TP Algoritmo STFT
Short Description
trabajo practico...
Description
Universidad Nacional Tres de Febrero. Ingeniería de Sonido: Procesamiento Digital de Señales, 1 er Cuatrimestre 2013
Universidad Nacional Tres de Febrero Ingeniería de Sonido
Asignatura: Procesamiento Digital de Señales Trabajo Práctico: Implementación Algoritmo STFT
“
”
Docentes: Ing. Mieza Ignacio Ing. Greco Antonio
Alumnos: Ezequiel Abdala Germán Heinze Emiliano Romero Mathieu Julián Tinao
Conclusiones del Trabajo Práctico
“Implementación Algoritmo STFT” En el siguiente trabajo se llevó a cabo, mediante la herramienta Matlab, la implementación de un código que permite calcular la Transformada de Fourier de Tiempo Reducido (STFT) de una señal digital. Se presenta una aplicación que permite la elección de diferentes tipos de ventanas, solapamiento en el proceso de “ventaneo” , y la cantidad de muestras (tamaño) de las mismas, para realizar la STFT a una señal conocida tipo “Chirp” o a una señal digital en formato wav. Se analiza los diferentes resultados, utilizando como referencia los valores de la paleta de colores. De esta manera, se agilizan los procesos de elección de los parámetros antes mencionados dependiendo de la señal a analizar. Como se aprecia en las figuras, el aumento del tamaño de la ventana lleva acompañado un aumento en la resolución de frecuencias, así como la disminución del mismo, una mejor resolución en el tiempo. De aquí que su implementación en el modelamiento requerirá, dependiendo del objetivo, la elección correcta del tamaño de la ventana a utilizar.
Figura 1
Figura 2
Figura 3
Las Figuras 1, 2 y 3 muestran la implementación de el algoritmo STFT a una señal tipo “Chirp” lineal de 8192 muestras, con una ventana rectangular de tamaño: 128,512 y 2048, respectivamente, y un 50% de solapamiento.
Un aspecto comparativo importante entre las diferentes ventanas, es la representación de los armónicos, siendo la ventana de Hanning la que mostró mejores resultados.
Figura 4
Figura 5
Figura 6
Las Figuras 4, 5 y 6 muestran la comparación de la implementación del algoritmo STFT a una señal tipo “Chirp” lineal de 8192 puntos, con una ventana Hanning, Rectangular y Bartllet, respectivamente, de 128 muestras y un 50% de solapamiento. A medida que se aumenta el tamaño de la ventana, aumenta la cantidad de armónicos, sobre todo en la ventana rectangular, seguida de la Bartllet, teniendo una pequeña diferencia con la Hanning, siendo la última superior en los resultados. Es esta una razón por lo cual se utiliza dicha ventana a en el análisis de fonética acústica y temas a fines. Los aspectos generales, mas allá de la elección de la ventana, es el análisis de la señal, si la misma es periódica y estable, se puede elegir un gran tamaño de ventana obteniendo de esta manera mayor resolución en frecuencia, ya que su variación en el tiempo es despreciable. Caso contrario si la señal es aleatoria, cuasi estable, hay que elegir ventanas pequeñas. De esta manera se podrá analizar las variaciones rápidas en el tiempo y su evolución con mayor precisión. Por este motivo, la elección de los valores de los parámetros implementados depende del tipo de señal a analizar. Por otro lado podremos aplicar un solapamiento entre las ventanas. Esto ayuda a mejorar la continuidad en tiempo de la STFT, provocando también una mejora en la continuidad en frecuencia. En las siguientes figuras podemos notar los diferentes valores de solapamiento y sus resultados que son visualmente bastante evidentes.
Figura 7
Figura 8
Figura 9
Las Figuras 7,8 y 9 muestran la implementación del algoritmo STFT a una señal tipo “Chirp” lineal de 8192 muestras con una ventana Hanning de 512 muestras y un 0%, 30% y 75% de solapamiento, respectivamente. Se analizó el archivo de audio propuesto (Señal Audio por Radio - Frecuencia muestreo 8 kHz - 16 bits.wav) con la interfaz programada, alternando entre los distintos valores de ancho de ventana y solapamiento, todo sobre una ventana Hanning. Se pudo apreciar, que al aumentar el tamaño de la ventana mejora la precisión en frecuencia de la STFT. Se sabe que esto empeora la precisión en tiempo, pero dada la longitud del archivo propuesto, trabajar con la ventana de 2048 muestras no provoca problemas significativos. Por otro lado, se llega a la conclusión que, a mayor solapamiento, mejora la definición del gráfico. En conclusión elegimos el ancho de ventana de 2048 muestras y un solapamiento del 75%.
Figura 10 - STFT aplicado a una señal de audio propuesta, con una ventana tipo Hanning de 2048 muestras y un 50% de solapamiento.
View more...
Comments