )2 + 5C3 cos2θ ((i sin θ )3 + 5C4 cos θ ((i sinθ )4 + (i sinθ )5 = cos5θ + i 5 cos4θ sin sin θ – 10 cos3θ sin sin2θ – i 10 cos2θ sin sin3θ + 5 cos θ sin sin4θ + sin5θ Equating real imaginary parts: cos 5θ = = cos5θ – 10 cos3θ sin sin2θ + 5 cosθ sin sin4θ sin 5θ = = 5 cos4θ sin sinθ – 10 cos2θ sin sin3θ + sin5θ sin 5θ 5 cco os4 θ sin θ − 10 cos2 θ sin 3 θ + sin 5 θ Now tan5θ = = cos5θ c os5 θ − 10 cos3 θ sin 2 θ + 5 cco os θ sin 4 θ Dividing numerator and denominator by cos 5θ 5 tan θ − 10 tan 3 θ + tan 5 θ tan 5θ = 1 − 10 tan 2 θ + 5 tan 4 θ sin 5θ 5 cos4 θ sin θ − 10 cos2 θ sin 3 θ + sin 5 θ = sin θ sin θ = 5 cos4θ – 10 cos2θ sin sin2θ + sin4θ = 5 cos4θ – 10 cos2θ (1 (1 – cos2θ ) + (1 – cos2θ )2 = 5 cos4θ – 10 cos2θ + 10 cos4θ + 1 – 2 cos2θ + cos4θ = 16 cos4θ – 12 cos2θ + 1 cos 3θ + i sin 3θ = (cos 3θ + i sin 3θ ) (cos 5θ + i sin 5θ )−1 12 cos 5θ + i sin 5θ = (cos 3θ + i sin 3θ ) [cos(–5θ ) + i sin(–5θ )] )] = (cos 3θ + i sin 3θ ) (cos 5θ – i sin 5θ ) = cos 3θ cos cos 5θ – i cos 3θ sin sin 5θ + i sin 3θ cos cos 5θ – i2 sin 3θ sin sin 5θ = (cos 5θ cos cos 3θ + sin 5θ sin sin 3θ ) + i (cos 5θ sin sin 3θ – sin 5θ cos cos 3θ ) = cos(5θ – – 3θ ) + i sin(3θ – – 5θ ) = cos 2θ – – i sin 2θ Alternatively cos 3θ + i sin 3θ (cosθ + i sin θ )3 = cos 5θ + i sin 5θ (cos θ + i sin θ )5 11
= (cosθ + i sin θ ) 3−5 = (cosθ + i sin θ ) −2 cos 3θ + i sin 3θ So = cos(−2θ ) + i sin( −2θ ) cos 5θ + i sin 5θ = cos 2θ − i sin 2θ sin4θ 13 tan4θ = cos4θ By de Moivre’s theorem: 4
cos 4θ + i sin 4θ = (cos θ + + i sin θ ) = cos4θ + 4C1 cos3θ ((i sin θ ) + 4C2 cos2θ ((i sin θ )2 + 4C3 cos θ ((i sin θ )3 + (i sin θ )4
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 20 of 58
= cos4θ + i 4 cos3θ sin sin θ – 6 cos2θ sin sin2θ – i 4 cos θ sin sin3θ + sin4θ Equating real and imaginary parts: cos 4θ = cos4θ – 6 cos2θ sin sin2θ + sin4θ sin 4θ = 4 cos3θ sin sin θ – 4 cos θ sin sin3θ sin sin 4θ tan4θ = cos4θ 3
3
= 4 c4os θ sin θ2 − 4 co2 s θ sin θ4 cos θ − 6 cos θ sin θ + sin θ Dividing numerator and denominator by cos 4θ 4 tan θ − 4 tan 3 θ tan 4θ = 1 − 6 tan 2 θ + tan 4 θ π 5π 9π 1133π , , , 4 4 4 4
Let tan 4θ = 1 ⇒ 4θ =
π 5π 9π 13π , , , 16 1166 16 16 4 tan θ − 4 tan 3 θ = 1 1 − 6 tan 2 θ + tan 4 θ
θ =
4 tanθ – 4 tan3θ = = 1 – 6 tan 2θ + tan4θ 4
3
2
⇒ t = tan = tan θ θ + 4 tan θ – 6 tan θ – 4 tan θ + 1 = 0 4 3 2 t + 4t – 6t – 4t + + 1 = 0 nπ t = tan 5, 9, 9, 13 , n = 1, 5,
16 5 14 (a) (cos 3θ + i sin 3θ ) (co sθ + i sin θ ) = (cos 3θ + i sin 3θ ) (cos 5θ + i sin 5θ ) = cos 3θ cos cos 5θ + i cos 3θ sin sin 5θ + i sin 3θ cos cos 5θ + i2 sin 3θ sin sin 5θ = (cos 3θ cos cos 5θ – sin 3θ sin sin 5θ ) + i (cos 3θ sin sin 5θ + sin 3θ cos cos 5θ ) = cos(3θ + + 5θ ) + i sin(3θ + + 5θ ) = cos 8θ + i sin 8θ (b) (cos 2θ + i sin 2θ ) (cos θ + i sin θ )7 = (cos 2θ + i sin 2θ ) (cos 7θ + i sin 7θ ) = cos 2θ cos cos 7θ + i cos 2θ sin sin 7θ + i sin 2θ cos cos 7θ + i2 sin 2θ sin sin 7θ = (cos 2θ cos cos 7θ – sin 2θ sin sin 7θ ) + i (cos 2θ sin sin 7θ + sin 2θ sin sin 7θ ) = cos(2θ + + 7θ ) + i sin(2θ + + 7θ ) = cos 9θ + + i sin 9θ cosθ − i sin θ (c) = (cosθ − i sin θ ) (cos (−4θ ) + i sin ( −4θ )) )) −1 cos 4θ − i sin 4θ = (cos θ – i sin θ ) (cos 4θ + i sin 4θ ) sin 4θ = cos θ cos cos 4θ + i cos θ sin sin 4θ – i sin θ cos cos 4θ – i2 sin θ sin = cos θ cos cos 4θ + sin θ sin sin 4θ + i (cos θ sin sin 4θ – sin θ cos cos 4θ ) = cos(4θ – – θ ) + i sin (– θ + 4θ ) θ + = cos 3θ + i sin 3θ
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 21 of 58
Exercise 1D 1
(a)
(b) z − i = 4 Circle centre (0, 1) radius 4
(c) z + 4 = 2 ⇒ z − ( − 4) = 2 Circle centre (– 4, 0) radius 2
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 22 of 58
(d) z − 1 + 2i = 5 ⇒ z − (1 − 2 i ) = 5 Circle centre (1, –2) radius 5
(e) z + 1 + 3i = 6
⇒ z − ( − 1 − 3i ) = 6 Circle centre (–1, –3), radius 6
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 23 of 58
(f)
z
+ 2 − 4i = 7
⇒ z − (− 2 + 4i) = 7 Circle centre (–2, 4), radius 7
2
(a) z − 1 − i = z − 1 + 2 i
⇒ z − (1 + i ) =
z
− (1 − 2 i )
Locus of z is the perpendicular bisector of the line joining (1, 1) to (1, –2)
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 24 of 58
(b) z − 3 + i = z + 1 + 2 i
⇒ z − (3 − i ) = z − ( −1 − 2i ) Locus of z is the perpendicular bisector of the line joining (3, –1) to (–1, –2)
(c) z − 3i = z Locus of z is the perpendicular bisector of the line joining (0, 3) to (0, 0)
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 25 of 58
(d) z + 2 = z − 2 z − ( − 2) = z − 2
Locus of z is the perpendicular bisector of the line joining (–2, 0) to (2, 0)
(e)
| z + 1 + 4i | = 1 | z − 1 − 2i | ⇒ z − (− 1 − 4i) = z − (1 + 2i) Locus of z is the perpendicular bisector of the line joining (–1, –4) to (1, 2)
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 26 of 58
(f) z − 1 − 7i = z + 1 + i
⇒ z − (1 + 7i) = z − (− 1 − i) Locus of z is the perpendicular bisector of the line joining (1, 7) to (–1, –1)
3
(a) arg ( zz) =
π
2 Locus of z is a half-line starting at (0, 0) excluding (0, 0) and making an angle of
π 2
radians with the positive real axis
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 27 of 58
(b) arg ( zz) =
−π
6 Locus of z is a half-line starting at (0, 0) excluding (0, 0) and making an angle of
−π 6
radians with the positive real axis
(c) arg ( zz – 1) =
π
4 Locus of z is a half-line starting at (1, 0) excluding (1, 0) and making an angle of
π 4
radians with the positive real axis
(d) arg ( zz – i) =
π
12 Locus of z is a half-line starting at (0, 1) excluding (0, 1) and making an angle of
π 12 radians with the positive real axis
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 28 of 58
3π 4 3π arg ( zz – (3 – 2i)) = 4 Locus of z is a half-line starting at (3, –2) excluding (3, –2) and making an angle 3π radians with the positive real axis of 4
(e) arg ( zz – 3 + 2 i) =
(f) arg ( zz – 3 – 4i) = −2π 3
−2 π ⇒ arg ( z − (3 + 4i)) =
3 Locus of z is a half-line starting at (3, 4) excluding (3, 4) and making an angle of −2 π radians with the positive real axis 3
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 29 of 58
4
(a) z = 1 + 2 i + λ (1 (1 – 3i), λ ∈¡ Locus of z is a line passing through (1, 2) and parallel to 1 – 3 i
(b) z = 1 – 2i + λ (3 (3 + 2i), λ ∈¡ Locus of z is a line passing through (1, –2) and parallel to 3 + 2 i
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 30 of 58
(c) z = i + λ (4 (4 + i), λ ∈¡ Locus of z is a line passing through (0, 1) and parallel to 4 + i
(d) z = 3 – 2i + λ (5 (5 + 2i), λ ∈¡ Locus of z is a line passing through (3, –2) and parallel to (5 + 2 i)
(e) z = 1 – 4i + λ (–1 (–1 – 3i), λ ∈¡ Locus of z is a line passing through (1, –4) and parallel to –1 – 3 i
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 31 of 58
(f) z = 2 + λ (4 (4 + 2i), λ ∈¡ Locus of z is a line passing through (2, 0) and parallel to 4 + 2 i
5
(a) z − 2 ≤ 3
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 32 of 58
(b) z − 3 < z − i
(c) z − 3 ≤ 2
(d) z − 2 i ≤ z + 3 − i
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 33 of 58
(e) arg ( zz – i) ≥
π 4
(f) arg ( zz – 1 + 3 i) ≤
2π 3
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 34 of 58
6
(a) | z − 1 + 2i | = 2 ⇒ | z − (1 − 2i ) | = 2 Locus of z is a circle with centre (1, –2) and radius 2
(b) z |z + 3 + 2i| = z |z – 1 – i| ⇒ | zz – (–3 – 2i)| = 12 – (1 + i)| Locus of z is the perpendicular bisector of the line joining (–3, –2) to (1, 1)
(c) arg ( zz – 1 + i) =
π
⇒ arg ( zz – (1 – i)) =
π
3 3 Locus of z is a half-line starting at (1, –1) excluding (1, –1) and making an
π angle of 3 radians with the positive real axis
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 35 of 58
3π 3π ⇒ arg ( zz – (2 + 3i)) = 4 4 Locus of z is a half-line starting at (2, 3) excluding (2, 3) and making an 3π radians with the positive real axis angle of 4
(d) arg ( zz – 2 – 3i) =
7
(a)
z + 2 + 3i
= 5 ⇒ z − (− 2 − 3i) = 5
Circle centre (–2, –3) radius 5
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 36 of 58
−2 π
−2 π
3 3 Locus of z is a half-line starting at (2, 2) excluding (2, 2) and making an −2π angle of radians with the positive real axis 3
(b) arg ( zz – 2 − 2i)) =
⟹ arg ( zz – (2 + 2i)) =
(c) z − 3 − i = z + 4 + 2 i ⇒ z − (3 + i ) = z − ( − 4 − 2i ) Locus of z is the perpendicular bisector of the line joining (3, 1) to (–4, –2)
(d) z = (1 + i) + λ (–3 (–3 + 5i), λ ∈¡ Locus of z is a straight line passing through (1, 1) and parallel to –3 + 5 i
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 37 of 58
8
(a) z − 2 = 3 Circle centre (2, 0), radius 3 z − 2 − 2i = z ⇒ z − (2 + 2i ) = z Perpendicular bisector of the line joining (2, 2) to (0, 0)
π b = 4 3 π 3 2 b = 3 sin = 4 2
sin
π
a
cos 4 = 3
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 38 of 58
a = 3 cos
π 3 2 = 4 2
3 2 3 2 i ∴ point of intersection = 2 − + 2 2 3 2 = + c 2 2 −3 2 d = = 2 3 2 2 Next point of intersection is 2 + − 3 2 i 2 9
z
− 3 + i = z + 1 + 2i
Let z = x + iy ⇒ x + iy − 3 + i = x + iy + 1 + 2 i ⇒ ( x − 3) + i ( y + 1) = (x + 1) + i ( y + 2)
⇒ ( x − 3)2 + ( y + 1)2 = ( x + 1)2 + ( y + 2)2 ⇒ ( x − 3)2 + ( y + 1)2 = (x + 1)2 + ( y + 2)2
⇒ x 2 − 6 x + 9 +
y2
+ 2 y + 1 =
x2
+ 2 x + 1 +
y 2
+ 4 y + 4
8 x + 2 y – 5 = 0 The Cartesian equation of the locus is 2 y + 8 x – 5 = 0 10 z − 2 + 3i = 4 Let z = x + iy ⇒ x + iy − 2 + 3i = 4
⇒ ( x − 2) + i ( y + 3) = 4 ⇒ ( x − 2)2 + ( y + 3)2 = 4 ∴ ( xx – 2)2 + ( yy + 3)2 = 42 Locus of z is a circle with centre (2, –3) and radius 4 The Cartesian equation is x2 – 4 x + y2 + 6 y – 3 = 0 2π 11 arg ( zz – 3 – 4i) = − 3 Let z = x + iy 2π ∴ arg ( xx + iy – 3 – 4i) = − 3 − 2π arg ( x − 3 + i ( y − 4)) = 3 y − 4 −2π ⇒ tan −1 = x − 3 3 y − 4 x − 3
= 3
y – 4 =
3 ( xx – 3)
y = 3x − 3 3 + 4, 4, x > 3
Locus of z is a line with gradient
Unit 2 Answers: Chapter 1
3 and x > 3
© Macmillan Publishers Limited 2013
Page 39 of 58
12 (a)
z + 2 = z − 1
Perpendicular bisector of the line joining j oining (–2, 0) to (1, 0)
(b) arg ( zz – i) =
π 4
Half-line starting at (0, 1) excluding (0, 1) and making an angle of
π 4
radians
with the positive real axis
(c)
z − 2 + 5i
= 3 ⇒ z − (2 − 5i) = 3
Circle centre (2, –5) radius 3
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 40 of 58
13 z − (3 + 3i ) = z
Perpendicular bisector of the line joining (3, 3) to (0, 0) z − 3 = 4 Circle centre (3, 0) radius 4
sin cos
π 4
π
b
= ⇒ b = 4 sin 4
π 4 2 = =2 2 4
2
π = sin = 2 2
4 4 a = 3 − 2 2
d = 2 2 c = 3 + 2 2
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 41 of 58
Points of intersection: (3 − 2 2) 2 ) + (2 2) 2 )i and (3 + 2 2) 2 ) − (2 2) 2 )i .
− 4 − 2i = 1 ⇒ z − (4 + 2 i ) = 1
14 z
Circle centre (4, 2) radius 1
Length of OC = 42 + 22 = 20 z1 has the smallest argument and z2 has the largest argument
sin α =
1 20
⇒ α = 0.226
2 ⇒ β = 0.464 4 arg ( zz1) = β – – α = = 0.464 – 0.226 = 0.238 radians tan β =
z 1 = ( 20 )2 − 12
= 19 (0.238) + i sin(0.238)] ∴ z 1 = 19 [cos (0. = 4.236 + 1.028 i arg ( zz2) = β + + α = = 0.464 + 0.226 = 0.69 z 2 = 19
∴ z2 = 19 [cos 0.69 + i sin 0.69] = 3.362 + 2.775i The complex number with the smallest argument is 4.236 + 1.028 i The complex number with the largest argument 3.362 + 2.775 i 15 z − 2i = z − 4 Perpendicular bisector of the line joining (0, 2) to (4, 0)
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 42 of 58
arg ( zz – 1) =
π 4
Half-line starting at (1, 0) excluding (1,0) and making an angle of
π 4
radians with the
positive real axis
Point of intersection is 2 + i 1 16 z − 1 − i = 2 1 z − (1 + i ) = 2 1 Circle centre (1, 1) radius 2
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 43 of 58
1 1 ⇒ θ = 0.361 radians sin θ = 2 = 2 2 2 π 1 tan β = 1 ⇒ β = 4 α = = β – – θ = =
π
– 0.361 = 0.424 radians 4 Smallest argument = 0.424 radians Largest argument =
π 4
+ 0.424 = 1.209 radians
Review exercise 1 1
(a)
(b)
−1 + 2i 3+i −1 + 2i 3 − i = × 3+i 3−i −3 + i + 6i − 2i 2 = 9+1 −1 + 7i −1 7 = = + i 10 10 10 10
− 5 + 12i = (−5)2 + 12 2 = 13 12 arg(−5 + 12i) = tan −1 + π −5 = 1.966 radians
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 44 of 58
2
5 − 12i 3 + 4i 5 − 12i 3 − 4i = × 3 + 4i 3 − 4i
=
z
15 − 20i − 36i + 48i 2 32 + 42 −3333 − 56i = 25 −33 56
=
=
−
i
25
3
25 2 2 −33 −56 13 z |z| = + = 5 25 25 −56 −33 56 −1 25 − i = tan arg − π 25 25 −33 25 = –2.103 radians Let ( x + iy) = 16 − 30i
⇒ ( x + iy)2 = 16 − 30i ⇒ xx2 – y2 + i (2 xy) = 16 – 30i ⇒ xx2 – y2 = 16 2 xy = –30 From (2) ⇒ y =
−15 x
[1] [2]
Substitute into [1] 2
−15 = 16 x − x 2
x 2 4
−
225 x 2
= 16 2
x – 225 = 16 x x4 – 16 x2 – 225 = 0 ( xx2 – 25) ( xx2 + 9) = 0 2 2 x = 25, x = –9 Since x is real x2 = 25, x = ±5
−15 When x = 5, y = 5 = − 3
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 45 of 58
−15 = 3 −5
When x = –5, y =
∴ 16 − 30 3 0i = 5 − 3i , –5 + 3i 4
5
Let f ( zz) = 2 z3 – 3 z3 + 32 z + 17 f (1 (1 + 4i) = 2(1 + 4i)3 – 3(1 + 4i)2 + 32(1 + 4i) + 17 (1 + 4i)2 = 1 + 8i + 16i2 = –15 + 8i (1 + 4i)3 = (1 + 4 i) (–15 + 8i) = –15 + 8i – 60i + 32i2 = –47 – 52i ∴ f (1 (1 + 4i) = 2(–47 – 52i) – 3(–15 + 8i) + 32(1 + 4i) + 17 = –94 – 104i + 45 – 24i + 32 + 128i + 17 = –94 + 94 –104i + 104i =0 ⇒ 1 + 4i is a root of the equation. Since roots occur in conjugate pairs for real coefficients 1 – 4i is also a root. A quadratic factor is ( zz – (1 + 4i)) ( zz – (1 – 4i)) = z2 – – (1 – 4i) z – (1 + 4i) z + (1 + 4i) (1 – 4i) 2 = z – – 2 z + 17. Now 2 z3 – – 3 z2 + 32 z + 17 = ( z2 – – 2 z + 17) (az + b) ⇒ a = 2 b = 1 17 + 17) (2 z + 1) = 0 ∴ (b zz =2 –172 z⇒ 1 ⇒ zz = 1 + 4i, 1 – 4i, − 2 2 (a) z – – 2 z + 6 = 0
2 ± ( −2)2 − 4(1)(6) z = 2 2 ± −20 = 2 2 ± 2i 5 = 2 =1± i 5 (b)
(c) (i) (ii)
1 + i 5 = 12 +
( ) 5
2
= 6
arg (1 + i 5 ) = tan −1 5 = 1.150 radians 1
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 46 of 58
6
(
)
z − −2 + 2 3i ≤ 2
The locus ooff z for z − ( −2 + 2 3i ) = 2 is a circle centre (–2, 2 3 ) and radius 2.
(a)
OA = least value of zz
(
OC = (−2)2 + 2 3
)
2
= 4 + 12 = 4
AC = 2 ∴ OA = 4 − 2 = 2 (b) Greatest possible value of arg ( zz) is α = β + + θ . α =
θ
2 3 π 2π = arg ( −2 + 2 3i) = tan −1 + π = π − = 3 3 −2
tan β =
2 1 1 = ⇒ β = ta n −1 = 0.464 radian 2 4 2
2π 0.4644 = 2.55 2.5588 radi radian anss ∴α = + 0.46 3
7
(a)
(
1 − 3i = 12 + − 3
)
2
= 4 =2
− 3 π arg 1 − 3i = t an −1 = − 3 1
(
)
−
(b)
∴ 1 − 3i = 2e
π 3
i
sin α − i cos α = (sin α )2 + ( − cos α )2
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 47 of 58
= sin 2 α + cos2 α = 1 =1
− cos α α sin
arg (sin α − i cos α ) = tan −1 = tan −1 ( − co t α )
π = tan −1 (− tan( − α )) 2
π = tan −1 tan α − 2
π = α − 2
∴ sin α − cos α = e ( α − π/ 2) i (c) 1 + cos 2θ + + i sin 2θ 1 + cos 2θ + i sin 2θ = (1 + cos 2θ)2 + sin 2 2θ
= 1 + 2 ccoos 2θ + cos2 2θ + sin 2 2θ cos 2θ = 2 + 2 co = 2(1 + cos2θ ) 2co os2 θ ) = 2(2c
= 2 cos θ
sin2θ 1 + cos 2θ
arg (1 (1 + cos 2θ + i sin2θ ) = tan −1
8
2sin n θ cosθ 2si = tan −1 2 2cos θ = tan-1(tanθ ) = θ iθ ∴1 + cos 2θ + + i sin 2θ = 2 cosθ ee f ( zz) = 3 z3 – 16 z2 + 27 z + 26 = 0 f (3 (3 + 2i) = 3(3 + 2i)3 – 16(3 + 2i)2 + 27(3 + 2i) + 26 (3 + 2i)2 = 9 + 12i + 4i2 = 5 + 12i (3 + 2i)3 = (3 + 2 i) (5 + 12i) = 15 + 36i + 10i + 24i2 = –9 + 46i ∴ f f ( zz) = 3(–9 + 46i) –16(5 + 12i) + 27(3 + 2i) + 26 = –27 + 138i – 80 – 192i + 81 + 54i + 26 = –107 + 107 + 138i – 138i =0 ∴ 3 + 2i is a root of f ( zz) = 0 Since all coefficients are real, 3 – 2 i is also a root A quadratic factor is: ( z z – (3 + 2i)) ( zz – (3 – 2i)) = z2 – – (3 – 2i) z – (3 + 2i) z + (3 + 2i) (3 – 2i) 2 z = –– 6 z + 13 3 z3 – 16 z2 + 27 z + 26 = ( z2 – – 6 z + 13)(az + b) Coefficient of z3 ⇒ a = 3 26 = 13b ⇒ b = 2
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 48 of 58
∴ ( zz2 – – 6 z + 13) (3 z + 2) = 0 2 3
−
z = 3 + 2 i, 3 – 2i,
9
(a)
z
= z−4
Locus is the perpendicular bisector of the line joining (0,0) and (4,0) π
(b) arg( zz – i) =
4
Locus is a half-line starting at (0,1) excluding (0,1) and making an angle of
π
4
radians with the positive real axis
Point of intersection is (a ,b) a = 2
tan
π
4
=
c = 2 tan
c
2 π
4
= 2
∴ b = 2 + 1 = 3 Point of intersection is 2 + 3i 10
3 −i = arg
(
( 3)
2
+ (−1)2 = 4 = 2 −1 −π = 3 6
)
3 − i = t an −1
π π ∴ 3 − i = 2 cos − + i sin −
6
Unit 2 Answers: Chapter 1
6
© Macmillan Publishers Limited 2013
Page 49 of 58
6
⇒( 3 − i)
6
π π = 2 cos − + i sin − 6 6
6π 6π = 26 cos − + i sin − de Moivre’s theorem 6 6 = 64 [cos(– π) + i sin(– π)] = –64 + 0i 3 + 4i 3 + 4i 1 + 2i = × 11 (a) w = 1 − 2i 1 − 2i 1 + 2i 3 + 6i + 4i + 8i 2 = 1+ 4 −5 + 10i = = −1 + 2i 5 (b)
(c) Let the greatest value of arg z = θ = α + β θ = OC = (−1)2 + 22 = 5 sin β =
1 1 ⇒ β = s in −1 = 0.464 radians 5 5 2 −1
α = arg(−1 + 2 i) = π + tan −1
= = 2.034 radians = 2.034 + 0.464 = 2.498 radians θ 2 3 12 f ( zz) = 2 z + z – 4 z + 15
(
f 1 +
) (
3
) (
2 i = 2 1 + 2i + 1 + 2 i 2
)
2
− 4 (1 + 2i ) + 15
(1 + 2i) = 1 + 2 2i + 2i = −1 + 2 2i (1 + 2i) = (1 + 2i ) ( −1 + 2 2i ) = −1 + 2 2
3
2i − 2i + 4i 2
= −5 + 2i ∴ f (1 + 2i ) = 2 ( −5 + 2i ) + (−1 + 2 2i ) − 4 (1 + 2i ) + 15 = − 10 + 2 2i − 1 + 2 2i − 4 − 4 2i + 15
= −15 + 15 15 + 4 2i − 4 2i = 0 ∴ 1 + 2i is a root of f ( z ) = 0 Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 50 of 58
Since all the coefficients are real, 1 − 2i is also a root. A quadratic factor is
( z − (1 + 2i) ) ( z − (1 − 2i) ) = z 2 − (1 − 2i ) z − (1 + 2i ) z + (1 + 2i ) (1 − 2i ) = z 2 − 2 z + 3. 2 z3 + z 2 − 4 z + 15 = (z 2 − 2 z + 3) (az + b) Coefficient of z 3 ⇒ 2 = a 15 = 3b ⇒ b = 5 ∴ 2 z 3 + z 2 − 4 z + 15 15 = ( z 2 − 2 z + 3) 3 ) (2 z + 5) = 0 −5 ⇒ z = 1 + 2i, 1 − 2i, 2 13 (a) z 1 = 1−i z 1 = (1)2
+ (−1)2 = 2 −π arg ( z 1 ) = tan −1 (− 1) 1) =
4 −π −π ∴ z 1 = 1 − i = 2 cos + i sin 4 4 8 z 81 = (1 − i)8
−π −π = 2 cos + i sin 4 4
−8π −8π cos 4 + i sin 4 4 = 2 [cos (–2π) + i sin (–2π)] = 16 + 0i (b) z1 z2 = 5 + 12i =
8
( ) 2
5 + 12i 5 + 12i 1 + i 5 + 5i + 12 1 2i + 12i 2 z2 = = × = 1− i 1− i 1+ i 2 −7 + 17i −7 17 17 = = + i 2 2 2 iθ
(c)
+ i sinθ e = cosθ + θ θ θ = 2 cos2 + i 2 si sin co cos
2
θ = 2 cos 2
2
2
θ θ + i c o s s i n 2 2
iθ θ 2 = 2cos 2 e iθ θ = 2e 2 cos 2
14 (a)
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 51 of 58
−5 + 12i = a + bi
(b) Let
⇒ –5 + 12i = (a + bi)2 2
2
⇒ –5 + 12i = a – b + i (2ab) ⇒ a2 – b2 = –5 2ab = 12 12 6 From [2] a = = 2b b
[1] [2]
2
6 Substituting in [1] − b2 = − 5 b 36 b
2
− b2 + 5 = 0
36 – b4 + 5b2 = 0 4 2 b – 5b – 36 = 0 (b2 – 9) (b2 + 4) = 0 2 2 b = 9, b = –4 b = ±3
b ∈ ¡ 6 When b = 3, a =
3
When b = −3, a =
= 2 6 = −2 −3
∴ −5 + 12i = − 2 − 3i , 2 + 3i z 2 + 4 z + 9 − 12i = 0 a = 1, b = 4, c = 9 – 12i
−4 ± 16 − 4(9 − 12i ) 2 −4 ± −20 + 48i = 2
z =
= −4 ± 4 −5 + 12i 2
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 52 of 58
−4 ± 2 −5 + 12i 2 z = − 2 ± −5 + 12i =
Substitute −5 + 12 12i = 2 + 3i z = − 2 + (2 + 3i), − 2 −(2 + 3i) z = 3i, − 4 − 3i 15 z =
eiα
1 − eiα cos α + i sin α = 1 − cos α − i sin α cos α + i sin α 1 − cos α + i sin α = × 1 − cos α − i sin α 1 − cos α + i sin α (cos α + i sin α) (1 − cos α + i sin α) = (1 − cos α)2 + sin 2 α
cos α − cos2 α + i sin α cos α + i sin α − i sin α cos α + i 2 sin 2 α = 1 − 2 cos α + cos2 α + sin 2 α cos α − (cos2α + sin 2 α ) + i sin α = 2 − 2 co cos α cos α − 1 + i sin α = 2(1 − cos α ) α α i 2sin cos
=
− (1 − cos α ) 2 + 2(1 − cos α ) 4sin 2
=− 16
2
α
2
1 1 α + i cot 2 2 2
−7 + 8i = (−7)2 + 82 = 113 8 arg (−7 + 8i ) = tan −1 π = 2.290 radians − 7 ∴ − 7 + 8i = 113 (cos2.2 s2.290 + i sin 2.290) 8
( −7 + 8i )
(
8
= 113 (cos 2 2..290 + i sin 2. 2.290 )
8
)
c os ( 8 × 2.290 ) + i sin ( 8 × 2.290 ) = 163 047 361(cos 18.32 + i sin 18.32) = 140 715 005.6 – 82 363 396.8i 17 (a) w = 4 – 3 i 1 1 w + = 4 − 3i + 4 − 3i w 1 4 + 3i = 4 − 3i + × 4 − 3i 4 + 3i 4 + 3i i 4 3 = − + 25 =
113
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 53 of 58
4 3 + i 25 25 104 72 = − i 25 25 (b) 4i = a + bi
= 4 − 3i +
2
bii ) 4i = (a + b 2 4i = a + (2 ab)i + b2 i 2
4i = ( a 2 − b2 ) + (2ab) i ⇒ a2 – b2 = 0 2ab = 4 From [2] a =
2 b
[1] [2]
2
2 Substituting in [1] − b 2 = 0 b 4 4 – b = 0 (2 – b2) (2 + b2) = 0 2 2 b = 2, b = −2 Since b is real b = ± 2 2 When b = 2, a = = 2 2 −2 =− 2 When b = − 2, a = 2
∴ 4i = 2 + 2i , − 2 − 2i (c)
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 54 of 58
18
Locus of z − 1
= z + i is the perpendicular bisector of the line joining (0,1) and (1,0) Locus of z − (3 − 3i) = 2 is a circle centre (3,-3) radius 2 Let z = x + iy Then in Cartesian form the locus of the line is x + iy − 1 = x + iy + i 2 ( xx – 1)2 + y2 = x2 + ( y y + 1)
x 2 – 2 x + 1 + y 2 = x 2 + y 2 + 2 y + 1 yIn=Cartesian –x form the locus of the circle is x – 3)2 + ( yy + 3)2 = 22 ( x
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 55 of 58
Substituting for y 2 ( xx – 3)2 + (– x + 3) = 4 2 2 x – 6 x + 9 + x – 6 x + 9 = 4 2 x2 – 12 x + 14 = 0 2 x – 6 x + 7 = 0 6 ± 36 − 28 28 6 ± 8 x = = 2 2 6±2 2 = =3± 2 2 When x = 3 + 2 , y = − 3 − 2 When x = 3 − 2 , y = − 3 + 2 The points of intersection are 3 + 2 − 3 + 2 i and 3 − 2 − 3 − 2 i
(
19 (a)
) (
)
(
) (
)
(1 – i)15 1 − i = (1)2 + (−1)2 = 2
arg (1 − i) = tan −1 (−1) 1) =
−π 4
−π −π 1 − i = 2 cos 4 + i sin 4 15
−π −π (1 − i ) = 2 cos + i sin 4 4 15 −15π −15π = ( 2 ) cos + i sin 4 4 15
=
de Moivre’s theorem
1 1 + i 2 2
15
( ) 2
14
14
= ( 2 ) + ( 2 )
i
= 128 + 128i e
(b)
e
2π i 5 3π i 4
2π
=e
5
i−
3π 4
−7 π
i
=e
20
i
−7π −7π = cos 20 + i sin 20
= 0.454 – 0.891i cot θ − i (cot θ − i ) (cot θ − i ) = 20 cot θ + i (cot θ + i ) (cot θ − i ) cot 2 θ − 2 cco ot i + i 2 = cot 2 θ − i 2 −1 + cot 2 θ − 2 cot θ i = 1 + cot 2 θ −1 + co cot 2 θ − (2 cot θ ) i = cosec2θ )) (1 + cot2θ = = 2 cosec θ
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 56 of 58
cos 2θ cosθ 2 −1 + 2 sin θ sin θ i = − 1 1 sin 2 θ sin 2 θ = (–sin2θ + + cos2θ ) – 2 sinθ cos cosθ ii 2 2 = cos θ – – sin θ – – i (sin 2θ ) = cos 2θ – – i sin 2θ = cos (–2θ ) + i sin (–2θ ) cot θ − i = 1 cot θ + i
cot θ − i = − 2θ arg cot θ + i cot θ − i ∴ = e −2θ i cot θ + i 21 z − 1 − i = 2 z − 2 + 3i Let z = x + iy
( x + iy − 1 − i ) = 2 ( x + iy ) − 2 + 3i ⇒ ( x − 1) + i ( y − 1) = 2 x − 2 + i ( y + 3) 2 2 2 2 ⇒ ( x − 1) + ( y − 1) = 2 ( x − 2) + ( y + 3) 2 2 2 2 ⇒ ( x − 1) + ( y − 1) = 2 2 ( x − 2) + ( y + 3) ⇒ xx2 – 2 x + 1 + y2 – 2 y + 1 = 4 [ x2 – 4 x + 4 + y2 + 6 y + 9] ⇒ 3 x2 – 14 x + 3 y2 + 26 y + 50 = 0
14 26 50 x+ + = 0 3 3 y 3 14 26 50 x 2 − x + y2 + y+ =0 3 3 3 2 2 7 13 49 169 50 − + =0 x − + y + − 3 3 9 9 3 x 2 + y 2 −
x − 7 2 + y + 13 2 − 68 = 0 3 3 9 2
2 2 x 7 y 13 68 68 − 3 + + 3 = 9 = 3
7 13 The locus of z is a circle with centre , − and radius 3 3 n 22 (1 + cosα + i sinα )
68 3
n
α α α = 2 cos2 + i 2 sin cos 2 2 2 n n 2 cos α cos α i sin α = + 2 2 2
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 57 of 58
n
α α i 2 = 2 cos e 2 n
n
nα
α i 2 = 2 cos e 2 + i sin 5θ 23 cos 5θ + = (cosθ + + i sinθ )5 5 = cos θ + + 5C 1 cos4θ (i sinθ ) + 5C 2 cos3θ (i sinθ )2 + 5C 3 cos2θ (i sinθ )3 + 5C 4 cosθ (i sinθ )4 + (i sinθ )5 = cos5θ + i (5 cos4θ sinθ ) – 10 cos3θ sin2θ – i(10 cos2θ sin3θ ) + 5 cosθ sin4θ + + i sin5θ Equating real parts: 4 cos 5θ = cos5θ – – 10 cos3θ sin2θ + + 5 cosθ sin θ 5 = cos θ – – 10 cos3θ (1 – cos2θ ) + 5 cosθ (1 – cos2θ )2 = cos5θ – + 10 cos5θ + + cos4θ ) – 10 cos3θ + + 5 cosθ (1 – 2 cos2θ + = 16 cos5θ – – 20 cos3θ + 5 cosθ cos 5θ = = 0 5 ∴ 16 cos θ – – 20 cos3θ + + 5 cosθ = = 0 4 2 +5) = 0 ⇒ cosθ (16 cos θ – – 20 cos θ + 4 = 0 or 16 cos θ – + 5 = 0 ⇒ cosθ = – 20 cos2θ + 20 ± 400 − 4(1 4(16)(5) cos2 θ = 32 20 ± 80 = 32 20 ± 4 5 = 32 5± 5 = 8 1 + co c os 2θ cos2 θ = 2 1 + cos 2θ 5 ± 5 = 2 8 5 ± 5 1 + cos 2θ = 4 5 5 1 5 −1= ± cos 2θ = ± 4 4 4 4 Since cos 5θ = = 0 -1 5θ = cos (0) n
5θ =
n
π
2
π
θ =
10
5 π 1 = + 10 4 4
⇒ cos2
(take the + sign because cos is positive for angles in the first quadrant)
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
Page 58 of 58
π 1+ 5 ⇒ cos = 4 5 Using the double angle formula 1 + co cos 2θ cos2 θ =
2
cos2 π = 1 + cos ( π/5 ) 2 10 1+ 5 +1 4 = 2 1+ 5 + 4 = 8 5+ 5 = 8
Unit 2 Answers: Chapter 1
© Macmillan Publishers Limited 2013
View more...
Comments