UNIDAD 6 Ahorro de Energia
Short Description
Investigacion unidad 6....
Description
FUENTES FUENTES RENOVABLES DE ENERGÍA Y APLICACIONES
6.1 CONCEPTOS GENERALES DE ENERGÍA SOLAR
La energía solar es una energía garantizada para los próximos 6000 millones de años. El Sol, fuente de vida y origen de las demás formas de energía que el ser humano ha utilizado desde los albores de la historia, puede satisfacer todas nuestras necesidades si aprendemos cómo aprovechar de forma racional la luz que continuamente derrama sobre el planeta. Ha brillado en el cielo desde hace unos cinco mil millones de años, y se calcula que todavía no ha llegado ni a la mitad de su existencia. Durante el presente año, el Sol arrojará sobre la Tierra cuatro mil veces más energía que la que vamos a consumir. España, por su privilegiada situación y climatología, se ve particularmente favorecida respecto al resto de los países de Europa, ya que sobre cada metro cuadrado de su suelo inciden al año unos 1.500 kilovatios-hora de energía, cifra similar a la de muchas regiones de América Central y del Sur. Esta energía puede aprovecharse directamente, o bien ser convertida en otras formas útiles como, por ejemplo, en electricidad. España es también el país con más experiencia en tecnología solar. Ha sido líder mundial en desarrollo e implantación de centrales fotovoltaicas (una compañía española construirá la mayor planta fotovoltaica del mundo), y ocupa también el primer puesto en sistemas solares de concentración, exportando su tecnología a muchos países. Por mencionar otro ejemplo, la capacidad total en captadores solares para calentamiento de agua operativos supera a la de los Estados Unidos de América. Sería poco racional no intentar aprovechar, por todos los medios técnicamente posibles, esta fuente energética gratuita, limpia e inagotable, que puede liberarnos definitivamente de la dependencia del petróleo o de otras alternativas poco seguras, contaminantes o, simplemente, agotables. Es preciso, no obstante, señalar que existen algunos problemas que debemos afrontar y superar. Aparte de las dificultades que una política energética solar avanzada conllevaría por sí misma, hay que tener en cuenta que esta energía está sometida a continuas fluctuaciones y a variaciones más o menos bruscas. Así, por ejemplo, la radiación solar es menor en invierno, precisamente cuando más la solemos necesitar. Es de vital importancia proseguir con el desarrollo y perfeccionamiento de la todavía incipiente tecnología de captación, acumulación y distribución de la energía solar, para conseguir las condiciones que la hagan definitivamente competitiva, a escala planetaria. ¿Qué se puede obtener con la energía solar? Básicamente, recogiendo de forma adecuada la radiación solar, podemos obtener calor y electricidad. El calor se logra mediante los captadores captadores o colectores térmicos, y la electricidad, a través de los denominados módulos fotovoltaicos. Ambos procesos nada tienen que ver entre sí, ni en cuanto a su tecnología ni en su aplicación. Hablemos primero de los sistemas de aprovechamiento térmico. El calor recogido en los captadores puede destinarse a satisfacer numerosas necesidades. Por ejemplo, se puede obtener agua caliente para consumo doméstico o industrial, o bien para dar calefacción a nuestros hogares, hoteles, colegios, fábricas, etc. Incluso podemos climatizar climatizar las piscinas y permitir el baño durante gran parte del año. También, y aunque pueda parecer extraño, otra de las más prometedoras aplicaciones del calor solar es la refrigeración durante las épocas cálidas, precisamente cuando más soleamiento hay. En efecto, para obtener frío hace falta disponer de una «fuente cálida», la cual puede perfectamente tener su origen en unos captadores solares instalados en el tejado o azotea. En los países árabes ya funcionan a pleno rendimiento muchos acondicionadores de aire que utilizan eficazmente la energía solar.
Las aplicaciones agrícolas son muy amplias. Con invernaderos solares pueden obtenerse mayores y más tempranas cosechas; los secaderos agrícolas consumen mucha menos energía si se combinan con un sistema solar, y, por citar otro ejemplo, pueden funcionar plantas de purificación o desalinización de aguas sin consumir ningún tipo de combustible. Las «células solares» fotovoltaicas, dispuestas en paneles solares, ya producían electricidad en los primeros satélites espaciales. Actualmente se perfilan como la solución definitiva al problema de la electrificación rural, con clara ventaja sobre otras alternativas, pues, al carecer los paneles de partes móviles, resultan totalmente inalterables al paso del tiempo, no contaminan ni producen ningún ruido en absoluto, no consumen combustible y no necesitan mantenimiento. Además, y aunque con menos rendimiento, funcionan también en días nublados, puesto que captan la luz que se filtra a través de las nubes. La electricidad que así se obtiene puede usarse de manera directa (por ejemplo para sacar agua de un pozo o para regar, mediante un motor eléctrico), o bien ser almacenada en acumuladores para usarse en las horas nocturnas. La electricidad fotovoltaica generada también se puede inyectar en la red general, obteniendo una buena rentabilidad económica, bien sea por medio de su autoconsumo o mediante su venta, ya que cada vez más países priman tanto a los pequeños como a los grandes productores de electricidad fotovoltaica, dado el beneficio que aporta para el medio ambiente. Si se consigue que el precio de los módulos solares siga disminuyendo, potenciándose su fabricación a gran escala, es muy probable que, para la tercera década del siglo, una buena parte de la electricidad consumida en los países ricos en sol tenga su origen en la conversión fotovoltaica. La energía solar térmica puede ser perfectamente complementada con otras energías convencionales, para evitar la necesidad de grandes y costosos sistemas de acumulación. Así, un edificio bien aislado puede disponer de agua caliente y calefacción solares, con el apoyo de un sistema convencional a gas o eléctrico que únicamente funcionaría en los periodos sin sol. El coste de la energía convencional sería sólo una fracción del que alcanzaría sin la existencia de la instalación solar. ¿De qué manera convertimos la energía solar en energía útil para su uso cotidiano? Esta energía renovable se usa principalmente para dos cosas, aunque no son las únicas, primero para calentar cosas como comida o agua, conocida como energía solar térmica, y la segunda para generar electricidad, conocida como energía solar fotovoltaica. Los principales aparatos que se usan en la energía solar térmica son los calentadores de agua y las estufas solares. Para generar la electricidad se usan las células solares, las cuales son el alma de lo que se conoce como paneles solares, las cuales son las encargadas de transformarla energía eléctrica. Sus usos no se limitan a los mencionados aquí, pero estas dos utilidades son las más importantes. Otros usos de la energía solar son:
Potabilizar agua Estufas Solares Secado Evaporación Destilación Refrigeración
Como podrás ver los usos que se le pueden dar son muy amplios, y cada día se están descubriendo nuevas tecnologías para poder aprovecharla mejor.
6.2 CELDAS FOTOVOLTAICAS
Las Celdas Fotovoltaicas, son sistemas fotovoltaicos que convierten directamente parte de la luz solar en electricidad. Algunos materiales presentan una propiedad conocida como efecto fotoeléctrico en su forma más simple, estos mariales se compone de un ánodo y un cátodo recubierto de un material fotosensible. La luz que incide sobre el cátodo libera electrones que son atraídos hacia el ánodo, de carga positiva, originando un flujo de corriente proporcional a la intensidad de la radiación, que hace que absorban fotones de luz y emitan electrones. Cuando estos electrones libres son capturados, el resultado es una corriente eléctrica que puede ser utilizada como electricidad. Las celdas fotovoltaicas se fabrican principalmente de silicio (el segundo elemento más abundante en la corteza terrestre). Actualmente, existen celdas fotovoltaicas, por ejemplo, en nuestras calculadoras solares así como en los cohetes espaciales. Principio de Funcionamiento La conversión directa de luz en electricidad a nivel atómico se llama generación fotovoltaica. Algunos materiales presentan una propiedad conocida como efecto fotoeléctrico, que hace que absorban fotones de luz y emitan electrones. Cuando se captura a estos electrones libres emitidos, el resultado es una corriente eléctrica que puede ser utilizada como energía para alimentar circuitos. Las celdas fotovoltaicas, llamadas también celdas solares, están compuestas de la misma clase de materiales semiconductores que se usan en la industria microelectrónica, como por ejemplo el silicio. Una delgada lámina semiconductora, especialmente tratada, forma un campo eléctrico, positivo en un lado y negativo en el otro. Cuando incide energía luminosa sobre ella, los electrones son golpeados y extraídos de los átomos del material semiconductor. Como se han dispuesto conductores eléctricos en forma de una rejilla que cubre ambas caras del semiconductor, los electrones circulan para formar una corriente eléctrica que aporta energía. Cuando la luz solar pega en una celda sola resta puede ser: reflejada, absorbida o pasar limpiamente a través de esta. No obstante, solo aquella luz absorbida es la que va a generar electricidad. La energía de la luz es transferida a electrones en los átomos de la celda foto voltaica. Con su nueva energía, estos escapan de sus posiciones normales en los átomos del material semiconductor fotovoltaico y se convierten en parte del flujo eléctrico. Para inducir el campo eléctrico construido dentro de una célula foto voltaica, se ponen dos capas de materiales semiconductores ligeramente distintas en contacto entre sí. La primera es una capa semiconductora del tipo n con abundancia de electrones con carga negativa. La otra capa semiconductora es del tipo con abundancia de "hoyos" que tienen una carga positiva. Aunque ambos materiales son eléctricamente neutros, la silicona del tipo n tiene electrones de sobra y la silicona del tipo p tiene a su vez agujeros de sobra. Colocando estos como sándwich se crea entonces un punto de salida p/n en su fase intermedia creándose entonces ahí y por esta razón un campo de fuerza eléctrico. Cuando n - y silicón del ptipo entra en el contacto, los electrones del exceso mueven del lado del n-tipo al lado del p-tipo. El resultado es un aumento de cargo positivo a lo largo del lado del n-tipo de la interface y un aumento de cargo negativo a lo largo del lado del p-tipo. Debido al flujo de electrones y agujeros, los dos semiconductores se comportan como una batería, creando un campo eléctrico en la superficie dónde ellos se juntan en la unión o juntura p/n. El campo eléctrico obliga a los electrones a trasladarse desde el semiconductor hacia la superficie negativa de donde quedan disponibles para ser ocupados por algún circuito eléctrico o acumulación. Al mismo tiempo los hoyos se mueven en dirección contraria hacia la superficie positiva donde se van a esperar a los electrones que vienen en dirección contraria. Efecto de Absorción Tipos Células de Silicio monocristalinas. Silicio dopado B
Células de Silicio policristalinas. Células de Silicio amorfo poseen mayor capacidad absorción de luz, y son mucho más finas. Celda Multicapas Construcción de las Células Solares Debido a que una célula solar genera corrientes y tensiones pequeñas, éstas no son los elementos que se utilizan en las aplicaciones prácticas, sino que, con objeto de lograr potencias mayores, se acoplan en serie o en paralelo para obtener mayores tensiones y corrientes formando lo que se denomina módulo fotovoltaico, que es el elemento que se comercializa. A la vez, estos módulos se conectan en serie o en paralelo para obtener las tensiones y corrientes que nos den la potencia deseada. Módulos en serie aumentan el voltaje y conservan la misma corriente, mientras que módulos en paralelo aumentan la corriente, conservando el mismo voltaje. Los módulos generalmente se fabrican para tener una salida de 12 VCD. El proceso de fabricación de las células solares de silicio lo podemos dividir en tres grandes etapas: a) Obtención del Si de alta pureza. Este se obtiene a partir del óxido de silicio, SiO2, básicamente cuarzo, cuya abundancia en la naturaleza elimina problemas de abastecimiento. Este tiene que ser de alta pureza, semejante al semiconductor que se utiliza en la industria electrónica. Actualmente se está trabajando con silicio de menor pureza, pero útil para la fabricación de células solares y a un menor costo. b) Obtención de obleas. Utilizando como materia prima polvo de silicio de alta pureza se hace crecer el monocristal hasta obtener una pieza cilíndrica de diámetro variable entre 2 y 20 cm y longitud de alrededor de 1 m. El crecimiento del monocristal sirve para purificar el material y para la creación de una estructura perfecta, gracias a la cual la futura oblea gozará de propiedades semiconductoras. La barra de silicio se corta mediante sierras especiales produciendo obleas de espesor aproximado de 300 µm. En esta etapa hay una pérdida de material de aproximadamente el 60% en forma de serrín. Actualmente existen otras formas más eficientes de cortado de la barra. c) Procesamiento de la oblea. Para obtener finalmente la célula solar, la oblea sufre un procesamiento que consiste de los siguientes pasos:
lapeado y pulido, formación de unión p-n, decapado y limpieza, capa antirreflectante, fotoligrafía para formación de contactos, formación de contactos o electrodos, material para soldadura de electrodos, limpieza del decapante y comprobación de las características de la celda.
La formación de la unión p- n es la etapa más crítica de todo el proceso de fabricación, debido a que el buen funcionamiento de la célula solar depende en gran medida de una buena unión p-n. Por otro lado, una adecuada capa antirreflejante también es necesaria, ya que una superficie de Si bien pulida puede llegar a reflejar hasta el 34% de la radiación de onda larga y un 54% si la radiación es de onda corta. Sistema de Acondicionamiento En la actualidad resulta imprescindible hacer una gestión correcta de la energía, intentando obtener el máximo rendimiento posible desde la generación hasta la carga, utilizando todos los recursos que se tienen al alcance. La finalidad de esta energía que obtenemos del sol es utilizarla de la manera más correcta, pero como se sabe es necesario convertir la energía que nos proporciona el sol, en este caso en forma de radiación electromagnética en electricidad. Las instalaciones fotovoltaicas requieren para su funcionamiento el acoplamiento de cuatro subsistemas principales los cuales sirven de acondicionamiento:
Subsistema de captación: cuya finalidad es la captación de la energía solar. Subsistema de almacenamiento: cuya finalidad es adaptar en el tiempo la disponibilidad de energía y la demanda, acumulándola cuando está disponible, para poderla ofrecer en cualquier momento en que se solicite, en baterías. Subsistema de regulación: cuya finalidad es proporcionar la regulación de carga y descarga de la batería y el control necesario en instalaciones fotovoltaicas. Subsistema de distribución y consumo: cuya finalidad es trasladar a los puntos de consumo la electricidad producida, adaptándola a las necesidades cuando sea necesario.
Un ejemplo de mayor uso de sistema de acondicionamiento es un convertidor que transforma la energía proveniente del sol en energía eléctrica en forma corriente continua. El objetivo del convertidor es adecuar los niveles de tensión y corriente proporcionados por el panel, a los niveles de tensión y corriente demandados. No se debes olvidar que el convertidor es un “intermediario” necesario de la energía, que permitirá hacer un uso correcto de la misma. Pero por su calidad de “intermediario” debe tener el mayor rendimiento posible ya
que el objetivo es utilizar toda la energía que proporciona el panel. Los convertidores de potencia se utilizan de manera genérica para adecuar el “tipo” de corriente que
necesitamos, existen convertidores de alterna a continua, de continua a alterna, etc. Este circuito permite la unión entre dos corrientes continuas con niveles de tensión y corrientes diferentes. Aplicaciones Industriales a) Electrificación rural y de viviendas aisladas. Existen muchas zonas rurales y viviendas aisladas donde llevar energía eléctrica por medio de la red general sería demasiado costoso y por lo tanto no cuentan con este servicio. En este caso, la instalación de un generador fotovoltaico es ampliamente rentable. A menudo se requiere iluminación en lugares remotos donde el costo de emplear energía de la red es demasiado alto. Tales aplicaciones incluyen la iluminación de seguridad, ayudas a la navegación (ej. boyas y faros), señales iluminadas en los caminos, señales en cruces ferroviarios y la iluminación de aldeas. Las células solares pueden satisfacer tales usos, aunque siempre se requerirá de una batería de almacenaje. Estos sistemas generalmente consisten de un panel fotovoltaico más una batería de almacenaje, un acondicionador de energía y una lámpara fluorescente de C.C. de baja tensión y alta eficiencia. Estos sistemas son muy populares en áreas remotas, especialmente en países en vías de desarrollo y es uno de los usos principales de células solares. b) Comunicaciones. Los generadores fotovoltaicos son una excelente solución cuando hay necesidad de transmitir cualquier tipo de señal o información desde un lugar aislado, por ejemplo, reemisores de señales de TV, plataformas de telemetría, radioenlaces, estaciones meteorológicas. Los sistemas fotovoltaicos han proporcionado una solución rentable a este problema con el desarrollo de estaciones repetidoras de telecomunicaciones en área remotas. Estas estaciones típicamente consisten de un receptor, un transmisor y un sistema basado en una fuente de alimentación fotovoltaica. Existen miles de estos sistemas instalados alrededor del mundo y tienen una excelente reputación por su confiabilidad y costos relativamente bajos de operación y mantenimiento. Principios similares se aplican a radios y televisiones accionadas por energía solar, los teléfonos de emergencia y los sistemas de monitoreo. Los sistemas de monitoreo remotos se pueden utilizar para recolectar datos del tiempo u otra información sobre el medio ambiente y transmitirla automáticamente vía radio a una central. c) Ayudas a la navegación. Aquí la aplicación puede ser relativa a la navegación misma o a sus señalizaciones, como alimentar eléctricamente faros, boyas, balizas, plataformas y embarcaciones. d) Transporte terrestre. Iluminación de cruces de carretera peligrosos y túneles largos. Alimentación de radioteléfonos de emergencia o puestos de socorro lejos de líneas eléctricas. Señalizaciones de pasos a desnivel o cambio de vías en los ferrocarriles.
e) Agricultura y ganadería. Se está teniendo una atención muy espacial en estos sectores. Mediante generadores fotovoltaicos podemos obtener la energía eléctrica necesaria para granjas que conviene que estén aisladas de las zonas urbanas por motivos de higiene. Sin embargo, la aplicación más importante y de futuro es el bombeo de agua para riego y alimentación de ganado que normalmente se encuentra en zonas no pobladas. Otras aplicaciones pueden ser la vigilancia forestal para prevención de incendios. f) Aplicaciones en la industria. Una de las principales aplicaciones en este campo es la obtención de metales como cobre, aluminio y plata, por electrólisis y la fabricación de acumuladores electroquímicos. g) Difusión de la cultura. Televisión escolar para zonas aisladas. Difusión de información mediante medios audiovisuales alimentados eléctricamente mediante generadores fotovoltaicos. h) Sistemas De Tratamiento De aguas. en áreas alejadas la energía eléctrica se utiliza a menudo para desinfectar o purificar agua para consumo humano. Las celdas fotovoltaicas se utilizan para alimentar una luz fuerte ultravioleta utilizada para matar bacterias en agua. Esto se puede combinar con un sistema de bombeo agua accionado con energía solar. La desalinización del agua salobre se puede alcanzar mediante sistemas fotovoltaicos de ósmosis inversa. i) Sistemas de protección Catódicos. La protección catódica es un método de proteger las estructuras de metal contra la corrosión. Es aplicable a puentes, tuberías, edificios, estanques, perforaciones y líneas ferroviarias. Para alcanzar la protección catódica se aplica un pequeño voltaje negativo a la estructura de metal y éste evita que se oxide o aherrumbre. El terminal positivo de la fuente es conectado a un ánodo galvánico o de sacrificio que es generalmente un pedazo del metal de desecho, que es corroído en vez de la estructura que se desea proteger. Las celdas solares fotovoltaicas se a menudo utilizan en lugares remotos para proporcionar este voltaje. j) Tejas Fotovoltaicas. Los paneles para tejas tienen solamente 4 mm de grosor y las células de Silicio policristalino están montadas sobre una superficie de acero inoxidable que soporta hasta una curvatura de 10mm por el lado más largo y 5 mm / 8 mm respectivamente por el lado corto. Diodos de corriente inversa están incluidos, otros tamaños y potenc ias disponibles bajo demanda. Los “tejados solares” se orientan siempre hacia el sur y su inclinación debe ser aproximadamente igual a la latitud del lugar incrementada en 15º. Problema Práctico Industrial La Fotocatálisis, es un proceso catalítico promovido por energía de determinada longitud de onda, capaz de excitar a un semiconductor (catalizador) al grado de hacer que se comporte como un material conductor, en la superficie del cual se desarrollarán reacciones de óxido-reducción, las cuales generan radicales libre muy reactivos, mismos que reaccionarán con las especies a su alrededor, rompiendo algunos enlaces moleculares y reduciendo u oxidándolas hasta convertirlas en especies menos complejas. Esta reducción en la complejidad molecular generalmente se traduce en una reducción del grado de contaminación o peligrosidad de la especie que se esté tratando. Como es conocido en muchas áreas aledañas no existen plantas de tratamiento de agua capaces de eliminar los microorganismos y/o bacterias que se reproducen, para lo cual se hace necesario la implementación d energía alternativa como el empleo de la energía solar a través del uso de las celdas fotovoltaicas. La tecnología Fotocatalítica es relativamente nueva (70´s). En la reacción fotocatalitica interviene: un catalizador, un semiconductor (generalmente óxido metálico), radiación con la suficiente energía (de origen natural como la radiación solar, o de origen artificial como lámparas de luz) y el medio en que se lleva a cabo puede ser gas, líquido o sólido. Esta tecnología tiene muchas aplicaciones, la mayoría de ellas enfocadas a procesos amigables con el medio ambiente, como lo es la degradación fotocatalítica de contaminantes, siendo estos de diversos tipos, como plaguicidas, detergentes, explosivos, metales pesados, residuos tóxicos, peligrosos y en ocasiones biológicos infecciosos.
6.3 APLICACIONES DE LA ENERGÍA SOLAR TÉRMICA
La energía solar térmica consiste en el aprovechamiento de la energía procedente del Sol para transferirla a un medio portador de calor, generalmente agua o aire. La tecnología actual permite también calentar agua con el calor solar hasta producir vapor y posteriormente obtener energía eléctrica. Según su forma de trabajar los sistemas de energía solar térmica se clasifican como colectores de baja, media y alta temperatura:
Colectores de baja temperatura. Proveen calor útil a temperaturas menores de 65 °C. Colectores de temperatura media. Son los dispositivos que concentran la radiación solar para entregar calor útil a mayor temperatura, usualmente entre los 100 y 300 °C. Colectores de alta temperatura. Trabajan a temperaturas superiores a los 500ºC. Se usan para la generación de energía eléctrica.
Sistemas que forman una instalación solar térmica El esquema básico de una instalación solar térmica es el siguiente: Una instalación solar térmica está formada por varios sistemas: I.
Sistema de captación de radiación solar
El sistema de captación de radiación solar está formado por captadores solares conectados entre sí. Su misión es captar la energía solar para transformarla en energía térmica, aumentando la temperatura de fluido que circula por la instalación. El tipo de captador más extendido es el captador solar plano que consigue aumentos de temperatura de 60 °C a un coste reducido. Estos captadores están indicados para la producción de agua caliente para diversas aplicaciones: agua caliente sanitaria, calefacción por suelo radiante, etc. El captador plano está formado por una placa metálica que se calienta con su exposición al Sol (absorbedor); esta placa es de color negro de forma que no refleja los rayos del Sol. Normalmente la placa está colocada en una caja con cubierta de vidrio. Por el interior de la caja se hace circular agua a través de un serpentín o un circuito de tubos de forma que el calor se trasmite al fluido. El efecto que se produce es similar al de un invernadero, la luz del Sol atraviesa la placa de vidrio y calienta la placa ennegrecida. El vidrio es una “trampa solar”, pues deja pasar la radiación del Sol (onda corta) pero no deja salir la radiación térmica que emite la
placa ennegrecida (onda larga) y como consecuencia, esta placa se calienta y trasmite el calor al líquido que circula por los tubos. Para las aplicaciones de calentamiento de agua de piscinas se pueden emplear los captadores no vidriados. Estos están formados simplemente por una gran cantidad de diminutos tubos de metal o de plástico dispuestos en serpentín por los que circula el agua. No necesitan caja ni cubierta de cristal, por esta razón el aumento de temperatura es bajo, en torno a 30 °C. Las pérdidas de calor son grandes lo que limita su aplicación a otro tipo de instalaciones. Los tubos flexibles toleran bien el paso de aguas agresivas, como el agua de piscina clorada, pero aguantan mal las tensiones mecánicas que se producen al congelarse el agua y los rasguños superficiales. Son más económicos que los captadores solares planos. Existen también en el mercado los captadores solares de vacío. Consisten en tubos de metal que recubren el tubo metálico que contiene el fluido de trabajo dejando entre ambos una cámara que actúa como aislante. Tienen un rendimiento muy elevado, pero su costo también es elevado. Para aplicaciones de media y alta temperatura existen otros elementos de captación, provistos de sistemas concentradores de la radiación, sistemas de seguimiento de la posición del Sol a lo largo de día, etc. II.
Sistema de acumulación
Consiste en almacenar la energía térmica en un depósito de acumulación para su posterior utilización. El agua caliente obtenida mediante el sistema de captación, es conducida hasta donde se va a utilizar. Puede ser directamente, como es el caso del calentamiento del agua de una piscina. En aplicaciones de ACS o calefacción la demanda no siempre coincide con el momento en el que hay suficiente radiación, por tanto si se quiere aprovechar al máximo las horas de Sol será necesario acumular la energía en aquellos momentos del día en que esto sea posible y utilizarla cuando se produzca la demanda. El sistema de acumulación está formado por uno o más depósitos de agua caliente. La dimensión de los depósitos de almacenamiento deberá ser proporcional al consumo estimado y debe cubrir la demanda de agua caliente de uno o dos días. III.
Sistema de distribución
En este sistema se engloban todos los elementos destinados a la distribución y acondicionamiento a consumo: control, tuberías y conducciones, vasos de expansión, bombas, purgadores, válvulas, etc. También forma parte de este sistema el sistema de apoyo basado en energías convencionales (eléctricos, caldera de gas o gasóleo), necesarios para prevenir las posibles faltas derivadas de la ausencia de insolación y hacer frente a los picos de demanda. IV.
Sistemas convencionales de apoyo
Las instalaciones de energía solar térmica necesitan sistemas de apoyo convencional en previsión a la falta de radiación o a un consumo superior al dimensionado (gasóleo, gas o electricidad). En la mayoría de los casos tanto en instalaciones en viviendas unifamiliares, como en edificios de viviendas, las instalaciones solares se diseñan para proporcionar a las viviendas entre el 60-80 % del agua caliente demandada, aunque en zonas con gran insolación a lo largo del año, el porcentaje de aporte suele ser superior. Se puede apreciar como en los meses de más baja radiación (enero, febrero, noviembre y diciembre) no se llega a cubrir el 60 % de las necesidades de energía, mientras que en los meses de verano se alcanza prácticamente el 100 % de las mismas. Así, el objetivo con el que se diseñan las instalaciones térmicas es cubrir un mínimo de un 60 % de las necesidades energéticas anuales dependiendo de la zona geográfica. Pretender cubrir por encima de un 60 % o 70 % anual requeriría colocar un campo solar muy grande, por lo que resultaría un costo sumamente elevado que no se llegaría a amortizar nunca, además de provocar en los meses de mayor radiación, como son los de verano, un excedente de producción que no se podría utilizar y que provocaría problemas de sobrecalentamiento en toda la instalación. Por este motivo las instalaciones que mejor funcionan y antes se rentabilizan son las que necesitan ACS para todo el año, calefacción (mejor por suelo radiante) para invierno y cuentan con piscina para verano o incluso todo el año. Aspectos económicos y sociales La inversión inicial de un sistema solar térmico será mayor frente al sistema convencional, si bien su coste de funcionamiento durante los más de 25 de años de vida de la instalación será irrelevante comparado con el de compra de combustible o energía eléctrica, reparaciones, mantenimiento, etc., asociado al sistema convencional. Así, la instalación de energía solar resulta económicamente más ventajosa, ya que toda la energía que obtengamos del Sol con los captadores solares térmicos, nos la ahorraremos de producirla (quemando combustible en una caldera) o consumirla (de la red eléctrica de distribución). De esta forma, una instalación de energía solar acaba rentabilizándose a lo largo de los años, ya que el ahorro energético que produce se materializa en ahorro económico, el cual permite acabar amortizando el coste de la instalación. Esta amortización puede oscilar entre los 5 y 12 años dependiendo del tamaño de la instalación, de las ayudas obtenidas a fondo perdido, del lugar donde se instale (mayor o menor radiación) y de las necesidades mayores o menores del usuario.
En el caso de colocar estas instalaciones en viviendas de nueva construcción o rehabilitación, la amortización se puede considerar instantánea, ya que el incremento que representa en el precio total de la vivienda es muy pequeño; el importe que se paga por ese mayor costo en un préstamo hipotecario cada año es inferior al importe en euros que supone el menor gasto de gas o gasóleo. Se pueden enumerar toda una serie de ventajas que nos aporta un sistema solar térmico, empezando por las económicas, pues para unas mismas necesidades el sistema convencional precisará consumir menos combustible, lo que representará para el usuario un menor gasto anual. Podemos continuar resaltando las ventajas medioambientales, puesto que la generación de energía con sistemas convencionales posee unos costes ambientales muy importantes (emisiones de CO2, cambio climático, vertidos, residuos nucleares, lluvia ácida, etc.) en relación con los sistemas solares. Además, la energía solar es independiente del combustible convencional y su abastecimiento, dado que es compatible con cualquier sistema convencional e independiente de la variación del precio de compra del combustible. Como término medio, un m2 de captador solar térmico es capaz de evitar cada año la emisión a la atmósfera de una tonelada de CO2. Y por último, la larga vida útil de las instalaciones solares, superiores a 25 años, con un mantenimiento que, si bien es necesario hacer, es de mucha menor entidad que en el caso de los sistemas convencionales. La instalación de sistemas térmicos presenta un inconveniente: se precisa la instalación del mismo sistema convencional que el que resultaría si no se instalasen los captadores solares, y a veces resulta problemático su montaje en edificios existentes como consecuencia de su falta de previsión a nivel de proyecto. Por otro lado, como consecuencia de la adaptación a los edificios ya construidos, existe la posibilidad de una imagen estética “negativa”, si bien éste es un aspecto subjetivo y cultural, ya que existen otras instalaciones (antenas parabólicas, de telefonía móvil, equipos de aire acondicionado, etc.) posiblemente más feas y sin embargo con mayor aceptación social. De todas formas, con voluntad y buen criterio, siempre existe la posibilidad de integrar arquitectónicamente cualquier instalación. En cualquier caso, siempre se necesitará de un instalador que ejecute su trabajo adecuadamente, pues hay que ser conscientes de la existencia de instalaciones que no han dado los resultados esperados debido a que han sido realizadas por profesionales sin la experiencia y conocimientos suficientes. Para edificios de viviendas se suelen instalar de media entre 1,5 y 2 m2 por vivienda dependiendo de parámetros tales como la superficie disponible, la zona geográfica, etc. La inversión necesaria por cada metro cuadrado de superficie de captación está entre los 600 y los 900 €, siendo los costes de operación y
mantenimiento muy bajos. El periodo de amortización depende del tipo de energía convencional que sustituya: 10-12 años en el caso del gas, y 5-6 años en el caso de energía eléctrica. Situación actual de desarrollo de la energía solar térmica Actualmente los sistemas solares térmicos de baja temperatura (inferior a 100 °C) han alcanzado la madurez tecnológica y comercial en España, existiendo más de 700.000 m2 instalados a finales de 2004. Estos sistemas son suficientes para suplir aproximadamente dos tercios del consumo energético para agua caliente, tanto sanitaria como industrial. Son sistemas tecnológicamente sencillos, fáciles de instalar y que se amortizan en pocos años. La aplicación más generalizada de los sistemas solares es la generación de Agua Caliente Sanitaria (ACS), tanto en servicios de hoteles como en viviendas, residencias, hospitales, campings, instalaciones deportivas y otros tipos de dependencias municipales. Sin embargo, no es todavía una aplicación extendida en nuestro país el uso de energía solar para calefacción, debido a que cuando las necesidades son máximas es cuando las condiciones meteorológicas resultan más adversas. De cara al futuro se están introduciendo mejoras técnicas mediante captadores solares especiales y avanzando en aspectos de diseño en la instalación de calefacción por “suelo radiante”.
La evolución previsible del mercado es positiva y se ve favorecida por factores tales como el potencial disponible, la capacidad de acogida del mercado existente, la experiencia de los fabricantes españoles, la madurez tecnológica alcanzada y las tendencias en países semejantes al español y en los de la Unión Europea. Teniendo en cuenta que nuestro potencial solar es el más elevado de Europa y que, sin embargo, el ratio de superficie de captación de energía solar térmica por cada 1.000 habitantes está por debajo de la media europea (8,7 frente a 19,9 m2/1.000 habitantes de la Europa de los 15), es previsible que con las medidas propuestas y las demás condiciones de entorno descritas anteriormente se alcancen ratios, al menos, similares a los de países como Austria o Grecia. 6.4 ALMACENAMIENTO Y TRANSPORTE DE LA ENERGÍA TÉRMICA
La energía solar es la energía producida en el Sol como resultado de reacciones nucleares de fusión; Llega a la Tierra a través del espacio en cuantos de energía llamados fotones, que interactúan con la atmósfera y la superficie terrestres. La intensidad de la radiación solar en el borde exterior de la atmósfera, si se considera que la Tierra está a su distancia promedio del Sol, se llama constante solar, y su valor medio es 1,37 × 106 erg/s/cm2, o unas 2 cal/min/cm2. Sin embargo, esta cantidad no es constante, ya que parece ser que varía un 0,2% en un periodo de 30 años. La intensidad de energía real disponible en la superficie terrestre es menor que la constante solar debido a la absorción y a la dispersión de la radiación que origina la interacción de los fotones con la atmósfera. La intensidad de energía solar disponible en un punto determinado de la Tierra depende, de forma complicada pero predecible, del día del año, de la hora y de la latitud. Además, la cantidad de energía solar que puede recogerse depende de la orientación del dispositivo receptor. Sistemas Pasivos: Los sistemas pasivos se usan generalmente en el acondicionamiento calorífico de edificios y tanto lo que sirve de colector como el sistema de almacenamiento se encuentran incorporados en los distintos componentes de mismo edificio, como: pisos, paredes, recipientes con agua y techos. El tipo de almacenamiento de energía utilizado en estos sistemas es generalmente por calor sensible (cambios de temperatura de los distintos componentes del edificio), que explicaremos más delante. Debido a que en estos sistemas las temperaturas de almacenamiento son bajas, usualmente menores de 40 °C, se requiere de grandes volúmenes del material que sirve como almacén. Por ejemplo, los distintos componentes de un edificio que representan un gran volumen, pueden absorber energía durante las horas de sol y posteriormente cederla durante la tarde o noche. Para poder calcular la capacidad de almacenamiento de un material determinado, necesitamos conocer sus propiedades como la densidad y el calor específico. La ventaja del agua sobre el concreto o ladrillo es que tiene una gran capacidad calorífica, y por lo tanto tiene más capacidad de almacenamiento por unidad de volumen, que los materiales mencionados. Sistemas Activos: La característica principal de los sistemas activos es que estos utilizan un fluido de trabajo en movimiento que puede ser agua, aire, aceites o algún otro fluido. Los principales componentes que intervienen en estos sistemas son: el colector solar, la unidad de almacenamiento, sistemas de conversión y control y el lugar donde se hace la descarga de energía. Generalmente, el medio de almacenamiento es agua si por el colector se hace circular un líquido. Similarmente, si en el colector circula aire, el medio de almacenamiento serán rocas o piedras. Las temperaturas alcanzan con este tipo de sistemas entre los 50 y 100 °C. En este caso el almacenamiento de energía se puede dar por cualquiera de los mecanismos siguientes, calor sensible, cambio de fase, reacciones químicas y estanques solares. Recogida directa de energía Solar:
La recogida directa de energía solar requiere dispositivos artificiales llamados colectores solares, diseñados para recoger energía, a veces después de concentrar los rayos del Sol. La energía, una vez recogida, se emplea en procesos térmicos o fotoeléctricos, o fotovoltaicos. En los procesos térmicos, la energía solar se utiliza para calentar un gas o un líquido que luego se almacena o se distribuye. En los procesos fotovoltaicos, la energía solar se convierte en energía eléctrica sin ningún dispositivo mecánico intermedio. Los colectores solares pueden ser de dos tipos principales: los de placa plana y los de concentración. Almacenamiento de energía por calor sensible o capacidad calorífica Diversos tipos de materiales líquidos, sólidos y combinaciones de líquidos y sólidos, pueden almacenar energía por cambios de temperatura. Esta energía almacenada es igual al cambio de energía interna (U) que sufre el material al cambiar su temperatura y v iene a ser igual al calor sensible (Qs). Una regla de tipo práctico para determinar si un material es apropiado para utilizarse como medio de almacenamiento, es que este debe ser capaz de almacenar entre 300 y 600 kJ/°C-m2 de área de colector, como mínimo. También encontramos que cuanto mayor sea la temperatura que pueda alcanzar el medio de almacenamiento, tanto menor será el tamaño del sistema, aunque las pérdidas se hacen más evidentes. Por ejemplo, 1000 litros de agua pueden almacenar aproximadamente 84 MJ de energía cuando su temperatura aumenta de 30 a 50 °C y 168 MJ cuando la temperatura varía de 30 a 70 °C. Nótese que se requieren aproximadamente 2.5 m3 de rocas para almacenar la misma cantidad de energía con los mismos incrementos de temperatura. El calor específico o capacidad calorífica específica de una sustancia es de manera formal, la energía necesaria para incrementar en una unidad de temperatura una cantidad de sustancia; usando el SI es la cantidad de julios de energía necesaria para elevar en un 1 K la temperatura de 1 Kg de masa. Especificaciones de aceites La transferencia térmica es un proceso mediante el cual se suministra y extrae energía de un medio. Se plantea el uso de aceite como medio de almacenamiento de energía para la calefacción de una vivienda rural, la razón principal es que los aceites presentan una mayor estabilidad de fase (líquido) a altas temperaturas, por lo que el sistema de transmisión del aceite no es sometido a esfuerzos ni complicaciones producidos por posibles cambios de fase, como por ejemplo en el caso de usar agua. Los aceites para transferencia térmica como su nombre lo indica son fluidos basados en aceites minerales parafínicos, altamente refinados y cuidadosamente seleccionados para proporcionar un performance superior en sistemas de transferencia térmica. Los aceites pueden ser del tipo aceites minerales o aceites con base sintética. Por ejemplo, Shell dispone de aceites con base mineral, conocidos con el nombre de THERMIA OILS, en diferentes grados de viscosidad. Propiedades de los Aceites Térmicos: a) b) c) d)
Elevada Estabilidad Térmica Buena Resistencia a la Oxidación Poseer un Alto Coeficiente de Transferencia de Calor Poseer una Prolongada Vida Útil
Para una adecuada selección de Aceites Térmicos se debe considerar el rango de temperaturas entre los cuales va a trabajar. Para este proyecto se usará un aceite de máquina usado y filtrado adecuadamente, cuyos valores están por debajo que los aceites térmicos pero que puede servir perfectamente para nuestros requerimientos de temperatura y trabajo. Sus características de trabajo son estables a temperaturas menores de 200ºC y su Ce es aproximadamente 1.67 KJ/Kg.K.
6.5 BIOCOMBUSTIBLES
Los biocombustibles ayudan a reducir las emisiones de gases de efecto invernadero Los biocombustibles contienen componentes derivados a partir de biomasa, es decir, organismos recientemente vivos o sus desechos metabólicos. Los biocomponentes actuales proceden habitualmente del azúcar, trigo, maíz o semillas oleaginosas. Todos ellos reducen el volumen total de CO2 que se emite en la atmósfera, ya que lo absorben a medida que crecen y emiten prácticamente la misma cantidad que los combustibles convencionales cuando se queman. Debido a la actual aplicación simultánea de tecnologías de componentes en los motores de los vehículos que se fabrican en la mayoría de los países, los biocomponentes son a menudo mezclados con los carburantes en pequeñas proporciones, 5 o 10%, proporcionando una reducción útil pero limitada de gases de efecto invernadero. En Europa y Estados Unidos, se ha implantado una legislación que exige a los proveedores mezclar biocombustibles hasta unos niveles determinados. Los biocombustibles son combustibles de origen biológico obtenido de manera renovable a partir de restos orgánicos. Estos restos orgánicos proceden habitualmente del azúcar, trigo, maíz o semillas oleaginosas. Todos ellos reducen el volumen total de CO2 que se emite en la atmósfera, ya que lo absorben a medida que crecen y emiten prácticamente la misma cantidad que los combustibles convencionales cuando se queman, por lo que se produce un proceso de ciclo cerrado. Los biocombustibles son a menudo mezclados con otros combustibles en pequeñas proporciones, 5 o 10%, proporcionando una reducción útil pero limitada de gases de efecto invernadero. En Europa y Estados Unidos, se ha implantado una legislación que exige a los proveedores mezclar biocombustibles hasta unos niveles determinados. Esta legislación ha sido copiada luego por muchos otros países que creen que estos combustibles ayudarán al mejoramiento del planeta a través de la reducción de gases que producen el denominado ‘Efecto Invernadero’.
Biodiesel: ¿Qué es el biodiesel? El biodiesel es un biocarburante líquido producido a partir de los aceites vegetales y grasas animales, siendo la colza, el girasol y la soja las materias primas más utilizadas en la actualidad para este fin. Las propiedades del biodiesel son prácticamente las mismas que las del gasóleo (gasoil) de automoción en cuanto a densidad y número de cetano. Además, presenta un punto de inflamación superior. Por todo ello, el biodiesel puede mezclarse con el gasóleo para su uso en motores e incluso sustituirlo totalmente si se adaptan éstos convenientemente. La definición de biodiesel propuesta por las especificaciones ASTM (American Society for Testing and Material Standard, asociación internacional de normativa de calidad) lo describe como ésteres monoalquílicos de ácidos grasos de cadena larga derivados de lípidos renovables tales como aceites vegetales o grasas de animales, y que se emplean en motores de ignición de compresión. Sin embargo, los ésteres más utilizados, como veremos más adelante, son los de metanol y etanol (obtenidos a partir de la transesterificación de cualquier tipo de aceites vegetales o grasas animales o de la esterificación de los ácidos grasos) debido a su bajo coste y sus ventajas químicas y físicas. A diferencia de otros combustibles, los biocarburantes o biocombustibles presentan la particularidad de utilizar productos vegetales como materia prima. Esto es la causa de que sea preciso tener en cuenta las características de los mercados agrícolas, junto a la complejidad que ya de por sí presentan los mercados energéticos. En este sentido, hay que destacar que el desarrollo de la industria de los biocombustibles no depende principalmente de la disponibilidad local de materia prima, sino de la existencia de una demanda suficiente. Al asegurar la existencia de una demanda de biocombustibles, el desarrollo de su mercado puede aprovecharse para potenciar otras políticas como la agrícola, favoreciendo la creación de empleo en el sector
primario, la fijación de población en el ámbito rural, el desarrollo industrial y de actividades agrícolas, y reduciendo a la vez los efectos de la desertización gracias a la plantación de cultivos energéticos. En cuanto a la utilización del biodiesel como combustible de automoción, ha de señalarse que las características de los ésteres son más parecidas a las del gasoil que las del aceite vegetal sin modificar. La viscosidad del éster es dos veces superior a la del gasoil frente a diez veces o más de la del aceite crudo; además el índice de cetano de los ésteres es superior, siendo los valores adecuados para su uso como combustible. ASTM ha especificado distintas pruebas que se deben realizar a los combustibles para asegurar su correcto funcionamiento. ¿Qué es el Bioetanol? El bioetanol, también llamado etanol de biomasa, es un alcohol que se obtiene a partir de maíz, sorgo, caña de azúcar o remolacha. Permite sustituir las gasolinas o naftas en cualquier proporción y que generan contaminación ambiental. Brasil es el principal productor de bioetanol, 45% de la producción mundial, Estados Unidos representa el 44%, China el 6%, la Unión Europea el 3%, India el 1% y otros países el restante 1%. El bioetanol puede proceder del maíz como en los EEUU o de la caña de azúcar como el que se fabrica en Brasil. En este último país se ha venido utilizando el alcohol como combustible de automoción desde los años 60 aproximadamente. La caña de azúcar, la remolacha o el maíz no son la única fuente de azúcar. Puede ser utilizada la celulosa para obtener azúcar. La celulosa es una larga cadena formada por “eslabones” de glucosa. De este modo,
casi todo residuo vegetal será susceptible de ser transformado en azúcar y luego gracias a la fermentación por levaduras obtener el alcohol destilando el producto obtenido. ¿Qué es el Biogás? El biogás, resulta de la fermentación de los desechos orgánicos. Este combustible es una alternativa más en la matriz energética del país. ¿Qué es la Biomasa? Esta fue la primera fuente de energía que conoció la humanidad. La madera o incluso los excrementos secos son biocombustibles. Si se administra bien la madera de los bosques puede ser un recurso renovable y mal administrado puede convertirse en un desastre ecológico. De este modo se propuso la biomasa como fuente de energía. Biomasas pueden ser virutas o aserrín de madera, producto de la limpieza de bosques o incluso de su explotación racional. ¿Cómo funcionan? El avanzado proceso de producción de biocombustibles: del cultivo al vehículo Los biocombustibles convencionales como el etanol y el biodiesel proceden habitualmente del maíz, la caña de azúcar, la remolacha, el trigo o semillas oleaginosas. Trabajando con investigadores, agricultores y otros asociados, BP y DuPont tienen como objetivo identificar y desarrollar cultivos específicamente mejorados para biocombustibles, incluidos cultivos no comestibles y hierba de crecimiento rápido, cultivadas especialmente para combustibles y labradas de forma sostenible. Posteriormente los cultivos son recogidos y procesados para convertirlos en biocombustibles. Los investigadores de BP y DuPont están desarrollando nuevos procesos tecnológicos para utilizar nuevas materias primas y producir moléculas mejoradas para la creación de biocombustibles. Ventajas de los biocombustibles
Pueden ser mezclados en grandes cantidades con carburantes convencionales, los cuales pueden ser usados en vehículos sin modificar. Tienen un mayor contenido energético (más kms por litro). Facilidad de introducción dentro del proceso de suministro de carburantes. Reducción del volumen total de emisiones de CO2 a la atmósfera.
En la actualidad Los biocombustibles suponen el 3% de la producción de combustibles para transportes, aunque se espera que la cifra aumente hasta el 30% en mercados clave. Los biocombustibles avanzados proporcionan una opción viable para el aprovisionamiento de energía y una aceleración del cambio a carburantes de transporte renovables con un bajo índice de emisiones de gases de efecto invernadero. ¿Un mejor ambiente? Uno de los argumentos que se ofrecen para promover los biocombustibles es que su impacto ambiental sería menor que el de los combustibles fósiles. En un estudio realizado por Jorn Scharlemann y William Laurence, del Instituto Smithsoniano de Investigaciones Tropicales, se midió la influencia de los biocombustibles en las emisiones de CO2. Los autores del estudio concluyen que 80% de los biocombustibles reducen las emisiones de CO2 en un 30%. El etanol reduciría las emisiones en 13% y el biodiesel en 79%, comparados con el diésel petrolero. Además, según este estudio, se producen menos partículas suspendidas y hollín, que son nocivos para el sistema respiratorio. Scharlemann y Laurence señalan también que la relación entre la energía invertida y la obtenida (balance energético) del biodiesel es positiva; por cada unidad de energía fósil invertida en producirlo el biodiesel da 3.2 unidades de energía. En el etanol obtenido a partir de la fermentación del azúcar, el rendimiento energético es de 1.98 unidades; es decir, se obtiene casi el doble de la energía invertida. Sin embargo, otros autores no dan cuentas tan alegres; ellos afirman que los cultivos de los que se extraen biocombustibles presentan balances energéticos negativos: para producirlos se necesita invertir más energía de la que se obtiene. Por ejemplo, se ha calculado que, en el caso del etanol de maíz, por cada unidad de energía fósil gastada en su producción se recuperan 0.78 unidades; y que en el peor de los casos (el del biodiesel producido a partir de la soya) se recuperan 0.53 unidades, ¡la mitad de lo invertido! Y si se contabiliza la deforestación, el costo ambiental total de los biocombustibles puede resultar mayor que el de usar combustibles fósiles. Producir biocombustibles requiere superficies muy extensas para cultivar maíz, caña de azúcar, soya o palma de aceite. Convertir ecosistemas en superficies de cultivo contribuiría a aumentar el calentamiento global. Los bosques y muchos otros ecosistemas naturales se consideran “sumideros de carbono” porque los tejidos vegetales fijan el dióxido de carbono por medio de la fotosíntesis.
Con la deforestación, estos sumideros o depósitos se perderían y se afectaría la biodiversidad. Hasta la fecha se observa que los cultivos de palma aceitera y soya que se emplean para producir biodiesel ya han hecho desaparecer selvas tropicales, pantanos y pastizales en Indonesia, así como importantes extensiones de la selva amazónica, ecosistemas que almacenan una gran cantidad de carbono. Al convertirlos en tierras de cultivo se libera a la atmósfera casi 420 veces más CO2 del que se ahorró al usar los biocombustibles. Estos cálculos permiten concluir que los balances energéticos del biodiesel y del bioetanol dependen en gran medida de la materia prima que se elija, la eficiencia tecnológica, el proceso utilizado y el lugar donde se producen los cultivos; es decir, si se usan campos ya abiertos al cultivo o se eliminan ecosistemas naturales para establecerlos. En nuestro país se ha comenzado a fomentar el cultivo de la palma aceitera, el pino piñonero y diversas especies del género Jatropha como materias primas de biocombustibles, aunque todavía se debate la conveniencia de producir biocombustibles. Rafael Elvira Quesada, secretario del Medio Ambiente y Recursos Naturales, ha opinado que el etanol producido a partir del maíz no es una buena opción para México. La crisis alimentaria
Desde hace algunos años el mundo atraviesa una crisis alimentaria por el aumento de precios de alimentos básicos como el maíz, el arroz y el trigo. Entre las causas de esta crisis se encuentra la demanda de tierras y productos para la producción de biocombustibles. Según la Organización de las Naciones Unidas (ONU), la oferta alimentaria de granos se ha reducido y los precios de los alimentos han aumentado debido en parte a que países como Brasil y Estados Unidos usan grandes extensiones para cultivar la materia prima de los biocombustibles en lugar de alimentos. Este fenómeno afecta a los grupos humanos más vulnerables del planeta. Según predicciones de la Organización para la Cooperación y el Desarrollo Económico (OCDE), si se utilizara etanol para producir el 10% de los combustibles empleados en el transporte en Estados Unidos, se requeriría que el 30% de la superficie agrícola de ese país se dedicara al cultivo de materias primas; un porcentaje que en el caso de la Unión Europea ascendería al 72% de la superficie arable; a nivel mundial esta cifra sería del 9%. Es probable que los países desarrollados promuevan cultivos para biocombustibles fuera de sus territorios para después comprarlos, y no enfrentar así las consecuencias ambientales ni sociales de su producción. Finalmente, debe hacerse notar que el uso de biocombustibles está asociado con los intereses de grandes empresas que tienen una enorme oportunidad de crecer y enriquecerse con su producción y comercialización. La organización Grain —un organismo no gubernamental que promueve el uso sustentable de la diversidad agrícola—, sostiene que estas empresas pretenden “reemplazar millones de hectáreas de sistemas agrícolas locales y a las comunidades rurales que trabajan en ellos, erradicando los sistemas indígenas de cultivo y pastoreo para sustituirlos con grandes plantaciones de monocultivo e ingeniería genética, en las que las empresas multinacionales tengan el control”.
La alternativa parece ser entonces no producir biocombustibles a partir de alimentos, sino con desechos de industrias como la forestal, la agrícola y la papelera. Estos biocombustibles, que se hacen con celulosa, madera de desecho o algas cultivadas, llamados de segunda generación, pueden ser una mejor opción porque no requieren grandes superficies de cultivo. Su uso permitiría además manejar los desechos de manera adecuada y no competir con la industria alimentaria. En México ya se desarrollan proyectos para producir biocombustibles a partir de desechos orgánicos, como cáscaras de frutas o aceite quemado. Las alternativas Usar formas alternativas de producción de energía puede ser una opción más limpia y eficiente (véase “Un rayo de Sol, un soplo de viento”, ¿Cómo ves?, No.121). Una de estas fuentes es el viento. La energía eólica
es renovable, gratuita y limpia. Tiene algunos inconvenientes, por ejemplo, que los molinos de viento alteran el paisaje con su tamaño y su número, pues tienen que ser cuantiosos para producir suficiente energía y pueden afectar a las poblaciones de aves migratorias. Sin embargo, los beneficios tecnológicos, sociales, y económicos asociados con su uso, además de la reducción de las emisiones de carbono, hacen de la energía eólica una buena opción para sustituir a los combustibles fósiles. Otra fuente de energía alternativa es la solar. Hay diversas tecnologías que permiten aprovecharla, en especial las celdas de semiconductores que se activan con la radiación solar (celdas fotoeléctricas) y producen electricidad. Al igual que la energía eólica, la solar es autónoma y descentralizada, pues proviene de una fuente gratuita e inagotable y puede obtenerse en prácticamente cualquier sitio, aunque es más eficiente en zonas calurosas con baja nubosidad, como los desiertos. En conjunto estas energías verdes y los biocombustibles pueden disminuir en gran medida nuestra dependencia de los combustibles fósiles. Los biocombustibles podrían ser una buena alternativa si se lograra producirlos sin emplear combustibles fósiles. Hasta ahora, debido a que se producen a partir de cultivos agrícolas, lejos de representar una alternativa sustentable, son una fuente de problemas ambientales, sociales, políticos y económicos más graves que los que resultan de usar combustibles fósiles.
6.6 HIDRÓGENO
El fin de la era del petróleo ya se vislumbra y un candidato cada vez más firme para obtener energía es el hidrógeno. Los átomos de este elemento químico se componen de tan sólo un protón y un electrón, y son los más abundantes: cerca del 90% de todos los átomos que existen en el Universo son de hidrógeno. En nuestro planeta este elemento no es tan abundante: aproximadamente el 15% de todos los átomos son de hidrógeno y juntos constituyen apenas el 0.9% de la masa total del planeta. La mayoría de los átomos de hidrógeno que existen en la Tierra están en las moléculas de agua. Pese a su relativa escasez en este planeta, el hidrógeno forma parte de un mayor número de compuestos químicos que ningún otro elemento. En estado elemental, el hidrógeno es un gas formado por moléculas diatómicas, que sólo alcanzan a ser una millonésima parte de la atmósfera; por ser tan ligeras, la gravedad de la Tierra no alcanza a retenerlas.
La reacción entre el hidrógeno (H2) y el oxígeno elementales (O2) produce moléculas de agua y desprende una importante cantidad de energía. Esto sucede porque los enlaces de la molécula de agua son más fuertes que los enlaces en las moléculas de H2 y O2. 2H2 + O2 2H2O Ésta es la reacción que se usó, por ejemplo, en los cohetes Saturno V (uno de los cuales puso en el espacio al Apolo 11, la primera misión tripulada a la Luna) y los transbordadores espaciales, que utilizan hidrógeno elemental como combustible. La sombra del Hindenburg La reacción del hidrógeno con el oxígeno es peligrosa por explosiva, pero el peligro se ha exagerado desde la explosión del dirigible Hindenburg, en 1937. El esqueleto del Hindenburg estaba armado con varas de madera, cuerdas de seda y laca. Para la cubierta se usó tela de algodón, recubierta primero con una capa de acetato de celulosa, uno de los componentes de la pólvora, y después con aluminio metálico en polvo. La violenta reacción del aluminio metálico pulverizado con el oxígeno se utiliza también en los combustibles de los cohetes espaciales y es el principal responsable de la gran luminosidad de la llama de éstos. El incendio del Hindenburg fue provocado por una chispa de electricidad estática del aire, que causó que el aluminio de la cubierta se incendiara y con él el resto de los materiales, todos inflamables, con los que estaba hecho el globo; y desde luego, también el hidrógeno. El hidrógeno arde con una flama casi invisible y por su extrema ligereza, tiende a dispersarse hacia arriba. En el caso del Hindenburg, se tiene registro de que todo el hidrógeno que contenía se consumió en tan solo 37 segundos. El fuego que se ve en las fotos no puede atribuirse a la combustión del hidrógeno, sino a la de los materiales del globo y al combustible diésel que alimentaba sus motores. De los 97 pasajeros y tripulantes del dirigible, 36 perdieron la vida, 33 de ellos por haber caído o saltado intencionalmente al vacío. Sólo tres de las víctimas más murieron por quemaduras, seguramente causadas no por la combustión del hidrógeno, sino por la del diésel usado como combustible del dirigible, ya que la cabina de los pasajeros se ubicaba bajo el globo. El diésel y el resto de los materiales inflamables tardaron 10 horas en consumirse. ¿Adiós a la gasolina? Hoy en día existen varios prototipos de automóviles impulsados por la energía mecánica generada por la reacción del hidrógeno con el oxígeno. Los fabrican compañías como BMW de Alemania y Mazda de Japón, asociada con la estadounidense Ford. Para hacer automóviles de combustión interna impulsados por hidrógeno elemental se requiere una tecnología parecida a la que se usa para producir motores movidos por gas natural, que ya abundan en nuestros días. La combustión del hidrógeno en estos motores aún no es perfecta. Su fuente de oxígeno es el aire, por lo que inevitablemente una pequeña fracción de nitrógeno
interviene en la combustión y forma óxidos de nitrógeno, NOx, que producen el esmog fotoquímico y el ozono "malo". Comparado con la gasolina, el hidrógeno como combustible extiende la vida del motor y reduce el mantenimiento, ya que no se acumula carbón en la cámara de combustión ni en las bujías, y los gases resultantes son tan limpios que casi no se necesita cambiar el aceite del motor, solo hay que restituirlo periódicamente. Sin embargo, los inconvenientes siguen siendo mayores que las ventajas. Como las moléculas de hidrógeno son tan pequeñas, se requiere mucha energía para comprimirlo o licuarlo. Por la misma razón, el gas se fuga con mucha facilidad de los recipientes que lo contienen; incluso en el mejor tanque, el H2 se evapora a una tasa de 3% diario. Del hidrógeno a la electricidad Otra posibilidad es aprovechar la energía química liberada cuando el hidrógeno reacciona con el oxígeno, no como energía mecánica o térmica, sino almacenándola como energía eléctrica. Esta alternativa se va haciendo cada vez más viable. Los dispositivos que producen electricidad a partir de esta reacción se conocen como celdas de combustible (véase recuadro). En las celdas de combustible la energía química se convierte en electricidad sin necesidad de combustión. Se hace reaccionar el hidrógeno con el oxígeno en dos electrodos (los "polos", o "bornes", de una pila) separados por una membrana de plástico delgada. En uno de los electrodos las moléculas de hidrógeno se despojan de sus electrones. Éstos se suministran al circuito externo al que la celda alimenta para realizar trabajo. Los protones de las moléculas de hidrógeno atraviesan la membrana y van al otro electrodo, donde se mezclan con el oxígeno y los electrones en circulación para dar agua. Es decir, las celdas de combustible permiten obtener energía eléctrica totalmente limpia a partir de la reacción química entre el hidrógeno y el oxígeno. Uno de los reactivos necesarios, el oxígeno, se obtiene directamente del aire y es virtualmente inagotable. Cómo obtener el hidrógeno es otra historia. Las fuentes El hidrógeno se encuentra combinado en forma de agua o de compuestos orgánicos. Por lo tanto, se puede obtener de esas fuentes, pero para separarlo de sus compuestos es preciso suministrar energía. Hoy en día el hidrógeno se obtiene principalmente de sustancias extraídas del petróleo: hidrocarburos gaseosos como el metano y el propano, o alcoholes como el metanol o el etanol, que son líquidos. Obtener hidrógeno del metano, por ejemplo, tiene dos inconvenientes. El primero es que el metano del que se parte se obtiene principalmente del petróleo, que se está agotando. Este inconveniente podría evitarse porque se puede extraer metano de biomasa (mediante fermentaciones llevadas a cabo por microorganismos sobre materia orgánica de desecho) y este proceso podría volverse la principal fuente de metano. El segundo inconveniente es que el proceso genera dióxido de carbono, igual que cuando se quema el gas natural, lo que contribuye al calentamiento global. La obtención de hidrógeno a partir de metanol, CH3OH, tiene las mismas desventajas que a partir de metano. La ventaja que ofrece el metanol sobre el metano es que mientras que éste es un gas, aquél es un líquido, que podría transportarse y almacenarse de manera semejante a la gasolina. El inconveniente es que la materia prima para obtener metanol, es justamente el metano. El etanol también puede utilizarse para obtener hidrógeno, con la ventaja de que es un alcohol más fácil de obtener biotecnológicamente, mediante la fermentación de azúcares. Desde luego, también es posible obtener el hidrógeno elemental a partir del agua, que en tanta abundancia tenemos. Sin embargo, la manera más simple y directa de separar el agua en sus componentes, la electrólisis, no representa ninguna ganancia en cuanto al balance total de energía: para efectuarla hay que proporcionar la misma cantidad de energía eléctrica que la que se obtiene al realizar la reacción inversa. Si esa energía eléctrica se obtuvo a partir de la principal fuente actual en nuestro planeta, una planta termoeléctrica, estaremos sólo dando la vuelta al problema y seguiremos quemando combustibles fósiles.
Pero existen otras posibilidades. Si para hidrolizar el agua usamos electricidad proveniente de una planta nuclear, hidroeléctrica o eólica, las pilas de combustible se convierten en una buena manera de almacenar y transportar esa energía. La energía del Sol también puede ser la solución, ya sea porque la electricidad requerida para hidrolizar el agua puede provenir de celdas solares, o porque la luz solar por sí misma es capaz de separar el agua en sus componentes mediante el uso de catalizadores adecuados. Los coches eléctricos hoy Los primeros automóviles eléctricos se desarrollaron en la primera mitad del siglo XIX y llegaron a tener cierto auge durante la primera década del siglo XX. Sin embargo, la poca durabilidad de las baterías disponibles en aquel entonces y el advenimiento del automóvil con motor de combustión, así como el incremento en las exploraciones petroleras, hicieron que los autos eléctricos se convirtieran en una curiosidad. En 1912 un automóvil eléctrico costaba 1 750 dólares, mientras que uno con motor de gasolina se adquiría por 650. El interés en los coches eléctricos resurgió a partir de los años 70 con las crisis energéticas provocadas por los embargos petroleros de los países árabes. En la actualidad, los vehículos eléctricos más populares no son solamente eléctricos, sino híbridos. Se llama híbrido a cualquier vehículo que utilice dos fuentes de energía, pero actualmente el término se ha vuelto casi exclusivo para designar autos impulsados por energía eléctrica y energía proveniente de la combustión de gasolina. Esta combinación logra rendimientos de gasolina del orden de 20 kilómetros por litro, con una potencia comparable a la de los autos con motores tradicionales a base de gasolina. En realidad esta tecnología es solamente un paso en la transición de los vehículos altamente contaminantes con motor de combustión interna hacia vehículos impulsados por fuentes de energía limpia, como podrían ser las celdas de combustible. La mayoría de las compañías fabricantes de automóviles llevan a cabo hoy en día intensos programas de investigación y desarrollo encaminados a producir autos movidos por celdas de combustible. Por ejemplo, Ford tiene ya un modelo de automóvil de este tipo, del cual ha distribuido, a manera de prueba, varias decenas en los Estados Unidos, Canadá y Alemania. La producción de estos vehículos a nivel comercial está a la espera de un sistema de distribución de hidrógeno que permita a los consumidores reabastecer sus autos. Ford, en colaboración con su socio Mazda, ha promovido la instalación de estaciones de hidrógeno en Hiroshima, Detroit y Berlín. Honda no sólo tiene planes de producir comercialmente su vehículo de celdas de combustible para el año 2010, sino que también participa en el desarrollo de una estación casera de energía, capaz de producir hidrógeno a partir de gas natural en una escala doméstica. El petróleo empieza a escasear y el hidrógeno abunda; la transición no será fácil, pero es inexorable. Nos dirigimos hacia una nueva tecnología energética, que traerá profundos cambios en el ámbito económico y social.
View more...
Comments