Unidad 4 Linea de Espera

November 27, 2017 | Author: Jessica Gonzalez | Category: Poisson Distribution, Statistical Theory, Mathematical Analysis, Physics & Mathematics, Mathematics
Share Embed Donate


Short Description

Download Unidad 4 Linea de Espera...

Description

LINEAS DE ESPERA INDICE Introducción……………………………………………………………………………... 2 4.1 Estructura básica de los modelos de línea de espera………………………3 4.1.1 Un servidor una cola………………………………………………….. …………4 4.1.2 N servidores una cola……………………………………………………………..7 4.1.3 N servidores N colas líneas de espera……………………………………..….10 4.2 Criterios distribución de poisson y exponencial para la selección del modelo apropiado de líneas de espera………………………………………………………....10 4.3

Aplicación modelos de decisión en líneas de espera…………………………13

4.4

Inferencia de resultados…………………………………………………..……..14

4.5

Conclusión……………………………………………………………...………….18

1

LINEAS DE ESPERA INTRODUCCION

Las "colas" son un aspecto de nuestra vida moderna que normalmente podemos encontrar en nuestras actividades diarias. Como ejemplos podríamos mencionar: el contador de un supermercado, accediendo al Metro, en los Bancos, etc., este fenómeno de las colas surge cuando unos recursos compartidos necesitan ser accedidos para dar servicio a un elevado número de trabajos o clientes. El estudio de las colas es de suma importancia ya que proporciona tanto una base teórica del tipo de servicio que podemos esperar de un determinado recurso, como la forma en la cual dicho recurso puede ser diseñado para proporcionar un determinado grado de servicio a sus clientes. Debido a lo comentado anteriormente, se plantea como algo muy útil el desarrollo de una herramienta que sea capaz de dar una respuesta sobre las características que tiene un determinado modelo de colas. La teoría de colas es el estudio matemático del comportamiento de líneas de espera. Esta se presenta, cuando los "clientes" llegan a un "lugar" demandando un servicio a un "servidor", el cual tiene una cierta capacidad de atención. Si el servidor no está disponible inmediatamente y el cliente decide esperar, entonces se forma la línea de espera. Una cola es una línea de espera y la teoría de colas una colección de modelos matemáticos que describen sistemas de línea espera particulares o sistemas de colas. Los modelos sirven para encontrar buen compromiso entre costes del sistema y los tiempos promedio de la línea espera para un sistema dado.

es de un de

2

LINEAS DE ESPERA 4.1 ESTRUCTURA BASICA DE LOS MODELOS DE LINEA DE ESPERA La teoría de colas es el estudio de los sistemas de líneas de espera en sus distintas modalidades. El estudio de estos modelos sirve para determinar la forma más efectiva de gestionar un sistema de colas  Demasiada capacidad de servicio => Excesivos gastos  Poca capacidad de servicio => Mal servicio Objetivo: Encontrar un balance adecuado entre el coste del servicio y los tiempos de espera. Fuente de entrada: (población de clientes potenciales). Se dice que es limitada o ilimitada según si su tamaño es finito o infinito. Usualmente se asume que es ilimitada (el caso finito es más difícil analíticamente) Clientes: entran al sistema cada cierto tiempo y se unen a una cola. Se debe especificar el patrón estadístico mediante el cual los clientes entran al sistema. Proceso de llegada: La suposición habitual es que los clientes acceden al sistema según un proceso de Poisson, lo que significa que los clientes que llegan en un intervalo determinado de tiempo siguen una distribución Poisson, con tasa media fija y sin importar cuántos clientes ya están en el sistema. Una suposición equivalente es que los tiempos entre dos llegadas consecutivas (tiempo entre llegadas) es exponencial. Cola: cuando los clientes entran al sistema se unen a una cola. La cola es donde los clientes esperan a ser servidos. Una cola se caracteriza por el número máximo permisible de clientes que puede admitir. La suposición de una cola infinita es más fácil de manejar analíticamente que la de una cola finita. También pueden considerarse otras suposiciones acerca del comportamiento de los clientes cuando llegan al sistema, como por ejemplo que un cliente rehúse acceder al servicio porque la cola es demasiado larga. Disciplina de la cola: En un determinado momento se selecciona un miembro de la cola, mediante alguna regla conocida como disciplina de servicio. La disciplina de servicio se refiere al orden en el que se seleccionan los clientes de la cola para recibir el servicio. – FIFO (más común) – Aleatorio – LIFO – Sistema de prioridades 3

LINEAS DE ESPERA

Mecanismo de servicio: cuando un cliente es tomado de la cola, accede al mecanismo de servicio, que consiste en una secuencia de instalaciones de servicio en serie que el cliente debe pasar para completar el servicio. Cada instalación de servicio estará formada por varios canales de servicio paralelos, llamados servidores. Se debe especificar el número de instalaciones de servicio en serie y el número de servidores paralelos en cada una de ellas. Los modelos más comunes suponen una única instalación con uno o varios servidores disponibles. Proceso de servicio: En cada instalación, el tiempo que transcurre desde el inicio del servicio hasta su fin en dicha instalación se llama tiempo de servicio. El modelo de colas debe especificar la distribución de probabilidad del tiempo de servicio de cada servidor, y quizás de cada tipo de cliente, aunque lo común es que todos los servidores sigan la misma distribución. La suposición más habitual es que este tiempo de servicio es exponencial. Otras distribuciones de servicio importantes son la degenerada y la Erlang.

4.1.1 UN SERVIDOR UNA COLA. Todos nosotros hemos pasado mucho tiempo esperando en una cola, ejemplos de ellos son los bancos, restaurantes, hospitales, pizzerías, etc. Las líneas de espera trata de cuantificar el fenómeno de espera formando colas mediante medidas representativas de eficiencia, como la longitud promedio de la cola, el tiempo promedio de espera en ella y la utilización promedio de las instalaciones. La teoría de líneas de espera o también llamada teoría de colas es un conjunto de modelos matemáticos que describen sistemas de líneas de espera particulares. El origen de la Teoría de Colas está en el esfuerzo de Agner Kraup Erlang en 1909 para analizar la congestión de tráfico telefónico con el objetivo de cumplir la demanda incierta de servicios en el sistema telefónico de Copenhague. El objetivo es encontrar el estado estable del sistema y determinar una capacidad de servicio apropiada. Un sistema de colas puede dividirse en dos componentes principales:  

La cola La instalación del servicio

4

LINEAS DE ESPERA El proceso entre llegadas El proceso entre de entrada se denomina por lo regular, proceso de llegadas. Las llegadas se llaman clientes. En todos los modelos que se estudian se supone que no más de una llegada ocurre en un instante dado. En el caso de un restaurante es una suposición irreal. Si hay más de una llegada en un instante dado se dice que se permiten las llegas en masa. Las llegadas pueden ser:   

Personas Automóviles Maquinas que requieren reparación, etc.

Se supone por lo común que el número de clientes presentes en el sistema no afecta el proceso de llegadas. Hay dos situaciones comunes en las cuales el proceso de llegadas podría depender de la cantidad de clientes presentes. La primera se presenta cuando se extrae de una pequeña población su ponga que hay solo cuatro barcos en un astillero, si los cuatro barcos están en reparación entonces ningún barco puede estropearse en un futuro cercano, por otro lado si los cuatro barcos están navegando existe una probabilidad muy alta de una descompostura en un futuro cercano. Los modelos en los cuales las llegadas se toman de una pequeña población reciben el nombre de modelos de origen finito. Otra situación en la cual el proceso de llegadas depende de la cantidad de clientes presentes ocurre cuando la razón a la cual llegan los clientes a cierta instalación disminuye cuando esta está llena. El número esperado de llegadas por unidad de tiempo se llama tasa media de llegadas (). El tiempo esperado entre llegadas es 1/. Además es necesario estimar la distribución de probabilidad de los tiempos entre llegadas, generalmente se supone una distribución exponencial, esto depende del comportamiento de las llegadas. La distribución exponencial supone una mayor probabilidad para tiempos entre llegadas pequeños, en general se considera que las llegadas son aleatorias, la última llegada no influye en la probabilidad de llegada de la siguiente. La cola El número de clientes en la cola es el número de clientes que esperan el servicio, el número de clientes en el sistema es el número de clientes que esperan en la cola más el número de clientes que actualmente reciben el servicio. La capacidad de la cola es el número máximo de clientes que pueden estar en la cola, generalmente se supone que la cola es infinita, aunque también la cola puede ser finita. Para describir por completo un sistema de líneas de espera, se debe describir también la disciplina de las líneas de espera y el modo en el cual los clientes 5

LINEAS DE ESPERA forman las líneas de espera. La disciplina de las líneas de espera explica el método usado para determinar el orden con el cual se atienden a los clientes. La disciplina más común es primero en llegar primero en ser atendido (PEPS) o sus siglas en inglés (FCFS), en el cual se atienden en el orden en que llegan. En la disciplina del (LCFS) el último en llegar y el primero en ser servido o UEPS, un ejemplo claro de esta disciplina es en el elevador. El SIRO, el servicio en orden aleatorio, cuando una persona que llama a una aerolínea se le hace esperar, la suerte determina con frecuencia quien será la siguiente persona en ser atendida por un operador. Se considera por ultimo las disciplinas de prioridad en las colas. Una disciplina de prioridad clasifica cada llegada en una categoría, cada categoría recibe luego un nivel de prioridad y dentro de cada nivel de prioridad los clientes entran en el servicio de acuerdo al FCFC. Las disciplinas de prioridad se usan a menudo en salas de urgencia con el objeto de determinar el orden en el cual los pacientes reciben atención. Servicio El servicio puede ser brindado por un servidor o por servidores múltiples, el tiempo de servicio varía de cliente a cliente, el tiempo esperado de servicio depende de la tasa media de servicio ().El tiempo esperado de servicio equivale a 1/. Para representar todo lo mencionado aquí se encuentran unos modelos básicos de los sistemas de colas. Ejemplo:

6

LINEAS DE ESPERA 4.1.2 N SERVIDORES UNA COLA. Una línea de espera con canales múltiples consiste en dos o más canales de servicio que se supone son idénticos desde el punto de vista de su capacidad. En el sistema de canales múltiples, las unidades que llegan esperan en una sola línea y luego pasan al primer canal disponible para ser servidas. La operación de un solo canal de Burger Dome puede expandirse a un sistema de dos canales al abrir un segundo canal de servicio. La siguiente figura muestra un diagrama de la línea de espera de dos canales de Burger Dome.

7

LINEAS DE ESPERA

Análisis de costo Una de las decisiones habituales en el uso de este modelo puede serlo el de definir la cantidad de servidores necesarios. Por ejemplo, la cantidad de ascensores en un edificio, la cantidad de escritorios para un equipo de trabajo, etc.

La decisión se deberá basar en una Relación entre dos costos básicos: el costo de proveer servidores adicionales versus el costo de demorar o no prestar el servicio. Se asume que el costo de demorar el servicio es un monto definido por cliente, por unidad de tiempo insumida en el sistema. Si bien es relativamente sencillo conocer el costo de un servidor, el costo de hacer esperar a un cliente puede resultar, a veces, intangible y generalmente difícil de establecer. Hay que aclarar que los costos por la espera existen y en ciertos casos pueden ser muy significativos, por lo que deben ser estimados, si es que se desea realmente diseñar un sistema de colas inteligente y controlable.

Los costos a los que nos acabamos de referir deben estar presentados por unidad de tiempo, a los efectos de realizar cálculos comparables. Si por ejemplo, el costo de un servidor consiste en el salario que debe pagarse a quien lo atiende, deberá anualizarse, para incluir aguinaldo, vacaciones, etc., y luego convertirlo en la misma unidad de tiempo que se use para determinar el tiempo de servicio o de espera. Si se define: Cd = Costo de demora por cliente por unidad de tiempo Cs = Costo por unidad de tiempo para agregar otro servidor L = Número promedio en el sistema El costo total por unidad de tiempo para una estación con c servidores es: L Cd + c Cs A medida que c aumenta, la capacidad adicional incrementará la velocidad del servicio y L irá disminuyendo. Por consiguiente, una información útil que debe brindar el sistema es el número de servidores que minimice el costo total.

8

LINEAS DE ESPERA

En el caso que la sala de espera tenga una capacidad limitada, surgen otros análisis posibles. Así, se relacionan el costo de servidores adicionales versus el costo de perder el negocio con clientes que se retiran antes de ser atendidos, más el costo de la demora para

Los clientes atendidos Definiendo: Cr = Costo de no brindar el servicio a un cliente A = Tasa de llegadas P = Probabilidad que un cliente se vaya de la cola sin ser atendido

El costo total será L Cd + c Cs + p A Cr

9

LINEAS DE ESPERA 4.1.3 N SERVIDORES N COLAS. El tercer sistema, en que cada servidor tiene una línea separada, es característico de los bancos y las tiendas de autoservicio. Para este tipo de servicio pueden separarse los servidores y tratarlos como sistemas independientes de un servidor y una cola. Esto sería válido sólo si hubiera muy pocos intercambios entre las colas. Cuando el intercambio es sencillo y ocurre con frecuencia, como dentro de un banco, la separación no sería válida.

4.2 CRITERIOS BAJO LA DISTRIBUCION DE POISSON Y EXPONENCIAL PARA LA SELECCIÓN DEL MODELO APROPIADO DE LÍNEAS DE ESPERA. Sistemas de colas: las llegadas - distribución de poisson La distribución de Poisson es una distribución de probabilidad discreta que expresa, a partir de una frecuencia de ocurrencia media, la probabilidad que ocurra un determinado número de eventos durante cierto periodo de tiempo. Propiedades. La función de masa de la distribución de Poisson es:

Donde: k es el número de ocurrencias del evento o fenómeno (la función nos da la probabilidad de que el evento suceda precisamente k veces). λ es un parámetro positivo que representa el número de veces que se espera que ocurra el fenómeno durante un intervalo dado. Por ejemplo, si el suceso estudiado 10

LINEAS DE ESPERA tiene lugar en promedio 4 veces por minuto y estamos interesados en la probabilidad de que ocurra k veces dentro de un intervalo de 10 minutos, usaremos un modelo de distribución de Poisson con λ = 10×4 = 40. e es la base de los logaritmos naturales (e = 2,71828...) Tanto el valor esperado como la varianza de una variable aleatoria con distribución de Poisson son iguales a λ. Los momentos de orden superior son polinomios de Touchard en λ cuyos coeficientes tienen una interpretación combinatorio. De hecho, cuando el valor esperado de la distribución de Poisson es 1, entonces según la fórmula de Dobinski, el n-ésimo momento iguala al número de particiones de tamaño n. La moda de una variable aleatoria de distribución de Poisson con un λ no entero es igual a , el mayor de los enteros menores que λ (los símbolos representan la función parte entera). Cuando λ es un entero positivo, las modas son λ y λ − 1.

La función generadora de momentos de la distribución de Poisson con valor esperado λ es

Las variables aleatorias de Poisson tienen la propiedad de ser infinitamente divisibles. La divergencia Kullback-Leibler desde una variable aleatoria de Poisson de parámetro λ0 a otra de parámetro λ es

Intervalo de confianza Un criterio fácil y rápido para calcular un intervalo de confianza aproximada de λ, se propone en Guerriero (2012).1 Dada una serie de eventos k (al menos el 15 20) en un periodo de tiempo T, los límites del intervalo de confianza para la frecuencia vienen dadas por:

11

LINEAS DE ESPERA

Entonces

los

límites

del

parámetro

están

dadas

por:

.

Sumas de variables aleatorias de Poisson La suma de variables aleatorias de Poisson independientes es otra variable aleatoria de Poisson cuyo parámetro es la suma de los parámetros de las originales. Dicho de otra manera, si son N variables aleatorias de Poisson independientes, entonces

. Sistema de colas: Distribución binomial La distribución de Poisson es el caso límite de la distribución binomial. De hecho, si los parámetros n y de una distribución binomial tienden a infinito y a cero de manera que se mantenga constante, la distribución límite obtenida es de Poisson. Aproximación normal Como consecuencia del teorema central del límite, para valores grandes de , una variable aleatoria de Poisson X puede aproximarse por otra normal dado que el cociente varianza 1.

converge a una distribución normal de media nula y

Distribución exponencial Supóngase que para cada valor t > 0, que representa el tiempo, el número de sucesos de cierto fenómeno aleatorio sigue una distribución de Poisson de parámetro λt. Entonces, los tiempos discurridos entre dos sucesos sucesivos sigue la distribución exponencial.

12

LINEAS DE ESPERA 4.3 APLICACION DE MODELOS DE DECISION EN LINEAS DE ESPERA. La teoría de colas requiere de un estudio matemático del comportamiento de líneas de espera. Estas se presentan cuando "clientes" llegan a un "lugar" demandando un servicio al "servidor", el cual tiene cierta capacidad de atención. Si el servidor no esta disponible inmediatamente y el cliente decide esperar, entonces se forma en la "línea de espera". El problema es determinar qué capacidad o tasa de servicio proporciona el balance correcto. Esto no es sencillo, ya que un cliente no llega a un horario fijo, es decir, no se sabe con exactitud en qué momento llegarán los clientes. también el tiempo de servicio no tiene un horario fijo. Las llegadas se describen por su distribución estadística. si las llegadas ocurren con una tasa promedio y que son independientes una de otra, entonces ocurren de acuerdo con una distribución de probabilidades de tipo "poisson”. Una cola es una línea de espera y la teoría de colas es una colección de modelos matemáticos que describen sistemas de líneas de espera particulares o de sistemas de colas. Los modelos sirven para encontrar un buen compromiso entre costes del sistema y los tiempos promedio de la línea de espera para un sistema dado. Con frecuencia, las empresas deben tomar decisiones respecto al caudal de servicios que debe estar preparada para ofrecer. Sin embargo, muchas veces es imposible predecir con exactitud cuándo llegarán los clientes que demandan el servicio y/o cuanto tiempo será necesario para dar ese servicio; es por eso que esas decisiones implican dilemas que hay que resolver con información escasa. La teoría de colas requiere de un estudio matemático del comportamiento de líneas de espera. Estas se presentan cuando "clientes" llegan a un "lugar" demandando un servicio al "servidor", el cual tiene cierta capacidad de atención. si el servidor no esta disponible inmediatamente y el cliente decide esperar, entonces se forma en la "línea de espera".

13

LINEAS DE ESPERA

Objetivos de la teoría de colas Dada la función de costes anterior, los objetivos de la teoría de colas consisten en:  Identificar el nivel óptimo de capacidad del sistema que minimiza el coste global del mismo.  Evaluar el impacto que las posibles alternativas de modificación de la capacidad del sistema tendrían en el coste total del mismo.  Establecer un balance equilibrado (“óptimo”) entre las consideraciones cuantitativas de costes y las cualitativas de servicio.  Hay que prestar atención al tiempo de permanencia en el sistema o en la cola: la “paciencia” de los clientes depende del tipo de servicio específico considerado y eso puede hacer que un cliente “abandone” el sistema.

4.4 INFERENCIA DE RESULTADOS. Inferencia es la acción y efecto de inferir (deducir algo, sacar una consecuencia de otra cosa, conducir a un resultado). La inferencia surge a partir de una evaluación mental entre distintas expresiones que, al ser relacionadas como abstracciones, permiten trazar una implicación lógica. Al partir de hipótesis o argumentos, es posible inferir una conclusión (que puede resultar verdadera o falsa). Por ejemplo:“Todavía no recibí la confirmación oficial por parte de la empresa, lo que te digo es sólo una inferencia mía”, “Cada vez que juega la selección, Mariana falta al trabajo: mi inferencia es que mañana vamos a estar solos en la oficina”, “No podemos guiarnos por inferencias, sino que tenemos que aguardar a que los sucesos se confirmen antes de tomar una decisión”. El silogismo es una forma esencial de inferencia. Se trata de una forma de razonamiento deductivo que se forma por dos proposiciones (premisas) y una conclusión. Esta conclusión es la inferencia que necesariamente se deduce de las dos premisas. La veracidad de la conclusión dependerá de las leyes que regulan la relación entre las premisas comparadas. La garantía de verdad del nuevo juicio es la lógica, que deberá establecer distintas clasificaciones de las premisas. No todas las inferencias ofrecen conclusiones verdaderas. Es posible afirmar que todos los perros son animales peludos de cuatro patas, pero no se puede inferir que todos los animales peludos con cuatro patas son perros.

14

LINEAS DE ESPERA Las inferencias suelen generarse a partir de un análisis de características y probabilidades. Si alguien hace referencia a un animal de cuatro patas, peludo y que mueve la cola, puedo inferir que lo más probable es que esté haciendo referencia a un perro. Ejemplo Supermercado Imagínese un supermercado grande con muchas cajas de salidas. Supóngase que los clientes llegan para que les marquen su cuenta con una tasa de 90 por hora y que hay 10 cajas en operación. Si hay poco intercambio entre las líneas, puede tratarse este problema como 10 sistemas separados de una sola línea, cada uno con una llegada de 9 clientes por hora. Para una tasa de servicio de 12 por hora: Dado: A= 9 clientes por hora B= 12 clientes por hora

Explicación Entonces, para este ejemplo, el cliente promedio espera 15 minutos antes de ser servido. En promedio, hay un poco mas de 2 clientes en la linea o 3 en el sistema. El proceso completo lleva un promedio de 20 minutos. La caja esta ocupada el 75 % del tiempo. Y finalmente, el 32% del tiempo habrá cuatro personas o mas en el sistema.

15

LINEAS DE ESPERA

Ejemplo con Modelo de un servidor: El departamento para caballeros de un gran almacén tiene a un sastre para ajustes a la medida. Parece que el número de clientes que solicitan ajustes sigue una distribución de poisson con una tasa media de llegadas de 24 por hora, los ajustes se realizaron con un orden de primero que llega, primero en atenderse y los clientes siempre desean esperar ya que las modificaciones son gratis. Aparentemente el tiempo que tarda para realizar el ajuste, se distribuye exponencialmente con una media de 2 minutos.  ¿Cuál es el número promedio de clientes en la sala de espera? 3.2 unidades en promedio  ¿Cuánto tiempo de permanencia en el sistema debería de planear un cliente? .16hrs en promedio = 10 minutos  ¿Qué % de tiempo permanece ocioso el sastre? .2 = 20%  ¿Cuál es la probabilidad de que un cliente espere los servicios del sastre más de 10 minutos? 2.17456

16

LINEAS DE ESPERA Ejemplo Burger Dome

Explicación Los resultados de la línea de espera de un solo canal para Burger Dome muestran varias cosas importantes sobre su operación. En particular, los clientes esperan un promedio de tres minutos antes de comenzar a colocar un pedido, lo cual parece un poco largo para un negocio basado en el servicio rápido. Además los hechos de que la cantidad promedio de clientes que esperan en la línea es de 2.25 y que 75% de los clientes que llegan tienen que esperar para que los atiendan son indicadores de que debería hacerse algo para mejorar la operación.

17

LINEAS DE ESPERA 4.5 CONCLUSION Como conclusión podemos decir que la teoría de las colas es el estudio matemático de las colas o líneas de espera. Esta información se deriva a través de un fenómeno común que ocurre siempre que la demanda efectiva de un servicio excede a la oferta efectiva. Dicho así, las empresas deben tomar decisiones respecto al caudal de servicios que debe estar preparada para ofrecer. Sin embargo, muchas veces es imposible predecir con exactitud cuándo llegarán los clientes que demandan el servicio y/o cuanto tiempo será necesario para dar ese servicio; es por eso que esas decisiones implican dilemas que hay que resolver con información escasa. Estar preparados para ofrecer todo servicio que se nos solicite en cualquier momento puede implicar mantener recursos ociosos y costos excesivos. Pero, por otro lado, carecer de la capacidad de servicio suficiente causa colas excesivamente largas en ciertos momentos. Cuando los clientes tienen que esperar en una cola para recibir nuestros servicios, están pagando un coste, en tiempo, más alto del que esperaban. Las líneas de espera largas también son costosas por tanto para la empresa ya que producen pérdida de prestigio y pérdida de clientes. La teoría de las colas en si no resuelve directamente el problema, pero contribuye con la información vital que se requiere para tomar las decisiones concernientes prediciendo algunas características sobre la línea de espera: probabilidad de que se formen, el tiempo de espera promedio.

18

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF