Trigonometry Formulas

November 15, 2017 | Author: AaRichard Manalo | Category: Trigonometric Functions, Sine, Sphere, Triangle, Trigonometry
Share Embed Donate


Short Description

CE Review - Trigonometry...

Description

PRINCIPLES IN FUNCTION OF RIGHT TRIANGLE

M A T H E M A T I C S TRIGONOMETRIC IDENTITIES

Opposite, a

Reciprocal and Quotient

𝜽 Adjacent, b

FUNCTION OF ANY ANGLE 𝜽

csc ΞΈ =

1 , provided sin ΞΈ β‰  0 sin ΞΈ

sec ΞΈ =

1 , provided cos ΞΈ β‰  0 cos ΞΈ

cot ΞΈ =

1 , provided tan ΞΈ β‰  0 tan ΞΈ

tan ΞΈ =

sin ΞΈ , provided cos ΞΈ β‰  0 cos ΞΈ

The Pythagorean Identities sin2 ΞΈ + cos 2 ΞΈ = 1 tan2 ΞΈ + 1 = sec 2 ΞΈ cot 2 ΞΈ + 1 = csc 2 ΞΈ

Sum & Difference of Two Angles sin x + y = sinxcosy + cosxsiny sin x βˆ’ y = sinxcosy βˆ’ cosxsiny cos x + y = cosxcosy βˆ’ sinxsiny

SIGN OF FUNCTION VALUES

cos x βˆ’ y = cosxcosy βˆ’ sinxsiny tan x + y =

tanx + tany 1 βˆ’ tanxtany

tan x βˆ’ y =

tanx βˆ’ tany 1 + tanxtany

Sum & Difference of Two Angles sin 2x = 2sinxcox cos2x = cos 2 x βˆ’ sin2 x = 1 βˆ’ 2sin2 x = 2 cos 2 x -1 tan2x =

2tanx 1 βˆ’ tan2 x

I want… Ican…I will… I did!...

PRINCIPLES IN

M A T H E M A T I C S

TRIGONOMETRIC IDENTITIES

TRIGONOMETRIC IDENTITIES

Half-Angle Identity

Sum and Difference of Function

x sin = 2

1 βˆ’ cos x 2

x cos = 2

1 + cos x 2

x

tan 2 =

1 βˆ’cos x sin x

sin x

= 1+cos x =

1βˆ’cos 2x

sin π‘₯ + sin 𝑦 = 2 sin

π‘₯+𝑦 π‘₯βˆ’π‘¦ cos 2 2

sin π‘₯ βˆ’ sin 𝑦 = 2 cos

π‘₯+𝑦 π‘₯βˆ’π‘¦ sin 2 2

cos π‘₯ + cos 𝑦 = 2 cos

π‘₯+𝑦 π‘₯βˆ’π‘¦ cos 2 2

cos π‘₯ βˆ’ cos 𝑦 = βˆ’2 sin

1+cos 2x

tan π‘₯ + tan 𝑦 =

sin π‘₯ + 𝑦 cos π‘₯ cos 𝑦

tan π‘₯ βˆ’ tan 𝑦 =

sin π‘₯ βˆ’ 𝑦 cos π‘₯ cos 𝑦

Power of Functions

𝑠𝑖𝑛2 π‘₯ =

1 βˆ’ π‘π‘œπ‘ 2π‘₯ 2

π‘π‘œπ‘  2 π‘₯ =

1 + π‘π‘œπ‘ 2π‘₯ 2

2

π‘₯+𝑦 π‘₯βˆ’π‘¦ sin 2 2

SOLUTION OF TRIANGLES

C

1βˆ’ π‘π‘œπ‘ 2π‘₯

π‘‘π‘Žπ‘› π‘₯ = 1+ π‘π‘œπ‘ 2π‘₯

b

a Product of Functions

1 𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π‘¦ = sin π‘₯ + 𝑦 + sin π‘₯ βˆ’ 𝑦 2

B

c

Sine Law a b c = = sinA sinB sinC

1 𝑠𝑖𝑛π‘₯𝑠𝑖𝑛𝑦 = cos π‘₯ βˆ’ 𝑦 βˆ’ cos π‘₯ + 𝑦 2 π‘π‘œπ‘ π‘₯π‘π‘œπ‘ π‘¦ =

1 cos π‘₯ + 𝑦 + cos π‘₯ βˆ’ 𝑦 2

A

Cosine Law a2 = b2 + c 2 βˆ’ 2bccosA b2 = a2 + c 2 βˆ’ 2accosB c 2 = a2 + b2 βˆ’ 2abcosC

I want… Ican…I will… I did!...

PRINCIPLES IN

M A T H E M A T I C S

SPHERICAL TRIGONOMETRY

Spherical Excess The area of a spherical triangle on the surface of the sphere of radius R is given by the

A spherical triangle is a figure formed on the surface of a sphere by three great circular arcs intersecting pairwise in three vertices. Note that for spherical triangles, sides a, b, and c are usually in angular units. And like plane triangles, angles A, B, and C are also in angular units

RIGHT SPHERICAL TRIANGLE

To solve a right triangle, draw a circle with 5 parts. The 5 parts corresponds to the 3 sides and 2 angles of the triangle (excluding the 90 Napier’s Rules

Sum of interior angles of spherical triangle

0

angle. Then apply

𝐴 = 90 βˆ’ A 𝐡 = 90 βˆ’ B 𝑐 = 90 βˆ’c

The sum of the interior angles of a spherical triangle is greater than 180Β° and less than 540

NAPIER’S RULE Area of spherical triangle The area of a spherical triangle on the surface of the sphere of radius R is given by the

SIN-COOP Rule in the Napier’s circle, the sine of any middle part is equal to product of the cosines of its opposite parts. SIN-TAAD Rule in the Napier’s circle, the sine of any middle part is equal to the product of the tangents of its adjacent parts.

I want… Ican…I will… I did!...

PRINCIPLES IN

M A T H E M A T I C S

OBLIQUE TRIANGLE

I want… Ican…I will… I did!...

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF