UMTS Traning - 3G Basic 1

November 28, 2017 | Author: PutihPutihLompatLompat | Category: Forward Error Correction, 3 G, Broadcast Engineering, Radio, Mobile Telecommunications
Share Embed Donate


Short Description

R13 Huawei...

Description

October 2012 Arum Setyo [email protected]

 3G

Introduction  3G Power Control  3G Mobility Management  3G Call Process Signaling  3G Radio Interface Channel  3G Radio Interface Protocol  3G Handover  3G Optimization Concept  3G Formula and Counter  3G KPI analyze  How to choose WPC candidate

 Increase

Capacity  Development Rate of mobile comm  Demands on Multimedia

 Capacity  Coverage  QoS

(they will give affect to each other)

 Source

Coding  Channel Coding  Spreading  Scrambling  Modulation  Transmit

 Increase

Tx Efficiency  Analog to Digital Converter  Performed in UE  PS no need source coding. Why?

 Make

Tx More Reliable by put more redundant bits  Use for overcoming Interference/Fading  Use Interleaving for serious fading

 We

use it regarding to their QoS  Channel Coding Type:   

For CS Service use convolution code (1/2, 1/3) For PS Service use Turbo code (1/3) Add Interleaving Code Sent as 11 22 33 44 Convolutional Code 1/2 1234 Convolutional Code 1/3 1234 111 222 333 444 1234 123 124 134 234 Interleaving

 Increase

the Capability to Overcome Interference

Processing Gain (PG)



Different service, different PG PG low = UE Tx Power high PG low = Coverage is much more smaller



That’s why PG is referred as SF

 

 Make

Tx more secure!

 Digital

 



to radio signal converter

λ is wave-length Wave-length affecting antenna dimension The more high freq (f), antenna dimension will be smaller

Too Weak!

Louder Plz! Still Weak!!

Louder Plz!



Good!

 Tx

power cannot be set to be as high as possible. It will waste the power and Will cause extra interference to other users.

 In

WCDMA system, Each user is an interference source to other users. So, each user’s Tx power should be minimized.

 So,

the main purpose of Power Control is to adjust users Tx power to be just enough (adaptive following radio propagation environment)

 Quality

(BLER) is to be satisfied.  Interference is to be minimized;

 UTRAN

doesn’t know anything about UE but CORE knows LAC/RAC of UE  No RRC Connection  Still receive Paging (PCH)  Process   

PLMN Selection Reselection Cell Selection Reselection Location Area registration



Cell_DCH (200 mA – 300 mA) 

  



Cell_FACH (100 mA – 150 mA)   



RRC Connection active UTRAN allocated Common Channel Use for signalling with PS service (Low data Rate, Traffic volume is not too high)

Cell_PCH   



RRC Connection active UTRAN allocated Dedicated Channel Use on CS PS service with High data Rate (Traffic volume is high) Paging only sent to this cell

RRC Connection active UE connected but no data transmit UE only monitor PICH

URA_PCH     

URA = UTRAN Registration Area Change state from Cell_PCH to Cell_FACH (cell update) that happens too fast URA defined from several different of NodeBs. There is a threshold timer to decide the state changes from Cell_PCH to Cell_FACH (if cell_PCH happens for x time, then change to URA_PCH) Why have to change to URA_PCH? because too many changes from Cell_PCH to Cell _FACH are not good for system capacity



RAB Release will trigger Iu Release

 Logical  

Channel

Control Channel Service Channel (Traffic)

 Transport  

Dedicated Channel Common Channel

 Physical   

Channel

Channel

UL/DL Physical Channel Dedicated carrier phase code (OVSF, SC)

 Intra-Frequency   

(SHO)

Soft HO Softer HO Hard HO

 Inter-Frequency

(IFHO)  Inter-RAT Frequency (IRATHO/ISHO)  

3G to DCS 3G to GSM

 Database 



Cross check 2G CFGMML with External 2G on 3G CFGMML (parameter check on 2G: MCC, MNC, LACCI, NCC, BCC, BCCH, RAC) Old database still not yet erased

 Failure 

on 2G due to cell unavailable/Alarm

Cross check IRATHO NCell

 Failure 

2G-3G Consistecy Check

on 2G due to congestion

Cross check IRATHO NCell

 Optimizing

Neighbor based on scenario given  Blind HO setting  Check availability/alarm on surroundings

 Do

scanning (via drive test)  Locate pollutant area  Do Neighbor list verification 



Remove nbr that is not measured but in Nbr list Add missing neighbor

 Check

pollutant, whether it’s from overshooting site or site nearby  Check and Adjust physical configuration  Check and Adjust CPICH Power

 TP 

use for checking overshoot sites 1 unit TP equals to 234m in distance

 RTWP

can be caused by bad weather, feeder broken, port feeder broken, or traffic fluctuation (load).

