Trigonometry (Revise)
Short Description
trigo...
Description
TRIG QUESTIONS 1
Sin (B – A) is equal to ____, when B = 270 ° and A is an acute angle.
2 If sec² A is
5/2, the quantity 1- sin ² A is equivalent to
CHOICES a. - cos A cos A c. - sin A d. sin A a. 2.5 b. b. 1.5 c. c. 0.4 d. d. 0.6
3 ( cos A )^4 - ( sin A )^4 is equal to _____.
a. cos 4A b. b. cos 2A c. c. sin 2A d. d. sin 4A
4 Of what quadrant is A, if sec A is positive and csc A is negative?
a. IV b. b. II c. c. III d. d. I
5 Angles are measured from the positive horizontal axis, and a. sin B > 0 and cos B < 0 b. b. sin B < 0 and cos B < 0 the positive direction counterclockwise. What are the th c. c.s in B > 0 and cos B > 0 values of sin B and cos B in the 4 q uadrant? d. d. sin B < 0 and cos B > 0
6 Csc 520° is equal to
a. cos 20° b. b. csc 20° c. c. tan 45° d. d. sin 20°
7 Solve for Ə in the following equation: Sin 2Ə = cos Ə
a. a. 30° b. b. 45° c. c. 60° d. d. 15°
b.
8 If sin 3A = cos 6B, then
a. A + B = 90° b. b. A + 2B = 30° c. c.A + B = 180° d. d. None of these
9 Solve for x, if tan 3x = 5 tan x.
a. 20.705° b. b.3 0.705° c. c.3 5.705° 5.705° d. d.1
10 If sin x cos x + sin 2x = 1, what are the values of x?
11
Solve for G is csc ( 11G – 16° ) = sec ( 5G + 26° ).
a. 32.2° , 69.3° b. b. -20.67° , 69.3° c. c. 20.90° , 69.1° d. d. -32.2° , 69.3°
a. 7° b. b. 5° c. c. 6° d. d. 4°
12 Find the value of A between 270° and 360° if 2 sin² A – sin A = 1.
a. 300° b. 320° c. 310° d. 330°
13 If cos 65° + cos° = cos Ə, find Ə in radians.
a. 0.765 b. 0.087 c. 1.213 d. 1.421
14 Find the value of sin ( arc cos 15/17 ).
a. 8/11 b. 8/19 c. 8/15 d. 8/17
15 The sine of a certain angle is 0.6, calculate the cotangent of the anlge.
a. 4/3 b. 5/4 c. 4/5 d. ¾
16 If sec 2A = 1/ sin 13A, determine the angle A in degrees.
a. 5° b. 6° c. 3° d. 7°
17
If tan x = 1/2, tan y = 1/3, what is the value of tan ( x + y )?
a. 1/2 b. 1/6 c. 2 d. 1
18
Find the value of y in the given: y = ( 1 + cos 2Ə ) tan Ə
a. sin Ə b. cos Ə c. sin 2Ə d. cos 2Ə
19
Find the value of sinƏ + cosƏ tanƏ/ cosƏ
a. 2 sin Ə b. 2 cos Ə c. 2 tan Ə d. 2 cot Ə
20 Simplify the equation sin²Ə ( 1+ cot²Ə )
21
Simplify the expression sec Ə - ( secƏ ) sin²Ə
a. 1 b. sin²Ə c. sin²Ə sec²Ə d. sec²Ə a. cos² Ə b. cos Ə c. sin² Ə d. sin Ə
22 Arc tan [ 2 cos ( arc sin [ ( 3^1/3 ) /2 ) is equal to]
a. π/3 b. π/4 c. π/16 d. π/2
23 Evaluate arc cot [ 2 cos (arc sin 0.5 ) ]
a. 30° b. 45° c. 60° d. 90°
24 Solve for x in the given equation: Arc tan ( 2x ) + arc tan ( x a. 0.149 b. 0.281 ) = π/4 c. 0.421 d. 0.316
25
26
Solve for x in the equation: arc tan ( x + 1 ) + arc tan ( x – 1 a. 1.5 ) = arc tan ( 12 ).
b. 1.34 c. 1.20 d. 1.25
Solve for A for the given equation cos² A = A = 1 – cos² A.
a. 45, 125, 225, 335 degrees b. 45, 125, 225, 315 degrees c. 45, 135, 225, 315 degrees d. 45 150 220 315 de rees
27 Evaluate the following: ( sin 0 ° + sin 1 ° + sin 2° + ...+ sin 89° + sin 90° / cos0° + cos 1° + cos 2° +...+ cos 89° + cos 90° )
28
Simplify the following: ( cos A + cos B / sin A – sin B ) + ( sin A + sin B / cos A – cos B )
29 Evaluate: ( 2 sinƏ cosƏ – cosƏ / 1 – sinƏ + sin²Ə –
30
Solve for the value of “ A “ when sin A = 3.5x and cos A =
31 If sin A = 2.511x, cos A = 3.06x and sin 2A = 3.939x, find the value of x?
If coversed sin Ə = 0.134, find the value of Ə.
a. 0 b. sin A c. 1 d. cos A
cos²Ə ) a. sin Ə b. cos Ə c. tan Ə d. cot Ə
5.5x.
32
a. 1 b. 0 c. 45.5 d. 10
a. 32.47° b. 33.68° c. 34.12° d. 35.21°
a. 0.265 b. 0.256 c. 0.562 d. 0.625
a. 30° b. 45° c. 60° d. 90°
33 A man standing on a 48.5m building high, has an eyesight height of 1.5m from the top of the building, took a depression reading from the top of another nearby wall, which are 50° and 80° respectively. Find the height of the nearby building in meters. The man is standing from the edge of the building and both buildings lie on the same horizontal plane.
a. 39.49 b. 35.50 c. 30.74 d. 42.55
34 Point A and B 1000m apart are plotted on a straight highway running East and West. From A, the bearing of a tower C is 32°W of N and from B the bearing of C is 26° N of E, Approximate the shortest distance of tower cC to the highway.
a. 364 m b. 374 m c. 384 m d. 394 m
35 Two triangles have equal bases. The altitude of one triangle is 3 units more than its base and the altitude of the other triangle is 3unites less than its base. Find the altitudes, if the areas of the triangles differ by 21 square units.
a. 6 and 12 b. 3 and 9 c. 5 and 11 d. 4 and 10
36 A ship started sailing S 42°35' W at the rate of 5 kph. After 2 hours, ship B started at the same port going N 46°20' W at the rate of 7 kph. After how many hours will the second shi be exactl north of shi A?
a. 3.68 b. 4.03 c. 5.12 d. 4.83
37 An aerolift airplane can fly at an airspeed of 300 mph. If there is a wind blowing towards the cast at 50 mph, what should be the plane's compass heading in order for its course to be 30°? What will be the plane's ground speed if it flies in this.
38 A man finds the angle of elevation of the top of a tower to be 30°. He walks 85m nearer the tower and finds its angle of elevation to be 60°. What is the height of the tower.
a. 19.7°, 307.4 mph b. 20.1°, 309.4 mph c. 21.7°, 321.8 mph d. 22.3°, 319.2 mph
a. 76.31 m b. 73.31 m c. 73.16 m d. 73.61 m
39 A pole cast a shadow 15m long when the angle of elevation a. 54.23 m of the sun is 61°. If the pole is leaned 15° from the vertical b. 48.23 m directly towards the sun, determine the length of the pole. c. 42.44 m d. 46.21 m
40 A wire supporting a pole is fastened to it 20 ft from the ground and to the ground 15 ft from the pole. Determine the length of the wire and the angle it makes with the pole.
41 The angle of the elevation of the top of the tower B from the top of the tower A is 28° and the angle of elevetion of the top of the tower A from the base of the tower B is 46°. The two towers lie in the same horizontal plane. If the height of tower B is 120m, find the hieght of tower A.
42 Points A and B are 100m apart and are of the same elevation as the foot of a building. The angles of elevation of the top of the building from points A and B are 21° and 32° respectively. How far is A from the building in meters.
a. 24 ft, 53.13° b. 24 ft, 36.87° c. 25 ft, 53.13° d. 25 ft 36.87°
a. 66.3 m b. 79.3 m c. 87.2 m d. 90.7 m
a. 259.28 b. 265.42 c. 271.64 d. 277.29
43 The Captain of a ship views the top of a lighthouse at an angle of 60° with the horizontal at an elevation of 6m above the sea level. Five minutes later, the same Captain of the ship views the top of the sam e lighthouse at an angle of 30° with the horizontal. Determine the speed of the ship if the lighthouse is known to be 50m above sea level.
a. 0.265 m/sec b. 0.155 m/sec c. 0.169 m/sec d. 0.210 m/sec
44 An observer wishes to determine the height of a tower. He takes sight at the top of the tower from A and B, which are 50ft apart, at the same elevation on a direct line with the tower. The vertical angle at point A is 30° and point B is 40°. What is the height of the tower?
a. 85.60 ft b. 92.54 ft c. 110.29 ft d. 143.97 ft
45 A PLDT tower and a monument stand on a level plane. The angles of depression of the top and the bottom of the monument viewed from the top of the PLDT tower at 13° and 35° respectively. The height of the tower is 50m. Find the height of the monument.
a. 29.13 m b. 30.11 m c. 32.12 m d. 33.51 m
46 If an equilateral triangles is circumscribed about a circle of radius 10 cm, determine the side of the triangle.
a. 34.64 cm b. 64.12 cm c. 36.44 cm d. 32.10 cm
47 The two legs of a triangle are 300 and 150 m each, respectively. The angle opposite the 150 m side is 26°. What is the third side?
a. 197.49 m b. 218.61 m c. 341.78 m d. 282.15 m
48 The sides of the triangular lot are 130 m., 180 m and 190 m. The lot is to be didvided by a line bisecting the longest side and drawn from the opposite vertex. Find the length of the line.
a. 120 m b. 130 m c. 125 m d. 128 m
49 The sides of the triangleare 195, 157 and 210, respectively. a. 73,250 sq. units b. 10,250 sq. units What is the area of the triangle? c. 14,586 sq. units d. 1 1260 s . units
50 The sides of a triangle are 8, 15 and 17 units. If each side a. 240 is doubled, how many square units will the area of the new b. 420 c. 320 trianglebe? d. 200
NOMETRY ANSWER
a. - cos A
c. 0.4
b. cos2A
DISCUSSION sin ( 270° - A ) = sin 270° cos A - sin A cos 270 = ( - 1 ) cos A - sin A ( 0 ) sin ( 270° - A ) = - cos A sin² A + cos² A = 1 1 - sin² A = cos² A sec² A = 5/2 NOTE: cos A = 1/secA, thus cos² A = 1/sec² A SUBSTITUE: ( 2 ) IN ( 1 ): 1 - sin² A = 1/sec² A = 1/ ( 5/2 ) = 0.4 cos^4 A - sin^4 A = cos² A cos² A - sin ² A sin² A =cos² A (1 - sin² A) - sin² A (1 - cos² A) = cos² A - cos² sin² A - sin² A + sin² A cos² A = cos² A - sin² A = cos 2A NOTE: cos 2A = cos² A - sin² A
In the fourht quadrant: a. IV
sec Ə = hypotanuse/adjacent side = c/a csc Ə = hypotanuse/opposite side = - c/b In the fourth quadrant:
d. sin B < 0 and cos B > 0 sin B = opposite side/hypotanuse = - b/c cos B = adjacent side/hypotanuse = a/c Thus, sin B < 0 and cos B > 0
b. csc 20°
csc 520° = csc ( 520° - 360° ) csc 520° = csc 160° csc 160° = csc ( 180° - 160° ) csc 160° = csc20° Thus csc 520° = csc 20°
a. 30°
sin 2Ə = cosƏ note:
eqn 1
sin 2Ə = 2 sin Ə cosƏ eqn2 substitute: (2) in (1)
2 sinƏ cosƏ = cos Ə 2 sinƏ = 1 b. A + 2B = 30°
a. 20.705°
c. 20.90°, 69.1°
b. 5°
sin 3A = cos 6B eqn 1 NOTE: cos 6B = sin ( 90° - 6B ) eqn 2 Substitute: ( 2 ) in ( 1 ) sin 3A = sin ( 90° - 6B ) sin 3A = 90° - 6B 3A = 90° - 2B A = 30° - 2B A + 2B = 30° tan 3x = 5 tan x eqn 1 tan 3x = tan ( 2x + x ) = tan2x + tan x/1 - tan2xtanx eqn 2 Substitute: ( 2 ) in ( 1 ) tan2x + tan x/1/tan2x + tan x = 5 tan x tan 2x + tan x = 5 tan x - 5 tan 2x tan² x tan 2x = 4 tan x - 5 tan 2x tan² x tan 2x ( 1 + 5 tan² x ) = 4 tan x eqn 3 tan 2x = 2 tan x/1 - tan² x eqn 4 Substitute ( 4 ) in ( 3 ): ( 2 tan x/1 - tan² x )( 1 + 5 tan² x ) = 4 tan x 2 tan x ( 1+ 5 tan x + 10 tan³x = 4 tan x - 4 tan³x 14 tan³x = 2 tan x tan² x = 0.142857 tan x = 0.3779642 x = 20.705° NOTE: 2 sin x cos x = sin 2x sin x cos x 0.5 sin 2x eqn 2 Substitute: ( 2 ) in ( 1 ) 0.5 sin 2x sin 2x = 1 1.5 sin 2x = 1 sin 2x = 0.6667 2x = 41.8 x = 20.9 ° NOTE: Complementary angles have the same values of their sine functions Thus, the other angle is equal to: 90° - 20.9° = 69.1 ° = sec + sc – 1/sin ( 11G – 16 ° ) = 1/cos (11G – 16 ° ) cos ( 5G + 26 ° ) = sin ( 11G – 16° ) eqn 1 Note:
sin Ə = cos ( 90° - Ə ) let:
Ə = 11G – 16° sin ( 11G – 16° = cos [ 90 ° - ( 11G – 16° ) ] sin ( 11G – 16 ° = cos ( 106° - 11G )
d. 330°
Substitute: ( 2 ) in ( 1 ) cos ( 5G + 26 ° ) = cos ( 106 – 5G + 26 ° = 106° - 11G G=5° 2 sin² A – sin A = 1 sin² A – 0.5 sin A = 0.5
11G )
By completing the square:
( sin A – 0.25 )² = 0.5 + ( 0.25 )² ( sin A – 0.25 )² = 0.5625 sin A – 0.25 = ± 0.75 Take the minus sign:
sin A = 0.25 – 0.75 = - 0.5 A = - 30° or A = - 30° = 360° = 330°
b. 0.087
Cos 65° + cos 55° = cos Ə cos Ə = 0.99619
Ə = 5° x ( 2π radians/360° ) Ə = 0.087 radian d. 8/17
x = sin [ cos^-1 ( 15/17 ) ] Let:
Ə = cos^-1 ( 15/17 ) cos Ə = 15/17 b = 1√ c² – a² = √ (17)² – (15)² b=8
x = sin Ə = opposite side/hypotanuse = b/c x = 8/17 Let: a. 4/3
Ə = angle sin Ə = 0.6 = 3/5 a = √ c² – b² = √ (5)² – (3)² =4
cot Ə = adjacent side/opposite side = a/b
cot Ə = 4/3 b. 6°
Sec 2A = 1/sin 13A 1/cos 2A = 1/sin 13A cos 2A = sin 13A
eqn 1
eqn 2
sin Ə = cos ( 90° – Ə ) Let:
Ə = 13A sin 13A = cos ( 90° - 13A ) Substitute: ( 2 ) in ( 1 ) cos 2A = cos 90° - 13A ) 2A = 90° - 13A A = 6°
d. 1
c. sin 2Ə
eqn 2
Tan ( x + y ) = ( tan x + tan y ) / ( 1 – tan x tan y ) = [ (½) + (1/3)] / [ 1- (½ )(1/3) } =1
Y = ( 1 + cos 2Ə ) tan Ə cos 2Ə = cos² Ə – sin² Ə cos 2Ə = ( 1 – sin² Ə ) - sin² Ə cos 2Ə = 1 – 2 sin² Ə
eqn 1 eqn 2
Substitute: ( 2 ) in ( 1 )
y = ( 1 + 1 – 2 sin² Ə ) tan Ə = ( 2 – 2 sin² Ə ) tan Ə = 2 ( 1 – sin² Ə tan Ə ) = 2 ( cos² Ə ) ( sinƏ/cosƏ ) = 2 cos Ə sinƏ y = sin 2Ə c. 2 tan Ə
a. 1
x = ( sinƏ + cosƏ tanƏ/cosƏ ) = [ (sinƏ/cosƏ) + ( cosƏ tanƏ/cosƏ ) ] = tanƏ + tanƏ x = 2 tanƏ x = sin² Ə ( 1 + cot² Ə ) = sin² Ə [ 1 + ( cosƏ/sinƏ )² ] = sin² Ə [ sin² Ə +cos² Ə /sin² Ə ] = sin² Ə /sin² Ə =1
b. cos Ə
x = sec Ə - ( secƏ ) sin² Ə = sec Ə ( 1- sin² Ə ) = sec Ə ( cos² Ə ) = (1/cosƏ ) ( cos²Ə ) x = cos Ə x = tan^-1 { 2 cos [ sin^-1(
b. π/ 4
√3 / 2 ) ]}
x = tan^-1 ( 2cos 60° Thus,
x = tan^-1 ( 2 cos 60° ) = tan^-1 (1)
= 45° ( 2π radians/360° ) x = π/4 radians a. 30°
x = cot^-1 { 2 cos [sin^-1 (0.5) ]} = cot^-1 ( 2 cos 30° ) = cot^-1 ( 1.732 ) cot x = 1.732
1/tanx = 1.732 tan x = 1/1.732 = 0.57736 x = 30°
tan ^-1 (2x) + tan^-1 x = π/4
b. 0.281
eqn 1
Let: tan A = 2x A = tan^-1 (2x) tan B = x B = tan^-1 x Substitute ( 2 ) in ( 1 ):
eqn 2 eqn 3
A + B = π/4 = 45° tan ( A + B ) = tan 45° ( tan A + tan B ) / ( 1- tan A tan B ) = 1
[ 2x + x / 1 – 2x(x) ] = 1 3x = 1 – 2x² 2x² + 3x -1 = 0 Using the quadratic formula; x = [ -3 ±√ (3)² – 4(2)(-1) ] / 2(2) = -3 ± 4.123 x = -3 + 4.123 /4
Arc tan ( x + 1 ) + arc tan ( x – 1 ) = arc tan ( 12 ) eqn 1 b. 1.34
Let: tan A = x + 1 A = tan^-1 ( x + 1 )
tan B = x – 1 B = tan^-1 ( x – 1 )
eqn 2
eqn 3
Substitute ( 2 ) and ( 3 ) in ( 1 ): A + B = tan^-1 ( 12 ) Tan ( A + B ) = tan ( tan^-1 ( 12 )
tan A + tan B / 1 – tan A tan B = 12 ( x + 1 ) + ( x – 1 ) / 1 - ( x+ 1)( x – 1 ) = 12 2x = 12 – 12 ( x² – x + x – 1 ) 2x = 12 – 12x² + 12 12x² + 2x – 24 = 0 Using the quadratic formula;
x = -2 ± √ (2)² - 4(12)(-24) / 2(12) = -2 ± 34 / 24 = -2 + 34 / 24 x = 1.34
c. 45, 135, 225, 315 degrees
cos² A = 1 - cos² A 2 cos² A = 1 cos² A = 0.5 cos A = ± 0.707 If cos A = + 0.707 A = 45° or 315° If cos A = - 0.707 A = 135° or 225°
a. 1
s n + s n + s n …s n + cos² 3 … cos² 89 + cos² 90 )
+ sn
cos
+ cos
NOTE: sin² A + cos² B = 1 and cos² A + cos² B = 1, provided A and B are complem entary angles, ( A + B = 90 ) . Thus, the equation can be written as = { [ (sin ² 0 + sin² 90 ) + ( sin² 1 + sin² 89 ) .......( sin² 44 + sin² 46 ) (sin² 45 )] / [( cos² 0 + cos² 90 ) + ( cos² 1 + cos² 89 ) ... ( cos² 44 + cos² 46 ) ( cos² 45) ]} =1
[( cos Ə + cos B ) / (cos A - sin B )] + [( sin A + sin B ) / cos A - cos B )] = {[ ( cos A + cos B ) ( cos A + cos B ) + ( sin A - sin B ) ( sinA + sin B )] / [ ( sin A - sinB ) ( cos A - cis B )]} = { [ (cos² A - cos² B + sin² A - sin² B )] / [ ( sin A - sin B ) ( cos A - cos B )]} =0
a. 0
d. cot Ə
x = 2 sin Əcos Ə / 1 - sin Ə + sin² Ə - cos² Ə = [cos Ə ( 2 sin Ə - 1 )] / [( 1- cos² Ə ) + sin Ə - sin Ə] = [cos Ə ( 2 sin Ə -1)] / [ sin² Ə + sin² Ə - sin Ə] = [ cos Ə ( 2 sin Ə - 1 )] / [ 2 sin² Ə - sin Ə] = [ cos Ə ( 2 sin Ə - 1 )] / [ sin Ə ( 2 sin Ə - 1 )] = cos Ə / sin Ə
a. 32.47° sin A = 3.5 x eqn 1 cos A = 5.5 x eqn 2 Divided ( 1 ) by ( 2 ): sin A / cos A = 3.55 x / 5.55 x tan A = 0.63636 A = 32.47° b. 0.256
\
sin A = 2.511 x ; cos A = 3.06 x ; sin 2A = 3.939 x Note: sin 2A = 2 sin A cos A Substitute: 3.939x = 2 (2.511x)(3.06x) c. 60°
coversed sin Ə = 0.134
eqn 1
Note:
coversed sin Ə = 1 - sin Ə
eqn 2
Substitute: ( 2 ) in ( 1 )
0.134 = 1 - sin Ə
a. 39.49
tan 80° = 50/x x = 8.816m tan 50° = 50 - h / 8.816 10.506 = 50 - h h = 39.49 m
b. 374 m
Ə = 180° - ( 26° + 58° ) = 96° B y sine law: sin 96° / 1000 = sin58° / BC BC = 852.719 m °= d. 4 and 10 h1 = b + 3 h2 = b - 3
b. 4.03
eqn 1 eqn 2
A1 = A2 + 21 ½ bh1 = ½ bh2 + 21 eqn 3 Substitute ( 1 ) and ( 2 ) in ( 3 ): ½b ( b + 3) = ½b ( b - 3 ) + 21 {[ (b² + 3b) / (2)] = [( b² - 3b ) / 2 ] + 21} 2 b² + 3b = b² - 3b +42 6b = 42 b=7 Thus Note: 7t = total distance traveled by ship B 10 + 5t = total distance t raveled by ship A By sin law; sin 42°35' / 7t = sin 46°20' / 10 + 5t (10 + 5t ) [ sin 42°35' / sin 46°20' ] = 7t 9.354 +4.677t = 7t 2.323t = 9.354 t = 4.03 hrs.
By sine law:
( 50 / sin β ) = ( 300 / sin 60° ) β = 8.3° α = 30° - Ə = 30° - 8.3° c. 21.7°, 321.8 mph
α = 21.7° § + 60° β = 180° § + 60° + 80° = 180° § = 111.7 °
By sine law: ( sin 111.7° / V ) = ( sin 38° / 50 ) V = 321.8 mph
d. 73.61 m
tan 30° = ( h / 85 + x ) h = ( 85 + x ) tan 30° tan 60° = h/x h = x tan 60° Equate (1) to (2): ( 85 x ) tan 30° = x tan 60° 85 + x = 3x x = 42.5 m
eqn 1 eqn 2
Substitute x = 42.5 in ( 2 ): h = 42.5 tan60° h = 73.61 m
a. 54.23 m
Ə + 61° + 90° + 15° = 180° Ə = 14° By sine law: ( sin 14° / 15 ) = ( sin 16° /x ) x = 54.23 m. By Phytagorean theorem:
d. 25 ft, 36.87°
x = √ (15)² + (20) ² = 25 ft.
tan Ə = 15/20 Ə = 36.87° tan 28° = 120 – h / x x = ( 120 – h ) / tan 28° b. 79.3 m
tan 46° = h/x x = h / tan 46° Equate (1) to (2):
eqn 1 eqn 2
([ 120 – h) / (tan 28° )] = ( h / tan 46° ) 120 – h = 0.513 h h = 79.3 m
a. 259.28
tan 21° = h / 100 + x h = ( 100 + x ) tan 21° tan 32° = h / x h = x tan 32°
eqn 1 eqn 2
( 100 + x ) = tan 21° = x tan 32° 100 + x = 1.6278 x x = 159.286 m. Thus, the distance of point A from the building is = 100 + 159.286 = 259.286 m. tan 60° = 44 / x x = 25.4 m. c. 0.169 m/sec tan 30° = [ 44 / ( s + x ) ] s + x = 76.21 s + x = 76.211 s = 50.81 m V=s/t = [50.81 / 5(60) ]
b. 92.54 ft
tan 40° = h /x x = h /tan 40° eqn 1 tan 30° = [ h / ( 50 + x ) ] x = [h / (tan30°) - 50] eqn 2 Equate (1) to (2): h/ tan 40° = [h / (tan 30°) - 50]
1.19175 h = 1.73205 h – 50 h = 92.54 ft. tan 35° = 50 / x x = 71.407 m. d. 33.51 m
tan 13° = [(50 – h) / x] tan 13° = [ (50 – h) / 71.407 ] h = 33.51 m. a. 34.64 cm
Note: Since equilateral triangle, A = B = C = 60° tan 30° = r / 0.5x x = 34.64 cm. By sine law:
c. 341.78 m 150 / sin 26° = 300 / sin B B = 61.25° 2 6° + 61.25° + C = 180° C = 92.75° By sine law: 150 / sin 26° = C / sin 92.75° C = 341.78 m.
c. 125 m
By cosine law: b ² = a² + c² – 2ac cos B (180)² =(130) ² + (190)² – 2(130)(190) cos B B = 65.35°
By sine law:
x² = a² + (c/2)² – 2(a)(c/2) cos B x² = (130)² + (95)² – 2(130)(95) cos 65.35° x = 125 m.
c. 14,586 sq. units
Using Hero's formula: a = 195: b = 157:
c = 210
s = (a + b + c) / 2 s = ( 195 + 157 + 210 ) / 2 s = 281
A = √ s(s – a)(s – b)(s – c) = √ 281(281 – 195)(281 – 157)(281 – 210) A = 14,586.2 square units
a. 240
Using Heron's formula: a = 16: b = 30: c = 34 s=(a+b+c)/2 = ( 16 + 30 + 34 ) / 2 s = 40
A = √ s(s – a)(s – b)(s – c) = √ 40(40 – 16)(40 – 30)(40 – 34) A = 240 square units
View more...
Comments