Trabajo colaborativo fase 3 calculo integral
Short Description
Descripción: Tbjo Colaborativo Fase 3 Grupo 168...
Description
ESCUELA DE CIENCIAS BASICAS, TECNOLOGIA E INGENIERIA INGENIERIA DE SISTEMAS
CURSO DE CÁLCULO INTEGRAL GRUPO 100411_168
TUTOR: FAIBER ROBAYO
TRABAJO COLABORATIVO FASE_3
ESTUDIANTE(S): ANDRES FERNANDO BAYONA JEREZ CLAUDIA HERNANDEZ JANITH SULAY JAIMES PABON WILMER ALBERTO QUINTERO MELGAREJO JUAN EDUARDO GOMEZ GOMEZ
UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA OCTUBRE 25 DE 2016
INTRODUCCIÓN En esta actividad, desarrollaremos las principales técnicas de Integración que nos permitirán encontrar las integrales indefinidas de una clase muy amplia de funciones. Estudiaremos los principales métodos de integración, consistiendo todos ellos en reducir la integral buscada a una integral ya conocida, reducirla a una integral más sencilla.
PRIMERA PARTE Evaluar las siguientes integrales impropias si convergen o divergen:
1.
1
( x 1)
2
dx
2
Reemplazamos el signo de ∞ por una letra b.
Hallamos la anti derivada de la función dx.
Aplicamos el teorema fundamental
[ ] [ ] Hallamos el límite
Rta. La integral converge ya que su resultado es un número real.
2. Ejercicio 2:
Solución: Utilizamos la siguiente propiedad:
Se escoge un valor intermedio entre ∞ y -∞
Desarrollamos las integrales impropias
Teorema del cálculo
Entonces la integral 1:
Lo cual nos dice que es una integral impropia convergente Desarrollo de la segunda integral:
Teorema del cálculo
* +
Entonces la integral 2:
Lo cual nos dice que es una integral impropia convergente.
Se procede a sumar las integrales
Respuesta. Integral impropia convergente.
3.Ejercicio 3 3
0
1 3 x
dx
Hallamos la anti derivada de la función
Aplicamos la ley de la oreja
Hallamos los límites
La integral converge
√ √ √ √ √ √ √ √ √
4.Ejercicio 4
∫ Puntos no definidos en este caso es -1 Inicialmente tenemos
Primero se hallan las integrales indefinidas y luego los límites
√
√
Lo que nos indica que la integral es divergente
SEGUNDA PARTE 5.Ejercicio 5
√ solución
6.Ejercicio 6
∫ √ ∫ || Resolvemos por el método de sustitución:
Reemplazo nuevamente con los valores reales y la definición de la integral (1-4):
Converge
7.Ejercicio 7
∫
√ √ Realizando la integral, tenemos
(√ )
La integral indefinida nos queda:
Finalmente tenemos:
|
√ 8.Ejercicio 8
√ ⁄ √ ⁄ Solución
Entonces tenemos que:
Remplazamos valores por la fórmula y resolvemos:
⁄ ⁄ ⁄ ⁄ ⁄ Nos queda:
⁄ ⁄ √ Resultado:
TERCERA PARTE 9.Ejercicio 9
∫
Lo desarrollaremos por el método de integración por partes Tenemos por sustitución
Derivamos u e integramos v
Integramos a ambos lados
Tenemos la fórmula de integración por partes
Reemplazando
Integramos
||
Finalmente
|| 10.Ejercicio 10
Sacamos la constante
Tomamos la fracción parcial
Factorizar
Crear un modelo para la factorización parcial usando el denominador
Resolvemos multiplicando la ecuación por el deno minar y simplificamos
Resolver los parámetros desconocidos sustituyendo las raíces reales del denominador -2,5
( )( )
Sustituimos a y b y simplificamos
Aplicamos la regla de la suma
Sacamos la constante y aplicamos integración por sustitución u=x+2 y du =1dx
|| || || || Resultado por el método de fracciones parciales
|| || 11.Ejercicio 11
Solución: Integración por sustitución:
Sustituir u:
Regla de la derivación:
Tenemos que:
Por sustitución:
Tenemos que:
Nos queda:
Resultado:
12.Ejercicio 12
∫
Por la identidad de la integral:
Reemplacemos nos da:
Sacamos factores constantes
Integrando por partes, tenemos:
De la primera integral del paréntesis, tenemos:
De la segunda integral, primero usamos el método de integración por sustitución:
Sea:
Reemplazamos y tenemos:
Retomando la variable original, nos daría:
Uniendo ambas integrales, nos da como resultado
( ) ( )|
()
Conclusiones
La adquisición de destrezas para resolver integrales indefinidas o primitivas mediante el uso de técnicas siendo estas algunas de las formas más elementales para d ar solución al cálculo de integrales, así abriendo camino a un nuevo capítulo del curso de cálculo integral
Bibliografía Casteblanco, C. (2015, octubre, 15). Métodos de integración Parte I . [Video]. Recuperado de http://hdl.handle.net/10596/7077. Cepeda, W. (2014, junio, 06). Integración por cambio de variable. [Video]. Recuperado de http://hdl.handle.net/10596/7149. Bojacá, E. (2014, junio, 24). Integración por partes. [Video]. Recuperado de http://hdl.handle.net/10596/7143. Casteblanco, C. (2015, octubre, 15). Métodos de integración Parte III. [Video]. Recuperado de http://hdl.handle.net/10596/7147.
View more...
Comments