 CSSR

 DCR

 SHO,

IFHO, IRATHO

 Related

to RRC Reject / RRC Failure  Related to RAB Failure  Counter RRC Fail Related: Measurement Item

RRC.FailConnEstab.Cong

RRC.FailConnEstab.NoReply VS.RRC.Rej.Redir.Dist VS.RRC.Rej.Redir.InterRat VS.RRC.Rej.Redir.IntraRat VS.RRC.Rej.Redir.Service VS.RRC.Rej.RL.Fail VS.RRC.Rej.TNL.Fail

Sub Items VS.RRC.Rej.ULIUBBand.Cong, VS.RRC.Rej.DLIUBBand.Cong VS.RRC.Rej.ULPower.Cong, VS.RRC.Rej.DLPower.Cong VS.RRC.Rej.ULCE.Cong, VS.RRC.Rej.DLCE.Cong VS.RRC.Rej.Code.Cong

 Counter Measurement Item Level 1 VS.RAB.FailEstabCS.RNL

RAB CS Fail Related: Sub Items Level 2 VS.RAB.FailEstCS.Unsp

Sub Items Level 3 VS.RAB.FailEstabCS. Cong

Sub Items Level 4 VS.RAB.FailEstCs.ULPower.Cong VS.RAB.FailEstCs.DLPower.Cong VS.RAB.FailEstCs.Code.Cong VS.RAB.FailEstab.CS.DLIUBBand. VS.RAB.FailEstab.CS.ULIUBBand. VS.RAB.FailEstCs.ULCE.Cong VS.RAB.FailEstCs.DLCE.Cong

VS.RAB.FailEstabCS.UuFail VS.RAB.FailEstabCS.IubFail VS.RAB.FailEstabCS.TNL

Measurement Item VS.FailEstabCS.CfgUnsup VS.FailEstabCS.PhyChFail VS.FailEstabCS.IncCfg VS.FailEstabCS.NoReply

Description Configuration unsupported Physical channel failure Invalid configuration No reply

 Counter Measurement Item Level 1 VS.RAB.FailEstPS.RNL

RAB PS Fail Related:

Sub Items Level 2

Sub Items Level 3

VS.RAB.FailEstPS.Unsp

VS.RAB.FailEstPs.ULPower.Cong VS.RAB.FailEstPs.Code.Cong VS.RAB.FailEstab.PS.DLIUBBand.Cong VS.RAB.FailEstab.PS.ULIUBBand.Cong VS.RAB.FailEstPs.ULCE.Cong VS.RAB.FailEstPs.DLCE.Cong VS.RAB.FailEstPs.DLPower.Cong

VS.RAB.FailEstabPS.UuFail VS.RAB.FailEstabPS.IubFail

VS.RAB.FailEstPS.TNL Measurement Item VS.FailEstabPS.CfgUnsup VS.FailEstabPS.PhyChFail VS.FailEstabPS.IncCfg VS.FailEstabPS.NoReply

Description Configuration unsupported Physical channel failure Invalid configuration No reply

 Related

to RAB Loss / RAB Abnormal Release  Counter RAB CS Loss related: Abnormal Release Indicator

Sub-indicator (Level 2) VS.RAB.AbnormRel.CS.RF.ULSync

VS.RAB.AbnormRel.CS.RF

VS.RAB.AbnormRel.CS.RF.UuNoReply VS.RAB.AbnormRel.CS.RF.SRBReset

VS.RAB.AbnormRel.CS.OM VS.RAB.AbnormRel.CS.Preempt VS.RAB.AbnormRel.CS.UTRANgen VS.RAB.AbnormRel.CS.OLC

VS.RAB.AbnormRel.CS.IuAAL2

 Related

to RAB Loss / RAB Abnormal Release  Counter RAB PS Loss related: Abnormal Release Indicator

Sub-indicator (Level 2) VS.RAB.AbnormRel.PS.RF.SRBReset VS.RAB.AbnormRel.PS.RF.ULSync

VS.RAB.AbnormRel.PS.RF

VS.RAB.AbnormRel.PS.RF.UuNoReply VS.RAB.AbnormRel.PS.RF.TRBReset

VS.RAB.AbnormRel.PS.OM VS.RAB.AbnormRel.PS.Preempt VS.RAB.AbnormRel.PS.OLC VS.RAB.AbnormRel.PS.GTPULoss

 Counter

SHO fail related:

Failure Indicator VS.SHO.FailASU.NoReply.NCell VS.SHO.FailRLAddIur.OM.Rx VS.SHO.FailRLAddIur.TransCong.Rx VS.SHO.FailRLAddIur.HW.Rx VS.SHO.FailRLAddIur.Cong.Rx VS.SHO.FailRLAddIur.CfgUnsRx VS.SHO.FailRLRecfgIur.NoReply VS.SHO.FailRLRecfgIur.OM.Rx VS.SHO.FailRLRecfgIur.HW.Rx VS.SHO.FailRLRecfgIur.Cong.Rx

VS.SHO.FailRLRecfgIur.CfgUnsupp.Rx VS.SHO.FailRLSetupIur.HW.Tx VS.SHO.FailRLSetupIur.CongTx VS.SHO.FailRLSetupIur.CfgUTx VS.SHO.FailRLSetupIur.TransCongTx

 Counter

IFHO fail related:

Failure Indicator VS.HHO.FailInterFreqOut.CfgUnsupp VS.HHO.FailInterFreqOut.PyhChFail VS.HHO.FailInterFreqOut.ISR VS.HHO.FailInterFreqOut.CellUpdt VS.HHO.FailInterFreqOut.InvCfg VS.HHO.FailInterFreqOut.InterRNC.CfgUnsupp VS.HHO.FailInterFreqOut.InterRNC.PhyChFail VS.HHO.FailInterFreqOut.InterRNC.ISR

VS.HHO.FailInterFreqOut.InterRNC.InvCfg VS.HHO.FailInterFreqOut.InterRNC.CellUpdt VS.HHO.FailInterFreqOut.InterRNC.NoReply VS.HHO.FailInterFreqOut.NoReply VS.HHO.FailInterFreqOut.PrepFail VS.HHO.FailInterFreqOut.RLSetupFail

 Counter

ISHO CS fail related:

Failure Indicator VS.IRATHO.FailInCS.NoReply VS.IRATHO.FailOutCS.Abort VS.IRATHO.FailOutCS.NoReply VS.IRATHO.FailRelocPrepInCS.Abort VS.IRATHO.FailRelocPrepInCS.ResUnavail VS.IRATHO.FailRelocPrepInCS.TgtHighLoad VS.IRATHO.FailRelocPrepInCS.TRNCSysFailReloc VS.IRATHO.FailRelocPrepInCS.TRNCSysRelocUnsupp VS.IRATHO.FailRelocPrepOutCS.Abort VS.IRATHO.FailRelocPrepOutCS.Cancel VS.IRATHO.FailRelocPrepOutCS.CNNoReply VS.IRATHO.FailRelocPrepOutCS.ReqInfoNotAvail VS.IRATHO.FailRelocPrepOutCS.TAlExp.GCell VS.IRATHO.FailRelocPrepOutCS.TgtFail.GCell IRATHO.FailRelocPrepOutCS.ReloNoSup(none) IRATHO.FailRelocPrepOutCS.NoResAvail(none) IRATHO.FailRelocPrepOutCS.HigherTrafficLod(none) IRATHO.FailRelocPrepOutCS.UKnowRNC(none) IRATHO.FailOutCS.CfgUnsupp(none) IRATHO.FailOutCS.PhyChFail(none)

 Counter

ISHO PS fail related:

Failure Indicator VS.IRATHO.FailOutPS VS.IRATHO.FailOutPS.Abort VS.IRATHO.FailOutPSUTRAN.NoReply VS.IRATHO.FailRelocInPS.NoReply VS.IRATHO.FailRelocOutPS.CfgUnSupp VS.IRATHO.FailRelocOutPS.NoReply VS.IRATHO.FailRelocOutPS.PhyChFail VS.IRATHO.FailRelocPrepInPS.ReloUnSupp VS.IRATHO.FailRelocPrepInPS.ResUnavail VS.IRATHO.FailRelocPrepInPS.TgtFail VS.IRATHO.FailRelocPrepInPS.TgtHighLoad VS.IRATHO.FailRelocPrepOutPS.NoResAvail VS.IRATHO.FailRelocPrepOutPS.ReloUnSupp VS.IRATHO.FailRelocPrepOutPS.TAlExp VS.IRATHO.FailRelocPrepOutPS.TgtFail VS.IRATHO.FailRelocPrepOutPS.TgtHighLoad VS.IRATHO.FailRelocPrepOutPS.UnKnowRNC IRATHO.FailOutPSUTRAN.CfgUnsupp(none) IRATHO.FailOutPSUTRAN.PhyChFail(none)

 See

traffic fluctuation how it can affect to the rate

 See

from which side (RRC or RAB) the failure cause contribute the most (in this case RRC)

 See

RRC failure details which contribute the most

 See

RAB CS failure details which contribute the most

 See

traffic fluctuation how it can affect to the rate

 See

from which side (RRC or RAB) the failure cause contribute the most (in this case RAB)

 See

RRC failure details which contribute the most

 See

RAB PS failure details which contribute the most

 See

DRD RB failure incomming

 See

traffic fluctuation how it can affect to the rate

 See

Total loss (attempt) fluctuation how it can affect to the rate

 See

RAB CS Loss details which contribute the most

 See

traffic fluctuation how it can affect to the rate

 See

Total loss (attempt) fluctuation how it can affect to the rate

 See

RAB PS Loss details which contribute the most

 See

the attempt fluctuation how it can affect to the rate

 See

detail failure cause on SHO:

 See

the attempt fluctuation how it can affect to the rate

 See

detail failure cause on IFHO:

 See

the attempt fluctuation how it can affect to the rate

 See

detail failure cause on ISHO CS:

 See

the attempt fluctuation how it can affect to the rate

 See

detail failure cause on ISHO PS:

 Do

daily for weekly result  Steps for choosing WPC candidate:   

Look KPI degradation in RNC Daily/BH Level Get the highest failure cause in RNC daily/BH Level Get failure cause counter per cell daily/BH Level   



Select Rate below threshold Sort Failure number in descending (Higest to Lowest) Do weighting process to choose the cell with high attempt and bad rate [weighting = (rate*fail number)] Get your Top5 or Top10 candidate to optim

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF