Uc 02_fundamentos Da Eletrotecnica

March 13, 2017 | Author: chico_fender | Category: N/A
Share Embed Donate


Short Description

Download Uc 02_fundamentos Da Eletrotecnica...

Description

SéRIE AUTOMAÇÃO INDUSTRIAL

FUNDAMENTOS DE ELETROTÉCNICA

CONFEDERAÇÃO NACIONAL DA INDÚSTRIA – CNI Robson Braga de Andrade Presidente Diretoria de Educação e Tecnologia Rafael Esmeraldo Lucchesi Ramacciotti Diretor de Educação e Tecnologia SENAI-DN – SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL Conselho Nacional

Robson Braga de Andrade Presidente SENAI – Departamento Nacional Rafael Esmeraldo Lucchesi Ramacciotti Diretor-Geral

Gustavo Leal Sales Filho Diretor de Operações

SéRIE AUTOMAÇÃO INDUSTRIAL

FUNDAMENTOS DE ELETROTÉCNICA

© 2012. SENAI – Departamento Nacional © 2012. SENAI – Departamento Regional do Rio Grande do Sul A reprodução total ou parcial desta publicação por quaisquer meios, seja eletrônico, mecânico, fotocópia, de gravação ou outros, somente será permitida com prévia autorização, por escrito, do SENAI – Departamento Regional do Rio Grande do Sul. Esta publicação foi elaborada pela equipe da Unidade Estratégica de Desenvolvimento Educacional – UEDE/Núcleo de Educação a Distância – NEAD, do SENAI do Rio Grande do Sul, com a coordenação do SENAI Departamento Nacional, para ser utilizada por todos os Departamentos Regionais do SENAI nos cursos presenciais e a distância. SENAI Departamento Nacional Unidade de Educação Profissional e Tecnológica – UNIEP SENAI Departamento Regional do Rio Grande do Sul Unidade Estratégica de Desenvolvimento Educacional – UEDE/Núcleo de Educação a Distância – NEAD

FICHA CATALOGRÁFICA

S491f Serviço Nacional de Aprendizagem Industrial. Departamento Nacional Fundamentos da eletrotécnica / Serviço Nacional de Aprendizagem Industrial.Departamento Nacional, Serviço Nacional de Aprendizagem Industrial. Departamento Regional do Rio Grande do Sul. Brasília: SENAI/DN, 2012. 188 p.: il. (Série Automação Industrial) ISBN 978-85-7519-502-4 1.Eletrotécnica 2. Matemática 3. Magnetismo 4. Eletromagnetismo. I.Serviço Nacional de Aprendizagem Industrial. Departamento Regional do Rio Grande do Sul. IITítulo .III.Série CDU- 621.3 Bibliotecário Responsável: Enilda Hack- CRB 599/10

SENAI Serviço Nacional de Aprendizagem Industrial Departamento Nacional

Sede Setor Bancário Norte . Quadra 1 . Bloco C . Edifício Roberto Simonsen . 70040-903 . Brasília – DF . Tel.: (0xx61)3317-9190 http://www.senai.br

Lista de ilustrações Figura 1 -  Pizza...................................................................................................................................................................25 Figura 2 -  Frações prórias...............................................................................................................................................26 Figura 3 -  Frações imprórias..........................................................................................................................................26 Figura 4 -  Frações aparentes.........................................................................................................................................26 Figura 5 -  Frações equivalentes....................................................................................................................................26 Figura 6 -  Números mistos.............................................................................................................................................27 Figura 7 -  Decimais infinitos inteiros..........................................................................................................................30 Figura 8 -  Decimais infinitos fracionários.................................................................................................................30 Figura 9 -  Conversão decimal binário........................................................................................................................36 Figura 10 -  Conversão decimal hexadecimal..........................................................................................................37 Figura 11 -  Função de 1º grau.......................................................................................................................................41 Figura 12 -  Função de 1º grau - 1.................................................................................................................................42 Figura 13 -  Função de 1º grau - 2.................................................................................................................................42 Figura 14 -  Função de 1º grau - 3.................................................................................................................................43 Figura 15 -  Função de 1º grau - 4.................................................................................................................................43 Figura 16 -  Função de 2º grau.......................................................................................................................................43 Figura 17 -  Vértice e eixo de simetria.........................................................................................................................45 Figura 18 -  Sistema com 2 LEDs...................................................................................................................................45 Figura 19 -  Gráfico da função logarítmica................................................................................................................47 Figura 21 -  Trigonometia básica arco.........................................................................................................................49 Figura 22 -  Trigonometia básica ângulo...................................................................................................................49 Figura 20 -  Potenciômetro logarítmico.....................................................................................................................49 Figura 23 -  Trigonometia básica..................................................................................................................................50 Figura 24 -  Arco com o ângulo determindado.......................................................................................................50 Figura 25 -  Pitágoras........................................................................................................................................................51 Figura 26 -  Ciclo trigonométrico..................................................................................................................................51 Figura 27 -  Função seno..................................................................................................................................................52 Figura 28 -  Valores notáveis do seno..........................................................................................................................52 Figura 29 -  Gráfico da função seno.............................................................................................................................52 Figura 30 -  Função cosseno...........................................................................................................................................53 Figura 31 -  Valores notáveis do cosseno...................................................................................................................53 Figura 32 -  Gráfico da função cosseno......................................................................................................................53 Figura 33 -  Função tangente.........................................................................................................................................54 Figura 34 -  Valores notáveis do tangente.................................................................................................................54 Figura 35 -  Gráfico da função tangente....................................................................................................................54 Figura 36 -  Relação trigonométrica............................................................................................................................55 Figura 37 -  Teorema de Pitágoras................................................................................................................................55 Figura 38 -  Bola de bilhar...............................................................................................................................................59 Figura 39 -  Átomo.............................................................................................................................................................60 Figura 40 -  Experiência de Rutherford.......................................................................................................................60 Figura 41 -  Modelo planetário do átomo.................................................................................................................61 Figura 42 -  Átomo 1..........................................................................................................................................................61 Figura 43 -  Máquinas eletrostáticas antigas............................................................................................................62 Figura 44 -  Repulsão.........................................................................................................................................................64 Figura 45 -  Atração...........................................................................................................................................................64

Figura 46 -  Eletrostática..................................................................................................................................................64 Figura 47 -  Pulseira antiestática...................................................................................................................................64 Figura 48 -  Aterramento.................................................................................................................................................64 Figura 49 -  Eletrização por contato.............................................................................................................................65 Figura 50 -  Equacionamento da distribuição de cargas......................................................................................65 Figura 51 -  Equacionamento da distribuição de cargas1...................................................................................65 Figura 52 -  Equacionamento da distribuição de cargas2...................................................................................66 Figura 53 -  Eletrização por atrito.................................................................................................................................66 Figura 54 -  Eletrização por indução............................................................................................................................67 Figura 55 -  Tensão elétrica.............................................................................................................................................68 Figura 56 -  Simbologia do voltímetro em um circuito elétrico........................................................................69 Figura 57 -  Simbologia de uma fonte........................................................................................................................69 Figura 58 -  Pilha.................................................................................................................................................................69 Figura 59 -  Pilhas em série.............................................................................................................................................69 Figura 60 -  Pilhas em série e contrapostas...............................................................................................................69 Figura 61 -  Corrente elétrica..........................................................................................................................................70 Figura 62 -  Simbologia do amperímetro no circuito elétrico............................................................................70 Figura 63 -  Simbologia do amperímetro ligado em série a um circuito elétrico.......................................70 Figura 64 -  Caminho do elétron livre.........................................................................................................................71 Figura 65 -  Simbologia do ohmímetro no circuito................................................................................................71 Figura 66 -  Simbologia do ohmímetro ligado em paralelo no circuito elétrico.........................................71 Figura 67 -  Resistência elétrica.....................................................................................................................................73 Figura 68 -  Tensão alternada.........................................................................................................................................74 Figura 69 -  Determinação da corrente elétrica.......................................................................................................77 Figura 70 -  Determinação da tensão elétrica..........................................................................................................78 Figura 71 -  Determinação da resistência elétrica..................................................................................................79 Figura 72 -  Multímetro ...................................................................................................................................................80 Figura 73 -  Osciloscópio.................................................................................................................................................83 Figura 74 -  Osciloscópio 1..............................................................................................................................................83 Figura 75 -  Represenção característica Lei de Ohm..............................................................................................88 Figura 76 -  Bipolo ôhmico..............................................................................................................................................88 Figura 77 -  Bipolo ôhmico 1..........................................................................................................................................89 Figura 78 -  Resistores em série.....................................................................................................................................89 Figura 79 -  Resistores em paralelo..............................................................................................................................90 Figura 80 -  Resistores em paralelo 1...........................................................................................................................90 Figura 81 -  Resistores em paralelo 2...........................................................................................................................91 Figura 82 -  Resistores em paralelo 3...........................................................................................................................91 Figura 83 -  Circuito elétrico...........................................................................................................................................92 Figura 84 -  Rede elétrica.................................................................................................................................................92 Figura 85 -  Circuito elétrico 1........................................................................................................................................93 Figura 86 -  Representação de circuitos elétricos...................................................................................................93 Figura 87 -  Circuito...........................................................................................................................................................94 Figura 88 -  Representação das malhas ADEFA e BCDEB.....................................................................................94 Figura 89 -  Malha...............................................................................................................................................................95 Figura 90 -  Malha 1...........................................................................................................................................................95 Figura 91 -  Malha 2...........................................................................................................................................................95 Figura 92 -  Malha 3...........................................................................................................................................................95 Figura 93 -  Malha ABEFA.................................................................................................................................................95

Figura 94 -  Malha BCDEB................................................................................................................................................95 Figura 95 -  Esquema de circuito..................................................................................................................................97 Figura 96 -  Esquema de circuito 1...............................................................................................................................98 Figura 97 -  Esquema de circuito 2...............................................................................................................................98 Figura 98 -  Esquema de circuito 3...............................................................................................................................98 Figura 99 -  Circuito ligado em série......................................................................................................................... 103 Figura 100 -  Circuito ligado em série 1................................................................................................................... 104 Figura 101 -  Circuito ..................................................................................................................................................... 105 Figura 102 -  Circuito 1.................................................................................................................................................. 106 Figura 103 -  Divisores de tensão e corrente......................................................................................................... 109 Figura 104 -  Divisor de corrente............................................................................................................................... 109 Figura 105 -  Circuito misto.......................................................................................................................................... 110 Figura 106 -  Circuito 3.................................................................................................................................................. 111 Figura 107 -  Circuito 4.................................................................................................................................................. 111 Figura 108 -  Circuito misto 1...................................................................................................................................... 111 Figura 109 -  Circuito 5.................................................................................................................................................. 111 Figura 110 -  Circuito equivalente............................................................................................................................. 112 Figura 111 -  Teorema da superposição - circuito ............................................................................................... 112 Figura 112 -  Teorema da superposição - circuito 1............................................................................................ 113 Figura 113 -  Teorema da superposição - circuito 2............................................................................................ 113 Figura 114 -  Teorema de Thévenin - circuito ....................................................................................................... 115 Figura 115 -  Teorema de Thévenin - circuito 1..................................................................................................... 115 Figura 116 -  Teorema de Thévenin - circuito 2..................................................................................................... 116 Figura 117 -  Teorema de Thévenin - circuito 3..................................................................................................... 116 Figura 118 -  Teorema de Thévenin - circuito 4..................................................................................................... 116 Figura 119 -  Teorema de Norton - circuito ........................................................................................................... 117 Figura 120 -  Teorema de Norton - circuito 1......................................................................................................... 118 Figura 121 -  Teorema de Norton - circuito 2......................................................................................................... 118 Figura 122 -  Teorema de Norton - circuito 3......................................................................................................... 118 Figura 123 -  Teorema de Norton - circuito 4......................................................................................................... 119 Figura 124 -  Hidrelétrica.............................................................................................................................................. 121 Figura 125 -  Gráfico da tensão alternada em graus........................................................................................... 121 Figura 126 -  Gráfico da tensão alternada em radiano...................................................................................... 121 Figura 127 -  Tensão e corrente alternada - gráfico 1......................................................................................... 122 Figura 128 -  Gráficos de ciclos e períodos de diversas formas de onda CA.............................................. 122 Figura 129 -  Circuito resistivo puro.......................................................................................................................... 124 Figura 130 -  Circuito resistivo puro - grafico senoidal...................................................................................... 124 Figura 131 -  Circuito resistivo puro - gráfico fasorial......................................................................................... 124 Figura 132 -  Circuito indutivo puro......................................................................................................................... 125 Figura 133 -  Circuito induivo puro - diagrama fasorial..................................................................................... 126 Figura 134 -  Circuito capacitivo puro...................................................................................................................... 126 Figura 135 -  Circuito capacitivo puro - diagrama fasorial................................................................................ 126 Figura 136 -  Circuito RLC em paralelo 2................................................................................................................. 127 Figura 137 -  Fios enrolados em forma helicoildal.............................................................................................. 131 Figura 138 -  Simbologia de bobinas....................................................................................................................... 131 Figura 139 -  Indutores.................................................................................................................................................. 133 Figura 140 -  Associação em série aditiva............................................................................................................... 134 Figura 141 -  Associação em série subtrativa........................................................................................................ 134

Figura 142 -  Associação em paralelo - circuito.................................................................................................... 135 Figura 144 -  Perfil magnético de Automóvel....................................................................................................... 135 Figura 143 -  Associação em paralelo - circuito 1................................................................................................ 135 Figura 145 -  Bobinas..................................................................................................................................................... 136 Figura 146 -  Sensor indutivo...................................................................................................................................... 136 Figura 147 -  Simbologia capacitores....................................................................................................................... 137 Figura 148 -  Capacitores de diferentes capacitancias....................................................................................... 137 Figura 149 -  Capacitor em paralelo......................................................................................................................... 138 Figura 150 -  Capacitor em paralelo 1...................................................................................................................... 138 Figura 151 -  Associação de capacitores em série............................................................................................... 139 Figura 152 -  Capacitor.................................................................................................................................................. 140 Figura 153 -  Capacitor eletrolítico de 25uF 100V............................................................................................... 140 Figura 154 -  Capacitores cerâmicos......................................................................................................................... 141 Figura 155 -  Capacitores plásticos........................................................................................................................... 141 Figura 157 -  Capacitor de Von Musschenbroek.................................................................................................. 142 Figura 156 -  Capacitores eletrolíticos..................................................................................................................... 142 Figura 158 -  Esquema elétrico................................................................................................................................... 145 Figura 159 -  Esquema elétrico 1............................................................................................................................... 146 Figura 160 -  Gráfico senoidal..................................................................................................................................... 146 Figura 161 -  Representação fasorial........................................................................................................................ 146 Figura 162 -  Gráfico senoidal 1.................................................................................................................................. 147 Figura 163 -  Representação fasorial 1..................................................................................................................... 147 Figura 164 -  Gráfico senoidal 2.................................................................................................................................. 148 Figura 165 -  Representação fasorial 2..................................................................................................................... 148 Figura 166 -  Gráfico senoidal com três tensões.................................................................................................. 148 Figura 167 -  Representação fasorial 3..................................................................................................................... 148 Figura 168 -  Resolução de circuitos RLC - circuito.............................................................................................. 149 Figura 169 -  Resolução de circuitos RLC - representação fasorial................................................................. 149 Figura 170 -  Resolução de circuitos RLC - representação fasorial 1............................................................. 149 Figura 171 -  Resolução de circuitos RLC - representação fasorial 2............................................................. 150 Figura 172 -  Resolução de circuitos RLC - circuito 1.......................................................................................... 150 Figura 173 -  Resolução de circuitos RLC - representação fasorial 3............................................................. 150 Figura 174 -  Resolução de circuitos RLC - representação fasorial 4............................................................. 150 Figura 175 -  Impedância no circuito RLC em série - representação fasorial............................................. 151 Figura 176 -  Impedância no circuito RLC em série - representação fasorial 1.......................................... 151 Figura 177 -  Impedância no circuito RLC em série - representação fasorial 2.......................................... 152 Figura 178 -  Impedância no circuito RLC em série - representação fasorial 3.......................................... 152 Figura 179 -  Impedância no circuito RLC em série - representação fasorial 4.......................................... 152 Figura 180 -  Impedância no circuito RLC em série - representação fasorial 5.......................................... 152 Figura 181 -  Impedância no circuito RLC em série - representação fasorial 6.......................................... 152 Figura 182 -  Impedância da associação - Pitágoras........................................................................................... 153 Figura 183 -  Impedância da associação - Pitágoras 1....................................................................................... 153 Figura 184 -  Impedância no circuito RLC em série - circuito.......................................................................... 153 Figura 185 -  Circuito RLC em paralelo..................................................................................................................... 154 Figura 186 -  Circuito RLC em paralelo 1................................................................................................................. 155 Figura 187 -  Circuito RLC em paralelo - gráfico senoidal................................................................................. 155 Figura 188 -  Circuito RLC em paralelo - representação fasorial..................................................................... 155 Figura 189 -  Circuito RLC em paralelo - gráfico senoidal 1.............................................................................. 156

Figura 190 -  Circuito RLC em paralelo - representação fasorial 1................................................................. 156 Figura 191 -  Circuito RLC em paralelo - representação fasorial 2................................................................. 156 Figura 192 -  Circuito RLC em paralelo - circuito.................................................................................................. 156 Figura 193 -  Circuito RLC em paralelo - circuito 1............................................................................................... 157 Figura 194 -  Determinação gráfica da frequência de ressonância............................................................... 157 Figura 195 -  Representação fasorial da correntes na ressonância............................................................... 158 Figura 196 -  Ressonância - circuito.......................................................................................................................... 159 Figura 197 -  Imã.............................................................................................................................................................. 163 Figura 198 -  Material ferromagnético..................................................................................................................... 164 Figura 199 -  Material paramagnético..................................................................................................................... 164 Figura 200 -  Imã 2.......................................................................................................................................................... 164 Figura 201 -  Imã 3.......................................................................................................................................................... 164 Figura 202 -  Divisão de Imã........................................................................................................................................ 164 Figura 203 -  Propriedades dos imãs........................................................................................................................ 165 Figura 204 -  Linhas de força representando o campo magnético............................................................... 165 Figura 205 -  Experiência.............................................................................................................................................. 165 Figura 206 -  Imã 4.......................................................................................................................................................... 165 Figura 207 -  Circuito não-energizado..................................................................................................................... 166 Figura 208 -  Circuito energizado.............................................................................................................................. 166 Figura 209 -  Limalhas de ferro distribuídas aleatoriamente .......................................................................... 166 Figura 210 -  Circuito energizado com linhas de indução do campo magnético.................................... 167 Figura 211 -  Regra da mão direita............................................................................................................................ 167 Figura 212 -  Atração...................................................................................................................................................... 167 Figura 213 -  Repulsão................................................................................................................................................... 168 Figura 214 -  Campo eletromagnético em espira................................................................................................ 168 Figura 215 -  Direção campo eletromagnético em espira................................................................................ 169 Figura 216 -  Campo eletromagnético em espira 1............................................................................................ 169 Figura 217 -  Carretel...................................................................................................................................................... 170 Figura 218 -  Bobina sem núcleo de ferro.............................................................................................................. 170 Figura 219 -  Bobina com núcleo de ferro.............................................................................................................. 170 Figura 220 -  Espiral da bobina................................................................................................................................... 170 Figura 221 -  Espiral da bobina 1............................................................................................................................... 170 Figura 222 -  Representação da regra da mão direita........................................................................................ 171 Figura 223 -  Representação da regra da mão direita 1..................................................................................... 171 Figura 224 -  Eletroimã.................................................................................................................................................. 172 Figura 225 -  Eletroimã 1............................................................................................................................................... 172 Figura 226 -  Circuito Magnético............................................................................................................................... 172 Figura 227 -  Entreferro................................................................................................................................................. 173 Figura 228 -  Entreferro 1.............................................................................................................................................. 173 Figura 229 -  Tipos de núcleo...................................................................................................................................... 175 Figura 230 -  Forma de onda....................................................................................................................................... 175 Figura 231 -  Transformador com mais de uma bobina.................................................................................... 175 Figura 232 -  Derivação central.................................................................................................................................. 175 Figura 233 -  Transformador trifásico....................................................................................................................... 176 Figura 234 -  Autotransformador trifásico.............................................................................................................. 176

Quadro 1 - Fontes de energia geradoras de força eletromotriz .......................................................................73 Quadro 2 - Observação da malha ABEFA ..................................................................................................................95 Quadro 3 - Observação da malha BCDEB..................................................................................................................96 Tabela 1: Técnico em Automação Industrial.............................................................................................................19 Tabela 2: Nomenclatura das casas decimais.............................................................................................................29 Tabela 3: Múltiplos e submúltiplos do sistema métrico.......................................................................................32 Tabela 4: Prefixos de conversões..................................................................................................................................33 Tabela 5: Dígitos hexadecimais.....................................................................................................................................36 Tabela 6: Resistividade dos principais tipos de condutores...............................................................................73 Tabela 7: Força eletromotriz gerada por diferentes eletrodos...........................................................................74 Tabela 8: Relação dos resultados adquiridos........................................................................................................ 100 Tabela 9: Principais tipos de capacitores................................................................................................................ 140

Lista de Abreviaturas ABNT: Associação Brasileira de Normas Técnicas. IHM: Interface homem máquina. ANEEL: Agencia Nacional de Energia Elétrica. CLP: Controlador lógico programável. MVA: Mega Volt Amper. Y: Estrela. Δ: Triângulo. PVI: Parcela variável por indisponibilidade. VE: Tensão de entrada. VS: Tensão de saída. FCA: Fator de correção de agrupamento. FCT: Fator de correção de temperatura. RFF: Relé falta de fase. TC: Transformador de corrente. S: Potência aparente. PE: Proteção equipotencial NBR: Norma Brasileira Regulamentadora. Nº: Número. NA: Normalmente Aberto NF: Normalmente Fechado A/D: Analógico para digital Term.: Termomagnético Q.T: Queda de tensão IEC: International Electrotechnical Commission (Comissão Eletrotécnica Internacional). CC ou DC: Corrente contínua I: Entrada analógica IRR: Receptor Infravermelho (Infrared Receiver) IRT: Transmissor Infravermelho (Infrared Transmiter) LED: Diodo emissor de luz (Ligth Emmiting Diode)

Q: Saída à relé V: volts - Unidade de medida de tensão Ω: ohms - Unidade de medida de resistência elétrica BCD: Código binário decimal CI: Circuito integrado GND: Ponto comum ou terra MOS: Metal oxide semiconductor A: ampère Ca: Corrente alternada Cc: Corrente contínua ℓ: Litro RPM- Rotações por minuto V: volt W: watt Ladder: Linguagem de contatos elétricos R: Resistor Vs/Vo: Tensão de saída Ve/Vi: Tensão de entrada

Sumário 1  Introdução.......................................................................................................................................................................19 2  Conceitos..........................................................................................................................................................................21 2.1 Potência de base dez..................................................................................................................................21 2.1.1 Representando quantidades numéricas com potência de dez................................22 2.1.2 Operações aritméticas com potências de dez.................................................................24 2.2 Números fracionários e decimais...........................................................................................................25 2.2.1 Números fracionários...............................................................................................................25 2.2.2 Números decimais.....................................................................................................................29 2.3 Múltiplos e submúltiplos..........................................................................................................................32 2.3.1 Características do sistema métrico decimal.....................................................................32 2.3.2 Prefixos métricos........................................................................................................................32 2.4 Conversão de base numérica..................................................................................................................34 2.4.1 Sistema de numeração binário.............................................................................................35 2.4.2 Conversão binário decimal.....................................................................................................35 2.4.3 Conversão decimal binário.....................................................................................................36 2.4.4 Sistema de numeração hexadecimal..................................................................................36 2.4.5 Conversão de hexadecimal para decimal.........................................................................37 2.4.6 Conversão de decimal para hexadecimal.........................................................................37 2.5 Sistema linear................................................................................................................................................37 2.5.1 Classificação dos sistemas lineares......................................................................................38 2.5.2 Equação linear.............................................................................................................................38 2.5.3 Sistema linear com solução por matrizes..........................................................................39 2.6 Funções de 1º grau, 2º grau, exponencial, logarítmica e trigonométricas.............................41 2.6.1 Função de 1º grau......................................................................................................................41 2.6.2 Função de 2º grau......................................................................................................................43 2.6.3 Função exponencial..................................................................................................................45 2.6.4 Propriedades de potenciação...............................................................................................46 2.6.5 Equações exponenciais...........................................................................................................46 2.6.6 Função logarítmica....................................................................................................................46 2.6.7 Trigonometria básica................................................................................................................49 2.7 Representação gráfica de funções.........................................................................................................51 2.7.1 Função seno.................................................................................................................................51 2.7.2 Função cosseno..........................................................................................................................52 2.7.3 Função tangente........................................................................................................................53 2.8 Relações trigonométricas.........................................................................................................................55 2.8.1 Teorema de Pitágoras...............................................................................................................55 2.8.2 Relações trigonométricas de ângulos................................................................................56

3  Conceitos de eletricidade básica.............................................................................................................................59 3.1 Eletrostática...................................................................................................................................................59 3.1.1 Carga elétrica...............................................................................................................................61 3.1.2 Princípios de eletrostática.......................................................................................................63 3.1.3 Força elétrica – A lei de Coulomb........................................................................................67 3.2 Grandezas elétricas.....................................................................................................................................68 3.2.1 Tensão elétrica............................................................................................................................68 3.2.2 Corrente elétrica.........................................................................................................................70 3.2.3 Resistência elétrica....................................................................................................................71 3.3 Fontes de energia........................................................................................................................................73 3.4 Potência e energia elétrica.......................................................................................................................75 3.5 Instrumentos de medidas.........................................................................................................................77 3.5.1 Classificação dos instrumentos de medidas elétricas..................................................77 3.5.2 Medição de corrente.................................................................................................................77 3.5.3 Medição de tensão....................................................................................................................78 3.5.4 Medição da resistência.............................................................................................................79 3.5.5 Medição por meio de multímetro digital..........................................................................80 3.5.6 Osciloscópio.................................................................................................................................82 4  Lei de Ohm e Kirchhoff................................................................................................................................................87 4.1 Lei de Ohm.....................................................................................................................................................87 4.2 Associação dos resistores..........................................................................................................................89 4.3 Leis de Kirchhoff...........................................................................................................................................91 4.3.1 Aplicação das leis de Kirchhoff para a determinação de intensidades de correntes e tensões em redes elétricas........................................................................................93 5  Circuitos de corrente contínua.............................................................................................................................. 103 5.1 Circuitos série de corrente contínua.................................................................................................. 103 5.1.1 Cálculo da tensão na associação em série..................................................................... 103 5.1.2 Cálculo da resistência equivalente de associação em série.................................... 104 5.2 Circuito paralelo de corrente contínua............................................................................................. 106 5.2.1 Resistência equivalente de associação paralela.......................................................... 107 5.2.2 Associação paralela de resistores de mesmo valor..................................................... 108 5.2.3 Associação paralela de dois resistores ........................................................................... 108 5.2.4 Divisores de tensão e corrente........................................................................................... 109 5.2.5 Divisor de corrente................................................................................................................. 109 5.3 Circuito misto............................................................................................................................................. 110 5.4 Teorema da superposição...................................................................................................................... 112 5.5 Teorema de Thévenin.............................................................................................................................. 115 5.6 Teorema de Norton.................................................................................................................................. 117 5.7 Circuitos corrente alternada................................................................................................................. 120 5.7.1 Tensão e corrente alternada................................................................................................ 121 5.7.2 Circuito resistivo puro........................................................................................................... 124

5.7.3 Circuito indutivo puro........................................................................................................... 125 5.7.4 Circuito capacitivo puro....................................................................................................... 126 5.7.5 Ressonância.............................................................................................................................. 128 6  Indutores e capacitores............................................................................................................................................ 131 6.1 Indutores...................................................................................................................................................... 131 6.1.1 Indutância (L)............................................................................................................................ 132 6.1.2 Associação de indutores....................................................................................................... 133 6.2 Capacitores.................................................................................................................................................. 136 6.2.1 Capacitância ............................................................................................................................ 137 6.2.2 Associação de capacitores................................................................................................... 137 6.2.3 Reatância capacitiva (XC)..................................................................................................... 139 6.2.4 Principais tipos de capacitores........................................................................................... 140 7  Circuitos RLC em corrente alternada................................................................................................................... 145 7.1 Circuitos RLC em CA................................................................................................................................. 145 7.1.1 Associação RLC em série...................................................................................................... 145 7.1.2 Resolução de circuitos RLC.................................................................................................. 149 7.1.3 Impedância no circuito RLC em série............................................................................... 151 7.1.4 Circuito RLC em paralelo...................................................................................................... 154 7.1.5 Circuito RLC série na ressonância...................................................................................... 157 8  Magnetismo, eletromagnetismo e transformadores.................................................................................... 163 8.1 Magnetismo e eletromagnetismo...................................................................................................... 163 8.1.1 Campo magnético.................................................................................................................. 165 8.1.2 Eletromagnetismo.................................................................................................................. 166 8.1.3 Campo eletromagnético em espiras................................................................................ 168 8.1.4 Força de atração eletromagnética em eletroimãs...................................................... 171 8.2 Transformadores....................................................................................................................................... 173 8.2.1 Transformador monofásico................................................................................................. 173 8.2.2 Transformadores com mais de uma bobina no primário e no secundário........ 175 8.2.3 Transformador trifásico......................................................................................................... 176 8.2.4 Autotransformador trifásico............................................................................................... 176 Referências......................................................................................................................................................................... 179 Minicurrículo dos Autores............................................................................................................................................ 180 Índice................................................................................................................................................................................... 181

Introdução

1 Nesta unidade curricular conheceremos os principais assuntos que contribuem para o desenvolvimento das competências de um técnico em Automação Industrial, que proporcionará a aquisição de fundamentos técnicos e científicos necessários à Automação Industrial, bem como capacidades sociais, organizativas e metodológicas adequadas a diferentes situações profissionais. Esta unidade curricular“Fundamentos da Eletrotécnica”permite aos alunos, por meio dos fundamentos de eletroeletrônica aplicáveis aos sistemas de controle e automação, a construção de uma base consistente que possibilite o desenvolvimento das competências profissionais do Técnico em Automação Industrial. Considera o desenvolvimento de fundamentos matemáticos, elétricos e eletrônicos. (DCN-DN) Ainda nesta unidade curricular iremos reconhecer fundamentos de eletricidade aplicáveis aos sistemas de controle e automação. É importante identificar os tipos de instrumentos de teste. Aplicar fundamentos de eletricidade na medição de grandezas elétricas. E ainda, interpretar representações gráficas aplicáveis aos sistemas automatizados de manufatura. A seguir são descritos na matriz curricular os módulos e as unidades curriculares previstos e as respectivas cargas horárias. Tabela 1: Técnico em Automação Industrial MóDuLOS

DENOMINAÇÃO

uNIDADES CuRRICuLARES

CARgA CARgA HORÁRIA HORÁRIA MóDuLO

Módulo Básico

Fundamentos Técnicos e

• Fundamentos da Comunicação

100h

Científicos

• Fundamentos da Eletrotécnica

140h

• Fundamentos da Mecânica

100h 160 h

Módulo

Fundamentos Técnicos e

• Acionamento de Dispositivos

Introdutório

Científicos

Atuadores

Específico I

• Processamento de Sinais

180 h

Manutenção e Implemen-

• Gestão da Manutenção

34h

tação de Equipamentos e

• Implementação de Equipamentos 136h

Dispositivos

Dispositivos

340h

340h

340 h

• Instrumentação e Controle

Específico II

• Manutenção de Equipamentos e

102h

Dispositivos

68h

Desenvolvimento de

• Desenvolvimento de Sistemas de

100h

Sistemas de Controle e

Controle

Automação

• Sistemas Lógicos Programáveis

160h

• Técnicas de Controle

80h

Fonte: SENAI

340h

Conceitos

2 Para iniciarmos os estudos de Fundamentos de Eletrotécnica há a necessidade da compreensão de alguns conhecimentos relativos aos fundamentos técnicos e científicos, são eles: • Potência de base dez; • Números decimais e fracionários; • Múltiplos e submúltiplos; • Conversão de base numérica; • Resolução de sistemas lineares; • Funções de 10 grau, 20 grau, exponencial, logarítmica e trigonométricas; • Representação gráfica de funções; • Relações trigonométricas.

2.1 pOTêNCIA DE bASE DEz Potência de base dez é uma forma prática de representar e utilizar algebricamente quantidades numéricas e também converter unidades de medidas maiores em unidades de medidas menores e vice-versa. A potência de base dez possui algumas propriedades que são utilizadas nestas conversões, são elas: Propriedades: • Multiplicação de potências = conserva a base e soma os expoentes. 10m x 10n = 10(m+n) • Divisão de potências = conserva a base e diminui os expoentes. 10m : 10n = 10m / 10n = 10(m-n) • Potência de potências = conserva a base e multiplica os expoentes. (10m)n = 10(m.n)

22

AUTOMAÇÃO INDUSTRIAL

Veja alguns exemplos destas propriedades: 102 x 103 = 10(2+3) = 105 103 : 102 = 10(3-2) = 101 (102)3 = 10(2x3) = 106 Compreenda, ainda, as seguintes propriedades: • 100 = 1 • 101 = 10 • 10-1 = 1/10 • 10-n = (10-1)n = 1 / 10n • 10n =

10 x 10 x 10 x 10....... x 10 nº de fatores

Sendo n> 0: O “n” indica quantas vezes multiplicamos um número pela base dez. Assim: 1x100 =1x1=1 1x101 =1x10=10 1x102 =1x10 x 10=100 2x102 =2x10x10=200 Sendo n

Deslocamos a vírgula 19 vezes para a direita

1,6

Agora, devemos multiplicar o numeral obtido (1,6) por 10, 10 elevado a uma potência negativa igual ao número de casas deslocadas (19). Fica, portanto, 1,6x10-19. Considere, agora, a distância percorrida pela luz durante um ano. Essa grandeza é denominada 1 ano-luz e equivale à distância de 94600000000000 metros. Para representar essa distância em metros com potência de dez, devemos deslocar a casa decimal, ou seja, a vírgula para a esquerda, até obter uma casa de inteiros. A seguir, multiplicamos o número obtido por 10, elevado a uma potência igual ao número de casas deslocadas. Assim: 9

4

6

0

0

0

0

0

0

0

0

0

0

0

9,

4,

6,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0

13

12

11

10

9

8

7

6

5

4

3

2

1

> 9,46

Deslocamos a vírgula 13 vezes para a esquerda

Agora, multiplicamos o número obtido por 10, elevado a uma potência igual ao número de casas deslocadas. Fica, portanto, a distância percorrida pela luz durante um ano, igual a 9,46x1013 metros. Para converter um número expresso como uma potência positiva de 10 num número decimal, deslocamos a casa decimal para a direita tantas casas ou posições quanto o valor do expoente. Exemplos: 3,14x102 = 314 234,16x106 = 234160000

23

AUTOMAÇÃO INDUSTRIAL

Para converter um número expresso como uma potência negativa de 10 num número decimal, deslocamos a vírgula para a esquerda tantas casas quanto o valor do expoente. Exemplos: 567,67x10-2 = 5,6767 345,8x10-3 = 0,3458

2.1.2 Operações aritméticas com potências de dez • Adição e subtração: Para efetuar a adição de dois ou mais numerais expressos em potência de 10, somamos ou subtraímos os numerais conservando o expoente, quando estes forem iguais, conforme demonstrado no exemplo a seguir. Exemplos: 5x103 +15x103 = (5+15)x103 = 20x103 5x103 - 15x103 = (5-15)x103 = -10x103 Porém, quando os expoentes não são iguais, devemos ajustá-los ao mesmo expoente antes de efetuar a adição, conforme é demonstrado no exemplo a seguir. Exemplo: >

>

>

6x103 + 9x102 -> 60x102 + 9x102 = (60+9)x102 = 69x102 >

24

Observe que 6x103 = 60x102. Quando diminuímos em uma vez o expoente devemos aumentar uma casa decimal. • Multiplicação: Para efetuar a multiplicação de dois ou mais numerais expressos em potência de 10, multiplicamos os coeficientes e somamos os expoentes. Exemplo: 8x102 x 4x105 = (8x4)(2+5) = 32x107 • Divisão: Para efetuar a divisão de dois ou mais numerais expressos em potência de 10, dividimos os coeficientes e subtraímos os expoentes. Exemplo: 8x105 ÷ 4x102 = (8÷4)(5-2) = 2x103

2 CONCEITOS

SAIBA MAIS

A divisão de dois ou mais numerais expressos em potência de 10 resolveram, por exemplo, o problema de repartir grandes quantidades de terras em pedaços menores.

Vamos compreender melhor a importância do uso destes números.

2.2 NÚMEROS FRACIONáRIOS E DECIMAIS Por muito tempo o ser humano utilizou apenas os números inteiros; porém, com o passar do tempo e a necessidade de efetuar medições, foi necessária a criação de outros tipos de números, surgindo, então, os números fracionários ou racionais. Eles resolveram o problema, de por exemplo, repartir grandes quantidades de terras em pedaços menores. Vamos compreender melhor a importância do uso destes números.

2.2.1 númeRos FRacionáRios Os numerais fracionários surgiram para facilitar a representação e a operação com os números não-inteiros utilizados no cotidiano. Quando dividimos a unidade (inteiro) em partes iguais e tomamos uma ou mais partes, estamos tomando uma fração da unidade. Fazendo uma analogia com uma pizza, ela inteira é a unidade, e cada pedaço cortado dela é uma fração da pizza.

Figura 1 - Pizza Fonte: Autor

As frações são representadas pelo conjunto dos números racionais, representado pela letra Q. Definimos os números racionais como: a a Z; b Z* } Q= { b Dos resultados acima temos, então, que: Q vem de “quotient” e significa quociente. Z representa o conjunto dos números inteiros Z* representa o conjunto dos números inteiros excluindo o zero.

25

AUTOMAÇÃO INDUSTRIAL

No exemplo da pizza, dividimos a unidade em seis partes iguais e tomamos uma parte. O pedaço da pizza que tomamos é representado pela fração: a/b , onde: “a” é o “numerador” e “b” é o denominador. Numa fração, lemos em primeiro lugar o numerador e em segundo lugar o denominador. Quando o denominador é um número natural entre 2 e 9, devemos ler como: 2 = meio; 3 = terço; 4 = quarto; 5= quinto; 6 = sexto; 7 = sétimo; 8 = oitavo e 9 = nono. Como exemplo temos: 1/6, neste caso lemos: “um sexto”. Porém quando o denominador é maior do que 10, lemos o numeral, acompanhado da palavra “avos”. Retomando o exemplo da pizza se fosse tamanho família, ela estaria dividida em 12 pedaços, ou seja, cada pedaço desta pizza seria representado como 1/12 e sendo assim, lemos “um doze avos”.

1 2

V

• Frações próprias: são as frações menores que a unidade.

Numerador

V

26

Denominador

Nas frações próprias, o numerador é menor que o denominador.

Figura 2 -  Frações prórias Fonte: Autor

• Frações impróprias: são frações maiores que a unidade.

7 4

Nas frações impróprias, o numerador é maior que o denominador.

Figura 3 -  Frações imprórias Fonte: Autor

• Frações aparentes: são frações em que o numerador é sempre múltiplo do denominador.

12 4

As frações aparentes representam inteiros.

Figura 4 -  Frações aparentes Fonte: Autor

• Frações equivalentes: são frações que representam o mesmo valor.

Figura 5 -  Frações equivalentes Fonte: Autor

Para obtermos uma fração equivalente a outra, basta multiplicar ou dividir o numerador e o denominador pelo mesmo número.

2 CONCEITOS

• Números mistos: são números que representam uma parte inteira e mais uma fração.

=

Figura 6 -  Números mistos Fonte: Autor

• Extração de inteiros: é a representação de uma fração imprópria por um 3 , representá-la com um número misto número misto. Sendo a fração imprópria 4 significa evidenciar a parte inteira e a parte fracionária. Para tanto, devemos dividir o numerador pelo denominador. O quociente será a parte inteira. O resto será o numerador e conservamos o mesmo denominador. Assim: 3 1 quociente

1 inteiro , sobra 1

Dai: inteiro

V

4 3 1 resto

1 1 3

sobra denominador

Obtendo uma fração imprópria a partir de um número misto: Multiplicamos a parte inteira pelo denominador e adicionamos o numerador ao produto obtido, mantendo o denominador. Considere agora o número misto 1 1 3 1

parte inteira

x

3

+

denominador

1

numerador

=

4

(numerador da fração)

Executando: Dai:

1 1 3

->

4 3

Redução de frações ao mesmo denominador Para reduzir duas os mais frações ao mesmo denominador, devemos efetuar três procedimentos: 1º Calcular o m.m.c. (mínimo múltiplo comum). 2º Dividir o m.m.c. pelos denominadores das frações dadas.

27

28

AUTOMAÇÃO INDUSTRIAL

3º Multiplicar o quociente encontrado em cada divisão pelo numerador da respectiva fração. O produto encontrado é o novo numerador. Tendo as frações: 3 ; 1 ; 5 4 2 6 1º Determinação do m.m.c: 4

2

6

2

2

1

3

2

1

1

3

3

1

1

1

12

2º Divisão do mmc pelos respectivos denominadores: 12 ÷ 4 = 3 12 ÷ 2 = 6 12 ÷ 6 = 2 3º Multiplicação dos respectivos numeradores pelo quociente encontrado: 3x3 6x1 2x5 Ficando, então: 9 6 10 12 12 12 12 12 12

Operação com frações • Adição e subtração Adição e subtração com o mesmo denominador: Adicionamos ou subtraímos os numeradores e mantemos o denominador. 7 5 2 Assim: 7 + 5 = 12 8 ou 8 - 8 = 8 8 8 Adição e subtração de frações com denominadores diferentes: reduzimos as frações ao mesmo numerador calculando o mmc e procedemos, agora, à soma ou à subtração de frações com o mesmo denominador. Assim: 3 + 2 = 15 + 8 = 23 ou 3 - 2 = 15 - 8 = 7 5 20 20 20 4 5 20 20 20 4 • Multiplicação: A multiplicação de frações é efetuada multiplicando os numeradores entre si e os denominadores entre si. Assim: 5 x 7 = 35 4 24 6 Numa multiplicação de frações, costumamos simplificar os fatores comuns ao numerador e ao denominador antes de efetuá-la. Exemplo: Simplificado >

4 x 5 -> 4 x 5 -> 4 x 1 = 4 = 5 8 5 8 1 8 8

1 2

2 CONCEITOS

• Divisão de frações: A divisão de duas frações é efetuada multiplicando a primeira fração pela fração inversa da segunda. Alguns procedimentos devem ser observados: 1º Transformar os números mistos em frações impróprias, se for o caso. 2º Transformar os números inteiros em frações aparentes, se for o caso. 3º Simplificar. 4º Multiplicar os numeradores e os denominadores entre si. 5º Extrair os inteiros. Exemplo:

4 7

3 = 4 x 5 = 20 5 7 3 21

3 4

5 = 3 x 7 = 21 = 1 1 7 4 5 20 20

2.2.2 Números decimais Os numerais decimais surgiram da necessidade de efetuar operações aritméticas por meio de números inteiros sem o uso de frações. O método foi desenvolvido por Simon Stevin (1548-1620), matemático e engenheiro holandês. Os números decimais têm origem nas frações decimais. Como por exemplo: A fração 1 dá origem ao numeral decimal 0,5. 2

Casa decimal: Casa decimal é a posição que um algarismo (signo gráfico que representa um número) ocupa após a vírgula. A vírgula separa a parte inteira da parte fracionária do número. Tabela 2: Nomenclatura das casas decimais VALOR

NOME

CASAS DECIMAIS

1x10

décimo

1

1x10

centésimo

2

1x10-3

milésimo

3

1x10

décimo de milésimo

4

1x10

centésimo de milésimo

5

1x10-6

milionésimo

6

1x10

décimo de milionésimo

7

1x10

centésimo de milionésimo

8

1x10-9

bilionésimo

9

-1 -2

-4 -5

-7 -8

29

30

AUTOMAÇÃO INDUSTRIAL

continuação Tabela 2: Nomenclatura das casas decimais VALOR

NOME

CASAS DECIMAIS

1x10

décimo de bilionésimo

10

1x10-11

centésimo de bilionésimo

11

1x10

trilionésimo

12

1x10

décimo de trilionésimo

13

1x10-14

centésimo de trilionésimo

14

1x10

quatrilhonésimo

15

1x10

décimo de quatrilhonésimo

16

1x10-17

centésimo de quatrilhonésimo

17

1x10

quintilhonésimo

18

1x10

décimo de quintilhonésimo

19

1x10

centésimo de quintilhonésimo

20

-10

-12 -13

-15 -16

-18 -19 -20

Fonte: Autor

Decimais Infinitos Também chamados de dízima periódica, apresentam repetição de algarísmos. Exemplo: 2,222222222222... Representação: inteiros

fracionados

Classe dos milhões Classe dos milhares Classe das unidades c

d

c: centena

u

c

d

u

d: dezena

c

d

u

décimo centésimos milésimos

u: unidade

Figura 7 -  Decimais infinitos inteiros Fonte: Autor

Para separar as classes dos inteiros usamos o ponto, e para separar a parte inteira da parte fracionária usamos a vígula.

Exemplo:

Figura 8 -  Decimais infinitos fracionários Fonte: Autor

2 CONCEITOS

Operações com números decimais • Adição e subtração Para adicionar números decimais, devemos posicionar o número inteiro abaixo de número inteiro, vírgula abaixo de vírgula e casa decimal abaixo de casa decimal. Exemplos: Somando os números: 3, 456 3, 456 P = 500W • A corrente solicitada por um motor de corrente contínua é de 75A. A tensão nos terminais do motor é 230 Volts. Qual é a potência de entrada do motor em KW? P=VxI P = 230V x 75A -> P = 17,25KW • Um gerador de corrente contínua apresenta os seguintes dados entre as características: 150KW e 220V. Qual é a sua corrente nominal? P=VxI I= P/V I = 150.000W / 220V -> I = 681,81A • Um chuveiro consome 30A para produzir uma potência de 6.500W. Com estes dados anteriores, qual é a tensão necessária para esta potência? P=VxI V=P/I V = 6.500W / 30A -> V = 216,67V

3 Conceitos de Eletricidade Básica

3.5 Instrumentos de medidas Os instrumentos de medidas elétricas são aparelhos que fornecem um valor determinado da grandeza elétrica com base em efeitos físicos causados por essa grandeza. Vários são os efeitos aplicáveis, tais como: forças eletromagnéticas, forças eletrostáticas, efeito Joule, efeito termoelétrico, efeito da temperatura na resistência etc.

3.5.1 Classificação dos instrumentos de medidas elétricas Os instrumentos de medidas elétricas são classificados quanto ao princípio de funcionamento, ao tipo de corrente elétrica e à grandeza a ser medida. Quanto ao princípio de funcionamento: são os intrumentos eletromagnéticos, eletrodinâmicos, eletroquímicos e dinâmicos. Quanto à corrente: são os instrumentos de corrente contínua – CC e instrumentos de corrente alternada - CA. E quanto à grandeza a ser medida: são amperímetros, voltímetros e ohmímetros.

3.5.2 Medição de corrente Todos os instrumentos destinados a medir correntes elétricas atualmente utilizados baseiam seu funcionamento na ação magnética da corrente. Medidores de corrente ou amperímetros são ligados em série com o circuito de corrente, apresentando uma pequena resistência interna. Para medir a corrente elétrica, ligamos ao instrumento um resistor em paralelo, designado por derivador (antigamente shunt), conforme demonstrado na figura 69:

Figura 69 -  Determinação da corrente elétrica Fonte: Autor

Caso o amperímetro seja utilizado para uma faixa de medição n vezes superior à existente (fator de amplificação n), então uma parte da corrente passará pelo amperímetro e (n-1) partes passarão pelo derivador.

77

78

AUTOMAÇÃO INDUSTRIAL

Ri n-1 Onde: Rn =

Rn = resistência Ri = resistência do instrumento n =fator de amplificação Veja o exemplo a seguir: A faixa de medição de amperímetro deve ser ampliada de 100μA para 1A. A resistência interna é de 2Ω. Qual é o tamanho do derivador Rn? n = 1 = 10, Rn = Ri = 2 = 2 = 0,22 ohms 0,1 n-1 10-1 9 Para a medição de correntes alternadas elevadas são usados transformadores de corrente.

3.5.3 Medição de tensão Medidores de tensão ou voltímetros são medidores de corrente com elevada resistência interna. Quando da aplicação de uma tensão, circula nos aparelhos uma determinada corrente, que provoca a deflexão do ponteiro. Devido à resistência interna inalterável do instrumento, a escala pode ser ajustada em volts. Voltímetros são ligados em paralelo com o consumidor ou rede.

MEDIÇÃO DE TENSÃO MAIS ELEVADA Para a medição de tensão mais elevada utilizamos um resistor de pré-ligação. Voltímetro com resistor de pré-ligação

Figura 70 -  Determinação da tensão elétrica Fonte: Autor

Se a tensão a ser medida é n vezes superior à faixa de medição existente, então o valor de tensão a ser consumido pelo resistor é de (n - 1) volts.

3 Conceitos de Eletricidade Básica

Rp = Ri x (n - 1) Onde: RP = resistor de pré-ligação Ri = resistência interna do instrumento Veja o exemplo a seguir: A faixa de medição de um voltímetro de 12 volts deve ser ampliada para 60 volts. A resistência interna do instrumento é de 2000 ohms. Qual o valor de Rp? Fator n = 60 = 5; Rp = Ri (n-1) = 2000 (5-1) = 8000 ohms 12 Para a medição de tensões alternadas elevadas empregamos transformadores de potencial.

3.5.4 Medição da resistência A determinação da resistência de uma carga pode ser feita por medição indireta. Para tanto, o elemento resistivo é ligado a uma tensão, medindo-se sua queda de tensão e a absorção da corrente. O valor da resistência é obtido através da aplicação da Lei de Ohm: R= V/I Onde:

R é a resistência dada em ohms,



V é a tensão dada em volts, e



I é a intensidade de corrente elétrica dada em ampères.

Nas medições de grande precisão devem ser levadas em consideração a resistência interna e a corrente absorvida pelo instrumento de medição.

Ligações para a determinação indireta de resistências

Figura 71 -  Determinação da resistência elétrica Fonte: Autor

79

80

AUTOMAÇÃO INDUSTRIAL

3.5.5 medição poR meio de multÍmetRo digital O multímetro digital é uma ferramenta utilizada para medir várias grandezas, como: • resistência elétrica; • tensão elétrica contínua (DC) ou alternada (AC); • corrente elétrica contínua (DC) ou alternada (AC); Dependendo do modelo do multímetro podemos ter medições para capacitância, frequência de sinais alternados, tipos de transistores, temperatura etc.

SAIBA MAIS

Veja a seguir como proceder para utilizar o instrumento na medição de resistência, tensão e corrente. Quando a medição é de resistência, o multímetro estará na função ohmímetro; quando a medição for de tensão, a função será voltímetro; e quando for a medição de corrente elétrica, a função será a de amperímetro.

Figura 72 - Multímetro Fonte: Autor

multímetro Para medir a resistência elétrica com o ohmímetro proceda da seguinte maneira: 1º - Conecte a ponta de prova vermelha ao terminal V Ω Hz e a ponta preta ao comum do aparelho marcado como COM. 2º - Posicione a chave rotativa na maior escala de valores e ligue o multímetro, o símbolo MΩ aparecerá no display. 3º - Confirmando o símbolo, conecte as pontas de prova aos terminais do componente a ser medido e faça a leitura, ajustando a escala para melhor visualização.

FIQUE ALERTA

Evite tocar nos terminais durante a medição, pois isto poderá afetar as medidas.

3 CONCEITOS DE ELETRICIDADE báSICA

Para medir a tensão elétrica com o voltímetro, proceda da seguinte maneira; sem esquecer de que:

JAMAIS poderá tocar nos terminais da ponteira do aparelho durante a medição, pois há o risco de acidente!

1º - Conecte a ponta de prova vermelha ao terminal V Ω Hz e a ponta preta ao comum do aparelho marcado como COM. 2º - Posicione a chave rotativa na maior escala de valores de tensão e ligue o multímetro. O símbolo V aparecerá no display. 3º - Confirmando o símbolo, conecte as pontas de prova aos pontos a serem medidos e faça a leitura, ajustando a escala para melhor visualização.

FIQUE ALERTA

Verificar também o tipo de tensão selecionado na escala; ou seja, se estamos medindo tensões em AC ou DC. Existem aparelhos que informam no display e um botão apenas para trocar; em outros casos, a escolha é automática. Verifique antes o manual de seu aparelho.

Para medir a corrente elétrica com o amperímetro, proceda da seguinte maneira, mas não se esqueça:

JAMAIS toque nos terminais da ponteira durante a medição, pois há o risco de acidente! E verifique no aparelho o novo ponto terminal para a ponta de prova vermelha.

1º - Conecte a ponta de prova vermelha ao terminal A. Normalmente nos aparelhos este terminal fica no lado oposto aos terminais de tensão e resistência e conecte a ponta preta contínua ao comum do aparelho marcado como COM. 2º - Posicione a chave rotativa na maior escala de valores de corrente e ligue o multímetro. O símbolo A aparecerá no display. 3º - Confirmando o símbolo, conecte as pontas de prova aos pontos a serem medidos e faça a leitura, ajustando a escala para melhor visualização.

FIQUE ALERTA

Verificar também o tipo de corrente selecionada na escala; ou seja, se estamos medindo AC ou DC. Existem aparelhos que informam no display e um botão apenas para trocar; em outros casos, a escolha é Automática. Verifique antes o manual do seu aparelho.

81

82

AUTOMAÇÃO INDUSTRIAL

CASOS E RELATOS A necessidade criou a norma Em nosso dia a dia de trabalho, constatamos que há um grande número de técnicos que apresentam problemas na hora de executar as medições de energia, principalmente, em relação a normas de segurança. Como sabemos, a energia elétrica só é verificada por meio de medições corretas em seus meios de transmissão (fios e cabos). Contudo, observamos que em várias empresas os técnicos que trabalham em manutenção elétrica têm por norma verificar a constatação de energia somente após solicitar o desligamento. Isso aconteceu em uma empresa de grande porte, localizada no Distrito Industrial de Cachoeirinha, cidade metropolitana de Porto Alegre, que fabricava medidores de energia. Um determinado eletricista dessa empresa precisou realizar um serviço de manutenção e solicitou, por telefone, o desligamento do circuito três ao seu colega. Entretanto, esse colega entendeu que era para desligar o circuito seis. Assim, houve um curto-circuito quando o funcionário cortou os cabos de alimentação. A partir desse caso, a empresa se antecipou a futuros problemas e criou, bem antes da popularização da NR10, a seguinte norma: todos os eletricistas deveriam realizar em suas bancadas de manutenção, com níveis e equipamentos de segurança, testes em seus multímetros para confirmar seu funcionamento. Além disso, quando fosse necessário solicitar um desligamento, o funcionário deveria, antes de fazer a solicitação, realizar um teste para confirmar se existia tensão onde iria trabalhar. Após a solicitação de desligamento, o funcionário deveria confirmar se havia ausência de tensão. Com esse procedimento, houve uma grande redução dos riscos e das causas de acidentes nessa empresa.

3.5.6 osciloscÓpio Outro aparelho de medida utilizado na medição de sinais elétricos é o osciloscópio, uma ferramenta com muitos recursos. Devido a isto, devemos SEMPRE consultar o manual para evitar acidentes e com isso aproveitar todos os seus recursos. A principal função do osciloscópio é a de visualizar a forma de onda que está sendo medida. Com este aparelho, é possível visualizar e medir ondas quadradas, medições realizadas pelos valores selecionados nos botões de cada canal em vertical e horizontal. Os valores selecionados informam o tamanho da escala quadriculada da tela.

3 Conceitos de Eletricidade Básica

Valores verticais são de tensão da forma de onda, e valores horizontais são do tempo usado para a frequência da forma de onda.

Figura 73 -  Osciloscópio Fonte: Autor

Com o osciloscópio podemos também visualizar e medir formas de ondas senoidais, medições realizadas Automaticamente, devido a equipamentos mais modernos, ou seja, digitais, que aumentam os recursos do equipamento, como conexão a computadores para registro, por longo do tempo, das formas de onda e forma mais simples de operação.

Figura 74 -  Osciloscópio 1 Fonte: Autor

Medição de frequência com osciloscópio Para executarmos uma medida de frequência de 1kHz, seguimos o seguinte procedimento, como está explicado a seguir: Para iniciar a medição de frequência com osciloscópio, você deve ligar o gerador e osciloscópio, como está apresentado na figura 75.

Figura 75 -  Conjunto gerador e osciloscópio Fonte: Autor

83

84

AUTOMAÇÃO INDUSTRIAL

Com os aparelhos ligados, regule em 1kHz o gerador, conforme a figura 76.

Figura 76 -  Gerador ajustado para 1kHz Fonte: Autor

Conecte os cabos do gerador e do osciloscópio nos respectivos aparelhos, de acordo com a figura 77.

Figura 77 -  Conexão do osciloscópio com o gerador Fonte: Autor

Calibre o osciloscópio utilizando as escalas de tensão (volts) e de tempo (time). Figura 78.

Figura 78 -  Escalas de tensão e tempo Fonte: Autor

O resultado final será a obtenção de um sinal de fácil visualização e medição, como pode ser visto na figura 79.

3 CONCEITOS DE ELETRICIDADE báSICA

Figura 79 - Sinal medido no osciloscópio de origem no gerador Fonte: Autor

RECApITULANDO Neste capítulo, foram abordados os conceitos de eletricidade que serão aplicados em um sistema de Automação. Vimos os modelos atômicos que subsidiam a existência da carga elétrica por meio da eletrostática. Vimos, também, grandezas elétricas como, corrente elétrica, tensão elétrica e resistência elétrica, bem como suas respectivas unidades de medida e seus múltiplos e submúltiplos. Para podermos mensurar essas grandezas elétricas, estudamos os instrumentos de medidas, voltímetro, amperímetro e ohmímetro, e o procedimento de mensuração por meio de um equipamento que reúne todos esses instrumentos – o multímetro. Finalizando, abordamos os conceitos de energia elétrica e suas formas de conversão. Verificamos que o exemplo mais comum de fonte de energia alternada (CA) é produzido por um equipamento conhecido como gerador ou alternador. Para que se possa visualizar a forma do sinal, proveniente da fonte de energia, utilizamos um equipamento chamado de osciloscópio.

85

Lei de Ohm e Kirchhoff

4 Neste capítulo iremos estudar os seguintes fundamentos técnicos e científicos: • Lei de Ohm; • Associação dos Resistores; • Leis de Kirchhoff.

4.1 LEI DE OhM Existe uma relação direta entre a tensão aplicada e a corrente que circula em um circuito elétrico. Quando aplicamos uma tensão entre os terminais de um resistor, verificamos que a intensidade da corrente que o atravessa depende da tensão nele aplicada. Portanto, determinamos a resistência elétrica de um resistor com a razão entre a tensão nele aplicada e a intensidade da corrente que o atravessa. Veja o enunciado da Lei de Ohm: Nos bipolos lineares, a corrente que os atravessa é diretamente proporcional à tensão aplicada aos seus terminais, resultando na equação a seguir: I=V R onde: R = resistência em ohms (Ω) V = tensão (ddp) em volts (V) I = corrente em ampères (A).

VOCÊ SABIA?

A equação da Lei de Ohm foi formulada em 1827 por Georges Simon Ohm (1787-1.854). Ela estabeleceu as bases da Eletricidade e da Eletrônica. Quando a resistência de um elemento for constante, a razão V/I também será constante. Neste caso, os elementos são considerados bipolos lineares ou bipolos ôhmicos.

88

AUTOMAÇÃO INDUSTRIAL

No entanto, podemos também partir da definição: em um bipolo ôhmico (razão linear entre a tensão e a corrente) a tensão aplicada em seus terminais é diretamente proporcional à intensidade da corrente que o atravessa, resultando, assim, na equação abaixo: V = R. I Podemos calcular a resistência elétrica de um elemento a partir do gráfico tensão (V) x intensidade de corrente elétrica (I), que recebe o nome de característica elétrica. Levantando experimentalmente a tensão em função da corrente para um bipolo ôhmico, temos uma característica linear, conforme mostra o gráfico. A seguir, temos a representação tga = V/ I, onde concluímos que a tangente do ângulo a representa a resistência elétrica do bipolo (fig. 80). Portanto, podemos escrever: tg a = R

Figura 80 -  Representação característica Lei de Ohm Fonte: Autor

Quando o bipolo não obedece à característica linear mostrada acima, trata-se de um bipolo não ôhmico (BNH). Em muitos casos, a não-linearidade dos bipolos não-ôhmicos ocorre em virtude da ação da temperatura, cuja resistência pode aumentar com o aumento da temperatura. Neste caso, o coeficiente térmico positivo ou, ainda, sua resistência pode diminuir com o aumento da temperatura, e teremos coeficiente térmico negativo. Para levantar a representação característica de um bipolo, precisamos medir a intensidade da corrente que o percorre e a tensão nele aplicada, bastando para tal aplicar a fórmula adequada da Lei de Ohm. Observamos a característica linear que foi obtida a partir do circuito experimental da figura 80, constituído por uma fonte variável, onde o bipolo utilizado é um resistor de 100Ω. O gráfico a seguir (figura 81) mostra a curva característica de um bipolo ôhmico.

Figura 81 -  Bipolo ôhmico Fonte: Autor

4 Lei de Ohm e Kirchhoff

Figura 82 -  Bipolo ôhmico 1 Fonte: Autor

Para cada valor de tensão ajustado obtemos uma corrente. Colocados em uma tabela, tais valores permitem o levantamento da variação da tensão e da corrente. Onde temos:

ΔV = ddp = variação da diferença de potencial ΔI = determina a variação da corrente.

4.2 Associação dos resistores Os circuitos elétricos podem apresentar dois ou mais resistores interligados em série, paralelo ou misto (série-paralelo), ou ainda em associações mais complexas. Devemos saber analisar tais circuitos para determinar e prever o efeito de um resistor ou uma combinação de resistores no controle da corrente. Para calcular a resistência total ou equivalente de uma associação em série de resistores, basta somar os resistores que compõem o circuito: • Resistores em série Associar resistores em série significa adicionar resistores. Req=R1+R2+R3+... Onde Req significa resistor equivalente à associação dos resistores. Exemplo: Figura 83 -  Resistores em série Fonte: Autor

Conforme visto no capítulo anterior (prefixos métricos) podemos representar : 6k8 = 6,8kΩ = 6800Ω

89

90

AUTOMAÇÃO INDUSTRIAL

100k = 100kΩ = 100.000Ω 1k = 1kΩ = 1.000Ω Resultado Req = 6.800 + 100.000 + 1.000 = 107.800 ohms; ou 107.800Ω • Resistores em paralelo Para calcular a resistência total ou equivalente de uma associação em paralelo de resistores utilizamos a equação: 1 = 1 + 1 + 1 ... R1 R2 R3 Req Exemplo:

Figura 84 - Resistores em paralelo Fonte: Autor

Resultado 1 = 1 + 1 + 1 5 Req 10 10 1 = 0,1 + 0,1 + 0,2 = Req 1 = 0,4 Req Req = 1 = 2,5Ω 0,4

FIQUE ALERTA

Quando se tratar de apenas dois resistores em paralelo, o resistor equivalente é determinado pelo produto dos dois resistores, dividido pela soma deles. Como exemplo, se tivermos R1 e R2 poderemos utilizar a equação abaixo para determinar o resistor equivalente à associação.

Req = R1 . R2 R1 + R2

Figura 85 - Resistores em paralelo 1 Fonte: Autor

Então: Req = (10 . 10 ) / (10 + 10 ) = ( 100 ) / ( 20 ) = ( 10 ) / ( 2 ) = 5 Ω Na associação de três ou mais resistores é possível determinar o resistor equivalente, associando-os dois a dois, com a finalidade de simplificar as operações de álgebra.

4 LEI DE OhM E KIRChhOFF

Exemplo:

Figura 86 - Resistores em paralelo 2 Fonte: Autor

Podemos então fazer: Req1 = R1 . R2 R1 + R2

e

Req2 = R3 . R4 R3 + R4

Dai: Req = Req1 . Req2 Req1 + Req2 Em uma associação em paralelo de resistores, a resistência total ou equivalente será sempre menor do que o menor valor de resistência ôhmica associada ao circuito. Para “N” resistores iguais associados em paralelo a resistência total ou equivalente será:

SAIBA MAIS

onde:

Req = R N

N é o número de resistores R é a resistência ôhmica

Então, para:

Figura 87 - Resistores em paralelo 3 Fonte: Autor

Podemos fazer: Req = R / N = 10 / 2 = 5 Ω

4.3 LEIS DE KIRChhOFF As Leis de Kirchhoff complementaram a Lei de Claude Pouillet (1790 - 1868) que permite determinar o valor da intensidade da corrente elétrica em circuitos que podem ser reduzidos a uma só malha, demonstrado na figura a seguir. Eles são designados circuitos simples por apresentarem apenas um caminho para a corrente elétrica.

91

92

AUTOMAÇÃO INDUSTRIAL

I= V Req Onde: V é a ddp (diferença de potencial e Req é a resistência equivalente do circuito).

Figura 88 -  Circuito elétrico Fonte: Autor

A rede elétrica exibida na figura 84 é constituída por dois geradores. Os circuitos que apresentam mais de uma fonte geradora de energia e não podem ser reduzidos a um circuito simples necessitam, para o equacionamento de todas as intensidades de corrente elétrica e tensões, de um modelo mais complexo de solução. Esse modelo foi proposto por Gustav Robert Kirchhoff (1824-1887), físico experimental alemão, e ficou conhecido como “Leis de Kirchhoff”.

Figura 89 -  Rede elétrica Fonte: Autor

No esquema elétrico da mesma figura, os pontos B e E são chamados de nós. Nó é um ponto do circuito onde a corrente elétrica é dividida ou adicionada. Os trechos de circuito entre dois nós consecutivos são denominados ramos. Na rede apresentada temos os ramos: BAFE, BE, BCDE. Qualquer conjunto de ramos formando um percurso fechado recebe o nome de malha. No diagrama acima temos as malhas: ABEFA (malha 1), BCDEB (malha 2) e ABCDEFA (malha 3). São duas as leis de Kirchhoff: A primeira lei de Kirchhoff é conhecida como Lei dos Nós, ou LKI (Lei de Kirchhoff para as correntes). “Em um nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de corrente que saem” (conservação das cargas).

4 Lei de Ohm e Kirchhoff

A expressão algébrica da Lei dos Nós aplicada ao nó B e/ou ao nó E, para os sentidos de correntes indicados na figura 90, fica: i3 = i1 + i2

Figura 90 -  Circuito elétrico 1 Fonte: Autor

A segunda Lei de Kirchhoff é chamada de Leis das Malhas, ou LKT (Lei de Kirchhoff para as tensões). “Numa malha, a soma algébrica das ddps (diferença de potenciais) é nula”. Percorrendo a malha ABEFA num determinado sentido da corrente elétrica, partindo de um ponto especifico e chegando a este mesmo ponto, a soma das tensões com as “quedas de tensões” na malha tem resultado nulo. Então: (VB – VE) + (VF – VA) = 0, considerando que VAB = 0 e VEF = 0 VBE + VFA = 0

4.3.1 Aplicação das leis de Kirchhoff para a determinação de intensidades de correntes e tensões em redes elétricas Para que exista deslocamento de elétrons por um elemento de circuito elétrico é necessário que haja uma ddp (diferença de potencial) nos terminais desse componente. Assim, na medida em que a corrente elétrica se desloca numa malha do circuito, a diferença de potencial pode ser positiva ou negativa nos terminais do componente (resistor ou bateria). 1

1

Figura 91 -  Representação de circuitos elétricos Fonte: Autor

93

94

AUTOMAÇÃO INDUSTRIAL

Aplicando a Lei das Malhas, vamos convencionar que os aumentos de potencial sejam positivos e que as diminuições de potencial sejam negativas. Devemos coletar num membro de uma equação todas essas variações nos elementos e igualar a zero. Aplicando a Lei dos Nós, devemos nos lembrar da conservação de carga; ou seja, o somatório das correntes que chegam a um nó de circuito é igual ao somatório das correntes que saem desse nó. Como exemplo, devemos determinar a diferença de potencial entre os pontos B e E ( VBE ) no circuito da figura 92.

Figura 92 -  Circuito Fonte: Autor

A aplicação das Leis de Kirchhoff demanda o ordenamento de alguns passos: 1º passo Identificar as malhas que compõem a rede: ABEFA, BCDEB e ABCDEFA. 2º passo Para uma rede de três malhas, que é o caso do exemplo demonstrado na figura, o equacionamento é efetuado com duas equações, pois para fazê-lo temos: número de equações = número de malhas – 1. Portanto, vamos escolher duas malhas das três apresentadas para obter as equações. Vamos selecionar, particularmente, as malhas: ABEFA, BCDEB da figura 93.

Malha ABEFA

Malha BCDEB

Figura 93 -  Representação das malhas ADEFA e BCDEB Fonte: Autor

3º passo Nas malhas selecionadas, devemos atribuir um sentido positivo para a corrente em cada malha. Existem quatro possibilidades para orientar as correntes nas duas malhas, conforme demonstrado nas figuras 94, 95, 96 e 97 a seguir.

4 Lei de Ohm e Kirchhoff

• Primeira possibilidade de orienta• Segunda possibilidade de orientação das correntes: ção das correntes:

Figura 94 -  Malha Fonte: Autor

Figura 95 -  Malha 1 Fonte: Autor

• Terceira possibilidade de orienta• Quarta possibilidade de orientação das correntes: ção das correntes:

Figura 96 -  Malha 2 Fonte: Autor

Figura 97 -  Malha 3 Fonte: Autor

Suponha que adotemos a primeira possibilidade. A hipótese é que as correntes tenham sentido positivo nas malhas ABEFA, BCDEB, como indicado nas figuras 98 e 99:

Figura 98 -  Malha ABEFA Fonte: Autor

Figura 99 -  Malha BCDEB Fonte: Autor

Estabelecendo, então, uma LKT (Lei de Kirchhoff para Tensão) para a malha 1, a partir do ponto A, temos: - R3i2 - V1 + R1i1 = 0 i1 tem o sentido positivo adotado para a malha ABEFA da figura 94. Observe que na malha ABEFA da figura 93

Então: i1 . R1 e -V1 pois i1 entra no polo negativo do gerador. i2 tem sentido contrário ao adotado para a malha ABEFA da figura 94. Então: -i2 . R3

Quadro 2 - Observação da malha ABEFA Fonte: Autor

Estabelecendo, então, uma LKT (Lei de Kirchhoff para Tensão) para a malha 2, a partir do ponto B, temos: R2 . i3 + V2 + R3 . i2 = 0

95

AUTOMAÇÃO INDUSTRIAL

i3 tem o sentido positivo adotado para a malha BCDEB da figura 93. Observe que na malha BCDEB da figura 94

Então: i3 . R2 e + V2 pois i3 entra no polo positivo do gerador. i2 tem o sentido positivo adotado para a malha BCDEB da figura 93. Então: i2 . R3

Quadro 3 - Observação da malha BCDEB Fonte: Autor

A partir dessas equações podemos facilmente determinar todos os valores de corrente e tensão do circuito. i3 = i1 + i2 (equação 1) -R3 . i2 - V1+ R1 . i1 = 0 (equação 2) R2 . i3 + V2 + R3 . i2 = 0 (equação 3) Substituindo nas equações obtidas os valores fornecidos, teremos: i3 = i1 + i2 10i1 – 15i2 – 20 = 0 15i2 + 10i3 + 12 = 0 Logo, trocando i3 por i3 = i1 + i2 na equação 3, teremos: 15i2 + 10 (i1+i2 ) + 12 = 0 Efetuando a multiplicação indicada, teremos: 15i2 + 10i1 + 10i2 + 12 = 0 ou 10i1 + 25i2 + 12 = 0 (equação 4) Não é possível resolver uma equação com duas incógnitas. Com duas incógnitas necessitamos de duas equações para montar um sistema de equações, como representado a seguir: 10i1 - 15i2 - 20 = 0 10i1 + 25i2 + 12 = 0 Multiplicando a equação 4, por -1, teremos: -1.(10i1 + 25i2 + 12 = 0)

V

96

-10i1 - 25i2 - 12 = 0 (equação 5)

Logo, teremos o seguinte sistema: 10i1 - 15i2 - 20 = 0 (equação 2) -10i1 - 25i2 - 12 = 0 (equação 5) Somando a equação 2 com a equação 5, obteremos a equação 6 com uma incógnita: 10i1 - 15i2 - 20 = 0 -10i1 - 25i2 - 12 = 0

4 Lei de Ohm e Kirchhoff

0 - 40i2 - 32 = 0 (equação 6) Resolvendo a equação 6: -40i2 - 32 = 0 i2= 32 -40

V

-40i2=32 i2 = - 0,8A

O sinal negativo para i2, significa que o sentido adotado originalmente para o ramo não é o correto. Verificamos, então, que no ramo BE a corrente tem o sentido de B para E, não de E para B como originalmente proposto. Finalmente, podemos determinar a tensão VBE: VR3 =VBE =i2 . R3 VBE = 0,8 . 15 VBE = 12V

Vamos compreender melhor com um exemplo de aplicação: No circuito esquematizado abaixo, os amperímetros estão determinando as correntes nos ramos. Vamos aplicar as Leis de Kirchhoff para verificar, através da fundamentação teórica, a veracidade das medidas apresentadas nos amperímetros. (fig. 100)

Figura 100 -  Esquema de circuito Fonte: Autor

1º passo: Verificamos que o circuito tem três malhas; portanto, vamos necessitar de duas equações para equacioná-lo. 2º passo: Devemos escolher duas das três malhas do circuito indicado.

97

98

AUTOMAÇÃO INDUSTRIAL

Figura 101 -  Esquema de circuito 1 Fonte: Autor

3º passo: Devemos atribuir (arbitrariamente) um sentido para a corrente em cada malha determinada.

Figura 102 -  Esquema de circuito 2 Fonte: Autor

É importante salientar que os sentidos das correntes I1 e I2 adotados na malha 1 e na malha 2 foram arbitrados. 4º passo: Aplique ∑V= zero à malha 1 e à malha 2 e percorra as malhas no sentido da corrente, determinando as “fontes” e “quedas” de tensão e obtendo duas expressões da Lei de Kirchhoff para cada malha.

Figura 103 -  Esquema de circuito 3 Fonte: Autor

4 Lei de Ohm e Kirchhoff

A corrente I1 na malha 1 “entra” no (-) e “sai” no (+) da bateria 1 (fonte), “entra” no (+) e “sai” no (-) da resistência R1 (queda), “entra no (+) e ”sai” no menos da resistência R3 (queda). Observe que as correntes das malhas I1 e I2 passam através de R3, o resistor comum às duas malhas. Escrevendo a expressão matemática da Lei de Kirchhoff para Tensões, teremos: Malha 1: 12 - 1 . I1 - 2 . I1 + 2 . I2 = 0 Resumindo: -3 . I1 + 2 . I2 = 12 Malha 2: -24 - 2 . I2 - 3 . I2 + 2 . I1 = 0 Resumindo: 2 . I1 - 5 . I2 = 24 Armando um sistema de equações, fica: -3 . I1 + 2 . I2 = 12 2 . I1 - 5 . I2 = 24 Podemos resolver algebricamente um sistema de equações por diversos meios. Nesse caso, vamos multiplicar a primeira equação por 2 (x2) e a segunda equação por 3 (x3). Assim: -3 . I1 + 2 . I2 = 12

(x2)

fica:

-6 . I1 + 4 . I2 = -24

2. I1 - 5 . I2 = 24

(x3)

fica:

6 . I1 - 15 I2 = 48

Agora, devemos somar as duas equações: -6 . I1 + 4 . I2 = -24 6 . I1 - 15I2 = 48 Resolvendo a equação acima, temos: -11 . I2 = 48

V

Portanto: I2 = 48 I2 = -4,36A -11 O sinal negativo no resultado obtido significa que devemos alterar o sentido arbitrado para a corrente I2. Com valor determinado da corrente I2, devemos determinar a corrente I1. 2 . I1 - 5 . I2 = 24

99

100

AUTOMAÇÃO INDUSTRIAL

Como I2 vale -4,36 A, a equação fica: 2 . I1 - 5 . (-4,36) = 24 2 . I1 + 21,8 = 24 2 . I1 = 24 -21,8 2 . I1 = 2,2 I1 = 1,1A O sinal positivo do valor calculado para a corrente I1 significa que o sentido arbitrado para esta corrente foi correto. Finalmente, aplicamos a Lei dos Nós para determinar a corrente que circula por R3. I3 = I1 + I2 I3 = 1,1 + 4,36 I3 = 5,46A Conclusão: Tabela 8: Relação dos resultados adquiridos VALORES SIMuLADOS NO SOFTWARE

VALORES CALCuLADOS

I1 = 1,12 A

I1 = 1,1 A

I2 = 4,27 A

I2 = 4,36 A

I3 = 5,39 A

I3 = 5,46 A Fonte: Autor

CASOS E RELATOS Um aspecto importante que deve ser ressaltado para os futuros técnicos é a compreensão de malhas e circuitos, pois ao trabalhar em projetos maiores, os técnicos são agrupados em cada etapa de execução. Muitas vezes esses grupos trabalham em cada circuito do projeto, ou seja, um grupo projeta a fonte de alimentação, outro grupo na comunicação da placa, etc. No final, cada grupo se relaciona com o outro para montar o circuito final, que é composto por cada malha e cada circuito é montado separadamente.

4 LEI DE OhM E KIRChhOFF

Atualmente, as grandes empresas necessitam que os técnicos trabalhem em grupo discutindo e resolvendo problemas em cada parte de um projeto, analisando cada circuito. Suponha que uma empresa de médio porte, que fabrica medidores de energia, pretenda qualificar seus montadores para o nível de técnicos, a fim melhorar o processo de montagem. Para tanto, essa empresa pesquisará e acompanhará o trabalho de produção, e procurará integrar as discussões e soluções de um projeto entre todos os trabalhadores. Isso porque o gestor sabe que quando o montador entende seu processo de trabalho, fica mais motivado e melhora sua etapa de produção, melhorando o processo como um todo. Por isso, você deve compreender todas as etapas de malhas e circuitos, pois seu futuro profissional poderá ser bem mais promissor.

RECApITULANDO As Leis de Kirchhoff baseiam-se em dois princípios de conservação: o princípio de conservação das cargas elétricas e o princípio de conservação da energia. A segunda Lei de Kirchhoff baseia-se no princípio de conservação da energia e estabelece que: “Percorrendo uma malha em um certo sentido, partindo-se de um ponto e chegando-se a esse mesmo ponto, a soma algébrica das ddp é nula”.

101

Circuitos de corrente contínua

5 Neste capítulo iremos estudar os seguintes fundamentos técnicos e científicos: • Circuitos de corrente contínua.

5.1 CIRCUITOS SéRIE DE CORRENTE CONTíNUA Um circuito série é uma associação de resistores ligados em sequência, de tal forma que a corrente que circula por um dos resistores é a mesma que circula em todos os resistores da associação. Para que isto ocorra, é necessário que se forme somente um caminho para a corrente do circuito. Desta forma, os resistores devem ser ligados com um terminal do resistor ao terminal do outro, e assim sucessivamente. A figura 104 apresenta uma ligação de circuito ligado em série.

Figura 104 - Circuito ligado em série Fonte: Autor

5.1.1 cálculo da tensão na associação em séRie No circuito da figura acima há somente um caminho para circular corrente, de forma que: I = I1 = I2 = I3

104

AUTOMAÇÃO INDUSTRIAL

A corrente que circula pelos resistores R1, R2 e R3 é a mesma corrente que circula pela fonte V. Aplicando a segunda Lei de Kirchhoff, teremos: + V - V1 - V2 – V3 = O

Figura 105 -  Circuito ligado em série 1 Fonte: Autor

Logo, V = V 1 + V 2 + V 3 (A soma das tensões dos resistores é igual à tensão aplicada ao circuito). Multiplicando a equação acima por I, temos: V. I = V1 . I + V2 . I + V3 . I Mas, como a tensão multiplicada pela corrente é igual à potência do circuito, temos: Pfonte = PR1 + PR2 + PR3 Onde: Pfonte - potência fornecida pela fonte PR1 - potência dissipada por R1 PR2 - potência dissipada por R2 PR3 - potência dissipada por R3 A potência fornecida pela fonte é igual à soma das potências dissipadas pelos resistores do circuito, o que satisfaz a lei da conservação da energia estabelecida pela segunda Lei de Kirchhoff.

5.1.2 Cálculo da resistência equivalente de associação em série Resistência equivalente de um circuito de associação em série é o valor da resistência que, ligada à mesma diferença de potencial que a associação, circulará na mesma corrente que circula na associação. Ou seja, tomando a equação deduzida anteriormente, temos:

5 Circuitos de Corrente Contínua

V = V1 +V2 +V3 Aplicando a Lei de Ohm, onde: V1 = R1 . I1 V2 = R2 . I2 V3 = R3 . I3 e sabendo que: I = I1 = I2 = I3, temos: V = R1 . I1 + R2. I2 + R3 . I3 ou: V = (R1 + R2 + R3) . I Dividindo por I, temos: V =R +R +R 1 2 3 I Note que o valor de Vt dividido por I é igual ao valor de uma resistência, que relaciona a tensão da fonte com a corrente total do circuito em série. Logo, uma resistência cujo valor seja a soma das resistências associadas em série no circuito será percorrida por uma corrente de mesmo valor que a associação. Esta é a resistência equivalente (Req) do circuito série. Req = R1 + R2 + R3 A ideia pode ser estendida para qualquer quantidade de resistores. No caso de uma associação de n resistores, a resistência equivalente é: Req = R1 + R2 + .... + Rn-2 +Rn-1 + Rn Para compreender os conceitos estudados até aqui, analisemos os exemplos a seguir: Primeiro exemplo Com os dados abaixo, calcule a resistência equivalente do circuito:

Figura 106 -  Circuito Fonte: Autor

Tensão V = 12V R1 = R2 = R3 = 2Ω

105

106

AUTOMAÇÃO INDUSTRIAL

Corrente I? Tensões V1, V2 e V3? Req = R1 + R2 + R3 = 2 + 2 + 2 = 6Ω I = V = 12 = 2A Req 6 I = I1 = I2 = I3 = 2A (Circuito Série) V1 = V2 = V3 onde cada tensão é calculada como: (R1 = R2 = R3) . I = 2 . 2 = 4V em cada resistência.

VOCÊ SABIA?

Que o valor da resistência equivalente série, Req, será sempre maior que o valor da maior resistência da associação?

5.2 CIRCUITO pARALELO DE CORRENTE CONTíNUA Um circuito paralelo é uma associação de resistores ligados de tal forma que a tensão elétrica sobre um dos resistores é a mesma em todos os resistores da associação. Para que isto ocorra, é necessário que se conectem os terminais dos resistores ao mesmo potencial. A figura 107 apresenta uma ligação de circuito ligado em paralelo.

Figura 107 - Circuito 1 Fonte: Autor

Neste caso, os resistores estão ligados à mesma diferença de potencial. Logo: V = V1 = V2 = V3 Ou seja, a tensão elétrica em R1, R2 é a mesma tensão da fonte V. Aplicando a Lei de Kirchhoff, temos: No nó A: +I – I1 – IB = 0 No nó B: +IB – I2 – I3 = 0 IB = I2 + I3 Substituindo no nó A: +I – I1 – I2 – I3 = 0

5 Circuitos de Corrente Contínua

Como I, a corrente da fonte, temos: I – I1 – I2 – I3 = 0 Ou: I = I1 + I2 + I3 Note que a soma das correntes que circulam pelos resistores é igual à corrente da fonte. Multiplicando a equação acima por V, temos: V. I = I1 . V + I2 . V + I3 . V Porém, tensão multiplicada pela corrente elétrica é igual a potência. Então: Pfonte = PR1 + PR2 + PR3 Onde: Pfonte - potência fornecida pela fonte PR1 - potência dissipada por R1 PR2 - potência dissipada por R2 PR3 - potência dissipada por R3 A potência fornecida pela fonte é igual à soma das potências dissipadas pelos resistores do circuito, o que satisfaz a lei da conservação da energia, estabelecida pela segunda Lei de Kirchhoff.

5.2.1 Resistência equivalente de associação paralela Resistência equivalente de um circuito de associação paralela é o valor da resistência que, ligada à mesma diferença de potencial que a associação, circulará na mesma corrente que circula na associação. Ou seja, tomando a equação deduzida anteriormente, temos a equação para cálculo da corrente total do circuito: I = I1 + I2 + I3 Aplicando a Lei de Ohm (lembre-se de que esta Lei foi trabalhada no capítulo anterior), onde: V V V I1 = 1 ; I2 = 2 ; I3 = 3 ; R1 R3 R2 temos outra expressão para calcular a corrente: V V V I= 1 + 2 + 3 R R R1 2 3 Mas, analisando a tensão, temos: V = V1 = V2 = V3

107

108

AUTOMAÇÃO INDUSTRIAL

Então, passando E para o primeiro membro da equação, temos: I= V + V + V R2 R1 R3 Lembramos que a condutância G de um condutor é grandeza física definida como o inverso de sua resistência elétrica. A unidade de medida é denominada Siemens e, pela definição, G depende dos mesmos fatores que afetam a resistência. Note que o valor de I dividido por V é igual à soma do inverso das resistências, que é conhecida como condutância, relaciona a corrente total do circuito paralelo e a tensão da fonte. Esta condutância é equivalente do circuito paralelo. Para determinar a resistência equivalente Req do circuito paralelo, basta calcular o inverso da condutância equivalente. 1 = 1 +1 + 1 G= Req R1 R2 R3 Logo, uma condutância cujo valor é igual à soma das condutâncias associadas em paralelo em um circuito será percorrida por uma corrente de mesmo valor da corrente da associação. A resistência equivalente Req do circuito paralelo, será a ideia que pode ser estendida para qualquer quantidade de resistores. No caso de uma associação de n resistores, a resistência equivalente é: 1 Req = 1 ( +1 + 1) R1 R2 R3

5.2.2 associação paRalela de ResistoRes de mesmo valoR No caso de associação paralela de resistores com resistência de mesmo valor, o valor da resistência equivalente Req da associação será o valor de uma das resistências dividido pelo número de resistores da associação; ou seja, o valor da resistência equivalente Req de uma associação de n resistores de valor R será: Req = R n

5.2.3 associação paRalela de dois ResistoRes O valor da resistência equivalente Req de uma associação paralela de dois resistores é igual ao produto dos valores dos resistores dividido pela soma dos valores dos resistores. Esta forma é conhecida como produto pela soma. Em associação paralela com R1 e R2, a associação equivalente Req será: (R . R ) Req = 1 2 (R1 + R2)

FIQUE ALERTA

O valor da resistência equivalente Req de uma associação paralela é sempre menor que o valor da menor resistência da associação.

5 Circuitos de Corrente Contínua

5.2.4 Divisores de tensão e corrente Divisor de tensão e corrente é um circuito em série que tem como objetivo fracionar a tensão para um determinado valor. Observe o circuito a seguir: (fig 108)

Figura 108 -  Divisores de tensão e corrente Fonte: Autor

Note que: • A tensão sobre um resistor em uma associação série é igual ao valor da resistência desse resistor, dividido pela resistência equivalente da associação série, multiplicado pela tensão total da associação. • O valor de V é a tensão nos terminais da associação série.

R2 , ma• o valor da tensão V pode ser dividido por um fator K, onde K = (R1 + R2) nipulando os valores das resistências da associação. • A fórmula V2 = R2 . I, denominada divisor de tensão, pode ser estendida para associação série de n resistores.

5.2.5 Divisor de corrente Considerando o circuito a seguir, mostraremos o cálculo utilizando o método de divisor de corrente para calcular a corrente através de R2:

Figura 109 -  Divisor de corrente Fonte: Autor

O valor da corrente I2 será: I2 = V R2 Mas:

V = Rp . I t

e

Rp =

(R1 . R2) (R1 + R2)

109

110

AUTOMAÇÃO INDUSTRIAL

R1 . R2 . It (R1 + R2) (R . R ) 1 Dai, I2 fica: I2 = 1 2 . It . R (R1 + R2) 2 Simplificando: R1 .I I2 = (R1 + R2) t Então:

V=

Note que: • A corrente sobre um resistor, em uma associação paralela, é igual ao valor da outra resistência dividido pela soma do valor das resistências da associação, multiplicado pela corrente total da associação. • O valor de I é a corrente nos terminais da associação paralela.

R1 , ma• O valor da corrente I pode ser dividido por um fator Z, onde Z = (R1 + R2) nipulando os valores das resistências da associação. • A fórmula acima é utilizada em associação paralela de dois resistores.

5.3 CIRCUITO MISTO É o circuito mais comumente encontrado porque tem os dois tipos de associações, série e paralela. Para determinar a resistência equivalente de um circuito misto devemos identificar os tipos de associações e resolver em partes até obter o valor de somente urna resistência que, ligada à mesma fonte do circuito misto, fornecerá a mesma corrente que circula no circuito. Observe o circuito a seguir: (fig. 110)

Figura 110 - Circuito misto Fonte: Autor

SAIBA MAIS

Estes circuitos foram trabalhados na associação de resistores e agora serão retomados nos próximos capítulos como em circuitos RLC em CA.

Os resistores R2 e R3 estão em paralelo, pois seus terminais estão ligados, de forma que temos a mesma diferença de potencial. Então, podemos calcular uma resistência Rp, que equivale a esta associação, e substituí-la no circuito. Logo, temos o seguinte circuito equivalente ao anterior:

5 Circuitos de Corrente Contínua

Figura 111 -  Circuito 3 Fonte: Autor

Onde: Rp é igual a R2 paralelo com R3. O novo circuito apresenta uma associação em série com R1 e Rp. Calculamos o valor de uma resistência equivalente desta associação, que será o valor da resistência equivalente Req de todo o circuito. O circuito equivalente do circuito total será:

Figura 112 -  Circuito 4 Fonte: Autor

Observação: Este circuito apresenta uma associação paralela (R2 e R3) e uma associação em série (R1 + Rp). Logo, é denominado circuito misto. Veja o exemplo a seguir: Calcular o valor da resistência equivalente (Req) para o circuito misto da figura 113:

Figura 113 -  Circuito misto 1 Fonte: Autor

Solução: Fazendo o paralelo entre R2 e R3, temos:

Figura 114 -  Circuito 5 Fonte: Autor

111

112

AUTOMAÇÃO INDUSTRIAL

Continuando, temos uma associação em série com R1 e Rp. Calculando a resistência equivalente dessa associação, teremos: Req = 270 + 193,9 = 463,9 Ω O circuito equivalente fica:

= 463,9 Ω

Figura 115 -  Circuito equivalente Fonte: Autor

5.4 Teorema da superposição A corrente em qualquer circuito ou a tensão através de qualquer elemento em um circuito é a soma algébrica das correntes ou tensões produzidas separadamente por cada fonte. Como o efeito de cada fonte é considerado separadamente, as outras fontes são retiradas do circuito mantendo suas resistências internas. Para determinar o efeito de uma fonte, as outras devem ser “zeradas”, conforme demonstrado abaixo: • Fontes de tensão devem ser trocadas por um curto-circuito. • Fontes de corrente devem ser trocadas por um circuito aberto. Depois de considerado o efeito de cada fonte, esses efeitos são somados algebricamente. O resultado da soma é o efeito produzido em cada elemento por todas as fontes juntas. Veja o exemplo a seguir: Calcular a tensão e a corrente em cada elemento do circuito da figura 116, utilizando o Teorema da Superposição:

Figura 116 -  Teorema da superposição - circuito Fonte: Autor

5 Circuitos de Corrente Contínua

Solução: Considerando que a fonte é de 20V e substituindo a fonte de 3V por um curto circuito, temos:

Figura 117 -  Teorema da superposição - circuito 1 Fonte: Autor

Cálculo das correntes e tensões em cada elemento do circuito: R .R Req = R1 + 2 3 R2 + R3 Req = 5Ω + (1Ω ) = 5,83Ω 5Ω Cálculo das correntes:

V

I1 = V Req I1 = 20 = 3,43A 5,83 R3 I2 = .I I2 = 5 . 3,43 = 2,86A R2 + R3 1 6 I3 = 1 . 3,43 = 0,57A 6 Cálculo das tensões: V1 = R1 . I1 = 5 . 3,43 = 17,15V V2 = R2 . I2 = 1 . 2,86 = 2,86V V3 = R3 . I3 = 5 . 5,57 = 2,85V Observação: Considerando que a fonte é de 3V e substituindo a fonte de 20V por um curto circuito, temos:

Figura 118 -  Teorema da superposição - circuito 2 Fonte: Autor

Calcular as correnter e tensões em cada elemento do circuito. a) Cálculo da resistência total.

113

AUTOMAÇÃO INDUSTRIAL

Req = R2 +

R1 . R3 R1 + R3

Req = 1Ω + ( 5.5 )Ω = 3,50Ω 5+5 b) Cálculo das correntes. I2 = -3 = -0,86Ω I2 = V 3,50 Req R2 .I R1 + R2 2

I3 =

R1 .I R1 + R2 2

V

I1 =

I1 = -5 . 0,86 = -0,43A 10

V

V

I3 = -5 . 0,86 = -0,43A 10

Observação: Os sinais atribuídos nos cálculos aparecem, em vista que as correntes da fonte de 3V estão no sentido contrário ao indicado na figura. Calculando as tensões, temos: V1 = R1 . I1 = 5 . (-0,43) = -2,14V V2 = R2 . I2 = 1 . (-0,86) = -0,86V V3 = R3 . I3 = 5 . (+,043) = +2,14V Cabe salientar que estes valores são referentes à fonte de 3V. Fazendo a soma algébrica dos resultados obtidos para cada fonte, temos o resultado final utilizando as duas fontes, no caso, agindo simultaneamente no circuito:

V2 = V2 (-F3v) + V2 (-F20V ) V3 = V3 (-F3v) + V3 (-F20V ) E as correntes: I1 = 3,43 - 0,43 = 3,00 A I2 = 2,86 - 0,86 = 2,00 A I3 = 0,57 + 0,43 = 1,00 A Ou ainda: I1 =

15,01 = 3,00 A 5

I2 =

1,99 = 2,00 A 1

I3 =

4,99 = 1,00 A 5

V

V1 = V1 (-F3v) + V1 (-F20V )

V1 = 17,15 - 2,14 = 15,01 V

V

Observe que os resultados conferem com os calculados anteriormente, validando o Teorema.

V2 = -0,86 + 2,85 = 1,99 V

V

114

V3 = 2,14 + 2,85 = 4,99 V

5 Circuitos de Corrente Contínua

5.5 Teorema de Thévenin O Teorema de Thévenin diz que qualquer rede de dois terminais contendo fontes de tensão pode ser representada por um circuito equivalente, consistindo de uma fonte de tensão, de valor igual à tensão de circuito aberto do circuito original, em série, com uma resistência medida entre os terminais do circuito aberto, com as fontes “desligadas”. Considerando um ramo do circuito como carga, o ramo que desejamos calcular as grandezas elétricas, sendo o restante considerado como a rede que queremos o equivalente de Thévenin. (fig. 119)

Figura 119 -  Teorema de Thévenin - circuito Fonte: Autor

Os passos para determinar o circuito equivalente de Thévenin são os seguintes: 1º - Retirar a carga do circuito, ou seja, o ramo considerado como carga, e identificar sua polaridade. 2º - Calcular a tensão nos terminais que ficaram abertos, de onde foi retirada a carga. Para tal, você pode utilizar qualquer método estudado anteriormente. 3º - Retirar as fontes do circuito. Fontes de tensão são substituídas por um curto circuito, e fontes de corrente por um circuito aberto. 4º - Calcular a resistência equivalente neste circuito nos terminais que ficaram abertos. 5º - Montar o circuito equivalente de Thévenin. Exemplo de aplicação: Seja o circuito da figura 120, calcular usando o Teorema de Thévenin o valor da tensão e da corrente no resistor RL para: a) RL = 10 Ω b) RL = 50 Ω

Figura 120 -  Teorema de Thévenin - circuito 1 Fonte: Autor

115

116

AUTOMAÇÃO INDUSTRIAL

Para solucionar o exemplo, devemos seguir estes passos: 1º - Retirar a carga do circuito, ou seja, o ramo considerado como carga, e identificar sua polaridade.

Figura 121 -  Teorema de Thévenin - circuito 2 Fonte: Autor

2º - Calcular a tensão nos terminais que ficaram abertos de onde tiramos a carga. Para tal, você pode utilizar qualquer método estudado anteriormente. Observe que a tensão Vth é a tensão sobre o resistor de 20 ohm, pois no resistor de 15 ohm não circula corrente. Por divisor de tensão temos: 20 . 10 = 6,67 V 10+20 3º - Retirar as fontes do circuito. Fontes de tensão são substituídas por um curto circuito, e fontes de corrente por um circuito aberto. Vth =

Figura 122 -  Teorema de Thévenin - circuito 3 Fonte: Autor

4º - Calcular a resistência equivalente neste circuito a partir dos terminais que ficaram abertos. 10 = 21,67Ω Rth = 15 + 20 5º - Montar o circuito equivalente de Thévenin.

Figura 123 -  Teorema de Thévenin - circuito 4 Fonte: Autor

6º - Atribuir valor para RL no circuito equivalente de Thévenin e calcular a corrente e a tensão. Estes valores são os mesmos para o circuito completo, visto que este é um circuito equivalente. a) Para RL = 10 Ω temos: 10 . 6,67 = 2,1V VRL = 10+21,67

5 Circuitos de Corrente Contínua

IRL =

6,67 = 211mA 10+21,67

b) Para RL = 50 Ω temos; 50 . 6,67 = 4,7V VRL = 50+21,67 IRL =

6,67 = 93mA 50+21,67

5.6 Teorema de Norton O teorema de Norton diz que qualquer rede de dois terminais contendo fontes de tensão e/ou corrente pode ser representada por um circuito equivalente, consistindo de uma fonte de corrente, de valor igual à corrente de um curto circuito no circuito original, em paralelo com uma resistência medida entre os terminais do circuito aberto, com as fontes “desligadas”. Considerando um ramo do circuito como carga, o ramo que desejamos calcular as grandezas elétricas, sendo o restante visto como a rede que se queremos o equivalente de Norton.

Figura 124 -  Teorema de Norton - circuito Fonte: Autor

Os passos para determinar o circuito equivalente de Norton são os seguintes: 1º - Retirar a carga do circuito, ou seja, o ramo considerado como carga, e identificar sua polaridade. 2º - Calcular a corrente em um curto-circuito nos terminais que ficaram abertos de onde foi tirada a carga. Para tal, você pode utilizar qualquer método estudado anteriormente. 3º - Retirar as fontes do circuito. Fontes de tensão são substituídas por um curto circuito, e fontes de corrente por um circuito aberto. 4º - Calcular a resistência equivalente neste circuito nos terminais que ficaram abertos. 5º - Montar o circuito equivalente de Norton. Seja o circuito da figura 120, calcular usando o Teorema de Norton o valor da tensão e da corrente no resistor RL para:

117

118

AUTOMAÇÃO INDUSTRIAL

a) RL = 10 Ω b) RL = 50 Ω

Figura 125 -  Teorema de Norton - circuito 1 Fonte: Autor

Para solucionar o exemplo, devemos seguir estes passos: 1º - Retirar a carga do circuito, ou seja, o ramo considerado como carga, e identificar sua polaridade.

Figura 126 -  Teorema de Norton - circuito 2 Fonte: Autor

2º - Calcular a corrente nos terminais que ficaram abertos de onde foi tirada a carga, por meio de um curto-circuito. Para tal, pode ser usado qualquer método estudado anteriormente. Observe que a corrente IN é a corrente através do resistor de 15 ohms temos: 15 = 18,57Ω Req = 10 + 20 10 Ieq = = 538,46Ω 18,57 Daí, por divisor de corrente: Ieq =

20 . 538,46 = 307,69 mA 20+15

3º - Retir as fontes do circuito. Fontes de tensão são substituídas por um curto, e fontes de corrente por um circuito aberto, da mesma forma que calculamos Rth.

Figura 127 -  Teorema de Norton - circuito 3 Fonte: Autor

4º - Calcular a resistência equivalente neste circuito nos terminais que ficaram abertos. 10 RN = 15 + = 21,67Ω 20 5º - Montar o circuito equivalente de Norton.

5 CIRCUITOS DE CORRENTE CONTíNUA

Figura 128 - Teorema de Norton - circuito 4 Fonte: Autor

6º - Substituindo o valor de RL no circuito equivalente de Norton, calcular a corrente e a tensão. Estes valores são os mesmos para o circuito completo, visto que este é um circuito equivalente. a) Para RL = 10 Ω temos: 21,67 . 307,69 = 211 mA IRL = 10+21,67 VRL = 211,17 . 10 = 2,1 V b) Para RL = 50 Ω temos: 21,67 . 307,69 = 93 mA IRL = 50+21,67 VRL = 93 . 50 = 4,6 V

CASOS E RELATOS Reduzindo materiais e custos Uma empresa de grande porte sediada no distrito industrial de Cachoeirinha, cidade metropolitana de Porto Alegre, solicitou aos seus projetistas a redução dos circuitos para execução de um projeto em escala industrial. Consequentemente, essa ação reduziria também a quantidade de materiais empregados na montagem. A solução encontrada pelos projetistas foi a utilização intensa de circuitos de corrente contínua, pois o diferencial da sua marca era exatamente o tamanho e peso reduzidos em seus produtos. Por meio dessa ação, os projetistas também conseguiram a diminuição na demanda de materiais empregados, reduzindo a quantidade de estoques, materiais e produtos, tanto diretos como indiretos, na produção. Consequentemente, houve redução de custos e aumento no lucro da empresa.

119

120

AUTOMAÇÃO INDUSTRIAL

Esse caso mostra como é importante que todos os profissionais tenham uma visão completa de sua fábrica e seus produtos. Isso porque, cada etapa de um projeto está ligada diretamente às outras etapas, formando um projeto integrado. Uma análise precisa de circuitos também influi na competitividade da empresa.

5.7 Circuitos corrente alternada Corrente alternada é aquela cuja intensidade e direção variam periodicamente, sendo o valor médio da intensidade durante um período igual a zero. As centrais elétricas produzem e os consumidores (residenciais e industriais) consomem a corrente alternada, pois é a corrente utilizada por transformadores que irá compatibilizar os níveis de tensão para o trabalho. Além disto, nas indústrias principalmente, os motores mais utilizados são os de corrente alternada, mais simples, resistentes e de baixo custo se comparados com os motores de corrente contínua. É de extrema importância a possibilidade de transformar a energia elétrica. A corrente alternada de pequena intensidade e alta tensão pode ser transformada de maneira simples e com pequenas perdas em correntes de alta intensidade e baixa tensão, e vice-versa. A corrente alternada é um processo periódico: seus valores instantâneos são senoidais (variam em função do seno do ângulo formado entre as linhas de indução e os condutores da espira) e podem ser demonstrados pela seguinte expressão matemática:

Onde

5 CIRCUITOS DE CORRENTE CONTíNUA

VOCÊ SABIA?

A tensão alternada é obtida através do terceiro fenômeno do eletromagnetismo, que diz: “Se um condutor estiver imerso num campo magnético, desde que haja movimento relativo entre eles, surgirá entre seus terminais uma força eletromotriz (fem) induzida.” De forma bem simplificada, o enunciado da Lei de Faraday pode ser visualizado através da figura a seguir, que apresenta um gerador de uma hidrelétrica.

É a forma mais utilizada para a geração de energia elétrica no Brasil em virtude do aproveitamento da energia mecânica das águas para a conversão de energia.

Figura 129 - Hidrelétrica Fonte: Autor

Figura 130 - Gráfico da tensão alternada em graus Fonte: Autor

Figura 131 - Gráfico da tensão alternada em radiano Fonte: Autor

Para a melhor compreensão dos conceitos fundamentais de uma forma de onda senoidal é necessário o estudo da representação gráfica de um parâmetro elétrico (V, I, P) em função do tempo ou ângulo. Por exemplo: é comum dizer que forma de onda é um gráfico V x t, I x t, P x t. Geralmente para sinais elétricos a forma de onda segue uma função matemática, sendo sua variação dada em função do tempo, ângulos (graus ou radianos).

5.7.1 tensão e coRRente alteRnada É aquela que varia sua intensidade e polaridade em intervalos regulares de tempo. Como a tensão CA apresenta diversos valores ao longo de seu percurso, na figura a seguir destacamos alguns destes valores característicos.

121

122

AUTOMAÇÃO INDUSTRIAL

Figura 132 -  Tensão e corrente alternada - gráfico 1 Fonte: Autor

Para determinar os valores médios, o valor eficaz da forma de onda, ou seja, um parâmetro rms, e de pico-a-pico da tensão CA apresentados acima, utilizamos as expressões a seguir: Vm = 0,637 . Vp; Vrms = 0,707 . Vp; Vpp = 2 . Vp. Onde: Vm = valor médio da tensão C.A. Vrms = valor médio quadrático da tensão C.A. ou Valor eficaz da tensão C.A. Vpp = valor de pico-a-pico da tensão C.A. Vp = valor de pico ou valor máximo da tensão C.A. Existem ainda outros parâmetros, que são: • Ciclo - É a menor porção não-repetitiva de uma forma de onda periódica, ou seja, é a sucessão de valores de uma forma de onda sem que ocorra a repetição do processo. • Período (T) - É o intervalo de tempo para que um ciclo se complete. Sua unidade é o segundo (S). A seguir, apresentamos alguns exemplos de gráficos de ciclos e períodos de diversas formas de onda CA:

Figura 133 -  Gráficos de ciclos e períodos de diversas formas de onda CA Fonte: Autor

5 Circuitos de Corrente Contínua

• Frequência (f ) - É o número de ciclos que a forma de onda descreve durante o tempo de 1 segundo. Sua unidade é o hertz, Hz. Uma forma de onda tem a frequência de 1 Hz, quando completa um ciclo em 1 segundo. Então: 1 ciclo / s = 1Hz. Sabendo o valor do período da forma de onda T, calculamos a frequência: T= 1 f Onde: f - é a frequência da grandeza I ou V e T - é o período da forma de onda. A velocidade angular ω é a razão entre o ângulo descrito pela espira com o tempo gasto, como: ω=Φ t Onde: ω - é a velocidade angular, Φ - é o fluxo magnético e t - é o tempo. Em uma volta completa, o ângulo ω vale 2π (rd) e o tempo gasto para descrevê-lo é igual ao período T em segundos. Portanto, podemos deduzir que:

Analise o exemplo a seguir: Dada uma tensão senoidal que possui como expressão V = 100 sen (1000t + 45°), determine: a) a frequência e o período da forma de onda; b) o primeiro instante em que a forma da onda da tensão passa por zero; Então, calculando a velocidade angular, temos: a) A velocidade angular é ω = 1000 rad/seg. Então, temos:

Como o período T é o inverso da frequência, temos:

123

124

AUTOMAÇÃO INDUSTRIAL

T = 1 T = 6,28 ms , ou seja, 1 ciclo é completado a cada 6,28 ms. f b) Como a expressão está adiantada da referência 0° de 45°, determinamos o primeiro instante em que a forma de onda passa por zero. Substituindo 45° para seu valor em radianos, que é = π/4, temos:

5.7.2 Circuito resistivo puro Como a resistência de um material só varia em função de natureza do material, da sua seção transversal, de seu comprimento e da temperatura, ela pode ser considerada constante para este caso. A corrente é determinada, então, pela tensão da fonte que alimenta o circuito e pela resistência do resistor:

Figura 134 -  Circuito resistivo puro Fonte: Autor

Diagrama fasorial de uma circuito puramente resistivo

A corrente no circuito que contém apenas a resistência R coincide, quanro à fase, com a tensão, ou seja, no cirucuito resistivo puro a tensão e a corrente estão em fase.

Figura 135 -  Circuito resistivo puro - gráfico senoidal Fonte: Autor

Figura 136 -  Circuito resistivo puro gráfico fasorial Fonte: Autor

5 Circuitos de Corrente Contínua

5.7.3 Circuito indutivo puro

Figura 137 -  Circuito indutivo puro Fonte: Autor

A indutância em um circuito que tem o elemento indutor puro surge devido a: L=Φ i Onde: L - é a indutância; Φ – é o fluxo magnético e; I - é a corrente elétrica. Para converter uma forma de onda cossenoidal para senoidal basta adicionar a forma de onda senoidal 90° ou π/2. Então, para determinar a tensão no indutor usamos a expressão:

Onde: VL - é a tensão induzida; L - é a indutância e; Im - é a corrente do indutor. A corrente num circuito indutivo puro está atrasada da tensão em 90°. Para determinar a reatância indutiva utilizamos a expressão matemática: ω. L = XL Onde: ω - é a velocidade angular e; L - é a indutância. XL = 2 πf Onde: XL= reatância indutiva A unidade da reatância indutiva é o ohm (Ω). A reatância indutiva XL é a oposição que a corrente alternada encontra ao passar por um indutor.

125

126

AUTOMAÇÃO INDUSTRIAL

Figura 138 -  Circuito indutivo puro - diagrama fasorial Fonte: Autor

5.7.4 Circuito capacitivo puro A corrente surge somente quando o capacitor é submetido à tensão e desaparece quando sua carga se iguala à tensão da fonte CA aplicada ao circuito.

Figura 139 -  Circuito capacitivo puro Fonte: Autor

Figura 140 -  Circuito capacitivo puro - diagrama fasorial Fonte: Autor

Quando ligado a uma tensão alternada senoidal (V = Vm sen ωt), esta varia periodicamente e também faz variar, da mesma forma, a carga do capacitor, pois Q = V. C Onde: Q - é a carga do capacitor; V - é a tensão e; C- é o valor do capacitor. As variações da carga originam a corrente alternada no circuito, pois quando a carga aumenta os elétrons nos fios se deslocam numa direção, e quando a carga diminui os elétrons se deslocam em sentido contrário. Se a variação da carga fosse uniforme, teríamos para calcular a corrente: i=Q t

5 Circuitos de Corrente Contínua

Onde: Q - é a carga do capacitor; I - é a corrente e; t - é o tempo. Mas no circuito capacitivo puro, a corrente está adiantada da tensão em 90°. Para tornar a expressão coerente com a Lei de Ohm, a corrente é expressa da seguinte forma:

A oposição à passagem da corrente CA que um capacitor oferece é conhecido po reatância capacitiva ( Xc ). A retância capacitiva pode ser obtida pela expessão:

Onde: Xc = reatância capacitiva, Ω; f = frequência, Hz; C = capacitância do capacitor, f.

π = 3,14 Resolução de um circuito RLC em paralelo

Figura 141 -  Circuito RLC em paralelo 2 Fonte: Autor

1º passo: Determinar a corrente total do circuito: i = iR2 + (iC - iL)2 i = 102 + (18 - 12)2 i =11,7mA 2º passo: Determinar a impedância do circuito:

127

128

AUTOMAÇÃO INDUSTRIAL

Z=V i Z = 12v 0,0117A Z = 1026Ω

5.7.5 Ressonância A ressonância num circuito CA acontece quando XL = XC. A frequência de ressonância (Fr) produz XL = XC e é determinada pela expressão: 1 fR = 2 . π . L.C

RECApITULANDO Os circuitos mistos são os mais comuns em qualquer projeto. Inicialmente trabalhamos em separado os circuitos série e paralelo, porém o circuito misto é o mais usual. Vale apena lembrar também que para solucionar de forma mais rápida essas questões, é fundamental o conhecimento sobre as Leis de Kirchhoff, que vimos no capítulo anterior. Como observamos, as Leis de Kirchhoff se baseiam em dois princípios de conservação, o princípio de conservação das cargas elétricas e o princípio de conservação da energia. A segunda lei de Kirchhoff se baseia no princípio de conservação da energia e estabelece que: “Percorrendo-se uma malha em certo sentido, partindo-se de um ponto e chegando-se a esse mesmo ponto, a soma algébrica das ddp é nula”.

5 Circuitos de Corrente Contínua

Anotações:

129

Indutores e capacitores

6 Neste capítulo iremos estudar os seguintes fundamentos técnicos e científicos: • Indutores • Capacitores

6.1 INDUTORES Os indutores são fios condutores enrolados de forma helicoidal (conforme figura 142) chamados também de bobinas ou solenoides. Nos circuitos elétricos, as bobinas são elementos que geram campo magnético a partir da passagem de uma corrente elétrica.

Figura 142 - Fios enrolados em forma helicoildal Fonte: Autor

Na identificação das bobinas utilizamos os símbolos a seguir:

A : núcleo de ar; B : núcleo de ferrite; C : núcleo de ferro laminado. Figura 143 - Simbologia de bobinas Fonte: Autor

132

AUTOMAÇÃO INDUSTRIAL

A propriedade elétrica fundamental do indutor está no fato de que uma variação da corrente elétrica em seus terminais acarreta nele, indutor, uma variação de campo eletromagnético. Essa variação de campo magnético induz (daí, o termo indutor) uma tensão em seus terminais. Essa característica é equacionada a partir de duas grandezas: indutância e reatância indutiva. Vamos compreender o que são indutância e reatância indutiva.

6.1.1 Indutância (L) Chamamos de indutância a capacidade que um indutor possui de induzir tensão em seus terminais. Ela deve ser entendida como uma oposição que o indutor oferece às variações de corrente em seus terminais. A Indutância tem como simbologia a letra L, e sua unidade de medida é o Henry (H).

L=

Vi ∆i / ∆t

Onde: L: indutância [H]; Vi: tensão induzida no indutor [V]; ∆i / ∆t: taxa de variação da corrente. A corrente varia na razão de um ampère por segundo. ∆

Reescrevendo a equação anterior Vi = L . ∆i , temos que a tensão induzida nos tert minais do indutor é diretamente proporcional à indutância e à variação da corrente no indutor. Significa dizer que, quando a corrente tender a variar nos terminais do indutor, a oposição a essa variação da corrente se dará através de uma tensão induzida Vi. A indutância depende da constituição dos indutores, tais como: • a forma como os fios são enrolados; • o material do núcleo em torno do qual a bobina foi “enrolada”; • o número de espiras ou espirais da bobina que formam o enrolamento; • a área abrangida em cada espira; • o comprimento da bobina.

REATÂNCIA INDUTIVA (XL) A reatância indutiva, XL, é a medida da oposição que um indutor oferece à variação da corrente em seus terminais. A unidade de medida da reatância indutiva é o ohm (Ω).

6 Indutores e Capacitores

Equacionando XL: XL = ω.L ω = taxa de alternância da corrente L = indutância da bobina. Como: ω = 2.π.f Onde: π = valor de referência 3,14 f = frequência em que ocorre a alternância. Sendo assim, a equação para determinar a reatância indutiva será: XL = 2.π.f.L

6.1.2 Associação de indutores A associação de indutores se dará em série ou em paralelo.

ASSOCIAÇÃO EM SÉRIE Indutores em série são dispostos suficientemente afastados, de modo que não interajam eletromagneticamente um no outro, porém ligados juntos, conforme a figura 144:

Figura 144 -  Indutores Fonte: Autor

Leq = L1 + L2 Onde: Leq = indutância equivalente à associação L1 e L2 = indutores 1 e 2 • Associação em série aditiva

133

134

AUTOMAÇÃO INDUSTRIAL

A associação de indutores em série é aditiva quando os indutores são colocados suficientemente próximos e quando existe interação eletromagnética. Leq = L1 +L2 + LM Onde: Leq = indutância equivalente à associação; L1 e L2 = indutores 1 e 2; LM = indutância mútua.

Figura 145 -  Associação em série aditiva Fonte: Autor

• Associação em série subtrativa A associação de indutores em série é subtrativa quando a corrente comum produz campos magnéticos opostos.

Figura 146 -  Associação em série subtrativa Fonte: Autor

Leq = L1 + L2 – 2LM Onde: Leq = indutância equivalente à associação; L1 e L2 = indutores 1 e 2; LM = indutância mútua.

ASSOCIAÇÃO EM PARALELO Na associação em paralelo, os indutores não possuem acoplamento mútuo, ou seja, ficam dispostos como na figura 142, porém também afastados de modo que um não interfira eletromagneticamente no outro.

6 INDUTORES E CApACITORES

Figura 147 - Associação em paralelo - circuito Fonte: Autor

Para determinar a indutância equivalente em paralelo, utilizamos a seguinte expressão: L .L Leq = 1 2 L1 + L2 Onde: Leq = indutância equivalente à associação L1 e L2 = indutores 1 e 2 Uma aplicação prática de indutores está na fabricação de filtros de sinais elétricos. O esquema abaixo apresenta um filtro “passa-baixa”. O circuito tem a função de deixar passar sinais de baixa frequência e anular sinais de alta frequência. Os filtros “passa-baixa” são usados em sistemas de som.

SAIBA MAIS

Figura 148 - Associação em paralelo - circuito 1 Fonte: Autor

VOCÊ SABIA?

O controle de velocidade em vias urbanas é realizado, muitas vezes, por sensores indutivos. É assentada sob o asfalto uma bobina formada por um cabo em espiral que gera um campo eletromagnético (loop indutivo). Quando uma massa de metal, como o carro, passa sobre ela, alterando a indutância, provoca mudança no campo. Um sensor testa constantemente essa mudança, registrando a passagem e a velocidade do Automóvel.

Perfil magnético de Automóvel a 50 km/h. Perfil magnético de Automóvel a 143 km/h.

Figura 149 - Perfil magnético de automóvel Fonte: Autor

135

136

AUTOMAÇÃO INDUSTRIAL

As bobinas nos sistemas elétricos de Automóveis provocam uma ∆

tensão vl em seus terminais, segundo a equação vl = L . i , com ∆t a finalidade de manter a corrente elétrica ou impedir que ela, a corrente, se estabeleça.

FIQUE ALERTA

Figura 150 - Bobinas Fonte: Autor, baseado sistemasautomotivos.blogspot, 2009

Essa tensão atinge vários milhares de volts, configurando risco de acidente elétrico para leigos.

A variação da indutância em uma bobina é consequência da variação da posição do núcleo no interior da bobina, ou devido à variação da distância da bobina a um objeto metálico externo. O sensor indutivo é um componente de circuito eletrônico que usa essa propriedade para constatar a presença de objetos metálicos, conforme demonstra a imagem a seguir:

SAIBA MAIS

Figura 151 - Sensor indutivo Fonte: Autor, baseado banco de imagens google

6.2 CApACITORES Os capacitores são componentes eletroeletrônicos dotados de duas placas condutoras de metal paralelas, separadas por um material isolante, chamado de dielétrico. Podemos definir o símbolo do capacitor como um par de traços, onde os dois são paralelos e iguais. O símbolo dos capacitores é sempre o mesmo, independente mente de serem esféricos, planos ou cilíndricos. Vejamos os símbolos mais usuais:

6 INDUTORES E CApACITORES

Figura 152 - Simbologia capacitores Fonte: Autor

Os capacitores possuem formas variadas, conforme demonstrado na figura 135.

6.2.1 capacitância A capacitância simbolizada por C é determinada a partir da carga elétrica armazenada por um capacitor e a tensão elétrica aplicada aos seus terminais. A unidade de medida da capacitância é o Farad (F), e a expressão que a determina é: C= Q V Onde: C = capacitância do capacitor; Q = carga elétrica; V = diferença de potencial. MF 333K 400V CTA

154

Figura 153 - Capacitores de diferentes capacitancias Fonte: Autor

6.2.2 associação de capacitoRes Tanto os capacitores como os resistores podem ser associados em paralelo ou em série. O capacitor equivalente da associação dos capacitores é aquele que conserva quantidades iguais de cargas elétricas, sob a mesma tensão da associação.

associação de capacitoRes em paRalelo Nos capacitores, também chamados de condensadores, as placas paralelas existentes são as placas coletoras, que são as positivas, e as placas condensadoras que são as negativas. As positivas (coletivas) ficam ligadas entre si, apresentando, assim, o mesmo potencial, representado por VA, já as negativas (condensadoras), também ficam ligadas entre si, porém apresentam um potencial comum, representado por VB.

137

138

AUTOMAÇÃO INDUSTRIAL

Vejamos a figura de um capacitor em paralelo:

Figura 154 -  Capacitor em paralelo Fonte: Autor

É importante saber que todos os capacitores que estiverem em paralelo estarão sujeitos a uma mesma tensão, como: V = VA – VB.

Figura 155 -  Capacitor em paralelo 1 Fonte: Autor

Vejamos agora a carga total que foi armazenada pelo sistema: Q = Q1 + Q2 + ... + Qn Onde: Q1 = C1 . V Q2 = C2 . V Q3 = C3 . V ... Qn = Cn . V Então: Para o capacitor equivalente teremos: Ceq = C1 + C2 + C3 + ...

ASSOCIAÇÃO DE CAPACITORES EM SÉRIE Na associação em série, a placa condensadora, ou seja, a placa negativa está ligada diretamente à placa coletora, ou seja, a placa positiva. Vejamos a figura 156:

6 Indutores e Capacitores

Figura 156 -  Associação de capacitores em série Fonte: Autor

A carga que foi induzida, representada por + Q, fluirá na direção da placa coletora do outro condensador. Com isso, a carga –Q será induzida na placa condensadora e a carga positiva fluirá para a placa coletora de um terceiro capacitor, que induzirá a carga negativa em sua placa coletora, e assim por diante. Com isso podemos concluir que, quando os capacitores estão em série, eles apresentarão cargas iguais. Quando falamos da tensão representada por V, podemos afirmar que ela, na associação, é considerada a soma de todas as tensões individuais de cada capacitor. Vejamos: Veq = V1 + V2 + V3 + ... Cada capacitor apresenta: V1 = Q / C1 V2 = Q / C2 V3 = Q / C3 ... Se considerarmos Ceq como sendo a capacitância do capacitor total ou também chamada de equivalente, teremos: Ceq como: ( 1 ) = ( 1 ) + ( 1 ) + ( 1 ) ... C1 C2 C3 Ceq

6.2.3 Reatância capacitiva (XC) Reatância capacitiva é a oposição que o capacitor oferece à passagem da corrente alternada. Ela é simbolizada por Xc, e sua unidade de medida é o ohm Ω. Ela mesma varia conforme varia a frequência. A reatância capacitiva é dada por: Xc = 1 2.π.f.C Onde: XC = reatância capacitiva medida em Ohm, Ω; π = valor de referência 3,14; f = frequência da rede medida em Hertz, Hz; C = capacitância medida em Farad, F.

139

140

AUTOMAÇÃO INDUSTRIAL

Os capacitores em geral tem o valor de sua capacitância indicado em seu corpo. Alguns fabricantes usam uma simbologia especial para informá-la capacitância, como no exemplo da figura a seguir: TOLERÂNCIA Até 10 pF

Acima de 10 Pf

B = 0,10pF

F= 1%

C = 0,25pF

G = 2%

D = 0,50pF

H = 3%

F = 1pF

J = 5%

G = 2pF

K= 10 % M = 20% P = + 100% - 0%

SAIBA MAIS

Figura 157 - Capacitor Fonte: Autor

S = +50% - 20% Z = +80% - 20%

Figura 158 - Capacitor eletrolítico de 25uF 100V Fonte: Autor

No capacitor do exemplo acima temos: os algarismos 4 e 7 e o multiplicador 2, que significa o exponte de base 10 (no caso 102=100) e D é a tolerância de ± 0,50 pF. A tolerância é o quanto a capacitância pode variar, seja para mais ou para menos. Na tabela a seguir são informados os valores de tolerância. O valor obtido é dado em picofarad. Assim, o valor comercial da capacitância será: C= 47X100 = 4700pF com uma tolerância de. ± 0,50 pF

6.2.4 pRincipais tipos de capacitoRes Os capacitores comerciais são denominados de acordo com o material que isola eletricamente as placas do capacitor, e a este material chama-se dielétrico. A seguir, apresentamos uma tabela com exemplos dos principais tipos de capacitores: Tabela 9: Principais tipos de capacitores DIELÉTRICO

CONSTRuÇÃO

CAPACITÂNCIA

Ar

placas condutoras entrelaçadas

10pF a 400pF

Mica

folhas condutoras superpostas

10pF a 5.000pF

Papel

folha condutora enrolada

0,001µF a 1µF

Cerâmica

tubular

0,5µF a 1.600pF

disco

0,002µF a 1µF

Eletrolítico

alumínio

5µF a 1.000µF

tântalo

0,01µF a 300µF

Fonte: Eletricidade Básica. Milton Gussow

Os principais tipos de capacitores, conforme sua fabricação, são os cerâmicos, os plásticos e os eletrolíticos.

6 Indutores e Capacitores

CAPACITORES CERÂMICOS Os capacitores cerâmicos são os mais usados para valores baixos de carga e capacitância, conforme a figura a seguir:

154

Figura 159 -  Capacitores cerâmicos Fonte: Autor

Os capacitores cerâmicos são classificados conforme o dialétrico (cerâmicas e óxidos) e a construção do disco. Seus parâmetros de capacitância variam de 1 a 10.000pF, e suas capacidades variam em volts de 25 a 250VCC ou VCA.

CAPACITORES PLÁSTICOS Os capacitores plásticos também são muito usados em valores baixos de carga e capacitância.

Figura 160 -  Capacitores plásticos Fonte: Autor

Os capacitores plásticos são classificados conforme o dialétrico (Poliéster/ Mylar PET, Polipropileno – PP e Polietieno – PEN). Sua construção (folha e metalizado) e seus parâmetros de capacitância variam de 0,02 a 22uF, e sua capacidade em volts varia de 63 a 380VCC ou VCA.

CAPACITORES ELETROLÍTICOS Os capacitores eletrolíticos já possuem uma capacidade de carga maior que a dos anteriores. Podemos notar que sua carga varia conforme seu tamanho e tipo de construção.

141

142

AUTOMAÇÃO INDUSTRIAL

Figura 161 - Capacitores eletrolíticos Fonte: Autor

Os capacitores eletrolíticos são classificados conforme sua construção (polar/ monopolar e bipolar). Seus parâmetros de capacitância variam de 1 a 22.000uF, e suas capacidades em volts variam de 25 a 250VCC ou VCA.

VOCÊ SABIA?

Inventada na Holanda por Von Musschenbroek, em 1745, a “garrafa de Leiden” é considerada o primeiro capacitor construído e foi a primeira forma efetiva de acumular carga elétrica com altos potenciais.

Figura 162 - Capacitor de Von Musschenbroek Fonte: Autor

CASOS E RELATOS Automação e qualificação profissional Uma empresa de grande porte da região metropolitana de Porto Alegre monta automóveis para todo Brasil e para alguns países da América Latina. A empresa baseia sua Automação Industrial em sensores e, consequentemente, reduz seus custos. Em um mercado extremamente competitivo, como temos atualmente, muitas empresas buscam melhorar sua margem de lucro, por meio da inovação da automação, já que é a diferença na produção que vai alterar seus ganhos.

6 INDUTORES E CApACITORES

Nessa empresa montadora que citamos, as gerências incentivam todos seus técnicos a adotarem a Automação nos processos industriais, a fim de que a empresa obtenha maior precisão, velocidade e, principalmente, redução nos custos de material. O que verificamos com a adoção de processos de Automação é que, inicialmente, essa decisão pode induzir a redução de funcionários. Entretanto, o que acontece na realidade, é a transformação dos funcionários em técnicos qualificados, caso o profissional busque seu desenvolvimento profissional.

RECApITULANDO Neste capítulo, estudamos as características e o funcionamento de importantes componentes eletroeletrônicos, que são os indutores e os capacitores. Vimos que os indutores são constituídos de bobinas que convertem a energia elétrica em campo magnético, e que a capacidade do indutor de induzir tensão em seus terminais é conhecido como indutância. Observamos que os indutores podem ser associados em série ou em paralelo, e que a sua oposição à passagem da corrente CA é conhecida como reatância indutiva (XL). Por último, estudamos os capacitores, que são elementos constituídos de duas placas de metal paralelas, separadas por um material isolante, conhecido como dielétrico, bem como sua capacidade de armazenar cargas elétricas em seu interior, conhecido como capacitância. Vimos os principais tipos de capacitores, e que eles podem ser associados, assim como os indutores, em série ou em paralelo e que sua oposição a passagem da corrente CA é chamada de reatância capacitiva (XC).

143

Circuitos RLC em corrente alternada

7 Neste capítulo iremos estudar os seguintes fundamentos técnicos e científicos: • Circuitos RLC • Circuitos CA

7.1 CIRCUITOS RLC EM CA No capítulo anterior você compreendeu o que é reatância capacitiva e indutiva, o que será importante para que você equacione adequadamente o circuito RLC, que é uma associação de resistores, indutores e capacitores. Existem, ainda, duas formas de associação: em série e em paralelo.

7.1.1 associação Rlc em séRie O circuito RLC série é formado por uma série de resistores, indutores e capacitores. A figura 163, demonstra essa forma de associação. Onde:

Figura 163 - Esquema elétrico Fonte: Autor

R = O resistor tem resistência R L = O indutor oferece reatância indutiva: XL = 2 . π . f . L

146

AUTOMAÇÃO INDUSTRIAL

C = O capacitor oferece reatância capacitiva: Xc = 1 2.π.f.C Na associação em série, como já foi estudado anteriormente, a corrente I que passa pelos elementos é a mesma. Para calcular as tensões nos componentes utilizamos a lei de Ohm, lembrando que no indutor e no capacitor suas oposições à passagem da corrente elétrica são respectivamente a reatância indutiva (XL) e a reatância capacitiva (XC).

Figura 164 -  Esquema elétrico 1 Fonte: Autor

Para que exista corrente elétrica no resistor R, é necessário que exista tensão, VR nos seus terminais. Segundo a Lei de Ohm, essa tensão será determinada por VR = I . R. A tensão VR está na mesma fase que a corrente I, ou seja, não existe diferença de fase entre tensão e corrente. Por exemplo, se analisarmos no gráfico senoidal na figura 165, veremos que os valores máximos de VR e I estão na mesma fase, ou seja, ocorrem no mesmo instante no tempo. Outra maneira de representar é por diagrama de fasores. Um fasor tem a mesma representação de um vetor; a diferença é que o vetor varia no espaço e o fasor varia no tempo. No caso da representação fasorial, a seguir, I e VR estão “apontando na mesma direção”; logo, não há diferença de fase entre elas. (fig. 166)

Figura 165 -  Gráfico senoidal Fonte: Autor

Figura 166 -  Representação fasorial Fonte: Autor

7 CIRCUITOS RLC EM CORRENTE ALTERNADA

FIQUE ALERTA

Na realidade, fasor é um tratamento vetorial que se dá a uma grandeza escalar e não vetorial. Por exemplo: a distância entre dois pontos é um vetor, pois necessita de orientação, ou seja, indicação de norte, sul, leste e oeste; já no caso da corrente elétrica, para defini-la somente são necessárias a quantidade e a unidade. Porém, neste estudo há necessidade de referenciar esta corrente no tempo.

RepResentação FasoRial Nos terminais do indutor podemos determinar a tensão pela equação VL = I . XL No indutor a tensão VL está adiantada em 90º em relação à corrente I; ou seja, há uma diferença de fase entre a tensão no indutor e a corrente que passa através dele de 90°. Quando falamos que a tensão está adiantada em 90° quer dizer que, quando comparamos alguns valores de tensão e corrente, como os valores máximos ou também chamados de pico, a exemplo do gráfico fasorial, figura 167, o valor máximo (VP) da tensão VL ocorre 90° antes do valor máximo de corrente (IP). Esta defasagem também é representada pelo diagrama de fasores, figura 168, onde temos o fasor de VR e VL formando um ângulo de 90° “apontando para cima”.

Figura 167 - Gráfico senoidal 1 Fonte: Autor

Figura 168 - Representação fasorial 1 Fonte: Autor

Nos terminais do capacitor devemos determinar a tensão VC com a expressão VC = I . XC. No capacitor, ao contrário do indutor, a tensão VC está atrasada em 90º em relação à corrente I. Quando falamos que a tensão está atrasada em 90° quer dizer que quando comparamos alguns valores de tensão e corrente, como os valores máximos ou de pico (VP e IP), a exemplo, o valor máximo da tensão VC, atinge 90° depois do valor máximo de corrente Ip. Abaixo mostramos esta defasagem (fig. 164 e 165) por meio de um gráfico senoidal e representação fasorial. No diagrama de fasores, vemos a diferença de fase entre VR e VC, diferenciando que VC “aponta para baixo”, pois está atrasado em relação a VR.

147

148

AUTOMAÇÃO INDUSTRIAL

Figura 169 -  Gráfico senoidal 2 Fonte: Autor

Figura 170 -  Representação fasorial 2 Fonte: Autor

É importante relembrar que no circuito RLC série existe uma única corrente I e três tensões envolvidas (VR, VL e VC). A seguir, representamos através do gráfico senoidal e representação fasorial o comportamento das tensões e a função da corrente. (fig. 171 e 172)

Figura 171 -  Gráfico senoidal com três tensões Fonte: Autor

Figura 172 -  Representação fasorial 3 Fonte: Autor

7 Circuitos RLC em Corrente Alternada

7.1.2 Resolução de circuitos RLC Por exemplo, no circuito abaixo, se fossemos calcular algebricamente a tensão (V) aplicada ao circuito, teríamos a expressão V = 50V+70V+30V = 150V. Porém, observando o valor de V no circuito, vemos que ele nos mostra 64V. Como já abordado anteriormente, as tensões no indutor e no capacitor estão defasadas em relação à corrente. Então, a soma dessas tensões deve computar o ângulo de fase dessas grandezas e não a soma algébrica. A soma, portanto, deve ser efetuada com álgebra de vetores, em nosso caso, como já vimos, álgebra de fasores. I

Figura 173 -  Resolução de circuitos RLC - circuito Fonte: Autor

Utilizando a álgebra de fasores para resolver o circuito, temos a seguinte representação:

Figura 174 -  Resolução de circuitos RLC - representação fasorial Fonte: Autor

Note que, observando o diagrama de fasores acima, o tamanho do fasor de VC é maior do que o fasor de VL devido ao fato de XC ser maior que XL. Chegamos a esta conclusão porque VC é maior que VL, já que é um circuito série e o valor da corrente é o mesmo em cada componente. Utilizamos para esta análise as expressões abaixo: V V e XL = L XC = C I I Como na álgebra de vetores, vemos que VL e VC são dois fasores, na mesma direção e sentidos opostos. Logo, temos o fasor resultante, VC-VL, apontando para baixo devido ao fato de VC ser maior que VL:

Figura 175 -  Resolução de circuitos RLC - representação fasorial 1 Fonte: Autor

149

150

AUTOMAÇÃO INDUSTRIAL

Para determinar V, que é a componente resultante dos fasores de VC-VL com VR, devemos utilizar o teorema de Pitágoras, visto no capítulo 1:

Figura 176 -  Resolução de circuitos RLC - representação fasorial 2 Fonte: Autor

Determinando V, temos V = (VR2 + (VC - VL)2) Aplicando a equação na analise do circuito RLC série anterior teremos: V = VR2 + (VC - VL)2 V = 502 + (70 - 30)2

V = 64V

Ao contrário do exemplo anterior, o circuito RLC proposto abaixo possui VL maior que VC. Logo, chegamos à conclusão de que XL é maior que XC, lembrando que, como no exemplo anterior a corrente é a mesma.

Figura 177 -  Resolução de circuitos RLC - circuito 1 Fonte: Autor

O digrama de fasores fica:

Figura 178 -  Resolução de circuitos RLC - representação fasorial 3 Fonte: Autor

Agora, o fasor de VL é maior que o de VC, representando o fasor resultante VL-VC, no diagrama abaixo:

Figura 179 -  Resolução de circuitos RLC - representação fasorial 4 Fonte: Autor

7 Circuitos RLC em Corrente Alternada

Aplicando o Teorema de Pitágoras, temos: V2= (VR2 + (VL - VC)2) Resolvendo para V_R , temos: V2= (VR2 + (VL - VC)2) V2= VR2 + (VL - VC)2 V2= 45,82 + (80 - 60)2 V2= 45,82 + 202

V = 50V

7.1.3 Impedância no circuito RLC em série A oposição total que o circuito RLC oferece à passagem da corrente elétrica é conhecido como impedância. A impedância é simbolizada pela letra Z, e sua unidade de medida é o Ohm (Ω). A equação para determinar a impedância em um circuito RLC série é definida a partir do diagrama de fasores das tensões, como o da figura a seguir. Lembramos que a impedância (Z) é a oposição à passagem da corrente elétrica no circuito RLC.

Figura 180 -  Impedância no circuito RLC em série - representação fasorial Fonte: Autor

Como:

VL = i . XL



VR = i . R



VC = i . XC

Reescrevendo o diagrama das tensões: = I . XL

=I.R

= I . XC Figura 181 -  Impedância no circuito RLC em série - representação fasorial 1 Fonte: Autor

151

152

AUTOMAÇÃO INDUSTRIAL

Dividindo por i, teremos o diagrama das impedâncias:

Figura 182 -  Impedância no circuito RLC em série - representação fasorial 2 Fonte: Autor

O diagrama vetorial das impedâncias apresenta uma oposição de fase entre a impedância indutiva (XL) e a impedância capacitiva (XC). A partir dessa constatação, podemos reduzir o sistema de três vetores para dois vetores e em duas situações: a) Circuito RLC série, onde XL é maior que XC.

Figura 183 -  Impedância no circuito RLC em série - representação fasorial 3 Fonte: Autor

Figura 184 -  Impedância no circuito RLC em série - representação fasorial 4 Fonte: Autor

A partir do sistema de dois vetores a 90º, o vetor resultante, ou impedância da associação, pode ser determinado pelo teorema de Pitágoras. Z = R2 + (XL - XC)2 b) No circuito RLC série, onde XC é maior que XL .

Figura 185 -  Impedância no circuito RLC em série - representação fasorial 5 Fonte: Autor

Figura 186 -  Impedância no circuito RLC em série - representação fasorial 6 Fonte: Autor

7 Circuitos RLC em Corrente Alternada

A partir do sistema de dois vetores a 90º, o vetor resultante, ou impedância da associação, pode ser determinado pelo teorema de Pitágoras. Z = R2 + (XC - XL)2 Graficamente:

Figura 187 -  Impedância da associação - Pitágoras Fonte: Autor

Figura 188 -  Impedância da associação - Pitágoras 1 Fonte: Autor

Corrente no circuito RLC série: A corrente no circuito RLC série é uma relação entre a tensão aplicada e da impedância total do circuito, em conformidade com a lei de Ohm. i= V Z Assim, para determinar a corrente num circuito RLC série devemos, antes, calcular sua impedância. No circuito da figura 184 vamos determinar, como exemplo, a impedância, a corrente, a tensão no resistor R, a tensão no indutor e a tensão no capacitor.

Figura 189 -  Impedância no circuito RLC em série - circuito Fonte: Autor

1º passo: Determinar a reatância indutiva do indutor (XL) e a reatância capacitiva (XC) do capacitor. XL = 2 . π . f . l XL = 754Ω 1 2.π.f.C XC = 1327Ω

XC =

2º passo: Determinar a impedância do circuito ( Z ): Z = R2 + (XC - XL)2 Z = 10002 + (1327 - 754)2

Z = 1153Ω

153

154

AUTOMAÇÃO INDUSTRIAL

3º passo: Determinar a corrente no circuito: i= V z 120v i= 1153Ω i = 0,104A 4º passo: Determinar as tensões nos elementos do circuito: R, L e C: VR = i . R VR = 0,104 . 1000 VR = 104V VL = i . XL VL = 0,104 . 754 VL = 78V VC = i . XC VC = 0,104 . 1327 VC = 138V Como forma de comprovar as tensões calculadas nos elementos do circuito, vamos determinar a tensão total e comparar com a tensão aplicada ao circuito: V = VR2 + (VC - VL)2 V = 1042 + (138 - 78)2

V = 120,07V

O resultado confere com o valor da tensão aplicada. A pequena diferença de 0,07V deve-se aos arredondamentos realizados nos cálculos.

7.1.4 Circuito RLC em paralelo O circuito RLC paralelo é formado por uma associação de resistores, indutores e capacitores integrados conforme a figura 190:

Figura 190 -  Circuito RLC em paralelo Fonte: Autor

7 Circuitos RLC em Corrente Alternada

Como todo o circuito paralelo, a tensão é a mesma em todos os componentes e é igual à tensão aplicada pelo gerador. Por essa razão, a tensão serve como referência na determinação dos parâmetros do circuito. A tensão aplicada ao circuito RLC paralelo produz em cada elemento do circuito uma corrente característica. A corrente no resistor IR está em fase com V. A corrente no Indutor IL está atrasada de V em 90°, e a corrente no capacitor IC está adiantada de V em 90°. Lembramos que estas características foram estudadas anteriormente no circuito RLC série. O circuito com a identificação das correntes é mostrado a seguir: (fig. 191)

Figura 191 -  Circuito RLC em paralelo 1 Fonte: Autor

Analisando primeiro IR, temos que ela está em fase com a tensão aplicada ao circuito, conforme representado no gráfico senoidal e representação fasorial a seguir: (fig. 192 e 193)

Figura 193 -  Circuito RLC em paralelo - representação fasorial Fonte: Autor Figura 192 -  Circuito RLC em paralelo - gráfico senoidal Fonte: Autor

Para determinar a corrente no resistor utilizamos a expressão: IR = V R A corrente no indutor IL está atrasada em 90º em relação à tensão aplicada, enquanto a corrente no capacitor IC está adiantada de V em 90°. Esta relação de fase entre as correntes e a tensão em função do tempo é apresentada graficamente e por meio de representação fasorial:

155

156

AUTOMAÇÃO INDUSTRIAL

Figura 194 -  Circuito RLC em paralelo - gráfico senoidal 1 Fonte: Autor

Figura 195 -  Circuito RLC em paralelo - representação fasorial 1 Fonte: Autor

Para determinar a corrente total do circuito IT utilizaremos também o teorema de Pitágoras. • A corrente total é a soma fasorial das correntes nos elementos. • A corrente total é a soma vetorial das correntes nos elementos.

Figura 196 -  Circuito RLC em paralelo - representação fasorial 2 Fonte: Autor

Lembramos que a corrente IC está adiantada em 90º em relação à corrente iR e a corrente iL está atrasada em 90º em relação a iR. A partir desta análise, devemos considerar: a) Circuito capacitivo, quando iC > iL. Logo, como IC e IL estão em oposição de fase, devemos utilizar a resultante IC-IL para determinar IT:

Figura 197 -  Circuito RLC em paralelo - circuito Fonte: Autor

Logo, utilizando o teorema de Pitágoras temos a expressão para determinar IT: IT = IR2 + (IC - IL)2

7 Circuitos RLC em Corrente Alternada

b) Circuito indutivo, quando IL> IC . Logo, como IL e IC estão em oposição de fase, devemos utilizar a resultante IL-IC para determinar IT:

Figura 198 -  Circuito RLC em paralelo - circuito 1 Fonte: Autor

Novamente reduzimos um sistema de três vetores a um sistema de dois vetores a 90º. Assim, o equacionamento é executado com o teorema de Pitágoras. Para determinar a impedância do circuito RLC paralelo utilizamos a lei de Ohm: IT = IR2 + (IL - IC)2

Z= V iT

7.1.5 Circuito RLC série na ressonância A impedância do circuito RLC série é dada pela equação: Z = R2 + (XL - XC)2 Como na ressonância XL = XC Portanto, diminuindo os seus valores XL - XC =0 , teremos zero no resultado. Então: Z = R2 + (0)2 No circuito RLC série na ressonância temos: Z=R; ou seja, a impedância é igual à resistência do resistor. O gráfico a seguir, (fig. 194) apresenta sobrepostos os comportamentos da reatância capacitiva e indutiva em função da frequência. Existe um ponto de intersecção onde a frequência torna XL igual a XC. A abscissa desse ponto é a frequência de ressonância.

Figura 199 -  Determinação gráfica da frequência de ressonância Fonte: Autor

157

158

AUTOMAÇÃO INDUSTRIAL

Qualquer circuito que contenha um capacitor e um indutor, em série ou paralelo, tem uma frequência de ressonância. Na frequência de ressonância o circuito RLC série tem impedância mínima. Portanto, a corrente é máxima nesta frequência específica. Como já vimos, na ressonância a reatância capacitiva e a reatância indutiva são iguais (XL = XC). Consequentemente, iL = iC.

Figura 200 -  Representação fasorial da correntes na ressonância Fonte: Autor

Como iL e iC estão em oposição de fase, a resultante iL - iC é nula. Idealmente, na frequência de ressonância o capacitor e o indutor não “absorveriam” correntes do gerador. Então, a determinação das correntes no circuito fica: i = iR2 + (iL - iC)2 Como iL = iC Temos que: i = iR2 + (0)2 i = iR2 i = iR No circuito RLC paralelo a corrente total tem o valor mínimo na frequência de ressonância. Como conseqüência, a impedância do circuito é máxima. Como: Z= V i Sendo esta corrente mínima teremos a seguinte expressão para calcular Z na ressonância: Z= V =Zmáx. imin.

7 CIRCUITOS RLC EM CORRENTE ALTERNADA

SAIBA MAIS

As ondas de rádio e TV viajam pelo espaço com frequências específicas. As emissoras são diferenciadas por frequências características. Na ressonância, o receptor “capta” a frequência da onda de rádio ou TV com eficiência máxima e o sinal da emissora é reproduzido pelo receptor. As ondas das outras emissoras, com frequências diferentes, não estão em ressonância com o receptor e são barradas pela alta impedância do receptor.

Figura 201 - Ressonância - circuito Fonte: Autor

Na figura 201 temos um receptor AM esquematizado. No circuito, o capacitor de 100pF e a bobina variável (sintonia) formam o circuito ressonante.

CASOS E RELATOS Adoção de circuitos RLC As cabines eram operadas por funcionários e o sistema era baseado em jatos de extintores de CO2, que reduziam a quantidade de oxigênio para apagar o fogo. Em caso de um disparo do sistema com funcionários trabalhando, o acidente poderia gerar perda na produção, devido à parada e retirada dos funcionários de seus postos de trabalho, ocasionando perda na qualidade da pintura de todos os automóveis da linha. A solução encontrada foi contratar um especialista em sinais elétricos, que projetou um circuito RLC, reduzindo a intensidade dos sinais elétricos e, assim, os problemas foram resolvidos.

159

160

AUTOMAÇÃO INDUSTRIAL

RECApITULANDO Neste capítulo, fizemos um estudo do comportamento de circuitos com resistores, indutores e capacitores em série ou em paralelo. Observamos que existe uma relação de fase entre os componentes por meio da representação fasorial, e que essa representação varia conforme a diferença dos valores das reatâncias dos componentes. Vimos que a oposição que um circuito RLC oferece à passagem da corrente elétrica é conhecida como impedância (Z). Abordamos, também, as características e comportamento da corrente e tensão CA, quando aplicados a um circuito resistivo e puramente capacitivo e indutivo. Concluindo, verificamos que podemos fazer um circuito RLC responder a uma única frequência, conhecida como frequência de ressonância. Isso possibilita selecionar a frequência desejada, o que é chamado de circuito sintonizado.

7 Circuitos RLC em Corrente Alternada

Anotações:

161

Magnetismo, eletromagnetismo e transformadores

8 Neste capítulo iremos estudar os seguintes fundamentos técnicos e científicos: • magnetismo, eletromagnetismo; e • transformadores.

8.1 MAgNETISMO E ELETROMAgNETISMO O termo magnetismo provém de magnetita (Fe3O4), uma rocha que recebeu esse nome por ter suas propriedades magnéticas primeiramente observadas por um pastor grego chamado Magnes. Existe também a hipótese de que o nome magnetita se deva ao fato de a rocha ter sido encontrada em grande quantidade da cidade de Magnésia (Grécia Antiga).

Figura 202 - Imã Fonte: Autor

A magnetita apresenta propriedades magnéticas naturais em função de sua constituição de dipolo elétrico (+Fe3O4). A primeira grande aplicação pratica do magnetismo foi a bússola, que foi fundamental na época dos grandes descobrimentos. Mas foi Gilbert (1544–1603), na Universidade de Cambridge, que, em 1600, escreveu o primeiro tratado sobre magnetismo. Gilbert foi o primeiro a dizer que a Terra era um grande magneto.

VOCÊ SABIA?

Posteriormente, os trabalhos de Coulomb, Oersted, Biot Savat, Arago, Weber, Ampère e principalmente Faraday, que instituiu a ideia de campo magnético, e Maxwell, que equacionou as observações de Faraday, proporcionaram a concepção atual de que o magnetismo é devido às correntes microscópicas no interior da matéria. Existem, na natureza, três tipos de materiais de interesse ao magnetismo: ferromagnéticos, paramagnéticos e diamagnéticos. Os materiais diamagnéticos formam campos contrários aos que os produziram; já os paramagnéticos e ferromagnéticos têm moléculas com dipolos magnéticos permanentes.

164

AUTOMAÇÃO INDUSTRIAL

Destes, os ferromagnéticos apresentam os dipolos magnéticos (pequenos imãs) alinhados, como mostra a figura 198, formando o que chamamos de imã permanente.

Figura 203 -  Material ferromagnético Fonte: Autor

Nos paramagnéticos, esses dipolos magnéticos estão orientados ao acaso, como mostra a figura 199. É necessária a presença de um campo externo orientando esses dipolos para que o material obtenha características de imã. Esses imãs são denominados imãs artificiais e o processo é chamado de imantação.

Figura 204 -  Material paramagnético Fonte: Autor

Os imãs apresentam duas regiões de características magnéticas distintas, denominadas polos magnéticos. (fig. 205)

Figura 205 -  Imã 2 Fonte: Autor

Experimentalmente, é fácil demonstrar que não é possível separar o polo Norte do polo Sul de um imã. Esta propriedade dos imãs é chamada de inseparabilidade dos polos. (fig. 206)

Figura 206 -  Imã 3 Fonte: Autor

Fracionando o imã, vamos formar dois novos imãs. Se continuarmos dividindo em 4, 8, 16 partes... enfim, em quantas partes quisermos, por menores que sejam as partes teremos sempre imãs completos (fig. 207)

Figura 207 -  Divisão de Imã Fonte: Autor

8 Magnetismo, Eletromagnetismo e Transformadores

Outra propriedade importante dos imãs é a atração e repulsão entre os polos. (fig. 208)

Figura 208 -  Propriedades dos imãs Fonte: Autor

Polos de mesmo nome se repelem e polos de nomes diferentes se atraem.

8.1.1 Campo magnético

V

Campo magnético é uma região no espaço em torno do imã onde ocorrem interações magnéticas. O campo magnético de um imã é uma grandeza vetorial, pois, além de sua intensidade, precisamos determinar sua direção e seu sentido, para que esse campo fique perfeitamente definido. Representamos o campo nessa região através de linhas de indução, como mostra a figura 209. Por convenção, as linhas de indução saem do polo Norte do imã e entram em seu polo Sul. Observe também que as linhas nunca se cruzam. Tangente às linhas de indução orientamos o vetor campo magnético B .

Figura 209 -  Linhas de força representando o campo magnético Fonte: Autor, baseado mundoeducação. com br, 2012

A observação de um campo magnético pode ser feita com o seguinte experimento: coloque um ímã sob uma folha de papel e sobre ela colocar limalhas de ferro. Você observará a formação de linhas de orientação desenhadas pelas limalhas, evidenciando o campo magnético, conforme demonstrado nas figuras 210 e 211.

Figura 210 -  Experiência Fonte: Autor

Figura 211 -  Imã 4 Fonte: Autor

165

166

AUTOMAÇÃO INDUSTRIAL

As interações nos campos magnéticos são verificadas através das forças magnéticas. Colocando em diversos pontos do campo magnético um condutor energizado, podemos medir a força que o campo magnético exerce sobre o condutor em cada um desses pontos e obter, dessa forma, uma informação quantitativa que permitirá definir a intensidade do campo magnético. Neste estudo, é importante que você associe a força magnética ao campo magnético, pois isso possibilitará aplicações práticas no eletromagnetismo.

8.1.2 Eletromagnetismo Em setembro de 1820, a histórica observação de Oersted relacionou os fenômenos magnéticos com os fenômenos elétricos. No experimento das figuras 212 e 213, verificamos que o condutor energizado produz um campo magnético (eletromagnético) capaz de ativar a agulha (imã) da bússola.

Figura 212 -  Circuito não-energizado Fonte: Autor

Figura 213 -  Circuito energizado Fonte: Autor

Campo eletromagnético é o campo gerado pela corrente elétrica no espaço circundante ao condutor. A figura 214 demonstra que, sem a corrente elétrica no condutor, a limalha de ferro é distribuída aleatoriamente no papel.

Figura 214 -  Limalhas de ferro distribuídas aleatoriamente Fonte: Autor

Se existir a corrente elétrica, ela produzirá o campo com o espectro circular demonstrado pela figura a seguir. No esquema desta figura é importante observar que as linhas de indução que representam geometricamente o campo estão num plano perpendicular (90º) em relação ao condutor. A orientação das linhas de indução é determinada pelo sentido da corrente no condutor, como demonstra a figura 215.

8 Magnetismo, Eletromagnetismo e Transformadores

Figura 215 -  Circuito energizado com linhas de indução do campo magnético Fonte: Autor

Para determinar a orientação das linhas de força do campo magnético usamos a regra da mão direita, é uma regra prática para determinar o sentido das linhas de indução (ou linhas de força) do campo eletromagnético no espaço do condutor energizado. (fig. 216)

Figura 216 -  Regra da mão direita Fonte: Autor

O polegar deve ser orientado pelo sentido da corrente elétrica no condutor. Os demais dedos da mão direita orientam o sentido das linhas de indução do campo eletromagnético, como demonstra a figura 216. Se invertermos o sentido da corrente no condutor, o sentido das linhas de indução também será invertido. Condutores energizados são eletroímãs. Como os imãs, interagem com forças de atração ou repulsão.

Com as linhas de indução no mesmo sentido, os imãs se atraem, observando que as linhas de indução saem do polo Norte e entram no polo Sul.

Figura 217 -  Atração Fonte: Autor

Idêntica situação existe com as linhas de indução nos condutores. Usando a “regra da mão direita” para determinar o sentido das linhas de indução nos condutores, verificaremos que essas linhas têm o mesmo sentido. Portanto, os condutores irão se atrair.

167

168

AUTOMAÇÃO INDUSTRIAL

Com as linhas de indução no sentido oposto, os imãs se repelem, a observando que as linhas de indução saem do polo Norte e entram no polo Sul.

Linhas de indução com sentidos os condutores irão se repelir. Figura 218 -  Repulsão Fonte: Autor

Então, quando as correntes nos condutores paralelos tiverem sentidos opostos, os condutores se repelirão pela ação oposta das linhas de força. Os campos eletromagnéticos não se somam, mas se repelem. Portanto, têm tendência de se anularem pela ação oposta das linhas de força.

8.1.3 Campo eletromagnético em espiras O campo eletromagnético também ocorre em espiras, solenóides e bobinas, aumentando a intensidade proporcionalmente e respectivamente. A espira é um condutor (fio) dobrado segundo uma circunferência de centro O e raio R. As linhas de indução formam um circuito magnético passando pelo interior da espira, passando por dentro de espira e retornando por fora. Observe na figura 219 as linhas de indução circular que se unem para formar um único campo magnético.

Figura 219 -  Campo eletromagnético em espira Fonte: Autor

8 Magnetismo, Eletromagnetismo e Transformadores

Para orientar o vetor campo eletromagnético gerado pela espira, vamos usar novamente a regra da mão direita, demonstrado na figura 220. O polegar é orientado pelo sentido da corrente elétrica na espira. O dedo médio aponta para o centro da espira e a palma da mão indica o sentido do campo.

Figura 220 -  Direção campo eletromagnético em espira Fonte: Ramalho, 2007

O solenóide é um agrupamento de espiras, e seu campo eletromagnético vem da soma dos vários campos das espiras. As linhas de força (indução) passam por dentro do solenóide e retornam por fora. O solenóide energizado tem os polos como os indicados na figura 221. Usamos a regra da mão direita para determinar a qualidade desses polos (Norte ou Sul). Envolvendo a solenóide com a mão direita, os dedos da mão são orientados pelo sentido da corrente nas espiras e o polegar indica o polo Norte.

Figura 221 -  Campo eletromagnético em espira 1 Fonte: Autor

A intensidade do campo eletromagnético gerado pelo solenoide é dada pela expressão: B = μ0 . N/l . i μ0: permeabilidade magnética do vácuo (ar). É constante e vale: μ0 = 4 . π . 10-7 (T.m)/A. N: é o número de espiras. l: é o comprimento do solenóide em metros. i: é a intensidade de corrente elétrica em ampères.

169

170

AUTOMAÇÃO INDUSTRIAL

A unidade da intensidade de campo eletromagnético no SI de Unidades é o Tesla (T). A bobina é o condutor enrolado em muitas espiras, em camadas sucessivas, uma sobre a outra. Na verdade, são vários solenóides agrupados. As bobinas são enroladas com fios de isolação especial feita por uma capa de verniz de alto poder isolante em bases denominadas carretéis.

Figura 222 -  Carretel Fonte: Autor

Para aumentar a intensidade do campo eletromagnético é usual colocar no interior da bobina um núcleo de ferro, como nas figuras 223 e 224. A bobina assim constituída é chamada de eletroímã.

Figura 223 -  Bobina sem núcleo de ferro Fonte: Autor

Figura 224 -  Bobina com núcleo de ferro Fonte: Autor

Também utilizamos a regra da mão direita para determinar os polos de um eletroímã, porém devemos observar, necessariamente, alguns detalhes: 1º detalhe: Verificar o sentido em que são enroladas as espiras da bobina.

Figura 225 -  Espiral da bobina Fonte: Autor

2º detalhe: Verificar o sentido da corrente. É importante ter presente o terminal em que a corrente elétrica entra e o terminal em que ela sai.

Figura 226 -  Espiral da bobina 1 Fonte: Autor

8 MAgNETISMO, ELETROMAgNETISMO E TRANSFORMADORES

Então, segure (ou imagine segurar) o solenoide com a mão direita mantendo o polegar esticado, como mostra a figura 227. As pontas dos dedos indicam o sentido da corrente e o dedo polegar, o polo Norte. N

Entrada

N

S

Saída

Entrada

S

Saída

NORTE

NORTE

Figura 227 - Representação da regra da mão direita Fonte: Autor

A regra da mão direita também é aplicada para determinar o sentido da corrente na bobina. No eletroímã da figura temos os polos Sul e Norte como indicados. Aplicando a regra da mão direita à figura 228, devemos determinar que a corrente elétrica entra pelo terminal x e sai pelo terminal y.

Figura 228 - Representação da regra da mão direita 1 Fonte: Autor

FIQUE ALERTA

A comunidade cientifica acredita que a energia com baixos níveis de frequência, como as dos campos magnéticos, são biologicamente ativos e podem provocar danos a saúde. Os trabalhadores do setor elétrico, operadores de rádio, micro-ondas e telefonia celular estão expostos a esses efeitos de campo.

8.1.4 FoRça de atRação eletRomagnética em eletRoimãs O eletroimã, como no esquema ao lado, é utilizado para realizar o trabalho. A expressão que determina a força eletromagnética F é dada por: F=

B2 . S unidade: kgf 4 . π . F . 9,18 . 105

171

172

AUTOMAÇÃO INDUSTRIAL

Figura 229 -  Eletroimã Fonte: Autor

Onde: B é fluxo magnético em Gauss; S é a secção transversal do núcleo em cm2 representada na figura acima. Para calcular o fluxo magnético necessário na(s) bobina(s) do eletroímã para produzir a força F devemos usar a expressão:

B=

4 . π . F . 9,18 . 105 S

O circuito efetivado pelas linhas de indução é denominado circuito magnético. As figuras 230 e 231 representam dois circuitos magnéticos clássicos. O eletroímã da figura 231 é mais eficiente porque as linhas de indução têm maior facilidade para completar o circuito magnético.

Figura 230 -  Eletroimã 1 Fonte: Autor

Figura 231 -  Circuito magnético Fonte: Autor

Neste eletroímã, o circuito magnético é formado, em grande parte, pelo ar.

O circuito magnético neste eletroímã é formado quase exclusivamente, pelo núcleo de ferro.

Outro fator que devemos considerar na avaliação de eletroímãs é o entreferro. Entreferro é o espaço que pode existir entre o núcleo e o fecho do eletroímã, como mostra as figuras 232 e 233. No ar, a relutância é cerca de 8.000 vezes maior que a do ferro. A relutância mensura a dificuldade que o meio oferece ao estabelecimento do campo magnético.

8 MAgNETISMO, ELETROMAgNETISMO E TRANSFORMADORES

Figura 232 - Entreferro Fonte: Autor

SAIBA MAIS

VOCÊ SABIA?

Figura 233 - Entreferro 1 Fonte: Autor

O mercado mundial de materiais magnéticos duros (ou permanentes) é da ordem de US$ 1 bilhão ao ano, mas o mercado dos bens que deles dependem é dezenas de vezes mais elevado, e o mercado mundial em gravação magnética é estimado em torno de US$ 100 bilhões por ano e vem se expandindo a uma taxa próxima a 17% ao ano.

Existem trabalhos que estão realizando a conexão de nanopartículas magnéticas a células cancerosas, o que tornaria possível aplicar um campo magnético alternado suficientemente forte para movimentar essas partículas e aquecer localmente o tumor, provocando a eliminação do câncer sem os indesejados efeitos colaterais da quimioterapia da radioterapia.

8.2 TRANSFORMADORES Os transformadores são equipamentos que transformam tensão ou corrente elétrica em níveis de grandeza diferentes, para aplicações específicas. Em princípio, não há uma transformação de energia, apenas mudanças nos valores de tensão e/ou corrente, porém há perdas, e a energia resultante torna-se menor que a energia inicial. Veja a aplicação dos transformadores no seu dia-a-dia: Você ganhou em um sorteio um refrigerador com tensão de trabalho de 110V, mas você mora em cidade onde a rede elétrica tem a tensão de 220V. O que fazer? Não buscar o prêmio? Para este caso, você terá que colocar um transformador com entrada 220V e saída 110V.

8.2.1 tRansFoRmadoR monoFásico Um transformador é composto de, no mínimo, uma bobina primária e outra bobina secundária. Quando alimentamos a bobina primária com uma tensão elétrica, ela gera um campo magnético que interferirá na bobina secundária, induzindo nela uma corrente elétrica e, ocasionado o surgimento de uma tensão elétrica na bobina do secundário.

173

174

AUTOMAÇÃO INDUSTRIAL

Porém, para haver corrente induzida é necessário que a espira do secundário corte linhas de força diferentes. Como o transformador não é móvel, é necessário que o campo magnético seja variável; portanto, um transformador só funciona com corrente alternada. Sabemos que o campo magnético de uma bobina é diretamente proporcional à tensão aplicada e ao número de espiras que a compõem. Assim, também uma bobina que está sendo induzida terá sua corrente induzida diretamente proporcional ao campo magnético ao qual está exposta e ao número de espiras que a compõem. Daí surge a seguinte expressão: V primario V secundário

=

Nº espiras primário Nº espiras secundário

Isto resulta na relação de transformação: se um transformador é composto de 600 espiras no primário e 60 espiras no secundário, terá uma relação de 10:1 (redutor). Isto quer dizer que a tensão injetada no primário será reduzida em 10 vezes no secundário. Sabemos que o transformador não transforma energia; portanto, a potência elétrica do primário, desprezando as perdas, será igual à potência do secundário. P primário(PP) = Psecundário(PS) Em termos de tensão e corrente, isto quer dizer que: Vprimário (VP) . Iprimário (IP) = Vsecundário (VS) . Isecundário (IS) Como exemplo de aplicação temos um transformador com relação de espiras 10:1, com a tensão no primário de 220V e secundário 24V. Com uma capacidade de drenar 12A, o secundário terá uma capacidade de fornecer 10 vezes esta corrente. Efetuando os cálculos para determinar a corrente necessária no primário (Ip), temos: Pp = Ps Vp . Ip = Vs . Is 220 . Ip = 24 . 12 Ip = 288 / 220 Ip = 1,3 A Isto porque: Pp = Ps Vp . Ip = Vs . Is 220 . 1,3 = 24 . 12 288 W = 288 W.

8 Magnetismo, Eletromagnetismo e Transformadores

Para a melhor condução magnética do campo do primário para o campo do secundário utilizamos lâminas de material ferroso como núcleo. (fig. 234)

Figura 234 -  Tipos de núcleo Fonte: Autor

Quanto à forma de onda, acontece uma inversão do sinal do primário, devido à transmissão por campo magnético (defasagem 90° corrente e campo). (fig. 235)

Figura 235 -  Forma de onda Fonte: Autor

8.2.2 Transformadores com mais de uma bobina no primário e no secundário Os transformadores podem ter várias bobinas no primário e no secundário, visto que o campo magnético está concentrado no mesmo núcleo. (fig. 236)

Figura 236 -  Transformador com mais de uma bobina Fonte: Autor

Inclusive a bobina pode ter derivação; neste caso chamamos de Tape Center. (fig. 237)

Figura 237 -  Derivação central Fonte: Autor

175

176

AUTOMAÇÃO INDUSTRIAL

8.2.3 Transformador trifásico Um transformador trifásico é composto de três bobinas primárias e três bobinas secundárias. Cada bobina do primário é enrolada com sua respectiva bobina do secundário no mesmo núcleo. O primário pode ser ligado tanto em estrela quanto em triângulo, assim como o secundário, independentemente. (fig. 238)

Figura 238 -  Transformador trifásico Fonte: Autor

Um transformador trifásico possui duas tensões de entrada e duas tensões de saída, dependendo da ligação que fizemos.

8.2.4 Autotransformador trifásico Esses autotransformadores são trifásicos que possuem as bobinas de primário e secundário interligadas em um ponto em comum, sendo a bobina de secundário com tapes para a escolha de tensão. Normalmente, os tapes são de 50%, 65% e 80%. (fig. 239)

Figura 239 -  Autotransformador trifásico Fonte: Autor

8 MAgNETISMO, ELETROMAgNETISMO E TRANSFORMADORES

RECApITULANDO Neste capítulo foi abordado que os materiais que possuem principalmente ferro na sua composição apresentam propriedades magnéticas. Estes materiais magnéticos são conhecidos como imãs e que esses atraem outros materiais como o ferro devido a uma força que existem em torno dele conhecido como campo magnético. Vimos que quando um condutor é percorrido por uma corrente elétrica o mesmo produz um campo magnético em torno dele e que este fenômeno é conhecido como eletromagnetismo e que a orientação das linhas de força deste campo depende do sentido da corrente que atravessa este condutor. Vimos também, que se enrolarmos este condutor de modo a formar um laço ou espira entorno de um núcleo de ferro aumentamos a intensidade deste campo magnético. Por último, estudamos sobre os transformadores que é um componente eletroeletrônico usado para transformar uma valor de tensão CA em outro, maior ou menor, dependendo da sua aplicação em um determinado circuito elétrico. Vimos que os transformadores são constituídos de duas bobinas enroladas em um núcleo de ferro, onde uma tensão elétrica aplicada a bobina no primário, induz uma tensão no secundário, por meio de acoplamento magnético. No final vimos sobre os transformadores trifásicos e autotransformadores, que possuem mais de uma bobina no primário e no secundário.

177

Referências COLEGIO WEB. Energia armazenada no capacitor. Disponível em: Acesso em 28 set. 2011. E-FISICA. Eletricidade e Magnetismo. Disponivel em: Acesso em 24 set. 2011. Guimarães, Thiago M. Bobina de Tesla. Disponível em: Acesso em 23 set. 2011. GUSSOW, Milton. Eletricidade Básica. São Paulo: Makron Books, 1997. LIMA, Marcos. Eletromagnetismo. Cap 9. Disponível em: Acesso em 18 set. 2011. Martinho, Edson. Acidentes com a Eletricidade. Disponivel em: Acesso em 24 set. 2011. MORETTO, V. P. Eletricidade e Eletromagnetismo: física hoje. 3. ed. São Paulo: Ática, 1989. PENTEADO, Paulo Cesar Martins. Física: conceitos e aplicações. 1. ed. São Paulo: Moderna, 1998 RAMALHO JR., Francisco; FERRARO, Gilberto; SOARES, Paulo A. de Toledo. Os fundamentos da física. 8. ed. São Paulo: Moderna, 2007. Santos, C. A. dos. Experimento da gota de óleo de Millikan. Disponivel em : Acesso em 21 set. 2011. Serviço Nacional de Aprendizagem Industrial/RS. Eletrotécnica Básica. Gravataí: Escola de Educação Profissional SENAI Ney Damasceno Ferreira, 2000. 143 p. il sistemasautomotivos.blogspot. Bobinas. Jan/2009. Disponível em: Acesso em 1 mar. 2012 Universidade Federal do Paraná. Aula 4 - Indutores e Circuitos RC. Disponível em: Acesso em 21 set. 2011. UNIVERSIDADE FESDERAL DO RIO GRANDE DO SUL. Eletromagnetismo Virtual. Cap 1. Disponivel em: Acesso em 22 set. 2011.

Minicurrículo dos Autores Rosano Daniel Nunes Graduação em Engenharia Elétrica pela Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, 2003. Especialização em Gestão de Instituições de Ensino, pela Faculdade Porto Alegrense – FAPA, 2011. Técnico em Telecom da CRT Brasil Telecom (1997-2000). Técnico em manutenção Senior da ABB Ltda (2000-2002). Engenheiro Eletricista da URS Division Washington Group International do Brasil Ltda, (2002-2009). Instrutor nível técnico para turmas de terceiro e quarto módulo em eletrônica, do SENAI Visconde de Maúa, desde 2009.

Jorge Luis Cardozo Graduação em Ciências Físicas e Biológicaspela Faculdade Porto Alegrense - FAPA. Licenciatura em Eletrônicapela Universidade do Vale do Rio dos Sinos – UNISINOS.Especialização em Eficiência Energética pela Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS.Especialização em Ciências da Terra pela Universidade Federal do Rio Grande do Sul-UFRGS. Professor de Física da Instituição Educacional São Judas Tadeu, desde 1994. Supervisor de Eletrônica doCentro Tecnológico Estadual Parobé, desde 1988. Instrutor de Nível Técnico do SENAI/RS, desde 2005.

Índice A Amperímetro 70, 77, 78, 80, 81 Associação de capacitores 129, 131 Associação de indutores 125, 126 Associação dos resistores 87, 89 Associação paralela de dois resistores 108 Associação paralela de resistores de mesmo valor 108 Associação RLC em série 137 C Campo eletromagnético em espiras 168 Campo magnético 123, 124, 150, 163, 165, 166, 167, 168, 172, 173, 174, 175 Capacitância 80, 129, 131, 132, 133, 134, 156 Capacitância de um capacitor 129 Capacitores 123, 128, 129, 130, 131, 132, 133, 134, 137, 146 Capacitores cerâmicos 133 Capacitores eletrolíticos 133 Capacitores plásticos 133 Ciclo trigonométrico 51 Circuito capacitivo puro 155 Circuito eletrônico 71, 128 Circuito indutivo puro 154 Circuito misto 110, 111 Circuito paralelo 106, 108, 147 Circuito paralelo de corrente contínua 106 Circuito resistivo puro 153 Circuitos corrente alternada 149 Circuitos de corrente contínua 103 Circuito série 103, 105, 141 Circuitos RLC em CA 137 Circuitos RLC em corrente alternada 137 Circuitos série de corrente contínua 103 Coeficiente 41, 42, 88 Comprimento da circunferência 50

Condutores 72, 73, 123, 149, 167, 168 Conversão binário decimal 35 Conversão de base numérica 21, 34 Conversão decimal binário 36 Conversão decimal hexadecimal 37 conversão de um número do sistema binário 35 Converter 21, 23, 24, 33, 34, 36, 50, 67, 74, 154 Corrente alternada 13, 74, 75, 77, 131, 137, 149, 150, 151, 155, 174 Corrente contínua 74, 76, 77, 103, 106, 149 Corrente elétrica 70 Cosseno 52, 53 Coulomb 22, 60, 62, 67, 163 Curto circuito 113, 115, 116, 117 D Diagrama de fasores 138, 139, 141, 143 Diferença de potencial 68, 69, 89, 92, 93, 94, 104, 106, 107, 110, 129 Divisor de corrente 109 Divisor de tensão 109 Divisores de tensão e corrente 109 E Eletroimãs 171 Eletromagnetismo 150, 163, 166, 179 Eletrostática 59, 63, 64 Equação 38, 39, 42, 43, 44, 46, 49, 61, 76, 87, 88, 90, 94, 96, 97, 99, 100, 104, 107, 108, 124, 125, 128, 139, 142, 143, 157 Equação linear 38 Equações exponenciais 46 F Fontes de energia 59, 73 Força eletromotriz 74 Fórmula de Báskara 44 Função cosseno 52, 53 Função de 2º grau 43, 44 Função exponencial 45 Função linear 41, 42 Função logarítmica 46, 47

Função seno 51, 52 Função tangente 53, 54 Funções de 1º grau, 2º grau, exponencial, logarítmica e trigonometricas 41 G Gráfico 29, 41, 43, 47, 88, 138, 139, 140, 147, 150, 151, 153, 157 Grandezas elétricas 59, 68 I Impedância 143, 144, 145, 149, 157, 158, 159 Indutância 124, 125, 126, 127, 128, 154 Indutores 123, 125, 179 Instrumentos de medidas 59, 77 Isolantes 72 K Kirchhoff 87, 91, 92, 93, 94, 95, 97, 98, 99, 101, 104, 106, 107 L Lei de Coulomb 67 Lei de Kirchhoff 92 Lei de Ohm 75, 79, 87, 88, 105, 107, 138, 156 Leis de Kirchhoff 87, 91, 92, 94, 97, 101 Logaritmo 46, 47 M Magnetismo 163 Magnetismo e eletromagnetismo 163 Medição da resistência 79 Medição de corrente 77 Medição de tensão 78 Medição por meio de multímetro digital 80 Multímetro 80, 81 Multímetro digital 80 Múltiplos e submúltiplos 21, 32 N Números decimais 29, 31, 36, 37, 56 Números fracionários 25 O Ohm 71, 75, 79, 87, 88, 105, 107, 131, 138, 143, 145, 149, 156 Ohmímetro 71, 80

Operação com frações 28 Operações aritméticas com potências de dez 24 Operações com números decimais 31 Osciloscópio 82, 83 P Potência de base dez 21 Potência e energia elétrica 59, 75 Potência elétrica 75 Prefixos métricos 32 Princípios de eletrostática 63 Propriedades de potenciação 46 Propriedades dos logarítmos 48 R Reatância capacitiva 131 Reatância indutiva 124, 125, 137, 138, 145, 154, 155, 158 Redução de frações ao mesmo denominador 27 Regra da mão direita 167, 169, 170, 171 Relações trigonométricas 21, 55, 56 Relações trigonométricas de ângulos 56 Representação fasorial 138, 139, 140, 141, 142, 143, 144, 147, 148 Representação gráfica de funções 21, 51 Resistência 71, 72, 73, 104, 107 Resistência elétrica 13, 33, 49, 71, 72, 73, 79, 80, 87, 88, 108 Resistência equivalente 92, 104, 105, 106, 108, 109, 110, 111, 112, 115, 116, 117, 118 Resistência equivalente de associação paralela 107 Resistência específica 72 Resistores em paralelo 90, 91 Resistores em série 89 Ressonância 157, 158, 159 S Seno 51, 52, 53, 56, 149 Senóide 52 Sistema de numeração binário 35 Sistema de numeração hexadecimal 36 Sistema linear 37, 39

T Tangente 53, 54, 56, 88 Tensão e corrente alternada 150, 151 Tensão elétrica 68 Teorema da superposição 112, 113 Teorema de Norton 117, 118, 119 Teorema de Pitágoras 51, 55, 143 Teorema de Thévenin 115, 116 Transformadores 75, 78, 79, 149, 163, 173, 175 Trigonometria básica 49 V Valor eficaz 151 Voltímetro 69, 79, 80, 81

SENAI – DEPARTAMENTO NACIONAL Unidade de Educação Profissional e Tecnológica – UNIEP

Rolando Vargas Vallejos Gerente Executivo Felipe Esteves Morgado Gerente Executivo Adjunto Diana Neri Coordenação Geral do Desenvolvimento dos Livros SENAI – DEPARTAMENTO REGIONAL DO RIO GRANDE DO SUL

Claiton Oliveira da Costa Coordenação do Desenvolvimento dos Livros no Departamento Regional Jorge Luis Cardozo Rosano Daniel Nunes Elaboração Giancarllo Josias Soares Revisão Técnica Enrique S. Blanco Fernando R. G. Schirmbeck Luciene Gralha da Silva Maria de Fátima R.de Lemos Design Educacional Regina M. Recktenwald Revisão Ortográfica e Gramatical Camila J. S. Machado Rafael Andrade Ilustrações Bárbara V. Polidori Backes Tratamento de imagens e Diagramação Enilda Hack Normalização

i-Comunicação Projeto Gráfico

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF