True Colors - Eva Cassidy

October 31, 2017 | Author: skylarktiramisu | Category: Entertainment (General)
Share Embed Donate


Short Description

Download True Colors - Eva Cassidy...

Description

True Colours Words & Music by Billy Steinberg & Tom Kelly Am7

Am7/B

G*

Fmaj7

C5

F

Csus2

Am

C*

Dm7

3fr

G'9

Em7

C

G

Am*

5fr

7fr

E7

F'9

G5

Fmaj7

5fr

T

q = 77

  

Am7

Am7/B

C5





F

Am7

Am7/B



Gtr. 1 (elec.)

                          

mf

let ring... w/clean tone

3





3 0





3

3

1

0

3

3

1

0

1

0

1

3 0

3

1

3 0

1

2 3 0

2

3

0

2

Verse

C5

F

 





      

Am









You with the

sad

G'9

  

C





eyes,

      



don’t



F

 

  



be dis - cou - raged though

 I

          

3



0

1

1 2

2 3

0 2 2

3

0

0

1 0

2 0

0

1 0 2

1 2 3

3 3

Am

G'9

 



re



1 2

  

-







al

-

ise







 













it’s

hard

to

take

cour

- age,



 

 

 

 

 

1 0

1 0 0

1 0 2

1 2 3



2 0 0

F



0 2 2

0



C

0 3

3

© Copyright 1986 Sony/ATV Tunes LLC, USA. Sony/ATV Music Publishing (UK) Limited. All Rights Reserved. International Copyright Secured. Sorgdal

1 0 0







in

 a

Am





G'9



 world







full

of

peo

     



1 2















You

can

lose

sight

of

it

 



 

 

 

2

1 0 0

1 0 2

1 2 3



 



1 0

2 0

0

0

0







all,

and

the

3 3

G'9





dark - ness



Chorus



there





1 2

F





in - side

you

makes

  



0

0 2





2 2

 you



0

0

C

     



feel



so

small.

    

 

1 2 3

1 0 2 3

1 2 3

0 3

F

    true

       Gtr. 1 (elec.)

1 1 2 3

      Gtr. 2 (elec.)

mf 1

Sorgdal

ple.

F



0

  



 





2

 



-

2

Am





C

1 2

0

C

     

  

col

-

-

  

  



0 1 0 2 3

   



w/clean0 tone 1 0

ours

shin

ing

       0 1 0

0 1 0

let ring... 1



through,



see your

           

3 0 2 0 X 3

 

F





    

3 0 2 0 X 3



But I see

your

 

1

G'9





 

  

3 0 2 0

3 0 2 0

3 0 2 0

3 0 2 0

 0



    1 1 2 3 3 1

 

0

1 1 2

0

2

     

true

     3

C

col

     3 1

-

ours

  

0 1 0 2 3

   

 0 1 0







F

 



G

that’s why

I

love





1 1 2 3 3 1

3 0 0 0 X 3

1 2 3

1

 

1 1 2 3

   



col -

  

1 1 2 3

1 1 2 3

0 1 0 2 3

  

  

  

X X X X

1 1 2 3

1 1 2 3

 

0 1 0 2 3

    

   

   0 0 0





let them

      

  

1 2 3

2 3

C

    

 

  

  

1 1 2 3

1 1 2 3

0 1 0 2 3



6

5

  

   

ours







are





your

  





0 1 2 2 0

0

       5

col -





show

9

true

2



G



8



ours

Am



8

F



1 0 0

F

to

 

10



  

a - fraid

 

X X

C

true

don’t be



3 3 4 5

F

 

0

   



  



so

           

  



you

C

         

      

    



F



8 10 9

8 7

G'9



  

beau - ti - ful

  





0

 

0





0 2

3





2 0

2 0

      w/vol. pedal

8

 Sorgdal

8

8 10

8

13

10

13 16

3

15 16

17

17

 

 



   like a





Am7







Am7/B

 -



3

3



0

  

3

2

Am7

Am7/B



                    3

0







3

1 0

0

3

F

bow.

  0

0



 

rain



C5

3

1

3 0 0

1 0

0 2 3

1 0

2

2

3



     

3 0

3

1 0

0

1 0

2





3 0 0



1/2 20

15

20



17

15

15 17

Verse

C5

F

 







Show



      

Am

   me your

G'9



  

smil

-



ing

C

   





1 0

            

 

  

  

0 1 0

0 1 0 0

3 1 0 2

3 1 2 3

1 2 3

       3

1/2

 Sorgdal

17

0 2

2

2

0

0

0

0



  

2 3

3

   





17

1

0

2

4

 

 

3

Fig. 1 17

  

and don’t be un - hap - py. Can’t re - mem

3 0 0

F'9



  0 1 0

      3 5 5

3 5 5



0

Am

G'9



    



-

ber

   



when



 I

C

Fmaj7

 







    

     

1 0

1 0

2 3

3

 

   



Fig. 1



1 0 0

1

   

0 1 0 2

0 1 0 3

0

Fmaj7

Am

           tak - en all you



can bear.

 

    

  

0 1 0 2 3

0 1 0 2

0 1 0 2

0 1 2 3

0 1 2 3

0 1 2 2 0

0 0 0

  



9 2

3

2

0

3

if



this world makes

     

 

0 1 2 3

0 1 2 2

0 1 2 2 0

0



 







 



you cra - zy and you’ve

   

  

  

0 1

3 0 0 0

3 0 0 0

 





3 0 0 0 X 3



2

 







 

0 1 2 2

3 3 4 5

3 3 4 5

0 0 0



    

8

7 7

5

0

   

    

1 1 2 3 3 1

1 1 2



I’ll be

there. And I see you

   

  

1 1 2 3 3 1

    X X X X X X

  

0 1 0 2 3

             9 7 5

9 10

0

C

     0

2

F

be - cause you know

      

9

0

2

call me up

 

 Sorgdal

You

 

     



G*

  

   



G

Fig. 1

2

C







 

0

2

 

0 1 2 3

1 0 2

3

  



last saw you laugh - ing

3 0 0

 

Am

1 1 2

X X X

0 1 0

  

  

  

0 1 0 2 3

X X X X X

X X X X X

     0 1 0

X X X X X X

Chorus

F

Csus2

true

    



1 0 0 3

that’s



    



1 0 2 3

 

0 1 0 0



shin

     0 1 0 2 3

0 0

G*

    -

ing

I

love

   

   

   

1 1 2 3 3 1

X X X X X X

 

  

 

1

0

5 6 5 7

5 6 5 7

8 6 5 7

3 3 4 5

5 3

1

F



So

0

       

  

   

 

X X X

be

a - fraid

    

   

   

  

X X X X X X

0 1 0 2 3 3

X X

X X

 

 

 

 

 

 

 

3 3 4 5

X X X X

X X X X

1 1 2 3

1 1 2 3

X X X X

0 1 0 2

6

X X X

3 1

3 1

0 1 0 2 3 3

1 1 2 3

  

 

 

  mf

0 1 0 2



Am7

G

 

let them

0 1 2 3

 



0 0 0

3 3

0 1 0 2

Fmaj7

to

    0 1 0 2

 

         

don’t

1 1 2 3 3 1

1 1 2 3 3 1

0

C*

1 1 2 3 3 1

5 3

5 3

0

0

3 3 4 5

- ours,

         

0 1 0 2

 

col

3 3 4 5 5 3

0 1 0 2

        

true

X X X X X X



 

see your

3 3 4 5 5 3

 

you.

    





   

 

3 3 4 5 5 3



through,

 

     



C*

   

       why



F

   

G*

  

 Sorgdal

1 1 2 3 3 1



 

1 1 2 3

 

- ours



f1 1 2 3 3 1

F

col

      

  



C

    

 





show



  

0 0

0 1 2 2 0

     1 0 0



   

 

0 1 2 3

0 1 2 2

 

F



Csus2





    

your true



col



   mp



C

1 2 3

F



- ours,

your true

col

-



are

  

beau - ti - ful

 

   

 

  

1 0 0 3

1 0 2 3

1 2 3

1 0 0 3

1 0 2 3

0







0

like a









13 16

-





3

3



0 2 0

 3

 0

C5



F

Am7

17

Am7/B



bow.

 

  

3 0



3

1 0

                  3

0

3

1

3 0 0

1 0

0 2 3

2

1 0

3 0

2

3

0



      



3 0

1

2



   1/2

15

15

 Sorgdal

3

1 0

1/2 20

15 16

17

 

rain

0

w/vol. pedal

10

  

0

13

Am7/B



     



8







2

0

10

Am7





0

3

8

 2

 

 

8







 

10

 







ours

Fig. 1





G'9

   

8



C

    

   

   

 

Csus2

17

15

17 17

7

15 17

Bridge

C5







F

Am

G'9

C







                      mf Aah.





  

        

3

 

0 0

1 0

0 2 3

2

1 0

1 2

3

 

0 2

1 0

2 2

0

0

   







9

0

     

8

 

7



Am

   



1 2 3

1 2 3

  

 

1 2 3

 



G'9

  

saw you laugh.

 

  

     

1 2 3

0 1 2 2 0

0 1 2 2

0 2 0 X 3

If

      0 2 0

           Fig. 1  0

1

1

1

0

3

0

3

      

  

1 0 0

C

1

1

1

2

2

2

0 2 0



2 X 3

8

Dm7





0

0 X 3

0

   



this world makes you cra - zy and you’ve

  

  

  

  

0 1 0 2 3

0 1 0 2 3

5 6 5 7 5

5 6 5 7 5

  

  

  

  

0 1 0 2 3

0 1 0 2 3

5 6 5 7 5

5 6 5 7 5

0

0 3

5



 

1 0

7

     

I can’t re - mem - ber when I last



7

3





10

5



 



10

12

F

Sorgdal

 14 12

1 0 2

3





12

0

3

          

 14

3

0

Fig. 1 12

0









Em7

 

F

   





ta - ken all you can bear,

   

  

 

 

  

7 8 7 5 7

7 8 7 5 7

1 1 2 3

1 1 2 3

1 1 2 3





  

you

call me up



  

 

 

  

7 8 7 5 7

7 8 7 5 7

1 1 2 3

1 1 2 3

1 1 2 3







be - cause you

 

 

     

5 5 5 7

5 5 5 7

X X X X

X X X X



F



 





G





0 0

   





Am*

    

3 0 0 0 X 3

3 0 0 0 X 3

   

0 0

 

C

 

      know

    1 1 2 3 3 1

I’ll

be

there.

   

   

  

  

  

  

  

  

0 1 0 2 3

0 1 0 2 3

0 1 0 2 3

0 1 0 2 3

X X X X X

X X X X X

1 1 2 3 3 1

X X X X X X



See



8 10

8

6

5

9

5

0 0

Chorus

F

  

     f1



     

your true





C*

1 2 3 3 1

    X X X X X X

col -

   0 1 0 2 3 3

ours

          0 1 0



shin

0 1 0 2 3

0 0

G*

 

 

   

- ing

through,

   

 

   

     

3 3 4 5 5 3

X X X X

3 3 4 5 5 3

3 3 4 5



see



  

13

12

3



   

 



3 3 4 5 5 3

0 0

 Sorgdal

13

9

12

C*

     

your true

    

15 12

F

 

1 1 2 3 3 1

    1 1 2 3 3 1

    X X X X X X

col -

  

ours

             

0 1 0 2 3 3

0 1 0



0 1 0 2 3

X X X X X

X X X X X

F

G*

 



      

that’s

why

I

love

    

   

   

   

1 1 2 3 3 1

1 1 2 3 3 1

X X X X X X

3 3 4 5 5 3





F



you

 

C

so

don’t

be

a - fraid

           

   

   

   

  

1 1 2 3 3 1

1 1 2 3 3 1

X X X X X X

0 1 0 2 3

5 3

3 3 4 5 5 3

0 0





F

     





to

Am

 

show

 

1 2 3

X X X X

0 1 2 2



    



5

5

7

5

5







F

C



  

true

col - ours,





   

F



C

your true



G'9

           

   

col - ours

    

are

 

 1 0









beau - ti - ful

          

 

2

  1

8

 Sorgdal

10

3

9

0

     

3

2 3

        8

1 0 2

8 X 9

8 X 9

0 2 0

1

0 2

0



2

8 10

0 3

   

  15

8

13 9

13 16

16 17

10

2

0

17

 7

  



like a rain

3 1 0 2





your

 

mf 1





 



let them

  

G



Am7



Am7/B



  -





  3





F

Am7



Am7/B

C5



F



bow.

 

  

3 0

C5



3

3

1 0

0

 0



                           3

1

3 0 0

1 0

0 2 3

2

2

3



     

1 0

3 0

0



0 0

20 17

15 15

1 0

1 0

2

                 

full

15

13

0 2 3

3

1/2

15



3

1



1/2 20

3 0

2





3

1 0

15

17

17

18

17

0 0 17 17 7 9

0 7

5

Gtr. solo

Am

G'9

C







            



0 1 2

0 2

2 0

1 0 0

0



1 0 0

0 1 0 2

0 1

1 2 3

3

  

0

0

5

5

0 0 7

5



       7

9

8

8



 8

10

 

G'9

    



0 2

2

2 2

0

0

0

0 3



          8

10

8 9

11



1

2 3

3



Am

                

2 0

  

 Sorgdal

0 1

Fmaj7

8 10

7 8

10

8

C

F







 

      

 



1 0

1 0 0



    

1 1 2 3

1 0 2



G'9

C

     

1

0

0 2

2 0

2

3

0









full

8



  

1

1 2 2 0



 

 

0 1 2 2

0 1 2 2

2

G*

4

2

0

2

   

     

3 3 4 5 5 3

3 3 4 5 5 3

Sorgdal

15

1 0 2

1 2 3

2 3

2 3

0 0

          

4

5

9

7

C*



0

0



   

   

   

  

1 1 2 3 3 1

1 1 2 3 3 1

X X X X X X

0 1 0 2 3 3





3

13



1 0 0

F

full 13 13

1 0

10

                   13 13

             

1/2

2



 

0

        

3



F

3 3





0

0

Am



Am

15

13

15 14





13



10

10 12



I’ll

see

 



12



0 1 0 2

full 13

  

12



 

  

Gtr. 1 cont. in slashes 0 X X 1 X X 0 X X 2 X X X X

   

full

15

15

15

15

13 14

12

  

Chorus

F

Gtr. 1



your

true

col

-

ours

  

  

  

  

0 1 0 2 3

0 1 0 2 3

0 1 0 2 3 3



  





-

  

    

   

   

  

1 1 2 3 3 1

1 1 2 3 3 1

X X X X X X

0 1 0 2 3 3

   







0 1 0 2 3 3

  

0

G*

  

love

12

13

G5



F



1

0



  

you

so

F



let

them

your

show



      

  



 true

   col



 

 

 

0 0 X 3

0 0 X 3

0 0 X 3

X X X X

X X X X



- ours,

1

1 0

don’t be

13

  

a - fraid

   

   

   

  

1 1 2 3 3 1

1 1 2 3 3 1

X X X X X X

0 1 0 2 3

F

C

   



  

    col

-

     8

3

8 10 10

to

  

your true

5

3

C

       



        1





 

3 3 0 0



 

 



13

C





see



        I



through,

0

   

0 1 2 2

ing





 

12





-



      

10



 





0 0 X 3

 

that’s why

  

Am



 

F

  

ours



 



 





shin

     col

G*

0

C

E7

Sorgdal





your true







 

0 3 1 2





8 8 10 10







 







F







Gtr. 2









  

 







C

ours

  are

G'9



    

   

  

0

 



0





 

0

a

2

rain

    -





3

3

-

 



0

2

0

Am7/B



0

2 0 3

   like

mp





beau ti - ful



Am7

bow.





3

3



0 2

3

  

     

    



20



13

13

13

16

16

C5





17

Am7



17

rall. Am7/B



3

 

hoo

 

3 1

0 2 3

1

  

3 0

0

 

3

3

       

1 0

0

2

 

 

5 5 5 7

8 7 9

1/2

Sorgdal



15 17

14

Fmaj7*

hoo.

2

         

 

3

1



ha

2

3

17



C

   

3



 

         



 

Hoo





16 17

F

15

13 16

17

0

1

0



 3

1 0

0



 

3

0 1 2 3 3 1

*T on 6

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF