Unidad 4 Líneas de Transmisión

Share Embed Donate


Short Description

resumen del subtema 4.1 Representación de línea de la cuarta unidad d ela asignatura sistemas eléctricos de potencia SEP...

Description

UNIDAD 4 LÍNEAS DE TRANSMISIÓN Un prob proble lema ma intere interesa sant nte e a tener tener en cuent cuenta a al proyec proyecta tarr una línea línea de transporte transporte y en su funcionami funcionamiento ento es el mantenimiento mantenimiento de la tensión, tensión, dentro dentro de los límite límites s especi especica cados dos,, en varios varios puntos puntos del sistem sistema. a. En esta esta unidad unidad dedu deduci cire remo mos s fórm fórmula ulas, s, con con las las cual cuales es se pued pueden en calc calcu1 u1ar ar,, la tens tensió ión, n, la corriente y el factor de potencia en cualquier punto de una línea de transporte, conocidos dichos valores en un punto, comúnmente en un extremo de la línea. El propó propósit sito o de este este capítu capítulo lo no es únicam únicament ente e desarr desarroll ollar ar las ecuaci ecuacione ones s pertinentes tambi!n da una oportunidad para comprender los par"metros de la línea sobre tensiones en la barra y el #u$o de potencia. En esta forma podemos ver 1a importancia del dise%o de la línea y así entender me$or los estudios que se hacen en temas posteriores. posteriores. En el sistema moderno de redes, datos provenientes de todas las partes del sistem sistema a se llevan llevan contin continuam uament ente e a los comput computado adores res con el propó propósit sito o de control &'E()'E* y para información. +os +os estu estudi dios os de car caras as reali eali-a -ado dos s por por un comp comput utad ador or dan dan respu espues esta tas s inmediatas a las preuntas pertinentes al efecto de cambio de líneas dentro y fuera del sistema o a cambios en los par"metros de la línea.

4.1 Representación de línea +as +as líne líneas as de tran transp spor orte te func funcio iona nan n norm normal alme ment nte e con con car caras as trif trif"s "sic icas as equili equilibra bradas das.. )unque )unque no est"n est"n dispue dispuesta stas s equil equil"te "teram rament ente, e, e inclus incluso o sin tran transp spos osic ició ión, n, la in#u in#uenc encia ia de la asim asimet etrí ría a es pequ peque% e%a a y se consi conside deran ran equilibra equilibradas das las fases. fases. +a . .1, represe representa nta un enerador enerador conectado conectado en  Y  &estrella*, alimentando una cara equilibrada con el mismo tipo de conexión, a trav!s de una línea de transporte.

Esta ura es an"lo an"loa a a la . /.10, /.10, que estudiam estudiamos os al revisar revisar circui circuitos tos trif"sicos. in embaro en la . .1 el enerador conectado en 2 suministra la cara a trav!s de una línea de transmisión. El circuito equivalente de dicha línea ha sido simplicado, poniendo, solamente, la resistencia R y la reactancia indu induct ctiv iva a L en seri serie e que que se repr represe esent ntan an como como par" par"me metr tros os arup arupad ados os o concentrados, en luar de uniformemente repartidos a lo laro de la línea.

+os sistemas de redes

son alimentados por eneradores trif"sicos, 3or lo común los eneradores alimentan caras trif"sicas balanceadas, lo cual sinica caras con impedancia id!nticas en todas las tres fases. +as caras de alumbrado y motores peque%os son, por supuesto, monof"sicas, pero los sistemas de distribución se dise%an para que las fases est!n esencialmente balanceadas. +a . /.10 muestra un enerador conectado en Y  con el neutro marcado como o alimentando una cara Y  balanceada con el neutro marcado n  (o existe diferencia, cuando se trata de medidas en los extremos de la línea, entre considerar los par"metros concentrados o uniformemente repartidos, siempre que se desprecie la admitancia en paralelo, puesto que la corriente por la línea es la misma en ambos casos. E4 enerador se representa por una impedancia conectada en serie con la f.e.m., enerada en cada fase.  5e los cuatro par"metros de una línea de transmisión anali-ados en los dos capítulos anteriores, se le ha dado la mayor atención a la inductancia y la capacitancia. +a resistencia ciertamente es de iual importancia pero requiere menos an"lisis puesto que no es función de la disposición del conductor. +as ecuaciones desarrolladas en el cap. 0 expresan la inductancia para una de las fases de una línea trif"sica equilibrada, y las ecuaciones desarrolladas en el cap. 6 expresan la capacitancia de línea a neutro.  Así,

estos par"metros

pueden aplicarse a la solución de una línea trif"sica con un neutro de impedancia cero como se muestra en la . ./ con la mitad de la capacitancia a neutro arupada en cada extremo del circuito equivalente.

+a conductancia, en paralelo, como se mencionó en el cap. 6 se desprecia casi siempre cuando se trata de calcular la tensión y la intensidad de una línea de transporte. +a clasicación de estas, seún su lonitud, est" basada en las aproximaciones admitidas al operar con los par"metros de la línea. +a resistencia, inductancia y capacidad est"n uniformemente repartidas a lo laro de la línea y en el c"lculo exacto de líneas laras hay que considerarlo así. En las líneas de lonitud media se considera, sin embaro, que la mitad de la capacidad esta arupada en cada extremo de la línea, sin que por ella se cometa un error apreciable al calcular la tensión y la intensidad en los

terminales. 3or último, en las líneas corta es tan peque%a la susceptancia capacitiva total, que puede despreciarse. En l !"e se re#ere a ls c$lc"ls

en !"e inter%iene la capacidad& se cnsideran crtas las líneas a'reas a () *+& de ,ens de -) ,i. Líneas de lnit"d ,edia sn a!"ellas c,prendidas entre -) / 1-) ,i& apr0i,ada,ente . En el c"lculo de las líneas de m"s de 17 mi, en ciertos casos, puede aplicarse a líneas de hasta /77 mi. 3ara distinuir la impedancia8 total de la línea de la impedancia por unidad de lonitud, emplearemos la siuiente n otación9  z impedancia en serie por unidad de longitud y fase  y admitancia en paralelo por unidad de longitud, entre fase y neutro longitud de la línea l  Z  = zl = impedancia total en serie, por fase Y  = yl  = admitancia total en paralelo, entre fase y neutro =

=

=

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF