The magnitude of the horizontal displacement at point C due by the external load P0 Member
L P1
( m )
( m )
AB
40.415
1
4
161.66
AE
- 20.208
0.5
4
- 40.416
BC
40.415
1
4
161.66
( kN )
BE
- 40.415
-1
4
161.66
CD
40.415
0
4
0
CE
- 40.415
0
4
0
DE
- 20.208
0
4
0 444.564
( 7 x 0.5 = 3.5 marks ) ( 1 mark )
C
B
3.464m
x
A
60
60
D
E
2m
x
2m
=
22
=
4m
+
2m
2m
3.4642
( 1 mark )
The magnitude of the horizontal displacement at point C due by the temperature in members AB , BC and CD
Member
P1
c ( / C )
AB
1
11 x 10
AE
0.5
0
BC
1
11 x 10
BE
-1
0
-6
-6
-6
L
t
( m )
( C )
( m )
4
15
6.6 x 10-4
4
0
0
4
15
6.6 x 10-4
4
0
0
CD
0
11 x 10
4
15
0
CE
0
0
4
0
0
DE
0
0
4
0
0 1.32 x 10-3
( 3 x 0.5 = 1.5 marks ) ( 1 mark )
The magnitude of the horizontal displacement at point C due by the external load and temperature in members AB , BC and CD , CH
=
1
P0 P1 L
+
P1 c L t
[ 444.564 ]
+
1.32 x 10-3
+
1.32 x 10-3
AE
CH
=
1 AE
CH
=
444.564
( )
AE
( 2 marks )
SOLUTION FIGURE 2 B
C
D
H
G
E
1
6m
Ax
A
F
Ay
Fy 3m
+
MA
1 ( 6 ) - Fy ( 9 ) Fy
3m
=
0
=
0
=
0.667
3m
( )
( 1 mark )
+
Fy
=
0
Ay + 0.667
=
0
Ay
=
- 0.667
Ay
=
0.667
( )
( 1 mark )
+
Fx
=
0
=
0
Ax
=
- 1
Ax
=
1
Ax + 1
( )
( 1 mark )
tan
=
6 3
=
63.435
( 1 mark )
Joint A + FAB
Fy
=
0
FAB - 0.667
=
0
=
0.667
FAB
( Tension )
FAH
1
( 1 mark ) 0.667
+
Fx
FAH - 1 FAH
=
0
=
0
=
1 ( Tension )
( 2 marks ) Joint B +
0.667 FBH sin 63.435
=
0
=
0
FBH
=
- 0.746
FBH
=
0.746
- 0.667 - FBH sin 63.435
FBC
FBH
Fy
FBH cos 63.435
( Compression )
( 1 mark ) +
Fx
FBC - 0.746 cos 63.435 FBC
=
0
=
0
=
0.334 ( Tension )
( 1 mark ) Joint H +
Fy
FHC - 0.746 sin 63.435 0.746 sin 63.435
FHC
FHC
0.746
=
0
=
0
=
0.667 ( Tension )
0.746 cos 63.435 1
FHG
( 2 marks ) +
Fx
=
0
FHG - 1 + 0.746 cos 63.435
=
0
FHG
=
0.666 ( Tension )
( 1 mark )
Joint C +
0.334
=
0
=
0
FCG
=
- 0.746
FCG
=
0.746
- 0.667 - FCG sin 63.435
FCD
FCG
Fy
FCG cos 63.435
0.667
( Compression )
FCG sin 63.435
+
Fx
FCD - 0.334 - 0.746 cos 63.435 FCD
=
0
=
0
=
0.668 ( Tension )
Joint G +
FGD - 0.746 sin 63.435
0.746 sin 63.435 0.746
FGD
FGD
=
0
=
0
=
0.667 ( Tension )
0.746 cos 63.435 0.666
Fy
FGF
+
Fx
=
0
FGF - 0.666 + 0.746 cos 63.435 =
0
FGF
=
0.332 ( Tension )
Joint D +
FDF cos 63.435
FDF
=
0
=
0
FDF
=
- 0.746
FDF
=
0.746
- 0.667 - FDF sin 63.435
FDE
0.668
Fy
0.667
( Compression )
FDF sin 63.435
+
Fx
FDE - 0.668 - 0.746 cos 63.435 FDE
=
0
=
0
=
1.002 ( Tension )
Joint E +
1.002
Fy FEF
=
0
=
0
FEF
x B
C
D
H
FEDG
E
1
63.435 6m
1
A
FFD
0.667 3m
3m FFD cos 63.435 FFG
EF
1
FFD sin 63.4350.667 x 6m
3m
63.435
F 0.667
3m
( 2 marks )
+
MF
1 ( 6 ) - FED ( 6 ) FED
=
0
=
0
=
1 ( Tension )
( 2 marks )
+
Fy
=
0
=
0
FFD
=
- 0.746
FFD
=
0.746
FFD sin 63.435 + 0.667
( Compression )
( 2 marks ) +
Fx
0.746 cos 63.435 - 1 + 1 - FFG FFG
=
0
=
0
=
0.334 ( Tension )
( 2 marks )
The horizontal displacement at joint E if the members of AH and CH have occur elongation during the preparation
( mm )
( mm )
0
0
1
1.5
1.5
BC
0.334
0
0
BH
- 0.746
0
0
CD
0.668
0
0
CG
- 0.746
0
0
CH
0.667
1.5
1.001
DE
1
0
0
DF
- 0.746
0
0
DG
0.667
0
0
Member
P1
AB
0.667
AH
EF
0
0
0
FG
0.334
0
0
GH
0.666
0
0 2.501
( 2 x 1 = 2 marks )
( 1 mark )
The horizontal displacement at joint E if the members of DE , FG and DF have occur an increase temperature c
L
t
( / C )
( mm )
( C )
( mm )
0.667
0
6 000
0
0
1
0
3 000
0
0
BC
0.334
0
3 000
0
0
BH
- 0.746
0
6 708
0
0
CD
0.668
0
3 000
0
0
CG
- 0.746
0
6 708
0
0
CH
0.667
0
0
Member
P1
AB AH
6 000
0
-6
DE
1
10 x 10
3 000
16
0.48
DF
- 0.746
10 x 10-6
6 708
16
- 0.801
DG
0.667
0
6 000
0
0
EF
0
0
6 000
0
0
3 000
16
0.160
3 000
0
0
FG
0.334
GH
0.666
10 x 10
-6
0
- 0.161
( 3 x 1 = 3 marks ) ( 1 mark )
B
6m
D
H
G
E
x
A
3m
x
C
=
32 + 6 2
=
6.708 m
3m
F
3m
( 1 mark )
The horizontal displacement at joint E if the members of AH and CH have occur a 1.5 mm elongation during the preparation and the members of DE , FG and DF occur an increase temperature of 16C ,
EH
=
P1 ( )
EH
=
2.501
EH
=
2.34 mm
+
-
P1 c L t
0.161
( )
( 2 marks )
SOLUTION FIGURE 3
F
3m
D
E
3m
A
B
Ay
C Cy
40kN 2m
+
2m
2m
MA
=
0
40 ( 4 ) - Cy ( 8 )
=
0
=
20 kN
Cy
2m
( )
( 0.5 mark )
+
Fy
Ay + 20 - 40 Ay
=
0
=
0
=
20 kN
( )
( 0.5 mark )
tan
=
3 2
=
56.310
( 0.5 mark )
=
180 – ( 56.310 + 56.310 )
=
67.38
Joint A + FAD sin 56.310
Fy
=
0
20 + FAD sin 56.310
=
0
FAD
=
- 24.037 kN
FAD
=
24.037 kN
FAD FAD cos 56.310 FAB
( Compression ) 20kN
( 1 mark ) +
Fx
FAB - 24.037 cos 56.310 FAB
=
0
=
0
=
13.333 kN ( Tension )
( 1 mark ) Joint B + FBD sin 56.310 FBE sin 56.310 FBD
=
0
FBD sin 56.310 + FBE sin 56.310 - 40
=
0
FBD
=
40
FBE
FBD cos 56.310
Fy
13.333kN
( 0.5 mark ) +
Fx
=
0
13.333 - 13.333 + FBE cos 56.310 - FBD cos 56.310
=
0
=
FBD
40kN
FBE
( Equation 1 )
FBE cos 56.310
13.333kN
-
FBE
( Equation 2 )
( 0.5 mark ) Substitute equation 2 into equation 1 FBD
=
40 - FBE
FBD
=
40 - FBD
2FBD
=
40
FBD
=
20 kN ( Tension )
( 1 mark ) Substitute FBD
=
20 kN into equation 2
FBE
=
FBD
FBE
=
20 kN ( Tension )
Joint D
+
Fy
=
0
FDF sin 56.310 + 24.037 sin 56.310 - 20 sin 56.310
=
0
FDF
=
- 4.037 kN
FDF
=
4.037 kN
FDF sin 56.310 FDF FDF cos 56.310
( Compression )
FDE
24.037 cos 56.310
( 1 mark )
20 cos 56.310 20kN
24.037kN 24.037 sin 56.310
+
20 sin 56.310
Fx
=
0
=
0
FDE
=
- 22.188 kN
FDE
=
22.188 kN
24.037 cos 56.310 + 20 cos 56.310 + FDE - 4.037 cos 56.310
( Compression )
( 1 mark )
Truss has symmetrical load and structure
FAB
=
FCB
=
13.333 kN ( Tension )
( 0.5 mark )
FAD
=
FCE
=
24.037 kN ( Compression )
( 0.5 mark )
FBD
=
FBE
=
20 kN ( Tension )
( 0.5 mark ) F FDF
=
FEF
=
4.037 kN
3m
( Compression )
D
( 0.5 mark )
E
3m
56.310 A
B
Ay
C Cy
1 2m
2m
2m
2m
+
MA
1 ( 4 ) - Cy ( 8 ) Cy
=
0
=
0
=
0.5
( )
( 0.5 mark )
+
Fy
Ay + 0.5 - 1 Ay
=
0
=
0
=
0.5
( )
( 0.5 mark )
Joint A + FAD sin 56.310
Fy
=
0
0.5 + FAD sin 56.310
=
0
FAD
=
- 0.601
FAD
=
0.601
FAD FAD cos 56.310 FAB
( Compression ) 0.5
( 1 mark ) +
Fx
FAB - 0.601 cos 56.310 FAB
=
0
=
0
=
0.333 ( Tension )
FBD sin 56.310 FBE sin 56.310
Joint B
FBD
( 1 mark ) FBE
FBD cos 56.310
FBE cos 56.310 0.333
0.333
1
+
Fy
FBD sin 56.310 + FBE sin 56.310 - 1
=
0
=
0
FBD
=
1
-
FBE
( Equation 1 )
( 0.5 mark ) +
Fx
0.333 - 0.333 + FBE cos 56.310 - FBD cos 56.310 FBE
=
0
=
0
=
FBD ( Equation 2 )
( 0.5 mark ) Substitute equation 2 into equation 1 FBD
=
1 - FBE
FBD
=
1 - FBD
2FBD
=
1
FBD
=
0.5 ( Tension )
( 1 mark ) Substitute FBD
=
0.5 into equation 2
FBE
=
FBD
FBE
=
0.5 ( Tension )
Joint D +
Fy
=
0
=
0
FDF
=
- 0.101
FDF
=
0.101
FDF sin 56.310 + 0.601 sin 56.310 - 0.5 sin 56.310
FDF sin 56.310 FDF
( Compression )
FDF cos 56.310 FDE
0.601 cos 56.310
( 1 mark ) Fx
=
0
0.601 cos 56.310 + 0.5 cos 56.310 + FDE - 0.101 cos 56.310
=
0
0.5 sin 56.310
FDE
=
- 0.555
FDE
=
0.555
0.5 cos 56.310 0.601
+
0.5
0.601 sin 56.310
( Compression )
( 1 mark ) Truss has symmetrical load and structure
FAB
=
FCB
=
0.333 ( Tension )
( 0.5 mark )
FAD
=
FCE
=
0.601 ( Compression )
( 0.5 mark )
FBD
=
FBE
=
0.5 ( Tension )
( 0.5 mark )
FDF
=
FEF
=
0.101 ( Compression )
( 0.5 mark )
The vertical displacement at joint B due to applied load P0 Member
P1
( kN )
L
A
E
( mm )
( mm2 )
( kN / mm2 )
( mm )
AB
13.333
0.333
4 000
2 500
200
0.036
AD
- 24.037
- 0.601
3 606
2 500
200
0.104
BD
20
0.5
3 606
2 500
200
0.072
BE
20
0.5
3 606
2 500
200
0.072
BC
13.333
0.333
4 000
2 500
200
0.036
CE
- 24.037
- 0.601
3 606
2 500
200
0.104
DF
- 4.037
- 0.101
3 606
2 500
200
0.003
DE
- 22.188
- 0.555
4 000
2 500
200
0.099
EF
- 4.037
- 0.101
3 606
2 500
200
0.003 0.529
( 9 x 0.5 = 4.5 marks ) ( 1 mark )
C
B
3m
x
A
D
E
2m
2m
x
=
22 + 3 2
x
=
3.606 m
2m
2m
( 0.5 mark )
E
=
200 GPa
E
=
200 x 109 N m2
E
=
1 kN
1 m2
1000 N
10002 mm2
200 kN / mm2
( 0.5 mark )
The vertical displacement at joint B due to elongation of the members of the BD and BE
( mm )
( mm )
0
0
Member
P1
AB
0.333
AD
- 0.601
0
0
BD
0.5
0.5
0.25
BE
0.5
0.5
0.25
BC
0.333
0
0
CE
- 0.601
0
0
DF
- 0.101
0
0
DE
- 0.555
0
0
EF
- 0.101
0
0 0.5
( 2 x 1 = 2 marks ) ( 1 mark ) The vertical displacement at joint B due to applied load and elongation of the members of the BD and BE , BV
Thank you for interesting in our services. We are a non-profit group that run this website to share documents. We need your help to maintenance this website.