Unit 10 Assignment

August 4, 2022 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Unit 10 Assignment...

Description

 

Unit 10

Group Homomorphisms Submitted by: Shruti Pathak 5078 Sahil Gupta 5079 Hariom Sarswat 5104

Insight View :10.1 Homomorphism :Definition and Examples. 10.2 Kernel of Homomorphism 10.3 Properties of Homomorphism 10.4 Isomorphism theorems 10.5 Solved Exercises

 

  HOMOMORPHISM

 Homo+ Morphe Morphe {Greek words words }  } 

Like

Form

If we drop the basic idea of one - one ,onto from the isomorphic mapping &

 { :  →    is one- one, onto ′ 

 = . } then the remaining mapping is called Homomorphism.

The concept of Homomorphism was introduced by CAMILLE JORDAN in 1870.

Definition: Homomorphism

 from a group ,∙ to a group ′,∗  is a mapping from  to ' that preserves the group operation ,that is, , ∙  =  ∗ ,∀ , ∈ . 

A homomorphism



 NOTE: It is to be be noted that the binary operation operation on the left hand hand side is is that of , whereas on the right hand side is that of

′. ,  

, 

 

.

 ∙  

*

 

 ∙  =∗ 

 

  Example 1: Any isomorphism is homomorphism that is also onto and one- one. Example 2:  Consider two groups  and with identity elements and ' , respectively. Define



′





 :  →     =  , ∀ ∈ .  .  ′ 

Then

′ 

 is a homomorphism. It is called trivial homomorphism.

Example 3:  Consider any group

,∗. Define

: →    = ,  , ∀ ∈  . Then

 is a homomorphism. It is called identity homomorphism , as every element maps to itself.

Before going onto further examples let us define another important concept i.e. kernel of a homomorphism.

10.2 Kernel 10.2  Kernel of Homomorphism In a homomorphism, all those elements that are mapped to the identity element are of special importance.

Definition:  



 ′ ′  ′ . .  ∈ : =′}   .



If  is a homomorphism of a group  to a group , then the set of all those elements of    which are mapped by  onto the identity       is called the kernel of of the homomorphism  .The kernel of  is denoted by  





Theorem(10.a):  

 ′  ′



Let  and  be any two groups and let    and of  into , then (i) 

′ be their respective identities. If      is a homomorphism homomorphism

 

 −=) =′  [  x]−       ∈  

(ii)   (

Proof: 

 ∈  ,  ∈′.     ⋅ ′ =    =     =   ⋅    , and therefore by using left cancellation law we have ′ =        = ′.  (ii) Since for any  ∈  ,   − =  we get ().  ( −) =  ( −) =   = ′ 

(i) We know that for

−

−

Similarly      in Hence by the definition of gives −

 =,[  x]   ′  we ⋅  obtain  = the′  result

 

  −  = [  ]−.  Note: The Kernel of isomorphism is identity. Let us give some examples of homomorphism:

Example 4:  Consider the group

therefore

ℝ∗,∙ .The mapping : ℝ∗ → ℝ∗ defined by     = || is a homomorphism .  =    ⇒  =   

 is well defined . .  = |..|  =||.||  =.  

Consider,

 is homomorphism.   =  ∈ ℝ∗ = 1}  =   ∈ ℝ∗: || = 1}  = 1,1 1,1}}. 

 = 2, ℝ.Prove that the mapping  :  → ℝ∗,∙ defined by   =  is a homomorphism with kernel 2, ℝ. 

Example 5: Let

Sol. Let

 ,  , ∈ . Then

    =det =det    =det =det    det det ∗=    .  Hence  is a homomorphism . The identity element of ℝ  is 1.   =  ∈ :   = 1}  =∈:  = 1}  =  2, ℝ.   = ℤ, and  = ℤ ,  for some   1. Define  ∶  →  by  = []. Then  is a homomorphism.

Example 6 :. Let

Sol.  Since operation in both groups is addi additi tion, on,

 

    =       ..     = []  []  = [  ]  =    

 Claim:

 []  [] = [  ] holds by definition of addition in ℤ).

(where equality

Note : All isomorphism are homomorphism (although not all homomorphism are isomorphism).

Isomorphism are homomorphism by definition. Kernels of isomorphism are the identity (or else it would not be one-to-one), and images are the entire target group (or else it would not be onto).

Example 7:

φ: ℤ ,    → ℤ  ,⨁  , ⨁  defined by  = , ℎ ℎ   =    . Prove that  is

group homomorphism .  

  =  ⇒  =  ⇒  =   Let , ∈ℤ  be s.t.  =   &  =       =     = (       )   =  ⊕      =  ⊕    therefore  is a homomorphism. Ker=  ∈ ℤ| = 0}  Sol :  is well defined as if

i.e.

=  ∈ ℤ|   = 0}  =  ℤ (set of all multiple of n) Ker= 

 = ℝ[] , group of polynomials with real coefficients under operation addition. Define [ ] : ℝ  → ℝ[] given by   = ′ is a group homomorphism.   Example 8:

Sol : Since derivative of a polynomial in   is again a polynomial in  





 

  =  ∈ ℝ[]   is well defined.     =      =       =       

 is homomorphism.

  =   ∈ |  = 0}  =   ∈ |   = 0 } 

then,

= Set of all constant polynomials.

 

= [],the greatest integer less than or equal to , is not a Homomorphism , since [1/21/2]≠[1/2] [1/2]. 

Example 9: The mapping  from the group of real numbers under addition to itself given by

Types of group homomorphism Monomorphism A group homomorphism that is is injective  injective  (or one-to-one one-to-one)) i.e. injective homomorphism

Epimorphism  A group homomorphism that is is  surjective surjective  (or onto onto). ). i.e. i.e. surjective  surjective homomorphism

Isomorphism  A group homomorphism that is is bijective  bijective;; i.e., injective and surjective. Its inverse is also a group homomorphism. i.e. bijective i.e. bijective homomorphism homomorphism

Endomorphism  A homomorphism, h: G → G; the domain and codomain are the same. Also called an endomorphism of G. i.e. homomorphism of a group to itself.

Automorphism  An endomorphism that is bijective , and hence an isomorphism from a group G onto itself. It is denoted  by Aut (G (G). i.e. isomorphism of a group with itself.

Example 10: The mapping

 ∶ ℝ, → ℝ+ ,·

 

 →   is an isomorphism, and  −   =  .   

Example 11: The mapping

 ∶ ℝ   → ℝ   ,, → ,  is a surjective homomorphism and   = 0, ,0 ,0 ∶  ∈ }.

.

Example 12: The mapping

 ∶ ℤ ℤ,⊕ → ℤ,⊕   → 3  Show that  is a homomorphism and find  −, where  = 0,6}. Sol:    = 3    =33   =     ∴  is a homomorphism. now,   =  ∈ ℤ| = 0}  =  ∈ ℤ|3  = 0}  = 0 0,4,4,8,8}}   

∵∴ | || = 3  is 3    1  mapping ∵ 2 = 6   ]    [∵  = , ℎ ℎ − =   ∴ −6 = 2  = 2 2,6,6,1,10} 0}   Next ,  Now,

 = 0,6} =6⊆ℤ =    − 0 = 0 0,4,4,8,8}} −6 = 2,66,10 ,10}} 

 

∴ − = 0,2,4,6,8,10} = 2  ⊆  = ℤ. Example 13: For every

 ∈ ℚ , the mapping ∶ ℚ, → ℚ,   →  ℚ,. 

is an automorphism of

 

(10.b) In 1770, L. Euler proved that every positive integer can be written as sum of the four   . square      can be written in form  Q. Prove that no integer equal to [i.e. sum of three squares ]   Sol: Let    To show:      Let, if possible       

       

7  8

     

 = 7  8

 ≠       ,    ,, ,, ∈ ℤ  =       ,   , ,,  ∈ ℤ  ⇒  8 =      8       8    8 8 7 =     8       8   8 8 8  But, square of every even integer is 0  4  8 , and square of every odd integer  =  = 1    8  and no combination of  0,1  0,1 & 4 will result in 7. Hence,  ≠       

Example 14: Example of a function that is not a homomorphism. 

: ℝ  ⇒ ℝ   defined by  =[] , the greatest integer function is not a homomorphism Take

 = 0.6 ,  = 0.4 

   = [  ] = 1     = []  [] = 0  0 = 0     ≠    

10.3 Properties of Homomorphism:  Recall: A function

Let

 ∶  → ′ ′ is a homomorphism if .  =  ∗  ∀ , ∈  .

 be a homomo homomorphism rphism from a group group  to a group ′ and  be an element of     .

Then,

 

(1)  (2)  (3)  (4)  (5) 

  ℎ     ℎ   ′.       = []      .    ||  ,ℎ , ℎ ||    ||.        .  −     = ′, ′, ℎ ℎ     =  ∈  :  = } =    

PROOF: (1) Since

 =  .  ,

we have

 = .  = .   Also,  ′ being the identity element element of of ′ ,we have    =      Thus,  ..   =   ′′  By the left cancellation law in  ' , we get,    =    ′ 

′ 

(2) If 

   0 , then

 = [] , as   is homomorphism. If      0 , then  =  for some  ∈ ℤ,  0.  So,  = −   =  −  =    −  = []−   = []   Hence,

   = 0,

Also if  Hence,

  = []     =    =   ,  = [] , ∀   .  

then

 

 

  ∈    || =  ⇒  = Since,  is homomorphism

 

(3) Let

 =  =   

using (i)

 

=′  = ′  

  Thus,

 property  prope rty (1)

| divides ||. 

Hence, |

(4) The kernel

  of a homomorphism  ∶  → ′′ is a subgroup of .    Proof . Let     =  ∈  |   = ′} ′}  Clearly,  ∈    as   = ′  Therefore,   ≠   Let , ∈     be arbitrary arbitrary , ⇒  =  =    Now ,  − = . − = . ()−  =′.′− = ′  ∴  − ∈    Hence , by One-Step Subgroup Test Test   ≤ . (5) First, we prove that Let then, therefore therefore Thus We now prove that

 

 Now

− ⊆ =      ∈ −.   =  = .  ′ = ()−  = − = −  − ∈   − ⊆ . 

 ⊆ − .  Let  ∈  , then  =  , for some  ∈    =   =        = . ′  =  = ′  Thus ,  ∈ −    so that   ⊆  −  

 

  Hence ,we get

−   =   .

(10.c)Few other important properties of subgroup under Homomorphism . Let

homomorphism rphism from group group   to group ′ and   is a subgroup of  , then  be a homomo  (a)  is a subgroup of  . (b)   is Abelian subgroup of     ⇒   is Abelian . (c)  =    is cyclic then =  is cyclic. (d)   is normal subgroup of   then  is normal subgroup of   (e) if |  | =  , then  is     1 mapping from   ′.  (f) if   is finite   ..| ..||| = , then  then  is finite and divides ||.  (g) if     is subgroup of ′, then −  is a subgroup of . (h) − ) is a normal subgroup of  if  is a normal subgroup of ′. (i)   is normal subgroup of  . (j) If      is onto and   = }, }, then  is an isomorphism from   ′.

Proof:

∵  =   ⇒    ≠ 

(a)

, [∵   =∈] 

 ,  ,  ∈  be   be arbitrary

Let

there exist

and

 



−    ==     −= = − ∈   −   =∈,.. ,    Hence , by one step subgroup test   ≤  .. 

 Now,

  =  ℎ:ℎ ∈}  Let ,    ∈   be arbitrary arbitrary

(b

Consider,

.  = .   [ as  is operation preserving ] = .   [   is abelian] =

   . 

 

∀ ,    ∈   Therefore,   is abelian. This holds

(c) 

 =   =   :∈}. Then,

Hence

=  : ∈ }  = () :  ∈ }  =     is cyclic and is generated by . 

 be a normal subgroup of . Let ℎ ∈  and     ∈  be   be arbitrary Then ,  ℎ()− = ℎ (− ) 

(d)Let

1

1

−1 =

as  is a homomorphism  ( ℎ )   ∈ ,   is a normal subgroup of       Hence,

 is a normal subgroup of . 

(e) We know that

 =  , then − =      Since | | = ,   ⇒ |− | = |  | = | | =  

if

⇒every element   has  pre-images.  Hence,  is an      1 mapping .   ≤  and | | = . then the restriction of   of  to  is a homomorphism of   . [  :→ s.t.  ℎ = ℎ∀ ℎ ∈ ]  Let | |= then by above theorem (e)  ,    is an  1 mapping ,so |   || = || |÷÷ .  therefore , || =  ||   ||..  (f) Suppose

Hence

|  | divides ||. 

 

 

 is a subgroup of ′ , then −   =  ∈ : : ∈ }  Since   =′ ∈ ⇒ − ′   ∈ −  so that −  is non empty.

(g) if

1

Let

 ,  ∈ −. 

     ∈ ,  ⇒     −   ∈, since  is a subgroup f  ⇒ (     − )  ∈   ⇒  − ∈ −, by definition of − .

then

2

1

2

1

1

2

1

Hence

−  is a subgroup of     . 1

(h) by (g) ,

−1

 is a subgroup of

.

  ∈     ∈ −   be arbitrary, arbitrar y, Then  ∈  and  ∈    ⇒ ()−  ∈ , since  is normal subgroup of '. ⇒ (− ) ∈  , as  is a homomorphism ⇒−   ∈ − .  ⇒ −  is a normal subgroup of  .

Let

′ 

1

1

1

1

1

  = } ⇒  is 1    1 mapping from     and  is onto and operation preserving as

(j) well.

Hence,



is an isomorphism.

 

  Fig 10.1: Pictorial representation of properties.

:40 → 40 be homomorphism with Kernel   = 1,99,17,3 ,17,33}. 3}.  if  if  1  11 = 11,  Let us find all the element which map to 11.  −11= 11 =11⊙  1 1,11 ,11 ⊙  9 9,11 ,11 ⊙  1 17,11 7,11 ⊙  33 } = 11, 11,19 19,2,27,7,3} 3} = 3,1 3,11,1 1,19,9,27 27}}  Thus,  is 4 1 map. Example 15: Let

Example 16: There is no homomorphism from Since, if there is a homomorphism

32

ℤ   ℤ ⊕ ℤ.  32

32

4

4

 from ℤ   ℤ ⊕ ℤ, then  ℤ  = ℤ ⊕ ℤ  

ℤ  is cyclic whereas ℤ ⊕ ℤ  is not cyclic .Therefore, there is no homomorphism possible from ℤ   ℤ ⊕ ℤ 

 but

32

4

4

32

Theorem(10.d): Kernels are Normal

 be a group homomorphism from   ′ . Then   is a normal subgroup of . Proof:  Let  ∶  →   be a homomorphism Claim:  ⊲ G 

Let

Let

arbitrary  ∈   and   ∈  be arbitrary

 

   =    (− ) = ()−  since  − = ′ ()   ′ 

Then

1

1

 Now ,

is homomorphism

1

 ()−   = ′  Hence, −   ∈  , so  so that    is a normal subgroup of .  1

=

Theorem(10.e): Normal subgroups are are Kernels  



Every normal subgroup of a group  is a kernel of a homomorphism of subgroup  is the Kernel of mapping  (from  



. In particular , a normal

 →   /.  homomorphism from  from Proof : Define  :  →     =  {this mapping is called the  natural homomorphism   /. /.}}   is well defined: Let  =   ⇒   =    ⇒  =   ∴          is homomorphism:  =    

    ==  ∴  is a homomorphism & is clearly onto.  Now

  =  ∈ | =   = }  =  ∈ |  = } }  =  ∈ | ∈ }  =  ∩   =N [∵  ⊲  ⇒  ⊆  ]

 

 Note:(1) We We can always define define a natural natural homomorphism homomorphism from a group group onto any of its quotient quotient group. group. (2) If

:→′ be an onto homomorphism , then G' is called the homomorphic image of G.

Example 17 : Let then

 :  → ′ be a homomorphism. Let  ∈  be s.t. || = , |  | =  

 

 |   =  ,  1  1  | | =  ⇒   =  ⇒  =  ⇒ ( ) =    ∴| 

Proof: (i)

(ii) Let

 =  ⇒ |  | = || 

Let

  =  ⇒  − =    ⇒ |   −| = 1  ⇒ | −| = 1  ⇒  − =  ⇒  =   ∴   1  1. 

Conversely, Let

   1  1 

||=   ⇒ ( ) =    ⇒   =   ⇒  =   ⇒|  ∴  =  ∵ |    

Example 18 : If

 ⊴ , then for all , ,  ∈ , ,     =   . . 

 

 Proof . Since

 is a normal subgroup of , we have  =  − ⇒    =   . 

[  − = ] 

Example 19 :  Let  be a group and

 a normal subgroup of . Let  ∶  → / /     =         ∈ .  Then for all ,ℎ , ℎ ∈ , , ℎ ℎ =  ℎ ℎ =    ℎ ℎ =    ℎ ℎ..  We will see that every homomorphism can be considered to be of this form.

  ∶  → ,, then for all , ∈ , , =     if and only if   =  ..  −   =  −    −   ∈ .  Then the cosets     =   . . Then ′ =        Proof . Suppose  and  −  are the same, and Example 20 :  If  is the kernel of a homomorphism

⇒  =  −  ⇒  =    =  ..   −   ∈ ,   −  = ′  ′ =   −   ′ =  −    =    −     =    

Conversely, Then

 

Then

10.4: ISOMORPHISM THEOREM : In this section we will deal with the group G, normal subgroup  N of G and quotient group group G/N , their their interconnection interconnection and Cayley Cayley table and relation relation between between number number of Homomorphic images and number of quotients.  

First Isomorphism Theorem: The first group isomorphism theorem, also known as the fundamental homomorphism theorem,   states that if  be a homomo homomorphism rphism from a group group  to a group ' . Then  

 / /   ≈ . i.e. the mapping from /    ,given by    →    ,is an isomorphism. 

Proof: Let



  =   .For  ∈  ,  ∈ ,  ∈ / 

 

 Define

:/→ by  = . We will prove the following

  2.  is one- one 3.  is onto

1.  is well defined

4.

  is homomorphism. Step 1: To prove that  is well defined.  Let  ,ℎ ∈  . . = ℎ    .. ⇒ ℎ−   ∈   ⇒ (ℎ− ) =    ⇒    ( ℎ − ) =    ⇒   (ℎ)− =    1

1

′ 

1

′ 

1

Hence,

′ 

⇒  = ℎ   = ℎ  ℎ ,so  is well defined.

 is one -one. Let ,ℎ , ℎ ∈ / / ....   = ℎ ℎ then  = ℎ  ⇒ (ℎ− ) =   , as  is homomorphism ⇒ ℎ−   ∈   ⇒  = ℎ    Hence,  is one -one. Step3: To prove  is onto. Let  ∈  . Since  is onto ∃  ∈  ..  =   Then  ∈ / / and  =  =   Hence  is onto. Step 4: To prove  is homomorphism. Let ,ℎ ∈/

Step 2 :.To prove that

1

′ 

1

 

ℎ ℎ = ℎ ℎ

 

 ℎ  =  ℎ  (as  is homomorphism) = ℎ 

 

=

 is homomorphism.

Hence,

Hence

 is a homomorphism from / onto  , which is one- one also , so  ≈  .. / /  ≈ .  

Diagrammatically this theorem can be represented as

   

   

  /  

Then

 =   

Result: Each quotient of quotient group thereof.  

 is a homomorphic image and each homomorphic image is isomorphic to some

Second Isomorphism Theorem : If

  is a subgroup of a group  and  is a normal subgroup , then

/∩≈/ . Proof: Since  is normal subgroup of  , therefore    =   so that  is a subgroup of  . Moreover,  =   ⊆     So that  is a normal subgroup of  . Thus / is defined. Define :→/  by  =   Then  is a homomorphism since it is operation preserving .Moreover,  for if,  ∈  / / then  ∈ 

is onto

for some

∈ ,  ∈  ⇒⇒ ==,  =  =   

 

 

 ∈  ⇒  =   So,  is onto.

Thus ,

By first isomorphism theorem

/  ≈ / / / . Let us now find

(1)

  .   ∈     ⇔  =  , as  is the identity element of the /. 

⇔   =   ⇔ ∈  ⇔ ∈ ∩ , as the mapping is defined on  so  ∈ .   =  ∩ . from (1) & (2) we get /∩≈/  . Hence

(2)

Third Isomorphism Theorem:

 and  are normal subgroup of a group  and  ⊆ , Then / / / // / ≈ / /..  Proof :  Since  ⊲   and  ⊲  , so /,/  / are defined. Define : :/ / → / /     =  

If

we will prove that

 is well defined 2. is onto 3.  is homomorphism 4.  =/  1.

Step 1. Let Then

 ,  ∈ / / . .  =   −  ∈ ⊆  1

⇒ = 

 

⇒  = . 

 



Hence, Step 2. Let Hence, Step 3. Let

is well defined.

 ∈ /. /. Then  ∈ / , so that  =    is onto. , ,  ∈ / /..      =    =    =    =      

  s homomorphism Step 4:  ∈    ⇔  =    / /  ⇔   =   ⇔  ∈   ⇔   ∈ / /  Hence,   = /  /  Hence,

Since the Kernel of Homomorphism is a normal subgroup ,

/ is a normal subgroup of / .

By the first isomorphism theorem ,

Therefore,

/  ≈ /.  / /// ≈ /.

Freshman's 's Theorem. This is also known as Freshman

N/C Theorem: Let  be a subgroup of a group . Then normalizer of

 in  is

. Consider the − = } and the centralizer of  in   is   =  ∈  |ℎ −   |   =  ℎ ∀     ℎ   ∈   = }  ∈ mapping from  to  given by  →   , where   is the inner automorphism of   induced by  [that is,  ℎ =ℎ− ∀ ℎ ∈ ]. This mapping is a homomorphism with kernel  . So, by fundamental theorem of homomorphism , / is isomorphic to a subgroup of  .  

Example 21 : The mapping

is a surjective homomorphism with and thus, by first isomorphism theorem

 ∶ ℤ ℤ, → ℤ,    →     3      = 0 0,3,3,6,6,9,9}} = 3ℤ  ℤ/3ℤ and ℤ are isomorphic.

 

 1  isomorphism theorem

Example 22 :  To illustrate Consider

:  →    

      

Then

   





′ 

      = , }   = ,,, }  

 =        ,     ,     }     ,       →  as Define :         =  =         =  =         =  =       =  =    Then

 is desired isomorphism.



homomorphism from Example 23 : If   is a homomorphism



ℤ onto a group of order 5, Determine  . 

5

Sol: Let  be a group of order .By first isomorphism theorem ,

/  ≈   , where  =     

Comparing the Order, we get

 being a subgroup of cyclic group ℤ  , it is cyclic ||=6  =    , where ||=6  Since, ℤ has unique subgroup of order 6 [by fundamental theorem of cyclic group ] So,  =  5   ℤ⨁ℤ onto ℤ.  : ℤ⨁ℤ   → ℤ. 

Example 24: Prove that there is no Homomorphism from Sol: Let there exist an onto homomorphism By first isomorphism theorem ,

 

ℤ⨁ℤ/  ≈ ℤ. 

where

 =   

Comparing the order , we get

Since

||=2  ℤ. is a cyclic group of order   88, so ℤ⨁ℤ/ is a cyclic group of order 8. 4   = 0 ∀ , ∈ ℤ⨁ℤ  ⇒ 4(,   ) = ∀ ,  ∈ ℤ⨁ℤ  ⇒ no element of   ℤ⨁ℤ is of order 8.  ℤ⨁ℤ/ is a cyclic group of order  8 8. But

which is contradiction to

Hence, no such homomorphism exist.

: ℂ∗ → ℂ∗     =     ∵ .  = ..  =  .    = . 

Example 25: Consider , Given by ,

∴  is a homomorphism. ker  =  ∈ ℂ∗| = 1}  =   ∈ ℂ∗| = 1}  = 1, 1,,}  ∴ | || = 4 

 is 4     1 mapping

So,

ℂ∗ that are mapped to 2.  ∈ ℂ∗  .. ..  = 2    = 2  i.e. 4 complex roots of 2 

We will find all elements of i.e. we find

We know

( √ 2) = 2  ∴ −2 = √2    =  √ 2 ,  , √ 2 ,  ,  √ 2 ,  √ 2} 

 

 

SOLVED EXERCISE :   be the group of non zero real numbers under under multiplication multiplication,, and let  be a positive  ℝ∗ be  integer. Show that the mapping that takes   to   is a homomorphism from ℝ∗   to ℝ∗  and determine the kernel. Which values of     yield an isomorphism?

Problem 1:  Let

Sol: 

: ∗ → ∗     0 &  €   →    .  =  . .   =  .    =.   ⇒  is a group homomorphism.   =  ∈ ∗| = 1} 

For odd values of

   = 1 1}}  And for even values of    = ±1}  ⇒   n isomorphism if    is odd.

    is a homomorphism from  to  and  is a homomorphism from  to , show that   is a homomorphism from  to . How are   and    related? If  and  are onto and  is finite, describe [ [  : :  ] in terms of  ||  || and ||. Sol: .Clearly,  : →  is well defined. Problem 2:  If 

We need to prove that

  preserve operation. We know that  and  preserve operation,  Now,     =      =      =        =         ∴   is a homomorphism from  to   Take any  ∈   .. This means  = , and then ,  = () =  =   This implies that     ⊆    .  The mappings     are onto implies that   =     =. Consequently, mapping   is onto

 

, ..,    = .

 

 Now using First Isomorphism Isomorphism Theorem Theorem we conclude conclude that Analogously,

|| = ||| | = ||||  . 

|| = ||   .  || = | || ||

 Now we can can compute compute the desired desired index:

|| ||   = [ [    ∶   ] ] =  = || || || ||  ⨁  to G given by   ,ℎ →  is a homomorphism . What is the kernel? This mapping is called the   ⨁  .  ,ℎ ℎ , ℎ  Sol : (, ℎ  , ℎ  ) =  , ℎℎ   =  = ,

Problem 3:  Prove that the mapping from

= , ℎ|  | ℎ ∈  }  ℤ⨁ ℤ/ , 0  ×  0,   is isomorphic to ℤ ⨁ ℤ . , ,  =    ,,    .  Sol: We define a mapping  :ℤ ⊕ ℤ → ℤ ⊕ ℤ with 

Problem 4: Prove that

Kernal of mapping

, ) = 0,0.This translates to two simultaneous  is found in solving equation (,

equation:

    = 0      = 0  Solutions to first equation form a set

  , and to second   . Then the Kernel of  is: 

 = , , | ∈   , ∈   } =  ,0 ,0 ×  ,0 ,0    Now we apply apply First Isomorphism Isomorphism Theorem to mapping

, which exactly yields the desired isomorphism.

ℤ⨁ ℤ/ , 0  ×  0,   ≈ ℤ ⨁ ℤ  

(

Problem 5: Prove that

 ⊕ / ⊕} ≈. 

 

 Sol: We define a mapping

:⊕  →   with (, ) =  

Kernel of mapping

 is found solving the equation (, ) = .This translates to equation  =  . 

Then the Kernel of

 is  ⊕ } }.. 

 Now we apply apply First Isomorphism Isomorphism Theorem to mapping

, which exactly yields the desired isomorphism.

 is a homomorphism from ℤ  ℤ and    = 0,10 0,10,, 20}. If 23 =  9, determine all elements that map to 9.  Problem 6: Suppose that Sol: 

: ℤ   → ℤ   = 0,10,20}  If 

 23 = 9    Then  −9 9 = 23    = 23 23,, 13 13,, 3}  [∵   = , ℎ ℎ −  =     ]  ℤ ⊕ ℤ onto ℤ ⊕ ℤ.  Sol: Assume on the contrary that there is such a homomorphism  ∶ ℤ ⊕ ℤ → ℤ ⊕ ℤ .  Problem 7: Prove that there is no homomorphism from

Then applying the First Isomorphism Theorem to homomorphism

 because ofof ℤ ⊕ ℤ = ℤ ⊕

ℤ ( is onto) yields the following: ℤ ⊕ ℤ /     ≈ ℤ ℤ ⊕ ℤ  = ℤ ⊕ ℤ   This further implies that

⊕ℤ | =  = 2, which we will use now.  || = |ℤ|ℤ⊕ℤ  |

 are now: 8,0  8,1  0,1, as these are the only elements of order 2 in  ⊕  .

The only possibilities for

in any case

|1,1,00    | = 8   1166  8

Since there are no elements of order  nor

16 in ℤ ⊕ ℤ, we conclude it can not be isomorphic

 ℤ ⊕ ℤ/  , which is a contradiction.

to

 

 

Problem 8:. Suppose that there is a homomorphism one. Determine

 from ℤ to some group and that  is not one-to-

.

  is a sub group of cyclic group ℤ. Since the mapping  is not one-one, it has to be      , where  = | |

Sol: We know that

But we know that order of sub group of cyclic group divides the order of the group, i. e

.|17. This

 = 1 7 (since 17 is prime and  ≠ 1, which means    = ℤ.  Hence,  maps every element of ℤ to identity.

implies

 is a homomorphism from ℤ  onto a group of order 5, determine the kernel of .  Sol: Since  is onto, we know that | ℤ | = 5 . Then first isomorphism theorem implies Problem 9:  If

 || = || =  = 6.   | But  is a sub group of ℤ  and there is only one sub group of order 6 in ℤ .  that

This implies

    =  5  

Problem 10:  Suppose that

 is a homomorphism from ℤ to a group of order 24.

a. Determine the possible homomorphic images. b. For each image in part a, determine the corresponding kernel of

.

Sol: Part a: First of all note that homomorphic image of cyclic group is cyclic as well. We use corollary of first isomorphic theorem which says that |

| divides both || and |′|. 

ℤ that divides |ℤ| = 36 and 24, which implies that it divides  36,24 =  12. The cyclic group of order which divides 12 are following:

In this case we have

 



 



 



 

ℤ  ℤ  ℤ 



 



ℤℤ  

 

 



ℤ  And these are or possible homomorphic images.

Part B :From first isomorphism theorem we know that

 |  |  || = ̅|| || , so we can easily determine the

order of kernel. But in cyclic groups, there is only one sub group of given order, so the kernels are of the following order:

 



 



 



 



 



 



  =  1     =  2      =  3      =  4     =  6      =  12  

Problem 11:  Determine all homomorphisms from

ℤ  to itself.

Sol: Any homomorphism acting on cyclic group is uniquely determined on its effect on any generator, so we just have to see where we have to send element



There are  options

1 ∈ ℤ . 

0,1,…….1. If 1 =  then we can easily compute  = 1 =   

Problem 12: Suppose that  is a homomorphism from

7 = 7 find all elements of 30 that map to 7.

30 to 30 and that    = 1, 1, 11}. 11}.  IfIf

of properties of homomorphism homomorphis m [    = ′ ′,, ℎ ℎ  − =  =use Sol: =   5 ]to conclude that  ∈ We: just }statement − 7 = 7 = 71,11 1,11}} = 7,17 7,17}} 

 is a homomorphism from 40 to 40 and that     =  1,, 9,17  1 9, 17,, 33 33}.}. If 11 = 11, find all elements of 40 that map to 11. −  =   = ′ ′, , ℎ ℎ   Sol: We just use statement 5 of properties of homomorphism[    ∈  :  = } =   ] to conclude that 11  = 111,9,17,33} = 11,19,27,3}  −11 = 11 Problem 13:  Suppose that

 

: ℤ ⨁ ℤ → ℤ given by ,  ⟶    is a homomorphism. − What is the kernel of  ? Describe the set  3 .(that is, all elements that map to  3). Sol: To verify that :ℤ⊕ℤ →ℤ defined like this is homomorphism, we need to make sure that it Problem 14: Prove that the mapping

 preservess operation.  preserve

Here is the calculation:

φ(a,a,bb  , ) =    ,    =        =         = ,   ,   The kernel of  is obtained from equation ,  =0, which translatesto    = 0, . . ..  = .  This implies that    = , |  ∈ ℤ }  One element that maps to 3 is easy to spot it is 3,0  −   =  ∈  :  = (1)  Use statement 5 of properties of homomorphism [     = ′ ′, , ℎ ℎ    ] we get−that set of all elements that map to 3 is:   } =   3 = 3,0  =  3,|  ∈ }}  Problem 15:  Let

 =  ∈  ∗ ||| = 1}. Prove that  ∗/ is isomorphic to ℝ+ , the group of positive

real numbers under multiplication.

Sol:

:  ∗ → ℝ∗defined by  = ||   = || = ||. || =      

i.e.

 is a homomorphism ∗

∗ ∗  is onto ⇒  =    ≈

ℝ+  

Problem 16: Prove that the mapping

 

=  ℤ ∈  ||||| = 1 }

 →   from ℂ∗  ℂ∗ is a homomorphism. What is the kernel?

 ,  ∈ ∗ and because of commutativity of multiplication of complex numbers, we get directly:  =       The kernel is given with equation   = 1 has 6 solutions 1 √ 3 1 √ 3 1 √ 3 1 √ 3     = 1,1, 1,1, 2   2 , 2   2 ,  2   2 ,  2   2  }  Sol: Take any

 

 



Isomorp hism Theorem) If  is a subgroup of Problem 17:  (Second Isomorphism  prove that that

 /  /  ∩  is isomorphic to /. 

 and  is a normal subgroup of ,

Sol: See prove of isomorphism theorem [ second isomorphism theorem in text ]



  are normal subgroup of a group  and  ⊆ ,

Problem 18:  (Third Isomorphism Theorem) If  and Then

 // // / / ≈ / /.. 

Sol: See prove of isomorphism theorem [ Third isomorphism theorem in text ]

images of Problem 19:  Determine all homomorphic images

Sol: Let

 (up to isomorphism). isomorphism).

:  →  be a homomorphism

By first isomorphism theorem

  ≈     

∵ | | | divides 8 ∴ | | | = 1,1,2,2,44   8  ⇒ | | = 1,1,2,2,44,8,8  Case 1: | | = 1 ⇒   =    Case 2: | | = 2 ⇒   =   ,  }  ∵  ,  ,  }  is the only subgroup of order 2 .Hence  =   ,   ,    ,    }       Every element of   is of order 2 therefore    ≈ ℤ ⨁ ℤ       Case 3:

| | = 4 ⇒  = 2  therefore     ≈ ℤ 

| | = 8 ⇒  = } =     Hence, all the homomorphic images of  = ℤ , ℤ ⨁ ℤ ,  ,    .  Case 4:

 (up to isomorphism). isomorphism).  Sol: :  →  is an homomorphism, then    ≈    

images of Problem 20:  Determine all homomorphic images

so the possible order of images of

|| = 8

By first isomorphism theorem

 

 1, 1,2,2,4, 4,88   is same as=the factor group  / 

 

 

Problem 21:  Prove that Sol:

Define

 is well defined: Let

 is homomorphism: And

  }    ≈  .

 :  →   as    =  , ∀ ∈  ,  ,    ∈   be arbitrary, such that  =   ⇒  =  =  =  .   = .  = .     is clearly onto ∴  is onto homomorphism

By first isomorphism theorem

   ≈} 

(1)

  =  ∈ | = }  =    becomess ∴.1  become   ≈}    ,  , is the homomorphic image of a group . What can we

each prime Problem 22:  Suppose that for each say about

 ||? Give an example of such a group..  p. Sol: If   is finite, |ℤ | =  will divide | |, for all prime p. Since this is not possible, we conclude that || = ∞ .  One example is

 = , because Image of mapping  =    is  ≈  . 

Problem 23: Prove that Sol: Define

 }   ≈  . 

 :  →    as    = 

, ∀ ∈

 

 is well defined: Let

 is homomorphism: And

 ,  ,    ∈   be arbitrary, such that  =   ⇒  =   .   = .  = .     is clearly onto ∴  is onto homomorphism

By first isomorphism theorem

   ≈    

(1)

  =  ∈ | = }  =  ∈ | = }  = }   becomess ∴.1  become    ≈   }

Problem 24: Prove that the mapping from  ∗  is isomorphic to  ∗ .

ℂ /1,1}



ℂ∗  ℂ∗ given by  =  is a homomorphism and that 

: ℂ∗ → ℂ∗ 

Sol:

 →    =    ()().   = 1,1  1,1}}  =

φ is onto on ℂ∗  By first isomorphism theorem



ℂ   ≈ ℂ∗. ⇒ ,− }



Problem 25: Let  be an Abelian group. Determine all homomorphisms from

    . Since | | must divide 6 we have that | | = 1,2, 2,33, ,  6. Sol: Let  be a homomorphism homomorphism from

   . 

 

 maps every element to 0.  If | | = 2 , then n is even and  maps the even permutations to 0, and the odd permutations to /2. 

 In the first case

Case 3:

|| = 3 cannot occur because it implies that   is a normal subgroup of order 2 whereas  has no normal subgroup of order 2.  Case 4: | | = 6  cannot occur because it implies that   is an isomorphism from a non-Abelian group to an Abelian group.

Problem 26:  Prove that

ℤ ≈ ℤ .  

 : ℤ → ℤ    =   ,

Sol: Define as Then

where

  =    

 is an onto homomorphism    =     =             =  ⊕   

Then, by first isomorphism theorem

ℤ  

≈ ℤ = ℤ  



[as  is onto]

  =  ∈ ℤ| = 0}  =  ∈ ℤ|  = 0}  =  ∈ ℤ| |}  =   = ℤ  {multiple of } Hence,

Problem 27: Prove that every group of order





has an element of

77 is cyclic.

77. By Lagrange’s Theorem every nonidentity of  has order  7,11  7, 11,,  77.  order 77, then  is cyclic.

Sol: Let  be a group of order If

ℤ ≈ℤ   

 



7  11

So, we may assume that all non-identity elements of  have order . Not all non-identity elements of can have order  because[we know in a finite group, the number of elements of order  is a multiple of  ], the n number umber of such elements is a multiple multiple of . Similarly not all nonidentity elements of  can have order  , the number of such elements is a multiple multiple of 6.



Φ 



11

10

7





 | || | = 11

| | = 7

 =





So,  must have elements  and  such that and . Let . Then  is the only subgroup of  of order  for if  is another one then −  is also a  But  is a subset of and  only has  elements. Because for every  in , − subgroup of  of order  , we must have .

 121.

   11   77 | || | = ||| |||| |/| /| ∩ | = 11 • 11/1 11/1 =  11    =  So,   = . Since  Since   has prime order,   is cyclic and therefore Abelian. This implies that   contains . So, 11 divides || and || divides This implies 77 that   =  or   = . If   = , then | | || = 77. If     = , then | / /| | = 7.  But by the “/” ℎ   / is isomorphic to a subgroup of    ≈    ≈  11 . Since  11 11 = 10, we have a contradiction. Thus  is a cyclic.



Problem 28: Find all homomorphisms from Sol: Let,

ℤ  ℤ. 

: ℤ → ℤ be a homomorphism ∵  ∈ ℤ can be written as  = 1 1 1 ⋯  1      ∴  = 1 1 

∴  can be determined using the value of 1.  ∵ 1 ∈ ℤ   and order of an element divides order of the group

∴ |1|  30  |1|  12  Also, |1|  12,30 i.e. ∴ possible value of |1| are 1,2,3,6  1 ℤ. 

 Now,  is the only element of order  in

0

∵ |1| ||]

[

 

ℤ  10 and  20 are two element of order 3 in ℤ   and, 5 and 25 are two element of order 6 in ℤ   ∴ 1 can take value 0,5,10,15,20,25  So, there are six homomorphism from ℤ to  ℤ  ,given by : ℤ → ℤ  as  = 0  : ℤ → ℤ  as  = 5  : ℤ → ℤ  as  =10  : ℤ → ℤ  as  =15   : ℤ → ℤ  as  =20  : ℤ → ℤ  as  =25   15 is the only element of order 2 in

Problem 29: Prove that an infinite cyclic group is isomorphic to

ℤ , ,  .

 =    be an infinite cyclic group (⇒ || is not finite ..∄ any positive integer  .   .  .   =  ) Define: :  → ℤ  as (   ) =  ,  ∈ ℤ  Claim:  is well defined, 1-1, onto and operation preserving   Let  =     ⇒  =   [for if  ≠  then − =  ⇒ || = | |is finite ] ⇒ ( ) = ( )  ∴  is well defined Sol: Let

One-One: Let

() = ( )  ⇒  =   ⇒  =    

 

so,

  is one one.

Onto: For any s. t.

 ∈ ℤ ,  ∈   (  ) =    ∴  is onto.

Operation Preserving: Consider

( .  ) = (+ )  =     = (  ( )  ( )  Therefore,  is operation preserving. Hence , ≈ℤ, 

Remark: Since subgroup of an infinite cyclic group is infinite cyclic group.

Let

 =   &  ≤  then  =    ⇒  ≈ ℤ, ℤ,  ≈   ⇒  ≈  

Thus , we note that subgroup of an infinite cyclic group is isomorphic to group itself .

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF