8. Igtgrakj Igtgrakjg g gd vbduagj vbduagj igd sødkib sødkib mgjgroib mgjgroib od cohgr cohgr mkror do hurvo hurvo y 1 x 8, y 1 >, x 15, odrgigibr igd g`g x . Xbduhkøj0 Voabs o hodhudor dbs dáaktgs ig kjtgmrohkøj kmuodojib dos fujhkbjgs poro coddor dbs pujtbs qug sg hbrtoj dos mrïfkhos0 y 1 x 81 > ⇕ x 1>
Gd btrb dáaktg ig do kjtgmrod gs x 15, pbr db huod, voabs o hodhudor gd ïrgo ig do skmukgjtg aojgro0 O ( x )1 ώ U ( x )1 ώ ( x x 5
9. Do rgmkøj ga gd prkagr prkagr huoirojtg, huoirojtg, ohbtoio gj do portg supgrkbr pbr do rghto rghto ώ y 1 5, gj do portg kjfgrkbr pbr do hurvo y 1 5skj ( x ), > ≩ x ≩ y o do kzqukgrio 5
pbr gd g`g y, odrgigibr ig do rghto y 1 5. Xbduhkøj0 Ugodkzojib do mrïfkho pbigabs vgr qug tgjgabs uj ïrgo ig do skmukgjtg fbrao0 5 5 5 O ( x )1 ώ U ( x )1 ώ ( 5∕5 skj skj ( x ) ) 1 ώ ( 9 ∕3skj ( x ) + 9skj ( x ) ) Dbs dáaktgs ig kjtgmrohkøj sbj ig do fbrao
\ Q >,
ώ
, pbr db qug do ghuohkøj ig
5
vbduagj gs ig do fbrao0
\
ώ 5
ώ
ώ
ώ
5
5
5
V (( x )19 ώ ∬ ( ?∕ 5skj ( x ) + skj ( xx ) ) ix 1 9 ώ ∬ ix ∕5 ∬ skj ( x ) ix +∬ skj ( x ) ix 5
>
5
>
>
Q
?
5
skj
>
( x )1 5 ( ?∕hbs ( 5 x ) ),
Ocbro ekgj, pbr kigjtkioigs trkmbjbaëtrkhos rggapdozojib rggapdozoj ib gj do udtkao kjtgmrod y gvoduojib tbios dos kjtgmrodgs tgjgabs
\ \
ώ
ώ
ώ
5
5
5
² 9 ώ ∬ ix ∕5∬ skj ( x ) ix +∬
² 9 ώ
² 9 ώ
>
8 5
8 5
>
>
? 5
ώ
ώ
ώ
5
5
5
( ? ∕hbs ( 5 x ) ) ix
Q
Q \|
∬ ix ∕5∬ skj ( x ) ix ∕∬ ( hbs ( 5 x ) ) ix 1 9 ώ >
>
ώ ∕ > +5 5
>
hbs
ώ 5
\( ) ( ()
∕hbs ( > ) ∕
)
? 5
V (( x )1ώ ( 8 ώ ∕ 3 ) ujkio ujkioigs igs huekhos huekhos
Thank you for interesting in our services. We are a non-profit group that run this website to share documents. We need your help to maintenance this website.