Unidad 3 Reacciones Quimicas

December 5, 2022 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Unidad 3 Reacciones Quimicas...

Description

IFHLJBBKYFWD

Nísjhf y Vuímjhf 6  

8

YKFHHJDCKX V[ÍMJHFX

Ufrf hdcsubtfr bds hrjtkrjds gk kvfbufhjøc y kvfbufhjøc y bds kstæcgfrks gk fprkcgjzfok kvfbufibks, kvfbufibks, vêfsk bf Urdarfmfhjøc.

6 YKFHHJDCKX Z KH[FHJDCKX V[ÍMJHFX HK.6.6. (KF.6.6.6.-6.6.9.) HK.8.6. HK.6.6. (KF.6.6.6.-6.6.9.) HK.8.6. (KF.8.6.6.)  (KF.8.6.6.)

Uæajcf :7 6 Foustf kstfs rkfhhjdcks químjhfs gk hdmiustjøc?

f) H7L:DL + D9  6> = 655 a/mdb a/mdb,, pdr bd quk? c = 655 55a a±

17 a HfHD8 6 md mdbb Hf HfHD HD8 ± = 5,17 5,17 md mdbb 655 a 655 a HfHD8 9

IFHLJBBKYFWD

 

Nísjhf y Vuímjhf 6

c (mdb)

,1 ,1 aF ± 6mdbF 6B ± 699; a ± 8> 6B 655 a >8 aF

.

1,67 1,67 md mdbb

8   HÆBH[BDX KXWKV[JDMÊWYJHDX KC MFXF HK.6.6. (KF.6.6.6.-6.6.9.) HK.8.9. (KF.8.9.6.-8.9.9.)  (KF.8.9.6.-8.9.9.) HK.6.6. (KF.6.6.6.-6.6.9.) HK.8.9.

Uæajcf :1 < Hfbhubf bf mfsf gk nbÿdr, N9, ckhksfrjf pfrf quk rkfhhjdck hdmpbktfmkctk bf mfsf gk

fzunrk hfbhubfgf kc kb kokmpbd rksukbtd 9. Hdmprukif tu rksubtfgd fpbjhfcgd bf bky gk hdcskrvfhjøc gk bf mfsf. Bf rkfhhjøc químjhf gkb kokmpbd rksukbtd 9 ks? <

Bds gftds gkb prdibkmf sdc? mXN>  = 6,1;9 `a

X

  6 1;9 a

<

mX<  = 8 mdb f 6 8

IFHLJBBKYFWD

 

Nísjhf y Vuímjhf 6

8. Udr ÿbtjmd, hfbhubf hfbhubfmds mds bf mfacjtug jchøacjtf, kc kstk hfsd bf mf mfsf. sf.  

Ufrf kkbbd, bbd, hfbhubf hfbhubfmds mds pr prkvjfmkctk kvjfmkctk bf mfsf mdbfr gk bf sustfchjf jchøacjtf, kc ks kstk tk hfsd N9, f pfrtjr gk bf mfsf ftømjhf prdmkgjd gkb nbÿdr0 M (N9) = 8< a/mdb. mjchøacjtf = cjchøacjtf ± M  =  = 8> mdb ± 8< a/mdb = 6 8>< a

Hdmprdifmdss kb rksubtfgd fpbjhfcgd bf bky gk hdcskrvfhjøc gk bf mfsf? Hdmprdifmd 6 8>< a + 8,85; a gk pbftf.

Gftds? M  (Fa) = 651,,:< a/mdb. Bf khufhjøc químjhf ks? Fb (CD8)8 + 8 Fa ,85; a.

Bfs sustfchjfs jchøacjtf sdc Fb y FaCD8 Xkaujmds gk hæbhubd lfstf kb pfsd 9, puks cds pjgkc bf hfctjgfg gk sustfchjf y cd bf mfsfkbgkksqukmf bfs sustfchjfs jchøacjtf? 6. Hæbhubd gk bf hfctjgfg gk sustfchjf gf gftd. td.  

Ufrf kkbbd, bbd, hfbhubf hfbhubfmds mds pr prkvjfmkctk kvjfmkctk bf mfsf mdbfr f pfrtjr gk bf mfsf fftømjhf tømjhf g gkk bf pbftf, M (Fa) = 651,: a/mdb? mgftd 6>,85; a cgftd = 5,6; mdb = M gftd 651,: a/mdb .

9. Hæbhubd gk bf hfctjgfg gk sustfchjf jchø jchøacjtf. acjtf.  

Ufrf kbbd, utjbjzfmds bds hd hdknjhjkctks knjhjkctks kstkqujdmêt kstkqujdmêtrjhds. rjhds. Kb hdkn hdknjhjkctk jhjkctk gk bf su sustfchjf stfchjf gftd ks f = 8 y pfrf bfs sustfchjfs jchøacjtf, i = 6 (kc kb hfsd gkb fbumjcjd) y i‚ = 8 (kc kb hfsd gkb cjtrftd gk pbftf)? i 6 = = 5,5; mdb gk Fb 6 , ; m d b cFb = cgftd ± ± f 8 8 i cFaCD8 = cgftd ± = 5,6; mdb ± = 5,6; mdb gk FaCD8 f 8

7   YKFHWJ^DX Z UYDG[HWDX KC KXWFGD AFXKDXD HK.6.6. HK.6.6. (KF.6.6.6.-6.6.9.)  (KF.6.6.6.-6.6.9.) HK.8.9. HK.8.9. (KF.8.9.6.-8.9.9.)  (KF.8.9.6.-8.9.9.)

Uæajcf :< 65 Ufrtjkcgd gk bf rkfhhjøc gk síctksjs gkb fmdcífhd?

C9 (a) + L9 (a)

  CL8 (a)

<

f) Kc hdcgjhjdcks cdrmfbks, ´quê vd vdbÿmkcks bÿmkcks gk bds rkfhtjvds sdc ckhksfrjds pfrf ditkckr 6>,< B gk fmdcífhd4 i) Hfbhubf bds vdbÿmkcks gk bds rkfhtjvds sj bf prksjøc gkb fpfrtfgd fctkrjdr sk rkguhk f bf mjtfg. Gftds? M  (C) = 67,56 a/mdb0 M  (L) = 6,56 a/mdb. 7

 

IFHLJBBKYFWD

Nísjhf y Vuímjhf 6

Bf khufhjøc químjhf ks? C9 (a) + 8 L9 (a)

  9 CL8 (a)

<

Bf sustfchjf gftd ks CL80 bf mfacjtug diskrvfibk ks kb vdbumkc, ^ CL8  = 6>,< B. Bf rkbfhjøc kctrk bds vdbÿmkcks gk bf rkfhhjøc y bf rkbfhjøc kctrk bfs hfctjgfgks gk sustfchjf sdc bfs mjsmfs, puks sk mjgkc kstds vdbÿmkcks kc jgêctjhfs hdcgjhjdcks gk prksjøc prksjøc y tkmpkrfturf, kc kstk hfsd hdcgjhjdcks cdrmfbks, cdrmfbks, gk bd quk gkguhjmds, f bf vjstf gk bf khufhjøc químjhf? ^ C9 ^ L9 8 6 = = ^ CL8 9 ^ CL8 9 Udr tfctd? 6 ^ C9 = ± 6>,< B = ,< B = 9;,9 B 9 b

66 Kb ljkrrd mktæbjhd rkfhhjdcf hdc kb æhjgd cítrjhd gfcgd cjtrftd gk ljkrrd(JJ) k ljgrøakcd

afskdsd. f) Kshrjik bf khufhjøc químjhf gkb prdhksd y hfbhubf kb vdbumkc gk ljgrøakcd quk sk gksprkcgk, f 9; ¿H y 185 mm La, sj rkfhhjdcfc 19> a gk ljkrrd. i)

Iushf jcndrmfhjøc sdirk kb LCD8 y oustjnjhf su usd kc bf jcgustrjf pdr sus prd-

pjkgfgks nísjhfs y químjhfs. Gftds? M  (Nk) = ;;, ftm) y 9; ¿H (9:< @). Fpbjhfcgd kb ksqukmf gk hæbhubd? 6. Hæbhubd gk bf hfctjgfg h fctjgfg gk sustfchjf gftd gftd.. Ufrf  Ufrf kbbd, hfbhubfmds prkvjfmkctk bf mfsf mdbfr f pfrtjr gk bf mfsf ftømjhf gkb ljkrrd, M (Nk) = ;;, a M gftd ;;, ft ftm m .

i) Ykspukstf fijkrtf. ;

 

IFHLJBBKYFWD

Nísjhf y Vuímjhf 6

Uæajcf :: 69 Kb dzdcd afskdsd rkfhhjdcf hdc fauf gfcgd L9 y D9, fmids kc kstfgd afskdsd. Xj kb

vdbumkc gk tdgfs bfs sustfchjfs afskdsfs sk mjgk f 9:: @ y 157 mmLa?

f) Hfbhubf huæctds bjtrds gk dzdcd lfc rkfhhjdcfgd sj sk ditjkckc 65 B gk dxíakcd. i) Yfzdcf sj kb vdbumkc gk L9 skræ mfydr d mkcdr quk kb gk D9 ditkcjgd. h) Hfbhubf bf hfctjgfg gk d dzdcd zdcd quk lf rkfhhjdcfgd y bbff mfsf gk fauf hdcsumjgf hdcsumjgf.. Bf khufhjøc químjhf ks? D8 + L9D

  L9 + 9 D9

<

f) Bf sustfchjf gftd ks kb dxíakcd, D9, huyd vdbumkc ks hdcdhjgd, ^ D9  = 65 B. Bf sustfchjf jchøacjtf ks kb dzdcd, D8, huyd vdbumkc ks bf mfacjtug diskrvfibk pkgjgf kc kb kcuchjfgd. Bf rkbfhjøc kctrk bds vdbÿmkcks gk bf rkfhhjøc y bf rkbfhjøc kctrk bfs hfctjgfgks gk sustfchjf sdc bfs mjsmfs, puks sk mjgkc kstds vdbÿmkcks kc jgêctjhfs hdcgjhjdcks gk prksjøc y tkmpkrfturf, gk bd quk gkguhjmds, f bf vjstf gk bf khufhjøc químjhf? ^ D8 ^ D9

=

6 9

6 ± 65 B = ; B 9 i) Kb vdbumkc gk ljgrøakc ljgrøakcd d skræ bf mjtfg quk kb gk dxíakcd, puks bf rkbfhjøc rkbfhjøc kctrk bds hdknjhjkctks kstkqujdmêtrjhds kstkqujdmêtrjhds ks 6 ? 9. Udr tfctd?

^ D8 =

h) Bf sustf sustfchjf chjf gftd ks kb dxíakcd, D9, huyd vdbumkc, mkgjgd f 9:: @ y 157 mmLa (5,:8 ftm), ks hdcdhjgd, ^ D9  = 65 B. Bfs sustfchjfs jchøacjtfs sdc kb dzdcd, D 8, gkb quk cds pjgkc hfbhubfr bf hfctjgfg gk sustfchjf, y kb fauf, L 9D, huyf mfsf ks bf mfacjtug diskrvfibk pkgjgf kc kb kcuchjfgd. Xkaujmds kb ksqukmf gk hæbhubd? 6. Hæbhubd gk bf hfctjgfg h fctjgfg gk sustfchjf gftd gftd.. [tjbjzfmds bf khufhjøc gk kstfgd gkb afs jgkfb? p ± ^ = c ± Y ± W  Gkspkofcgd bf hfctjgfg gk sustfchjf y sustjtuykcgd bds vfbdrks gkb kcuchjfgd? p ± ^  5,:8 ftm ± 65 B cD9 = = 5,8< 5,8< md mdbb Y ± W  f t m± B ± 9:: @   5,5

 

IFHLJBBKYFWD

Nísjhf y Vuímjhf 6

68 Kb hbdrftd gk pdtfsjd sk gkshdmpdck kc hbdrurd h bdrurd gk pdtfsjd y gjdxíakcd.

f) Hfbhubf kb vdbumkc gk dxíakcd, mkgjgd kc h. c., quk sk prdguhk sj sk gkshdmpdckc hdmpbktfmkctk 7,5: a gk hbdrftd gk pdtfsjd. i) Hfbhubf bf mfsf gk hbdrurd gk pdtfsjd ditkcjgf. h) Xj kstf rkfhhjøc dhurrk kkcc uc rkhjpjkctk hkrrfgd cd gkndrmfibk gk uc bbjtrd jtrd gk hfpfhjgfg, ´quê prksjøc sdpdrtf kb rkhjpjkctk4 Bf khufhjøc químjhf ks? 9 @HbD8  Kc bf sjaujkctk rkfhhjøc?

8 L9 (a) + C9 (a)

  9 CL8 (a)

<

Jcgjhf huæb ks kb rkfhtjvd bjmjtfctk kc kstds hfsds? f) Ykfhhjdcfc 77,< B gk L9, kc hdcgjhjdcks cdrmfbks, hdc 9 mdb gk C 9. i) Ykfhhjdcfc 79 a gk C9 hdc 6 gm8 gk L9 f 9:< @ y 5,:< ftm. h) Ykfhhjdcfc 9 B gk hfgf rkfhtjvd, mkgjgds kc bfs mjsmfs hdcgjhjdcks gk prksjøc y tkmtkmpkrfturf. Bf khufhjøc químjhf ks? 8 L9 (a) + C9 (a)

n p cL9

Kc kstk hfsd c C9

  9 CL8 (a)

<

= 8.

Kst Kstkq kqujd ujdm mêtrjhd trjhd

f) Hfbhubfmds bf hfct hfctjgfg jgfg gk sustfchjf sustfchjf gk fmids rrkfhtjvds? kfhtjvds? L9, tkcjkcgd kc hukctf quk 6 mdb dhupf 99,7 B kc h. c.? C9, 9 mdb.

77,< B ± 96mdb 9, 9,77 B = 9 mdb

F bf vjstf gk bf khufhjøc químjhf, 9 mdb gk C 9 rkqujkrkc gk > mdb gk L 90 pdr tfctd, kb rkfhtjvd bjmjtfctk ks kb L9. :

IFHLJBBKYFWD

 

Nísjhf y Vuímjhf 6

i) Hfbhubfmds bf hfctjgfg gk su sustfchjf stfchjf gk fmids rrkfhtjvds? kfhtjvds? L9, fpbjhfcgd bf khufhjøc gk kstfgd gkb afs jgkfb pfrf ^  =  = 6 B, W  =  = 9:< @ y p = 5,:< ftm. p ± ^  5,:< ftm ± 6B cL9 = = 5,57 5,5755 md mdbb Y ± W  f t m± B 9:< @  5,5 6> ± 65‘8 mdb f 6 8. Udr ÿbtjmd, hfbhubfmds bf mdbfrjgfg gk bf gjsdbuhjøc quk hdctjkck hdctjkck bf sustfchjf jchøacjtf, utjbjzfcgd kb vdbumkc gk bf mukstrf, ^ I, y bf hfctjgfg gk sustfchjf hfbhubfgf, cI? ‘8 c (mdb) ‘8 M I = I ^ I (B) = 6,6> 9,;± ±665 655‘6mB db = 7,>7 ± 65 M Xj sk utjbjzf If(DL)9, bf rkfhhjøc químjhf ks? If(DL) 9 + 9 LHb a gk fauf, ´huæb ks kb rkfhtjvd bjmjtfctk4 ´Vuê mfsf gkb rkfhtjvd kc kxhksd qukgf sjc s jc rkfhhjdcfr4 h) Hfbhubf kb vd vdbumkc bumkc gk æhjgd cítrjhd ditkcjgd. Gftds? M  (C) = 67,56 a/mdb0 M  (D) = 6;,:: a/mdb0 M  (L) = 6,56 a/mdb. Bf khufhjøc químjhf ks? 8 CD9 (a) + L9D (b ) D9)? <

H>L>D9 

-

9 FaIr* +   9 Fa (c (ckard) kard) + 9 LIr + H>L7D9  Kbjmjcfhjøc gkb irdmurd gk pbftf sdirfctk mkgjfctk rkfhhjøc hdc uc njofgdr (tfmijêc bbfmfgd «lypd°)? FaIr + 9 Cf9X9D8  ± 65‘6 mdb ± 6;1,55 a

mdb

.

9; a

Bf mdbfrjgfg gk bf gjsdbuhjøc gk @J skræ? c (mdb)

6,> ± 65 6 5‘6 mdb M = = = 6,> 6,> md mdb/ b/BB 5,6B ^ (B) g) Ufrf skpfrfr kb prkhjpjtfgd ndr ndrmfgd, mfgd, utjbjzfríf ucf hkctrjnuafhjøc hkctrjnuafhjøc y pdstkrjdr gkhfctfhjøc. 6: Xk gkskf gktkrmjcfr bf hdchkctrfhjøc gk ucf gjsdbuhjøc gk æhjgd hbdrlígrjhd f pfrtjr gk

ucf vdbumktríf æhjgd-ifsk, utjbjzfcgd pfrf kbbd ucf gjsdbuhjøc gk ljgrøxjgd gk sdgjd gk hdchkctrfhjøc 5,9; M. f) Kshrjik bf khufhjøc químjhf gk bf ckutrfbjzfhjøc. i)

Xjc lfhkr hæbhubds, gktkrmjcf bf hdchkctrfhjøc gk bf gjsdbuhjøc gk æhjgd hbdrlígrjhd sj 655 mB bf mjsmf rkfhhjdcfc hdmpbktfmkctk hdc ;5 mB gk bf gjsdbuhjøc gk ljgrøxjgd gk gk sdgjd.

h)

Ujkcsf y hdmpfrtk kc pfrkof. Hdmprukif tu rkspukstf gkb fpfrtfgd fctkrjdr. ´Hømd hfmijfríf kb rksubtfgd sj bf kstkqujdmktríf gk bf rkfhhjøc nukrf 9 ? 6 pfrf kb æhjgd nrkctk f bf ifsk4 97

 

IFHLJBBKYFWD

Nísjhf y Vuímjhf 6

Kc fcfyfkguhfhjdc.ks, su fbumcfgd pukgk hdcsubtfr uc gdhumkctd quk kxpbjhf hømd fpbjhfr bf tkhcjhf «Ujkcsf y hdmpfrtk kc pfrkof°, quk suakrjmds pfrf rksdbvkr kb tkrhkr fpfrtfgd gk kstf fhtjvjgfg. f) Bf khufhjøc químjhf ks? L LHb Hb + CfDL

  CfHb + L9D.

<

i) Bf sustfchjf gftd ks CfDL, huyf gjsdbuhjøc fhudsf tjkck tjkck kstds gftds? M F = 5,9; mdb/B0 ^ F = ;5 mB Diskrvfcgd bf kstkqujdmktríf gk bf rkfhhjøc hdchbujmds quk bf hfctjgfg gk sustfchjf gk fmids rkfhtjvds ks bf mjsmf0 pdr dtrf pfrtk, diskrvfmds quk ^ I = 655 mB, pdr tfctd ^ I = 9 ^ F 0 kc rksumkc?

f = i cF = cI ^ F ± M F = ^ I ± M I

^ F ± M F = 9 ^ F ± M I

Udr tfctd? M F = 9 ± M I = 5,;5 mdb/B

h) Xj bf kstkqujd kstkqujdmktríf mktríf nukrf 9 ? 6, ks gkhjr i  ? f = 9 ? 6, gfgd quk kb æhjgd ks bf sustfchjf jchøacjtf, rksubtfríf rksubtfríf?? f = 60 i = 9 cI = cF ± i f  = 9 ± cF cI = ^ I ± M I = 9 ± ^ F ± M F

Xj kb vdbumkc gk bf gjsdbuhjøc gk æhjgd (^ I) ks gdibk quk kb gk bf ifsk (^ F)? ^ I = 9 ± ^ F

Hdmijcfcgd bfs gds ÿbtjmfs kxprksjdck kxprksjdcks? s? 9 ± ^ F ± M I = 9 ± ^ F ± M F M F = M I = 5,9; mdb/B 95 Hfbhubf kb vdbumkc gk gjsdbuhjøc gk æhjgd subnÿrjhd 8 M ckhksfrjd pfrf ckutrfbjzfr 99; mB

gk ucf gjsdbuhjøc 9 M gk ljgrøxjgd gk sdgjd. Bf khufhjøc químjhf ks? L 9XD7 + 9 CfDL

  Cf9XD7 + 9 L9D.

<

Bf sustfchjf gftd ks CfDL, huyf gjsdbuhjøc fhudsf tjkck kstds gftds? M F = 9 mdb/B0 ^ F = 99; mB. Bf sustfchjf jchøacjtf ks L9XD7, M I = 8 mdb/B. Fpbjhfmds bf skhukchjf gk hæbhubds? 6. Hæbhubd gk bf hfctjgfg gk sustfc sustfchjf hjf gftd? mdb mdb ± 5,99; B = 5,7;5 mdb ) ± ^ F (B) = 9 cF (mdb) = MF ( B B 9. Hfbhubfmds bf hfctjgfg gk gk sustfchjf jchøacjtf jchøacjtf,, cI, utjbjzfcgd bds hdknjhjkctks kstkqujdmêtrjhds? pfrf bf sustfchjf gftd, f = 9, y pfrf bf sustfchjf jchøacjtf, i = 6? i 6 cI = cF ± , = 5 7 ; 5 m d b ± = 5,99; mdb f 9 8. Hfbhubfmds bf mfacjtug diskrvfibk diskrvfibk gk bf sustfchjf jchøacjt jchøacjtf0 f0 kc kstk hfsd, kb vdbumkc gk bf gjsdbuhjøc quk bd hdctjkck? c (mdb) 5, 5,99 99;; md mdbb = = < ± 65‘7 B = 5,< mB ^ (B) = M  mdb 8 B 9;

IFHLJBBKYFWD

 

Nísjhf y Vuímjhf 6

Uæajcf 668 96 Bf rkfhhjøc gk hbdrurd gk cíqukb(JJ) hdc ljgrøxjgd gk sdgjd ks ucf rkfhhjøc gk gdibk

gkspbfzfmjkctd. f) Kshrjik bf khufhjøc químjhf foustfgf. i) Hfbhubf bf hfctjgfg gk ljgrøxjgd gk cíqukb(JJ) quk sk ndrmf f pfrtjr gk bf rkfhhjøc gk 955 mB gk ucf gjsdbuhjøc 5,655 M gk hbdrurd gk cíqukb(JJ) hdc sunjhjkctk ljgrøxjgd gk sdgjd. Gftds? M  (Hb) = 8;,7; a/mdb0 M  (Cj) = ;,:< a/mdb0 M  (L) = 6,56 a/mdb0 M  (Hb) = 8;,7; a/mdb. f) Bf khufhjø khufhjøcc químjhf ks? 9 Fb (s) + > LHb (fq)

  8 L9 (a) + 9 FbHb8 (fq)

<

n p cLHb

i) Bf sustfchjf gftd ks kb rkfhtjvd bjmjtfctk bjmjtfctk,, pfrf jgkctjnjhfrbd hdmpfrfmds hdmpfrfmds c Fb cLHb > = = 8. cFb Kstkq 9

n p

 hdc

Ykfb

Hfbhubfmds cLHb, f pfrtjr gkb vdbumkc y bf mdbfrjgfg gk bf gjsdbuhjøc quk hdctjkck kstf sustfchjf? mdb mdb ± 5,655 B = 5,6 mdb ) ± ^ LHb (B) = 6,5 cLHb (mdb) = MLHb ( B B 9>

IFHLJBBKYFWD

 

Nísjhf y Vuímjhf 6

Hfbhubfmds cFb, f pfrtjr gk bf mfsf, m = 9 a, y bf mfsf mdbfr, M  (Fb) = 9>,:< a/mdb. cFb =

n p cLHb cFb

mFb M Fb

=

Ykfb

=

9a 9>,:< a/mdb

.

5,51 mdb

n p

cLHb 5,6mdb = 6 ,7 2 c 5, 5,51 51 md mdbb Fb

=8

Kstkq

Udr tfctd, kb rkfhtjvd ks LHb,gk y, sustfchjf pdr tfctd,gftd. bf sustfchjf gftd. Fpbjhfmds kb ksqukmf gk hæbhubd f pfrtjrbjmjtfctk gk bf hfctjgfg Bf sustfchjf jchøacjtf ks kb trjhbdrurd gk fbumjcjd, FbHb8, huyf mfacjtug diskrvfibk pkgjgf ks bf mfsf, mI. 6. Hfctjgfg gk sustfchjf gftd, cF = 5,6 mdb. 9. Hæbhubd gk hfctjgfg gk sustfchjf jchøacjtf, cI, utjbjzfcgd bds hdknjhjkctks kstkqujdmêtrjhds? pfrf bf sustfchjf gftd, f = >, y pfrf bf sustfchjf jchøacjtf, i = 9. cI = cF ±

i 9 , = 5 6 m d b ± f >  

.

5,58 mdb

8. Hæbhubd gk bf mfacjtug diskrvfibk gk bf sustfchjf jchøacjtf, mI0 pfrf kbbd ks ckhksfrjd hfbhubfr prkvjfmkctk prkvjfmkctk bf mfsf mdbfr gk bf sustfchjf, M  (FbHb8) = 688,8 a/mdb. a I I m = c ± M = 5,58 mdb ± 688,8 mdb = 7 a h) Bf sustfchjf jc jchøacjtf høacjtf ks kb ljgrøakcd ljgrøakcd,, L9, huyf mfacjtug diskrvfibk pkgjgf ks kb vdbumkc, ^ I, mkgjgd f W  =  = 95 ¿H = 9:8 @ y p = 6 ftm. 6. Hfctjgfg gk sustfchjf gftd, cF = 5,6 mdb. 9. Hæbhubd gk hfctjgfg gk sustfchjf jchøacjtf, cI, utjbjzfcgd bds hdknjhjkctks kstkqujdmê kstkqujdmê-trjhds? pfrf bf sustfchjf gftd, f = >, y pfrf bf sustfchjf jchøacjtf, i = 8. cI = cF ±

i 8 , 5 6 = m d b ± = 5,5; mdb f >

8. Hæbhubd gk bf mfacjtug diskrvfibk gk bf sustfchjf jchøacjtf, ^ I?

^ =

c ± Y ± W  = p

f t m± B ± 9:8 @  @ ± mdb 6 ftm

5,5; mdb ± 5,5,1; a 5,9:7 mdb = cCf = M Cf 99,:: a/mdb  

.

Hfbhubfmds cL9 , f pfrtjr gk bf mfsf, m = 8,58 a y bf mfsf mdbfr M (L9) = 9,59 a/mdb mL9 8,58 a cL9 = 6,;5 mdb = M L9 9,59 a/mdb .

cCf cL9

n p

Ykfb

=

cCf 5, 5,9: 9:77 md mdbb = 5,6:> 2 c 6, 6,;5 ;5 md mdbb L9

n p

=9

Kstkq

pdr tfctd, kb rkfhtjvd bjmjtfctk ks Cf. h) Fpbjhfmds bf skhuk skhukchjf chjf gk hæbhubds gk gksgk sgk bf hfctjgfg gk sustfchjf gk sdgjd? 6. Hfctjgfg gk sustfchjf gftd, cF = 5,9:7 mdb. 9. Hæbhubd gk bf hfctjgfg gk sustfchjf jchøacjtf, cI, utjbjzfcgd bds hdknjhjkctks kstkqujdmêtrjhds? pfrf bf sustfchjf gftd, f = 9, y pfrf bf sustfchjf jchøacjtf, i = 9. cI = cF ± i f = 5,9:7 mdb ± 9 9 = 5,9:7 mdb

8. Hæbhubd gk bf mfacjtug diskrvfibk gk bf sustfchjf jchøacjtf, mI0 pfrf kbbd, ks ckhksfrjd hfbhubfr prkvjfmkctk bf mfsf mdbfr gk bf sustfchjf, M (CfL) = 97,55 a/mdb. a mI = cI ± M = 5,9:7 mdb ± 97,55 1,5; a mdb g) Ufrf hfbhubfr kb rkcgjmjkctd gk bf rkfhhjøc, hdmpfrfmds bf mfsf ditkcjgf hdc bf quk tkørjhfmkctk sk luijkrf ditkcjg ditkcjgd? d? 7,55 a Ykcgjmjkc Ykcg jmjkctd td = ± 655 = ;>,< % 1,5; a  

.

9:

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF