INSTRUCTOR SOLUTIONS MANUAL
Instructor Solutions Manual for
Modern Physics Sixth Edition Paul A. Tipler Ralph A. Llewellyn
Prepared by
Mark J. Llewellyn Department of Electrical Engineering and Computer Science Computer Science Division University of Central Florida
W. H. Freeman and Company New York
Instructor Solutions Manual to Accompany Tipler & Llewellyn Modern Physics, Sixth Edition © 2012, 2008, 2003 by W.H. Freeman and Company All rights reserved. Published under license, in the United States by W. H. Freeman and Company 41 Madison Avenue New York, NY 10010 www.whfreeman.com
Preface This book is an Instructor Solutions Manual for the problems which appear in Modern Physics, Sixth Edition by Paul A. Tipler and Ralph A. Llewellyn. This book contains solutions to every problem in the text and is not intended for class distribution to students. A separate Student Solutions Manual for Modern Physics, Sixth Edition is available from W. H. Freeman and Company. The Student Solutions Manual contains solutions to selected problems from each chapter, approximately one-fourth of the problems in the book. Figure numbers, equations, and table numbers refer to those in the text. Figures in this solutions manual are not numbered and correspond only to the problem in which they appear. Notation and units parallel those in the text. Please visit W. H. Freeman and Company’s website for Modern Physics, Sixth Edition at www.whfreeman.com/tiplermodernphysics6e. There you will find 30 More sections that expand on high interest topics covered in the textbook, the Classical Concept Reviews that provide refreshers for many classical physics topics that are background for modern physics topics in the text, and an image gallery for Chapter 13. Some problems in the text are drawn from the More sections. Every effort has been made to ensure that the solutions in this manual are accurate and free from errors. If you have found an error or a better solution to any of these problems, please feel free to contact me at the address below with a specific citation. I appreciate any correspondence from users of this manual who have ideas and suggestions for improving it.
Sincerely, Mark J. Llewellyn Department of Electrical Engineering and Computer Science Computer Science Division University of Central Florida Orlando, Florida 32816-2362 Email:
[email protected]
Table of Contents
Chapter 1 – Relativity I
1
Chapter 2 – Relativity II
31
Chapter 3 – Quantization of Charge, Light, and Energy
53
Chapter 4 – The Nuclear Atom
79
Chapter 5 – The Wavelike Properties of Particles
109
Chapter 6 – The Schrödinger Equation
127
Chapter 7 – Atomic Physics
157
Chapter 8 – Statistical Physics
187
Chapter 9 – Molecular Structure and Spectra
209
Chapter 10 – Solid State Physics
235
Chapter 11 – Nuclear Physics
259
Chapter 12 – Particle Physics
309
Chapter 13 – Astrophysics and Cosmology
331
Chapter 1 – Relativity I 1-1.
(a) Speed of the droid relative to Hoth, according to Galilean relativity, uHoth , is uHoth uspaceship udroid 2.3 108 m / s 2.1108 m / s 4.4 108 m / s (b) No, since the droid is moving faster than light speed relative to Hoth.
1-2.
4 2 L 2 2.74 10 m (a) t 1.83 104 s 8 c 3.00 10 m / s
(b) From Equation 1-6 the correction t
2L v 2 c c2
t 1.83 104 s 104 1.83 1012 s 2
c
4 km / s 1.3 105 c 299, 796 km / s No, the relativistic correction of order 10-8 is three orders of magnitude smaller than
(c) From experimental measurements
the experimental uncertainty.
0.4 fringe
1.0 fringe
v2
1.0 2 29.9 km / s 2.22 103 v 47.1 km / s 0.4
1-3.
29.8km / s
1-4.
(a) This is an exact analog of Example 1-1 with L = 12.5 m, c = 130 mph, and v = 20
2
v km / s
2
mph. Calling the plane flying perpendicular to the wind plane #1 and the one flying parallel to the wind plane #2, plane #1 win will by Δt where
Lv 2 12.5mi 20mi / h t 3 0.0023 h 8.2s 3 c 130mi / h 2
(b) Pilot #1 must use a heading sin 1 20 /130 8.8 relative to his course on both legs. Pilot #2 must use a heading of 0 relative to the course on both legs.
Chapter 1 – Relativity I 1-5.
(a) In this case, the situation is analogous to Example 1-1 with L 3 108 m,
v 3 104 m / s, and c 3 108 m / s If the flash occurs at t = 0, the interior is dark until t =2s at which time a bright circle of light reflected from the circumference of the great circle plane perpendicular to the direction of motion reaches the center, the circle splits in two, one moving toward the front and the other moving toward the rear, their radii decreasing to just a point when they reach the axis 10-8 s after arrival of the first reflected light ring. Then the interior is dark again. (b) In the frame of the seated observer, the spherical wave expands outward at c in all directions. The interior is dark until t = 2s at which time the spherical wave (that reflected from the inner surface at t = 1s) returns to the center showing the entire inner surface of the sphere in reflected light, following which the interior is dark again.
1-6.
Yes, you will see your image and it will look as it does now. The reason is the second postulate: All observers have the same light speed. In particular, you and the mirror are in the same frame. Light reflects from you to the mirror at speed c relative to you and the mirror and reflects from the mirror back to you also at speed c, independent of your motion.
1-7.
N
2 Lv 2 (Equation 1-10) Where λ = 590 nm, L = 11 m, and ΔN = 0.01 fringe c2
v2
2 N c 2 0.01 fringe 590 109 m 3.00 108 m / s 2 11m 2L
v 4.91103 m / s 5 km / s
1-8.
(a) No. Results depends on the relative motion of the frames. (b) No. Results will depend on the speed of the proton relative to the frames. (This answer anticipates a discussion in Chapter 2. If by “mass”, the “rest mass” is implied, then the answer is “yes”, because that is a fundamental property of protons.)
2
Chapter 1 – Relativity I (Problem 1-8 continued) (c) Yes. This is guaranteed by the 2nd postulate. (d) No. The result depends on the relative motion of the frames. (e) No. The result depends on the speeds involved. (f) Yes. Result is independent of motion. (g) Yes. The charge is an intrinsic property of the electron, a fundamental constant.
1-9.
The wave from the front travels 500 m at speed c + (150/3.6) m/s and the wave from the rear travels at c – (150/3.6) m/s. As seen in Figure 1-14, the travel time is longer for the wave from the rear. t tr t f
500m 500m 8 3.00 10 m / s 150 / 3.6 m / s 3.00 10 m / s 150 / 3.6 m / s 8
3 108 150 / 3.6 3 108 150 / 3.6 500 3 108 2 150 / 3.6 3 108 150 / 3.6 2 500
2 150 / 3.6
3 10
8 2
4.63 1013 s
*
1-10.
A
*
B
*
v
C
While the wavefront is expanding to the position shown, the original positions of A, B, and C have moved to the * marks, according to the observer in S.
(a) According to an S observer, the wavefronts arrive simultaneously at A and B . (b) According to an S observer, the wavefronts do not arrive at A and C simultaneously. (c) The wavefront arrives at A first, according to the S observer, an amount Δt before arrival at C , where
3
Chapter 1 – Relativity I (Problem 1-10 continued)
t
BC BA cv cv
since BC BA L, Thus
c v c v 2v t L L 2 2 2 2 c v c v 1-11. β
1/ 1 2
1/ 2
0 0.2 0.4 0.6 0.8 0.85 0.90 0.925 0.950 0.975 0.985 0.990 0.995
1-12.
vx t1 t1 20 c
1 1.0206 1.0911 1.2500 1.6667 1.8983 2.2942 2.6318 3.2026 4.5004 5.7953 7.0888 10.0125 vx t2 t2 20 c
( from Equation 1-19)
vx vx (a) t2 t1 t2 20 t1 20 t2 t1 c c
(b) The quantities x1 and x2 in Equation 1-19 are each equal to x0 , but x1 and x2 in Equation 1-18 are different and unknown.
1-13. (a)
1/ 1 v 2 / c 2
1/ 2
1/ 1 0.85c / c 2 2
1/ 2
1.898
x x vt 1.898 75m 0.85c 2.0 105 s 9.537 103 m y y 18m z z 4.0m t t vx / c 2 1.898 2.0 105 s 0.85c 75m / c 2 3.756 105 s
4
Chapter 1 – Relativity I (Problem 1-13 continued) (b)
x x vt 1.898 9.537 103 m 0.85c 3.756 10 5 s 75.8m difference is due to rounding of , x, and t . y y 18m z z 4.0m t t vx / c 2 1.898 3.756 105 s 0.85c 9.537 103 m / c 2 2.0 10 5 s
1-14. To show that Δt = 0 (refer to Figure 1-8 and Example 1-1). t1
L c v 2
2
L c v 2
2
2L c v 2
2
2L 1 c 1 v2 / c2
t2 , because length parallel to motion is shortened, is given by: t2
L 1 v 2 / c 2 L 1 v 2 / c 2 2 Lc 1 v 2 / c 2 2 cv cv c 1 v 2 / c 2
t2
2L c
1 v2 / c2 1 v2 / c2
2
2L 1 t1 c 1 v2 / c2
Therefore, t2 – t1 = 0 and no fringe shift is expected. 1-15. (a) Let frame S be the rest frame of Earth and frame S be the spaceship moving at speed v to the right relative to Earth. The other spaceship moving to the left relative to Earth at speed u is the “particle”. Then v = 0.9c and ux = −0.9c. u x
ux v 1 ux v / c 2
(Equation 1-22)
0.9c 0.9c 1.8c 0.9945c 2 1.81 1 0.9c 0.9c / c
(b) Calculating as above with v 3.0 104 m / s ux ux 1
3.0 104 m / s 3.0 104 m / s 6.0 104 m / s 6.0 104 m / s 8 4 4 1 10 3.0 10 m / s 3.0 10 m / s
3.0 10 m / s 8
2
5
Chapter 1 – Relativity I
1-16.
ax
dux dt
where u x
And t t vx / c 2
ux v 1 ux v / c 2
(Equation 1-22)
(Equation 1-18)
dux ux v vdu x / c 2 1 u x v / c 2 1 u x v / c 2 du x 2
1
v 2 2 ux v du x 1 u x v / c du x c 2 1 ux v / c2
dt dt vdx / c 2 v u v du x / dt 1 u x v / c 2 du x / dt 2 x du c ax x 3 dt 1 u v / c 2 x
dux / dt 1 v 2 / c 2
1 u x v / c
ay
du y dt
2 3
where u y
ax
3 1 u x v / c 2 uy
3
(Equation 1-22)
1 ux v / c 2
du y du y / 1 u x v / c 2 u y / 1 u x v 2 / c 2 du x 1
2
du 1 u v / c u v / c du 1 u v / c 2
y
2
x
y
x
2 2
x
2 2 duy du y / dt 1 u x v / c u y v / c du x / dt ay 2 dt 1 u v / c 2 1 u v / c 2 x
x
a y 1 u x v / c 2 ax u y v / c 2
2 1 u x v / c 2
3
az is found in the same manner and is given by: az
6
az 1 ux v / c 2 ax u z v / c 2
2 1 ux v / c 2
3
Chapter 1 – Relativity I 1-17. (a) As seen from the diagram, when the observer in the rocket ( S ) system sees 1 c∙s tick by on the rocket’s clock, only 0.6 c∙s have ticked by on the laboratory clock. ct
ct 4
x 3
2 1 1
0 0
1
2
3
4
x
(b) When 10 seconds have passed on the rocket’s clock, only 6 seconds have passed on the laboratory clock.
1-18. (a)
y
u x 0 u y 0 c
y
x
v x
ux
uy
(b)
u x v 0v v 2 1 0 1 vu x / c u y
1 vu x / c
2
(Equation 1-23)
c c 1 0
u ux2 u y2 v 2 c 2 / 2 v 2 c 2 1 v 2 / c 2 c 7
Chapter 1 – Relativity I 1-19. By analogy with Equation 1-23,
1-20
(a) ux
ux v 0.9c 0.9c 1.8c 0.9945c 2 2 1 vux / c 1 0.9c 0.9c / c 1.81
(b) ux
1.8c /1.81 0.9c 1.8 0.9 1.81 c 3.429 c 0.9997c ux v 2 1 vux / c 1 1.8c /1.81 0.9c / c 2 1.81 1.8 0.9 3.430 1
(a)
(Equation 1-16)
1 v2 / c2
1 v / c 2
2 1 v 1 2 2 c
2 1/ 2
1 v2 3 v4 1 2 c2 8 c2
1
(b)
2
1 3 1 v 2 2 2 2 2! c
1 v2 1 2 c2
1 v 2 / c 2 1 v 2 / c 2
1/ 2
2
2 2 1 v 1 1 1 v 1 2 2 2 c 2 2 2! c
1
(c)
1 v2 1 v4 2 c2 8 c2
1
t t
1 v2 2 c2
1 v2 3 v4 2 c2 8 c4
1 1
1-21.
1
1
1
1
1 v2 1 v4 2 c2 8 c4
1 v2 2 c2
(Equation 1-26)
t t t t 1 v2 1 v2 1 1 t t 2 c2 2 c2 t t v 2c t 2
2
t t v c 2 t
1/ 2
8
c 2 0.01
1/ 2
0.14c
Chapter 1 – Relativity I S
1-22.
Orion (#2)
v = 1000 km/h
Lyra (#1)
S Earth
2.5 103 c y
2.5 103 c y
(a) Note that 1/ 1 v 2 / c 2 1 and 1 c y c 3.15 107 s From Equation 1-27: t t2 t1 0 , since the novas are simultaneous in system S (Earth). Therefore, in S (the aircraft) v t t2 t1 2 x2 x1 c 6 10 m / h 2.5 103 2.5 103 c 3.15 107 s 2 3600s / h c
1.46 105 s 40.5h (b) Since t is positive, t2 t1 ; therefore, the nova in Lyra is detected on the aircraft before the nova in Orion.
1-23. (a)
L Lp /
(Equation 1-28)
=Lp 1 v 2 / c 2 1.0m 1 0.6c / c 2 2
1/ 2
0.80m
(b) t L / v 0.80m / 0.6c 4.4 109 s (c)
The projection OA on the x axis is L. The length OB on the ct axis yields t.
ct ct back of meterstick passes x = 0
x B
meterstick
AA 0
x
9
Chapter 1 – Relativity I t
t t
1-24. (a)
(Equation 1-26)
1 v2 / c2 2.6 108 s
1 0.9c / c 2 2
1/ 2
2.6 108 s 0.19
5.96 108 s
(b) s vt 0.9 3.0 108 m / s 6.0 108 s 16.1m (c) s vt 0.9 3.0 108 m / s 2.6 108 s 7.0m (d)
s
2
ct x 2
2
(Equation 1-31)
2 c 6.0 108 16.1m 324 259 65 s 7.8m 2
1-25. From Equation 1-28, L Lp / Lp 1 v 2 / c 2
where L 85m and Lp 100m
1 v 2 / c 2 L / Lp 85 /100 Squaring 1 v 2 / c 2 85 /100
2
2 v 2 1 85 /100 c 2 0.2775c 2 and v 0.527c 1.58 108 m / s
1-26. (a) In the spaceship the length L = the proper length Lp; therefore, ts
Lp c
Lp c
2 Lp c
(b) In the laboratory frame the length is contracted to L Lp / and the round trip time is
tL
L L L c v c v c 1 v 2 / c 2 2 Lp /
c 1 v 2 / c 2
2 Lp 1 v 2 / c 2 c
1 v2 / c2
2
2 Lp c 1 v2 / c2
(c) Yes. The time ts measured in the spaceship is the proper time interval τ. From time dilation (Equation 1-26) the time interval in the laboratory tL ; therefore, tL
1
2 Lp
1 v2 / c2
c
which agrees with (b).
10
Chapter 1 – Relativity I
1-27. Using Equation 1-28, with LAp and LBp equal to the proper lengths of A and B and LA = length of A measured by B and LB = length of B measured by A.
LA LAp / 100m 1 0.92c 39.2 m 2
LBp LB 36 / 1 0.92c / c 2 91.9m 2
1-28.
In S : x 1.0m cos30 0.866m y 1.0m sin 30 0.500m where 30
In S : x x 1 2 0.866m 1 0.8 0.520m 2
y y 0.500m 0.500 where tan 1 43.9 0.520 L
1-29. (a)
x
2
y 2
0.520m
2
0.500 0.721m 2
In S : V a b c 2m 2m 4m 16m3 In S: Both a and c have components in the x direction. ax a sin 25 2m sin 25 0.84m and cx c cos 25 4m cos 25 3.63m ax ax 1 2 0.84 1 0.65 0.64m 2
cx cx 1 2 3.634 1 0.65 2.76m 2
a y ay a cos 25 2 cos 25 1.81m and c y cy c sin 25 4sin 25 1.69m a ax2 a y2
0.64 1.81
c cx2 c y2
2.76 1.69
2
2
2
1.92m
2
3.24m
b (in z direction) is unchanged, so b b 2m
(between c and xy-plane) tan 1 1.69 / 2.76 31.5 (between a and yz-plane) tan 1 0.64 /1.81 19.5 V (area of ay face) b (see part[b]) V c a sin 78 b 3.24m 1.92m sin 78 2m 12.2m3
11
Chapter 1 – Relativity I (Problem 1-29 continued) (b) y
a
b 19.5◦
c
x
31.5◦
z
1-30.
c f
c 1 1
fo
2
1 v / c o 1 v / c
1 v / c o (Equation 1-36) 1 v / c 2
1 v / c 1 v / c o
2 2 2 v v 1 / o 1 1 Solving for v / c, c o c 1 / o 2 o 2 v 1 590nm / 650nm o 650nm. For yellow 590nm. 0.097 c 1 590nm / 650nm 2
Similarly, for green 525nm and for blue 460nm
v 0.210 c
v 0.333 c
12
Chapter 1 – Relativity I 1-31.
c c 1 v / c o f 1 v / c 1 fo 1
(Equation 1-37)
1 1.85 10 m / s / 3.00 10 m / s o 1 v / c 1 1 8 o o 1 v / c 1 1.85 10 m / s 3.00 10 m / s 7
8
1/ 2
1 0.064
1-32. Because the shift is a blue shift, the star is moving toward Earth. f
1 f o where f 1.02 f o 1
1.02
2
1.02 1 0.0198 2 1.02 1 2
1 1
v 0.0198c 5.94 106 m / s
1-33.
f
1 fo 1
1 1 o 656.3nm 1 1
For 103 : 656.3nm
1 103 657.0nm 1 103
For 10 : 656.3nm
1 102 662.9nm 1 102
2
101 : 656.3nm
1 101 725.6nm 1 101
1-34. Let S be the rest frame of Earth, S be Heidi’s rest frame, and S be Hans’ rest frame. 1 S 1.1198 2 1 0.45c / c
S
1 1 0.95c / c
2
3.206
When they meet, each will have traveled a distance d from Earth. Heidi: d 0.45c tHeidi Hans: d 0.95c tHans and tHans tHeidi 1 in years.
Therefore, 0.95c 0.45c tHeidi 0.95c and tHeidi 1.90 y; tHans 0.90 y (a) In her reference frame S , Heidi has aged t when she and Hans meet.
13
Chapter 1 – Relativity I (Problem1-34 continued)
v 0.45c t S t 2 x 1.1198 1.90 2 0.45c 1.90 c c 2 1.198 1.90 y 1 0.45 1.697 y
In his reference frame S , Hans has aged t when he and Heidi meet.
v 2 t S t 2 x 3.3026 1.90 y 1 0.95 0.290 y c The difference in their ages will be 1.697 0.290 1.407 y 1.4 y (b) Heidi will be the older. 1-35. Distance to moon = 3.85 108 m R Angular velocity ω needed for v = c:
v / R C / R 3.00 108 m / s / 3.85 108 m 0.78rad / s Information could only be transmitted by modulating the beam’s frequency or intensity, but the modulation could move along the beam only at speed c, thus arriving at the moon only at that rate.
1-36. (a) Using Equation 1-28 and Problem 1-20(b).
t t / t 1 v 2 / 2c 2 t tv 2 / 2c 2 where t 3.15 107 s / y
v 2 RE / T 2 6.37 106 m / 108min 60 s / min v 6.177 103 m / s 2.06 105 c Time lost by satellite clock = tv 2 / c 2 3.15 10 7 s 2.06 105 / 2 0.00668s 6.68ms 2
(b)
1s t v 2 / 2c 2 t 2 / v 2 / c 2 2 / 2.06 105 4.71109 s 150 y 2
14
Chapter 1 – Relativity I cos (Equation 1-41) 1 cos where half-angle of the beam in S 30 cos 30 0.65 For 0.65, cos 0.97 or 14.1 1 0.65 cos 30
1-37.
cos
A
0.75m 1.5m lamp
14.1 beam
The train is A from you when the headlight disappears, where
A
0.75m 3.0m tan14.1
1-38. (a) t t0 For the time difference to be 1s, t t0 1s
1 t t / 1 t 1 1 1 1 v2 Substituting 1 (From Problem 1-20) 2 c2 3.0 108 1 v2 2 2 t 1 1 1 t 2c / v 2 2 2 c2 1.5 106 / 3.6 103 2
1.04 1012 s 32, 000 y (b)
t t0 273 109 s. Using the same substitution as in (a). t 1 1/ 273 109 and the circumference of Earth C 40, 000km, so 4.0 107 m vt or t 4.0 107 / v, and 4.0 10 / v 2c / v 7
2
2
273 10 , or v 9
2c 2 273 109 4.0 107
1230 m / s
Where v is the relative speed of the planes flying opposite directions. The speed of each plane was 1230m / s / 2 615 m / s 2210 km / h 1380 mph.
15
Chapter 1 – Relativity I
1-39. y
y
S (other)
c
S (Earth)
v
θ
x
x (a)
cx c cos v c y c sin tan
c y cx
c sin sin c cos v cos v / c
(b) If 90 , tan
1 1 1 v/c
90 45 e.g., if v 0.5c, 63
1-40. (a) Time t for information to reach front of rod is given by:
ct
Lp
vt t
Lp
(c v )
Distance information travels in time t:
c (c v)(c v) / c 2 c 1 v2 / c2 cv ct Lp Lp Lp 2 (c v ) (c v ) cv (c v ) cLp
Since
(c v) (c v) 1 for v > 1, the distance the information must travel to reach
the front of the rod is Lp ; therefore, the rod has extended beyond its proper length. (b)
1 1 v / c (ct Lp ) 1 Lp 1 v / c
16
Chapter 1 – Relativity I
Δ
0
0.11
0.29
0.57
0.73
1.17
2.00
2.50
3.36
5.25
8.95
v/c
0
0.10
0.25
0.40
0.50
0.65
0.80
0.85
0.90
0.95
0.98
Coefficient of extension vs. v/c 10
9
8
7
Delta
6
5
4
3
2
1
0 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
v/c
(c) As v c, , the maximum length of the rod also.
1-41. (a) Alpha Centauri is 4 c∙y away, so the traveler went L 1 2 8c y in 6 y, or
8c y 1 v 2 / c 2 v 6 y 1 v 2 / c 2 v 6 / 8c 3 / 4 v / c 1 2 3 / 4 2 2
2 3 / 4 2 2 1
2 1/ 1 0.5625 v 0.8c (b)
t t0 6 y and 1/ 1 2 1.667 t 1.667 6 y 10 y or 4y older than the other traveler.
17
Chapter 1 – Relativity I (Problem 1-41 continued)
(c)
ct
10
ct (c∙y)
8
x 6
4
2
Alpha Centauri
0
Earth
0
2
4
6
8
10
x
1-42. Orbit circumference 4.0 107 m . Satellite speed v 4.0 107 m / 90 min 60s / min 7.41103 m / s t t0 tdiff 1 t t / tdiff t 1 1 / t 2 (Problem 1-20) 2 tdiff 3.16 107 s 1 / 2 7.41 103 / 3.0 108 0.0096s 9.6ms
1-43. (a) t t
v c2
x (Equation 1-20)
For events to be simultaneous in S , t 0.
v
v 1.5 103 m 2 c c 6 8 v 2 10 s 3 10 m / s s /1.5 103 m
t
2
x 2 106 s
1.2 108 m / s 0.4c
(b) Yes.
18
2
Chapter 1 – Relativity I (Problem 1-43 continued) ct
ct
(c)
1000
x
500
B
0 500
1000
1500
x
0
A
(d)
s
2
x ct 2
2
(Equation 1-33)
1.5 103 3 108 m / s 2 106 s 2.25 106 3.6 105 1.89 106 m2 s 1370m L s 1370m 2
2
1-44. (a) 1/ 1 2 1/ 1 0.92 2.55 2
(b) 2.6 108 s
t lab 2.55 2.6 108 s 6.63 108 s
(c) N t N0 et / (Equation 1-29) L 1 2 L0 1 0.92 50m 19.6m 2
Where L is the distance in the pion system. At 0.92c, the time to cover 19.6m is: t 19.6m / 0.92c 7.0 108 s. So, for N0 = 50,000 pions initially, at the end of 50m
in the lab, N 5.0 104 e7.0/ 2.6 3,390 (d) 47
19
Chapter 1 – Relativity I
1-45.
1 v2 L Lp L Lp Lp 1/ Lp 1 1/ Lp 2 (See Problem 1-20) 2c For Lp 11m and v 3 104 m / s L 11 0.5 108 5.5 108 m "Shrinkage"
5.5 108 m 550 atomic diameter 1010 m / atomic diameter
1-46. (a)
ct
ct 1500
B
1000
500
A 0 0
500
1000
1500
2000
x
(b) Slope of ct axis 2.08 1/ , so 0.48 and v 1.44 108 m / s (c)
ct ct and 1/ 1 2 so ct 1 2 ct ct 877m t 1.5 877 / c 4.39 s
For ct 1000m and 0.48
(d) t t 1.14t t 5 s /1.14 4.39 s
1-47. (a) L Lp / Lp 1 u 2 / c 2 100m 1 0.85 52.7m 2
(b) u
u u 0.85c 0.85c 1.70c 0.987c 2 2 1 uu / c 1.72 1 0.85
(c) L Lp / Lp 1 u2 / c2 100m 1 1.70 /1.72 16.1m 2
(d) As viewed from Earth, the ships pass in the time required for one ship to move its L 52.7m 2.1107 s own contracted length. t 8 u 0.85 3.00 10 m / s
20
Chapter 1 – Relativity I (Problem 1-47 continued) 0.987c
(e)
100 m
16 m
1-48. In Doppler radar, the frequency received at the (approaching) aircraft is shifted by approximately f / f0 v / c. Another frequency shift in the same direction occurs at the receiver, so the total shift f / f0 2v / c.
v c / 2 8 107 120m / s .
1-49. #1
#2 For star #1: v 32km / s 3.2 104 m / s
cm
period 115d
L
c c 3.2 104 c+
c−
Earth
c c 3.2 104 Simultaneous images of star#1 in opposition will appear at Earth when L is at least as large as:
21
Chapter 1 – Relativity I (Problem 1-49 continued)
L L 57.4d 4 c 3.2 10 c 3.2 104 c 3.2 104 L L c 3.2 104 75.5 d 24 h / d 3600 s / h c 3.2 104 c 3.2 104 c 3.2 104 c 3.2 104
c 3.2 10 L 57.5d 24 3600 c 3.2 10 L c 3.2 10 c 3.2 10 4
4
4 2
2
4 2
2
2 c 3.2 104 c 3.2 104 L c 2 3.2 104 57.5 24 3600
c 2 3.2 104 2 57.5 24 3600 L 6.4 104 L 6.99 1018 m 739c y
1-50.
t2 t1 t2 t1
v
xb xa (Equation 1-20) c2 (a) t2 t1 0 t2 t1 v / c 2 xb xa
0.5 1.0 y v / c 2 2.0 1.0 c
Thus, 0.5 v / c v 0.5c in the x direction. (b) t t vx / c 2 Using the first event to calculate t (because t is the same for both events), 2 t 1 / 1 0.5 1 y 0.5c 1c y / c 2 1.155 1.5 1.7 y
(c)
s
2
x ct 1c y 0.5c y 0.75 c y 2
2
2
2
(d) The interval is spacelike. (e) L s 0.866c y
22
2
s 0.866c y
y
Chapter 1 – Relativity I 1-51. (a) ct (c∙y)
1.7y
1 2 1.0
x
x (c∙y)
-2.0
-1.0
1.0
2.0
Because events are simultaneous in S , line between 1 and 2 is parallel to x axis. Its slope is 0.5 .
v 0.5c.
(b) From diagram t 1.7 y.
1-52.
xb xr xb xr v tb tr (1) tb tr tb tr v xb xr / c 2 (2)
Where xb xr 2400m tb tr 5 s xb xr 2400m tb tr 5 s Dividing (1) by (2) and inserting the values, 2400 v 5 106 400 2 2400 v 2400 / 5 106 c 2 2400 5 10 6 v 6 6 2 5 10 5 10 v 2400 / c 2400 2 6 v 5 10 4800 v 2.69 108 m / s in x direction. 6 2 5 10 c
1-53.
ux 0.85c cos50
u y 0.85c sin 50
0.72 1/ 1 2 1.441
v 0.72c
23
Chapter 1 – Relativity I (Problem 1-53 continued)
ux
ux v 1 vux / c 2
ux
0.85c cos 50 0.72c 0.1736c 0.286c 2 1 0.72c 0.85c cos 50 / c 1 0.3934
uy
uy
uy
1 vux / c 2
0.85c sin 50
1.441 1 0.72c 0.85c cos50 / c 2
0.745c
u ux2 uy2 0.798c
tan uy / ux 0.745 / 0.286 111 with respect to the x axis.
1-54. This is easier to do in the xy and xy planes. Let the center of the meterstick, which is parallel
to
the
x-axis
and
x y x y 0 at t t 0.
moves
upward
with
speed
vy
in
S,
at
The right hand end of the stick, e.g., will not be at
t 0 in S because the clocks in S are not synchronized with those in S. In S the
components of the sticks velocity are: uy
ux
uy
1 vu x / c 2
vy
because u y v y and u x 0
ux v v because u x 0 1 vu x / c 2
When the center of the stick is located as noted above, the right end in S will be at: x x vt 0.5 because t 0. The S clock there will read: t t vx / c 2 0.5 v / c 2 Because t = 0. Therefore, when t 0 at the center, the right end is at xy given by: x 0.5 and tan 1 For 0.65
v y 0.5 v c 2 v 0.5 v y tan 1 y 2 / 0.5 tan 1 v y v / c 2 1 2 x c y uy t
0.494v y / c
24
Chapter 1 – Relativity I 1-55.
0 x 2 y 2 z 2 ct
2
x vt y 2 z 2 c t vx / c 2 2
2
x2 2 c 2 2 v 2 / c 4 y 2 z 2 t 2 2 v 2 c 2 2 x t 2 2 v 2vc 2 2 / c 2 x2 y 2 z 2 ct
2
1-56. The solution to this problem is essentially the same as Problem 1-53, with the manhole taking the place of the meterstick and with the addition of the meterstick moving to the right along the x-axis. Following from Problem 1-53, the manhole is titled up on the right and so the meterstick passes through it; there is no collision. y
manhole x meterstick
1-57. (a)
t2 t2 vx2 / c 2 and t1 t1 vx1 / c 2 t2 t1 t2 t1 v x2 x1 / c 2 T vD / c 2
(b) For simultaneity in S , t2 t1, or T vD / c2
v / c cT / D.
Because v / c 1, cT / D is also 0 this is always positive because v/c < 1. Thus, t2 t1 T vD / c 2 is always positive.
(d) Assume T D / c with c c. Then c v T vD / c 2 D / c vD / c 2 D / c c c
This changes sign at v / c c / c which is still smaller than 1. For any larger v still smaller than c)
t2 t1 T vD / c 2 0 or t1 t2
25
Chapter 1 – Relativity I
1-58.
v 0.6c
1 1 0.6
2
1.25
(a) The clock in S reads 60min 75min when the S clock reads 60 min and the first signal
from
S is
sent.
At
that
time,
the
S observer
is
at
v 75min 0.6c 75min 45c min. The signal travels for 45 min to reach the S
observer and arrives at 75 min + 45 min = 120 min on the S clock. (b) The observer in S sends his first signal at 60 min and its subsequent wavefront is found at x c t 60 min .
The S observer is at x vt 0.6ct and receives the
wavefront when these x positions coincide, i.e., when
c t 60 min 0.6ct 0.4ct 60c min t 60c min / 0.4c 150 min x 0.6c 0 min 90c min The confirmation signal sent by the S observer is sent at that time and place, taking 90 min to reach the observer in S. It arrives at 150 min + 90 min = 240 min. (c) Observer in S: Sends first signal Receives first signal Receives confirmation
60 min 120 min 240 min
The S observer makes identical observations. 1-59. Clock at r moves with speed u r , so time dilation at that clock’s location is: t0 t tr t0 1 u 2 / c 2 t0 1 r 2 2 / c 2 1 c, tr t0 1 r 2 2 / c 2 2 1 t0 1 r 2 2 / c 2 t0 t t0 r 2 2 2 And, r t0 t0 2C 2
Or, for r
26
Chapter 1 – Relativity I
1-60.
vB
ux
ux v 1 ux v / c 2
uy
(a) For vBA : v vB , vAx 0, vAy vA . So, vAx
vAy
B 1 vAx v / c
2
v A
where B
B
vBA vAx2 vAy2 vB2 vA / B tan BA
1 vB2 / c 2
2
vAy vA / B v A vAx vB B vB
vBy
A 1 vBx v / c
vAB
vAx v vB 1 vAx v / c 2
1
(b) For vAB : v vA , vBy vB , vBx 0. So, vBx
vBy
1 ux v / c 2
VA
Space station
vAy
uy
2
vB
A
v A vB / A
tan AB
2
where A
vBx v vA 1 vBx v / c 2
1 1 vA2 / c 2
2
vB v B A v A A vA
(c) The situations are not symmetric. B viewed from A moves in the +y direction, and A viewed from B moves in the –y direction, so tan A tan B 45 only if vA vB and A B 1, which requires vA vB 0.
27
Chapter 1 – Relativity I 1-61.
1-62. (a) Apparent time A B T / 2 t A tB and apparent time B A T / 2 t A tB where tA = light travel time from point A to Earth and tB = light travel time from point B to Earth. A B
T L L T 2vL 2 2 2 cv cv 2 c v
B A
T L L T 2vL 2 2 2 cv cv 2 c v
(b) Star will appear at A and B simultaneously when tB T / 2 t A or when the period is: L 4vL L T 2 t B t A 2 2 2 c v c v c v
1-63. The angle of u with the x axis is:
uy uy 1 vux / c tan ux ux v vu 1 2x c tan
uy
ux v
2
u sin sin u cos v cos v / u
28
Chapter 1 – Relativity I
#1
1-64.
d vt cos
θ d
xEarth vt sin
#2
xEarth L
L to Earth
(a) From position #2 light reaches Earth at time t2 L / c. From position #1 light reaches L d Earth at time t1 t. c c
L L d t c c c vt cos t c t 1 cos
t Earth t2 t1 t Earth t Earth
(b)
Bapp
vapp c
xEarth vt sin sin ctEarth ct 1 cos 1 cos
(c) For 0.75 and vapp c app 1, the result in part (b) becomes
1
0.75sin sin cos 1/ 0.75 1 0.75cos
Using the trigonometric identity
p sin q cos r sin A where r sin cos 2 sin 45 1/ 0.75 sin 45 1/ 0.75 2
45 70.6 25.6 29
p2 q2
sin A p / r
cos A q / r
Chapter 2 – Relativity II 2-1.
2 u yB uo2 1 v 2 / c 2
2 uxB v2
2 1 u xB uB2 / c 2 1 v 2 / c 2 uo2 / c 2 1 v 2 / c 2
1 v
2
/ c 2 1 uo2 / c 2
1 v 2 / c 2
1/ 2
p yB
mu yB
2 2 1 u xB u yB / c2
1 u
2 o
/ c2
1/ 2
muo 1 v 2 / c 2
1 v 2 / c 2 1 uo2 / c 2
muo / 1 uo2 / c 2 p yA
2-2.
d mu m ud du
1 2u u 2 3/ 2 u 2 1/ 2 m u 2 1 2 1 2 du 2 c c c u 2 u 2 3/ 2 u 2 u 2 3/ 2 m 2 1 2 1 2 1 2 du c c c c u2 m 1 2 c
2-3.
(a)
1 1 u / c 2
2
3/ 2
du
1
1 0.6c / c 2 2
1 1.25 0.8
(b) p mu mc u / c / c 1.25 0.511 MeV 0.6 / c 0.383 MeV / c 2
(c) E mc 2 1.25 0.511 MeV 0.639 MeV (d) Ek 1 mc2 0.25 0.511 MeV 0.128 MeV
31
Chapter 2 – Relativity II
2-4.
The quantity required is the kinetic energy. Ek 1 mc 2 1 u 2 / c 2
2 (a) Ek 1 0.5
2 (b) Ek 1 0.9
1/ 2
2 (c) Ek 1 0.99
2-5.
1/ 2
1/ 2
1 mc 2
1 mc 2 0.155mc 2
1 mc 2 1.29mc 2
1/ 2
1 mc 2 6.09mc 2
E mc 2 m E / c 2
10 J
3.08 10 m / s 8
2
1.11016 kg
Because work is done on the system, the mass increases by this amount.
2-6.
m(u) m / 1 u 2 / c 2
(a)
(Equation 2-5)
m(u ) m 0.10 m 1 1 u / c 2
2
m / 1 u 2 / c2 m 0.10 m 1
1 0.10
1 u / c 2
2
1.10 1 u 2 / c 2 1/ 1.10
Thus, u 2 / c2 1 1/ 1.10 0.1736 u / c 0.416 2
(b) m(u) 5m m 1 u / c 2
2
5m 1 u 2 / c 2 1/ 25
Thus, u 2 / c2 1 1/ 25 0.960 u / c 0.980 (c) m(u) 20m m 1 u / c 2
2
20m 1 u 2 / c 2 1/ 400
Thus, u 2 / c2 1 1/ 400 0.9975 u / c 0.99870
32
2
Chapter 2 – Relativity II 2-7.
(a) v Earth moon distance / time 3.8 108 m /1.5s 0.84c (b)
Ek mc 2 mc 2 mc 2 1
(Equation 2-9)
1 / 1 0.84 1.84 2
mc 2 (proton) 938.3MeV
Ek 938.3MeV 1.87 1 813MeV
(c) m(u )
m 1 u / c 2
2
938.3MeV / c 2 1 0.84
2
1.730 103 MeV / c 2 1.730GeV / c 2
1 2 1 2 mv 938.3MeV / c 2 0.84c 331MeV 2 2 813Mev 331MeV % error 100 59% 813MeV
(d) Classically, Ek
2-8.
Ek mc 2 1
(Equation 2-9)
Ek u2 Ek u1 W21 mc 2 u2 1 mc 2 u1 1
Or, W21 mc 2 u2 u1 1/ 2 1/ 2 (a) W21 938.3MeV 1 0.162 1 0.152 1.51MeV 1/ 2 1/ 2 1 0.852 57.6MeV (b) W21 938.3MeV 1 0.862
(c) W21 938.3MeV 1 0.962
2-9.
1/ 2
1 0.952
1/ 2
3.35 103 MeV 3.35GeV
E mc2 (Equation 2-10) (a) 200GeV 0.938GeV where mc2 proton 0.938GeV
1 1 v2 / c2
v 1 1 2 c 2
200GeV 213 0.938GeV
(Equation 2-40)
v 1 1 1 0.00001102 Thus, v 0.99998898c 2 c 2 213
33
Chapter 2 – Relativity II (Problem 2-9 continued) (b) E pc for E
mc2 where E 200GeV 197 3.94 104 GeV (Equation 2-36)
p E / c 3.94 104 GeV / c (c) Assuming one Au nucleus (system S ) to be moving in the +x direction of the lab (system S), then u for the second Au nucleus is in the −x direction. The second Au’s energy measured in the S system is:
E E vp x 213 3.94 104 GeV v 3.94 104 GeV / c 213 3.94 104 GeV 1 v / c 213 3.94 104 GeV 2 1.68 107 GeV px p x vE / c 2 213 3.94 104 GeV v 3.94 104 GeV / c 2 213 3.94 104 GeV 2 1.68 107 GeV / c 2-10. (a) E mc 2 103 kg c 2 9.0 1013 J (b) 1kWh 1103 J h / s 3600s / h 3.6 106 J So, 9.0 1013 J / 3.6 106 J / kWh 2.5 107 kWh @$0.10 / kWh would sell for $2.5 106 or $2.5 million. (c) 100W 100 J / s, so 1g of dirt will light the bulb for:
9.0 1013 J 9.0 1011 s 9.0 1011 s 2.82 104 y 7 100 J / s 3.16 10 s / y
2-11.
E mc2
(Equation 2-10)
where 1/ 1 u 2 / c 2 1/ 1 0.2 1.0206 2
E 1.0206 0.511MeV 0.5215 MeV Ek mc 2 mc 2 mc 2 1
(Equation 2-9)
= 0.511MeV 1.0206 1 0.01054MeV
34
Chapter 2 – Relativity II (Problem 2-11 continued) E 2 pc mc 2 2
2
(Equation 2-32)
2 1 2 1 2 2 E mc 2 2 0.5215MeV 0.511MeV 2 c c 2 2 0.01087 MeV / c p 0.104 MeV / c
p2
2-12.
E mc 2
(Equation 2-10)
E / mc 1400MeV / 938MeV 1.4925 2
(a)
1/ 1 u 2 / c 2 1.4925 1 u 2 / c 2 1/ 1.4925
2
u 2 / c 2 1 1/ 1.4925 0.551 u 0.74c 2
(b)
E 2 pc mc 2 2
2
(Equation 2-32)
2 1 1 2 2 p E 2 mc 2 1400MeV 938MeV 1040MeV / c c c
2-13. (a)
pR mS v
pN mS v
1/ 1 v 2 / c 2 1/ 1 2.5 105 / 3.0 108
2
1.00000035 3 3 pR pN mS 2.5 10 mS 2.5 10 1 3.5 107 3.5 107 3 pR 1.00000035 mS 2.5 10
(b)
ER mS c 2 mS c 2 1 mS c 2 1 mS v 2 2 2 2 ER EN 1 c 0.5v ER 1 c 2
EN
3.5 107 c 2 0.5v 2 3.5 107 c 2 1
0.5 2.5 105 3.5 107 c 2
2
0.0079
35
Chapter 2 – Relativity II
2-14.
u 2.2 106 m / s and 1/ 1 u 2 / c 2 (a) Ek 0.511MeV 1 0.511MeV 1/ 1 u 2 / c 2 1 0.5110 2.689 105
1.3741105 MeV 2 1 1 mu 2 mc 2 u 2 / c 2 0.5110MeV / 2 2.2 106 / c 2 2 2 5 1.374 10 MeV
Ek (classical)
% difference =
1109 100 0.0073% 1.3741105
(b)
p
2 1 1 E 2 mc 2 c c
mc 2 mc 1 c 2
mc mc 2 2
2 2
2 6 8 2 1/ 1 2.2 10 / 3.0 10 1
1/ 2
0.5110MeV / c 7.33 103 3.74745 103 MeV / c p (classical) mu
mc 2 u 6 8 0.5110MeV / c 2.2 10 / 3.0 10 2 c c
3.74733 10 3 MeV / c % difference =
1.2 107 100 0.0030% 2.74745 103
2-15. (a) 60W 60 J / s 3.16 107 s / y 1.896 109 J m E / c 2 1.896 109 J / 3.0 108 m / s 2.1108 kg 2.1105 g 21 g 2
(b) It would make no difference if the inner surface were a perfect reflector. The light energy would remain in the enclosure, but light has no rest mass, so the balance reading would still go down by 21 μg.
2-16.
4
He 3H p e
Q m 3H mp me m 4 He c 2
2809.450MeV 938.280MeV 0.511MeV 3728.424MeV 19.827MeV
36
Chapter 2 – Relativity II 2-17.
H 2H n Energy to remove the n = 22.014102u 2 H 1.008665u n 3.016049u 3H 3
0.006718u 931.5MeV / u 6.26MeV
2-18. (a) m
E Eu 4.2eV 2 u 4.5 109 u 2 6 c uc 931.5 10 eV
(b) error =
2-19. (a)
m 4.5 109 u 7.7 1011 7.7 109 % m Na m Cl 23u 35.5u
m m He 2m H 4
2
m 4 He c 2 2m 2 H c 2
u uc 2 3727.409MeV 2 1875.628MeV u / 931.5MeV 0.0256u
(b) E m c 2 0.0256uc 2 931.5MeV / uc2 23.8MeV (c)
dN P 1W 1eV 2.62 1011 / s dt E 23.847MeV 1.602 1019 J
2-20.
v hf
M
(a) before photon absorbed:
1.01M
after photon absorbed:
E hf Mc2
E f Ekinetic 1.01Mc 2
Conservation of energy requires: hf Mc 2 Ekinetic 1.01Mc 2 Rearranging, the photon energy is:
hf 1.01Mc 2 Mc 2 Ekinetic hf 0.01Mc 2 Ekinetic 0.01Mc 2
(b) The photon’s energy is hf 0.01Mc2 because the particle recoils from the absorption of the photon due to conservation of momentum. The recoil kinetic energy (which is greater than 0) must be supplied by the photon.
37
Chapter 2 – Relativity II 2-21. Conservation of energy requires that Ei2 E 2f , or
pi c
2
2m p c 2 p f c 2m p c 2 m c 2 and conservation of momentum requires that 2
2
2
pi p f , so 4 m p c 2 4 m p c 2 2m p c 2 2m c 2 m c 2 2
2
0 2m p c 2 2m c 2 m c 2
2
2
m c2 m 0 m c 2 2 2 m c 2 2 2m p c 2m p
Thus, m c 2 2 m / 2mp is the minimum or threshold energy Ei that a beam proton must have to produce a π0. m c 2 135 2 E m c 2 135 MeV 2 280MeV 2m p c 2 2 938
2-22.
E mc 2 m E / c 2
2-23. (a)
200 106 eV 3.57 1025 g 32 5.6110 eV / g
3 kT per atom 2 3 E 1.38 1023 J / K 1.50 107 K 2 E 3.105 1016 J / atom E
H atoms/kg 1kg /1.67 1027 kg / atom 6.0 1026 atoms Thermal energy/kg 3.1 1016 J / atom 6.0 1026 atoms 1.86 1011 J (b)
E mc 2
m E / c2
m 1.86 1011 J / c 2 2.07 106 kg
38
Chapter 2 – Relativity II
p E / c 1.0 J / s / c
2-24. 1.0W 1.0 J / s
(a) On being absorbed by your hand the momentum change is p 1.0 J / s / c and, from the impulse-momentum theorem, F t p where t 1s F 1.0 J / s / ct 1.0 / c N 3.3 109 N This magnitude force would be exerted by gravity on mass m given by: m F / g 3.3 109 N / 9.8m / s 2 3.4 1010 kg 0.34 g (b) On being reflected from your hand the momentum change is twice the amount in part (a) by conservation of momentum. Therefore, F 6.6 109 and m 0.68 g.
2-25. Positronium at rest: 2mc 2 Ei2 pi c 2
2
Because pi 0, Ei 2mc2 2 0.511MeV 1.022MeV After photon creation; 2mc 2 E 2f p f c 2
2
Because pf 0 and energy is conserved, 2mc 2 E 2f 1.022MeV or 2
2
2mc2 1.022MeV for the photons.
2-26.
E 2 pc 2 mc 2 2
E pc mc 2
2
(Equation 2-31)
1/ 2 2 2
mc 1 p 2 / m2 c 2
1/ 2
pc 2 mc 1 2 mc 2
1/ 2
2
p2 2 mc 1 2m 2 c 2
2 1 mc 1 p / mc 2 2
mc 2 p 2 / 2m
2-27.
E 2 pc 2 mc 2 2
2
(Equation 2-31)
(a) pc E 2 mc 2 5MeV 0.511MeV 24.74 MeV 2 2
2
2
2
or, p 24.74 MeV / c 4.97MeV / c (b) E mc 2
1 u 2 / c 2 mc 2 / E
E / mc 2 1/ 1 u 2 / c 2
2 u / c 1 mc 2 / E
1/ 2
1/ 2
2 1 0.511/ 5.0
39
0.995
2
Chapter 2 – Relativity II 2-28. 4
3
E/mc2
2
1
0 0
2-29.
1
E 2 pc 2 mc 2 2
1746MeV
2
2
2
3
(Equation 2-31)
500MeV mc 2 2
2
1/ 2
2 2 mc 2 1746MeV 500MeV
E mc 2
1673MeV
m 1673MeV / c 2
1/ 1 u 2 / c 2 E / mc 2
2 u / c 1 mc 2 / E
1/ 2
2-30. (a) BqR m u p
B
p/mc
4
1/ 2
2 1 1673MeV /1746MeV
0.286 u 0.286c
(Equation 2-37)
m u and E mc 2 which we have written as (see Problem 2-29) qR
2 u / c 1 mc 2 / E
1/ 2
1/ 2
2 1 0.511MeV / 4.0MeV
And 1/ 1 u 2 / c 2 1/ 1 0.992 7.83 2
9.1110 kg 7.83 0.992c 0.316T Then, B 1.60 10 C 4.2 10 m 31
19
2
(b) m exceeds m by a factor of γ = 7.83.
40
0.992
Chapter 2 – Relativity II 2-31. (a) p qBR e 0.5T 2.0
3.0 108 m / s 300MeV / c c
2 2 Ek E mc 2 pc mc 2
1/ 2
(b)
mc 2 1/ 2
2 2 300MeV 938.28MeV 46.8MeV
938.28MeV
2-32. The axis of the spinning disk, system S , is the z-axis in cylindrical coordinates. r r, z z, t dr dr , dz dz, d d dt Therefore, d d dt and d 2 d 2 2 d dt 2 dt 2 . Substituting for
d 2 in Equation 2-43 yields ds 2 c2 dt 2 dr 2 r 2 (d 2 2 d dt 2 dt 2 ) dz 2
Simplifying, we obtain
ds 2 (c2 r 2 2 ) dt 2 (dr 2 r 2 d 2 2r 2 d dt dz 2 ) which is Equation 2-44.
2-33. 4GM / c2 R
(Equation 2-44)
Earth radius R 6.37 106 m and mass M 5.98 1024 kg
4 6.67 1011 N m2 / kg 2 5.98 1024 kg
3.00 10 m / s 6.37 10 m 8
2
6
2.78 109 radians
2.87 104 arc seconds
2-34. Because the clock furthest from Earth (where Earth’s gravity is less) runs the faster, answer (c) is correct.
41
Chapter 2 – Relativity II
2-35.
6 6.67 1011 N m2 / kg 2 1.99 1030 kg 6 GM 2 2 c 1 2 R 3.00 108 m / s 1 0.0482 7.80 1011 m
(Equation 2-51)
3.64 108 radians/century 7.55 103 arc seconds/century
r 2 d 2-36. From Equation 2-45, dt dt 2 2 2 c r
2
2r 2 d dt r 2 d and dt dt 2 2 2 2 2 2 . c r c r 2
2
Substituting dt and dt 2 into Equation 2-44 yields 2 2r 2 d dt r 2 d 2 ds (c r ) dt 2 2 2 2 2 2 c r c r 2 2 r 2 d 2 2 dr r d 2r d dt 2 2 2 dz 2 c r 2
2
2
2
r d 2r d dt 2
ds (c r )dt 2
2
2
2
2
2
2
c 2 r 2 2
2 2 2 r d 2 2 2 2 2 dr r d 2r d dt 2 2 2 dz c r
Cancelling the 2r 2 d dt terms, one of the
r d 2
r d 2
2
2
c 2 r 2 2
2 r 2 d c 2 r 2 2
2
terms, and noting that
c 2 r 2 d 2 c 2 r 2 2
we have that
ds 2 (c 2 r 2 2 )dt 2 (dr 2
c 2 r 2 d 2 dz 2 ) which is Equation 2-46. 2 2 2 c r
2-37. The transmission is redshifted on leaving Earth to frequency f , where f0 f f0 gh / c 2 . Synchronous satellite orbits are at 6.623RE where
g
GM E
6.623RE
2
9.9m / s 2
6.623
2
0.223m / s 2
42
Chapter 2 – Relativity II (Problem 2-37 continued) h 6.623RE 6.623 6.37 106 m 4.22 107 m
f0 f 9.375 109 Hz 0.223m / s 2 4.22 107 / 3.00 108 0.980Hz 2
f f0 0.980Hz 9.374999999 109 Hz
2-38. Earth
white dwarf
distant star
57 c∙y
35 c∙y
On passing “below” the white dwarf, light from the distant start is deflected through an angle:
4GM / c R 2
4 6.67 1011 N m2 / kg 2 3 1.99 1030 kg
3.00 10 m / s 10 m 2
8
7
(Equation 2-44)
1.77 103 radians 0.051 or the angle between the arcs is 2 0.102
2-39. The speed v of the satellite is: v 2 R / T 2 6.37 106 m / 90 min 60s / min 7.42 103 m / s Special relativistic effect: After one year the clock in orbit has recorded time t t / , and the clocks differ by: t t t t / t 1 1/ t v 2 / 2c 2 , because v
c. Thus,
t t 3.16 107 s 7.412 103 / 2 3.00 108 m 0.00965s 9.65ms 2
2
Due to special relativity time dilation the orbiting clock is behind the Earth clock by 9.65ms.
43
Chapter 2 – Relativity II (Problem 2-39 continued)
General relativistic effect: 2 5 f gh 9.8m / s 3.0 10 m 3.27 1011 s / s 2 8 f0 c2 3.0 10 m / s
In one year the orbiting clock gains 3.27 1011 s / s 3.16 107 s / y 1.03ms . The net difference due to both effects is a slowing of the orbiting clock by 9.65−1.03 = 8.62 ms.
2-40. The rest energy of the mass m is invariant, so observers in S will also measure m = 4.6kg, as in Example 2-9. The total energy E is then given by:
mc E pc 2 2
2
2
Because, p 0, E mc 2 4.6kg 3.0 108 m / s 4.14 1014 J 2
2-41. (a)
E me c 2
E / mec 2 50 10 MeV / 0.511MeV 9.78 104
L L0 / 102 m
L0 9.78 104 102 m 978m (length of one bundle) The width of one bundle is the same as in the lab. (b) An observer on the bundle “sees” the accelerator shortened to 978m from its proper length L0 , so L0 978 978 104 978 9.57 107 m.
(Note that this is about
2.5 times Earth’s 40,000km circumference at the equator.) (c) The e+ bundle is 10−2 m long in the lab frame, so in the e− frame its length would be measured to be: L 102 m / 102 m / 9.78 104 1.02 107 m .
44
Chapter 2 – Relativity II 2-42.
Ek mc2 mc2 mc2 1 If Ek mc2 938MeV , then 2. (a)
mc
2 2
pc
2
E 2 pc
2
(Equation 2-32) Where E mc 2 2 938MeV
E 2 mc 2 2 938 938 2.46 106 2
p 2.64 106
1/ 2
2
2
/ c 1.62 103 MeV / c
(b) p mu u p / m 1.62 103 MeV / c / 2 938MeV / c 2 0.866c
2-43. (a) The momentum of the ejected fuel is:
p mu mu / 1 u 2 / c 2 103 kg c / 2 / 1 0.5 1.73 1011 kg m / s 2
Conservation of momentum requires that this also be the momentum ps of the spaceship: ps msus / 1 us2 / c 2 1.73 1011 kg m / s
ms us / 1 us2 / c 2 1.73 1011 kg m / s
Or,
2
ms2 cs2 1 us2 / c 2 1.73 1011 kg m / s 1.73 1011 kg m / s 2 3.33 105 kg 2 us2 2
10 kg 6
Or,
2
us2 3.33 105 kg 2 us2 1.73 1011 kg m / s
2
us 1.73 1011 kg m / s /106 kg 1.73 105 m / s 5.77 10 4 c
(b) In classical mechanics, the momentum of the ejected fuel is: mu mc / 2 103 c / 2, which must equal the magnitude of the spaceship’s momentum msus, so 103 kg 3.0 108 m / s 3 us 10 c / 2 / ms 5.0 104 c 1.5 105 m / s 6 2 10 kg
(c) The initial energy Ei before the fuel was ejected is Ei ms c 2 in the ship’s rest system. Following fuel ejection, the final energy Ef is:
E f energy of fuel + energy of ship mc2 / 1 u 2 / c 2 ms m c 2 / 1 us2 / c 2 Where u 0.5c and us c, so E f 1.155mc 2 ms m c 2 1.155 1 mc 2 ms c 2 The change in energy ΔE is: E E f Ei 0.155 103 kg c 2 106 kg c 2 106 kg c 2 E 155kg c 2 or 155 kg E / c 2 of mass has been converted to energy.
45
Chapter 2 – Relativity II 2-44. The observer at the pole clock sees the light emission of the equatorial clock as transverse Doppler effect, measuring frequency f, where
f0 / f 1 cos
(Equation 1-35a)
/ 2 for the equatorial clock, so f / f 0 1 v 2 / c 2 1
1 v2 2 c2
f / f0 1 1.193 1012 (red shift)
The observer at the equatorial clock sees a gravitational blue shift for the pole clock and observes
f / f 0 1 gh / c 2
(Equation 2-45)
f / f 0 1 2.897 1012 (blue shift)
2-45. (a)
p 300 BR q / e
(Equation 2-38)
p 300 1.5T 6.37 106 1 2.87 109 MeV mc 2 , E Ek and E pc (Equation 2-32) Ek pc 2.87 109 MeV
For E (b)
For E pc, u c and T 2 R / c 2 6.37 106 m / c 0.133s
2-46.
f 1 GM / c 2 R f0
(Equation 2-47)
The fractional shift is:
f0 f f 1 GM / c 2 R 7 104 f0 f0
The dwarf’s radius is:
R GM / c 7 10 2
4
6.67 1011 N m2 / kg 2 2 1030 kg
3.00 10 m / s 7 10 2
8
Assuming the dwarf to be spherical, the density is:
M 2 1030 kg 5.0 1010 kg / m3 V 4 2.12 106 m 3 / 3
46
4
2.12 106 m
Chapter 2 – Relativity II 2-47. The minimum energy photon needed to create an e− − e+ pair is Ep = 1.022 MeV (see Example 2-13). At minimum energy, the pair is created at rest, i.e., with no momentum. However, the photon’s momentum must be p E / c 1.022MeV / c at minimum. Thus, momentum conservation is violated unless there is an additional mass “nearby” to absorb recoil momentum.
2-48.
1 vux / c 2 uy m py muy 2 1 u 2 / c 2 1 vux / c
Canceling γ and 1 vux / c 2 , gives: py In an exactly equivalent way, pz pz .
mu y 1 u 2 / c2
py
2-49. (a) u u v / 1 uv / c 2 where v u, so u 2u / 1 u 2 / c 2 . Thus,
the speed of the particle that is moving in S is: u 2u / 1 u 2 / c 2 from which we see that: 2 4u u 1 1 2 / 1 u 2 / c 2 c c 2
2
1 2u 2 / c 2 u 4 / c 4 4u 2 / c 2 / 1 u 2 / c 2 1 u 2 / c 2 / 1 u 2 / c 2 2
u 2 And thus, 1 c
1/ 2
2
1 u 2 / c2 1 u 2 / c2
(b) The initial momentum pi in S is due to the moving particle, pi mu / 1 u / c where u and 1 u / c were given in (a). 2
pi m
2
2u 1 u 2 / c 2
1 u
2
/c
2
1 u
2
/c
2
2mu / 1 u 2 / c 2
(c) After the collision, conservation of momentum requires that: p f Mu / 1 u 2 / c 2
1/ 2
pi 2mu / 1 u 2 / c 2
47
or M 2m / 1 u 2 / c 2
1/ 2
Chapter 2 – Relativity II (Problem 2-49 continued) (d) In S: Ei 2mc 2 / 1 u 2 / c 2 and E f Mc 2 (M is at rest.) Because we saw in (c) that M 2m / 1 u 2 / c 2
1/ 2
, then Ei E f in S .
In S : Ei mc 2 mc 2 / 1 u / c and substituting for the square root from (a), 2
Ei 2mc2 / 1 u 2 / c2 and E f Mc2 / 1 u 2 / c 2 . Again substituting for M from (c), we have: Ei E f .
2-50. (a) Each proton has Ek mp c 2 1 , and because we want Ek m p c 2 , then γ = 2 and u = 0.866c. (See Problem 2-40.) ux v where u = v and ux =−u yields: 1 ux v / c 2 2 0.866c 2u ux 0.990c 2 2 1 u / c 1 0.866c
(b) In the lab frame S : ux
(c) For u 0.990c, 1/ 1 0.99 7.0 and the necessary kinetic energy in the 2
lab frame S is: Ek mp c 2 1 mp c 2 7 1 6mp c 2
2-51. (a) pi 0 E / c Mv or v E / Mc (b) The box moves a distance x vt , where t L / c,
so x E / Mc L / c EL / Mc 2 (c) Let the center of the box be at x = 0. Radiation of mass m is emitted from the left end of the box (e.g.) and the center of mass is at: xCM
M 0 m L / 2 M m
mL 2 M m
When the radiation is absorbed at the other end the center of mass is at: xCM
M EL / Mc 2 m L / 2 EL / Mc 2 M m
48
Chapter 2 – Relativity II (Problem 2-51 continued) Equating the two values of xCM (if CM is not to move) yields: m E / c 2 / 1 E / Mc 2
Mc2 , then m E / c 2 and the radiation has this mass.
Because E
2-52. (a) If v mass is 0:
E2 p c m c and Ev2 pv c 0 2
2
2
Ek Ev 139.56755MeV 105.65839MeV m c 2 1 Ev 33.90916MeV
Ev pv c E2 m c 2
2 1/ 2
33.90916 m c 2 1
Squaring, we have
m c 1 33.90916
2 2
2
2
2 33.90916 m c 2 1 m c 2 1 2
2
Collecting terms, then solving for 1 ,
33.90916 1 2 2 m c 2 2 33.90916 m c 2 2
Substituting m c 2 105.65839MeV
1 0.0390 1.0390 so, 1 2 2 1/ 2 Ek 4.12MeV and pu 109.78 105.66 29.8MeV / c c Ev 29.8MeV and pv 29.8MeV / c (b)
If v mass = 190 keV , then Ev2 pv c + m v c 2 and 2
2
Ek Ekv 139.56755MeV 105.65839MeV 0.190MeV 33.71916MeV Solving as in (a) yields E 109.78MeV ,
2-53.
f 1 Gm / c 2 R f0
p 29.8MeV / c, Ev 29.8MeV , and pv 29.8MeV / c
(Equation 2-47)
Since c f and c f 0 0 ,
6.67 10 N m / kg 1.99 10 kg 0 1 GM / c 2 R 1 2 c 3.00 108 m / s 6.96 106 m c
11
0
1 0.000212 0.999788
49
2
2
30
Chapter 2 – Relativity II (Problem 2-53 continued)
0 / 0.999788 720.00nm / 0.999788 720.15nm 0 0.15nm u y u y / 1 vu x / c 2
2-54.
du y ay
du y dt
1 vu
1
u y vdx 2 2 2 1 vu x / c c dt vdx / c 2
/ c2 1
x
2 1 2 2 2 1 du y / dt 1 vu x / c u y v / c du x / dt 1 vu x / c ay 2 1 v dx / dt / c2 2 ay ax u y v / c ay 2 3 2 1 vu x / c 2 2 1 vu x / c 2
2-55. (a)
Fx
dpx d mv dt dt
Fx ma x because u x 0
Fx m dv / dt mv d 1 v 2 / c 2 Fx Fx
ma x
1 v 2 / c2 ma x
m v2 / c2 ax
1 v / c 1 v / c m v / c a 1 v / c 1/2
2
/ dt
2 3/2
2
2
2
1/2
2
2
x
2 3/2
Fx 3ma x Because u x 0, note from Equation 2-1 (inverse form) that a x a x / 3 . Therefore, Fx 3ma x / 3 ma x Fx
(b)
Fy
dp y
d mv y
Fy ma y because u y u x 0 dt dt Fy ma y because S moves in +x direction and the instantaneous transverse impluse (small) changes only the direction of v. From the result of Problem 2-52 (inverse form) with u y ux 0, a y a y / 2 Therefore, Fy ma y ma y / 2 ma y / Fy /
50
Chapter 2 – Relativity II 2-56. (a) Energy and momentum are conserved. Initial system: E Mc2 ,
p0
Invariant mass: Mc 2 E 2 pc Mc 2 0 2
2
2
Final system:
2mc Mc 2 2
2 2
0
For 1 particle (from symmetry)
mc Mc / 2 2 2
2
2
p 2c 2 Mc 2 / 2 muc 2
2
Mc 2 2 u / c Rearranging, 1 2 2mc
2mc 2 2 Solving for u, u 1 2 Mc
2
2
Mc 2 1 2 2 2 2mc 1 u / c 2
1/ 2
c
(b) Energy and momentum are conserverd. Initial system: E 4mc 2 Invariant mass:
Mc 4mc pc 2 2
2 2
2
Final system: Invariant mass: 2mc 2 4mc 2 pc 2
2
4mc 2 2 Mc 2 2 u pc 2 c E 4mc
1/ 2
2 2 2 Mc 2 u 4mc Mc 1 2 2 c 4mc 4mc2 2
Mc 2 2 u 1 2 4mc
2
2
1/ 2
c
51
2
where pc 4mc 2 Mc 2 2
2
2
Chapter 3 – Quantization of Charge, Light, and Energy 3-1.
The radius of curvature is given by Equation 3-2. R
mu 2.5 106 m / s m 3.911025 m / s C T m 19 qB 1.60 10 C 0.40T
Substituting particle masses from Appendices A and D: R (protron) 1.67 1027 kg 3.911025 m / s C T 6.5 102 m
R (electron) 9.111031 kg 3.911025 m / s C T 3.6 105 m R (deuteron) 3.34 1027 kg 3.911025 m / s C T 0.13m R (H 2 ) 3.35 1027 kg 3.911025 m / s C T 0.13m R (helium) 6.64 1027 kg 3.911025 m / s C T 0.26m
3-2. u
s
r u
For small values of , s ; therefore, =
mu 2 Recalling that euB r
r
mu eB
53
s r r
mu / eB
eB mu
Chapter 3 – Quantization of Charge, Light, and Energy 3-3.
B
E , u
pc
2 u pc , and pc E 2 mc 2 c E
0.561MeV 0.511MeV 2
2
0.2315MeV
u 0.2315MeV 0.41 c 0.561MeV 2.0 105V / m B 1.63 103 T 16.3G 0.41c
3-4.
F quB and FG mp g
19 6 5 FB quB 1.6 10 C 3.0 10 m / s 3.5 10 T 1.03 109 27 2 FG m p g 1.67 10 kg 9.80m / s
3-5.
(a)
mu 2 Ek / e e / m R qB e / m B
1/ 2
4 1 2 Ek / e 1 2 4.5 10 eV / e B e/m 0.325T 1.76 1011 kg
(b) frequency
f
u 2 R
1/ 2
2.2 103 m 2.2mm
2 Ek / e e / m 2 R
2 4.5 104 eV / e 1.76 1011 C / kg 3 2 2.2 10 m
1/ 2
9.1109 Hz
period T 1/ f 1.11010 s
3-6.
(a) 1/ 2mu 2 Ek , so u
2Ek / e e / m
u 2 2000eV / e 1.76 1011 C / kg
(b)
t1
1/ 2
x1 0.05m 1.89 109 s 1.89ns 7 u 2.65 10 m / s
54
2.65 107 m / s
Chapter 3 – Quantization of Charge, Light, and Energy (Problem 3-6 continued) (c) mu y F t1 eEt1 u y e / m Et1 1.76 1011 C / kg 3.33 103V / m 1.89 109 s 1.11106 m / s
3-7.
3-8.
NEk W CV T
3 4.186 J / cal 1.311014 CV T 5 10 cal / C 2C N Ek 2000eV 1.60 1019 J / eV
Q1 Q2 25.41 20.64 1019 C 4.47 1019 C n1 n2 e
Q2 Q3 20.64 17.47 1019 C 3.17 1019 C n2 n3 e Q4 Q3 19.06 17.47 1019 C 1.59 1019 C n4 n3 e Q4 Q5 19.06 12.70 1019 C 6.36 1019 C n4 n5 e Q6 Q5 14.29 12.70 1019 C 1.59 1019 C n6 n5 e where the ni are integers. Assuming the smallest Δn = 1, then Δn12 = 3.0, Δn23 = 2.0, Δn43 = 1.0, Δn45 = 4.0, and Δn65 = 1.0. The assumption is valid and the fundamental charge implied is 1.59 1019 C.
3-9.
For the rise time to equal the field-free fall time, the net upward force must equal the weight. qE mg mg E 2mg / q.
3-10. (See Millikan’s Oil Drop Experiment on the home page at www.whfreeman.com/tiplermodernphysics6e.) The net force in the y-direction is mg bv y ma y . The net force in the x-direction is qE bvx max . At terminal speed ax ay 0 and vx / vt sin .
sin
vx qE / b qE vt vt bvt
55
Chapter 3 – Quantization of Charge, Light, and Energy 3-11. (See Millikan’s Oil Drop Experiment on the home page at www.whfreeman.com/tiplermodernphysics6e.) (a) At terminal speed mg bvt where m 4 / 3 a3 oil and b 6 a. Substituting gives 18 1.80 105 N s / m 2 5.0 103 m / 20s 18 vt 2 a a 4 oil g 4 0.75 1000kg / m3 9.8m / s 2 1.66 106 m 1.66 103 mm
1/ 2
m 4 1.66 106 m 750kg / m3 / 3 1.44 1014 kg 3
(b)
3-12.
19 5 FE 2 1.60 10 C 2.5 10 V / m F qE and FG mg 0.57 FG 1.44 1014 kg 9.8m / s2
mT 2.898 103 m K (a) m
2.898 103 m K 9.66 104 m 0.966mm 3K
(b) m
2.898 103 m K 9.66 106 m 9.66 m 300 K
(c) m
2.898 103 m K 9.66 107 m 966nm 3000 K
3-13. Equation 3-4: R T 4 . Equation 3-6: R
1 cU . 4
From Example 3-4: U 8 5 k 4T 4 / 15h3c 2
R 1/ 4 cU 1 c 8 5 k 4T 4 / 15h3c 2T 4 4 4 T T 4 2 5 1.38 1023 J / K
15 6.63 10
34
4
J s 3.00 10 m / s 3
8
2
56
5.67 108W / m2 K 4
Chapter 3 – Quantization of Charge, Light, and Energy 3-14. Equation 3-18: u
8 hc 5 ehc / kT 1
u f df u d u f u f
d Because c f , df
d c/ f 2 df
8 hc f / c c 8 f 2 hf u f 2 3 hf / kT hf / kT e 1 f c e 1 5
3-15.
2.898 103 m K (a) mT 2.898 10 m K m 1.07 103 m 1.07mm 2.7 K 3
(b) c f f
c
m
3.00 108 m / s 2.80 1011 Hz 3 1.07 10 m
(c) Equation 3-6: R
1 c cU 8 5 k 4T 4 /15h3c3 4 4
3.00 10 m / s 8 1.38 10 J / K 2.7 4 15 6.63 10 J s 3.00 10 m / s 8
4
23
5
3
34
Area of Earth: A 4 rE2 4 6.38 106 m
8
3
4
3.01106 W / m2
2
Total power = RA 3.01106W / m2 4 6.38 106 m 1.54 109W 2
3-16.
mT 2.898 103 m K 2.898 103 m K 4140 K (a) T 700 109 m (b) T
2.898 103 m K 9.66 102 K 3 102 m
(c) T
2.898 103 m K 9.66 104 K 3m
57
Chapter 3 – Quantization of Charge, Light, and Energy 3-17. Equation 3-4: R1 T14
3-18. (a) Equation 3-17: E
(b) E
R2 T24 2T1 16 T14 16R1 4
hc / 10hc / kT hc / 0.1kT 0.1 0.951kT hc / kT hc / kT / 10 hc / kT e 1 e 1 e 1
hc / 0.1hc / kT 10kT hc / 10 4.59 104 kT hc / kT hc / kT / 0.1hc / kT e 1 e 1 e 1
Equipartition theorem predicts E kT . The long wavelength value is very close to kT, but the short wavelength value is much smaller than the classical prediction.
3-19. (a) mT 2.898 103 m K T1 R1 T14
2.898 103 m K 107 K 27.0 106 m
and R2 T24 2R1 2 T14
T24 2T14 or T2 21/ 4 T1 21/ 4 107 K 128K
2.898 103 m K (b) m 23 106 m 128K
3-20. (a) mT 2.898 103 m K
(Equation 3-5)
2.898 103 m K m 1.45 107 m 145nm 4 2 10 K (b) m is in the ultraviolet region of the electromagnetic spectrum.
58
Chapter 3 – Quantization of Charge, Light, and Energy 3-21. Equation 3-4: R T 4 Pabs 1.36 103W / m2 RE2 m2 where RE = radius of Earth Pemit RW / m2 4 RE2 1.36 103W / m2 RE2 m2
RE2 R 1.36 103W / m2 2 4 RE T4
1.36 103 W T 4 2 4 m
1.36 103W / m2 T 278.3K 5.3C 4 5.67 108W / m2 K 4
3-22. (a) mT 2.898 103 m K m
f m c / m
2.898 103 m K 8.78 107 m 878nm 3300K
3.00 108 m / s 3.42 1014 Hz 7 8.78 10 m
(b) Each photon has average energy E hf and NE 40J / s. N
40 J / s 40 J / s 1.77 1020 photons / s 34 14 hf m 6.63 10 J s 3.42 10 Hz
(c) At 5m from the lamp N photons are distributed uniformly over an area A 4 r 2 100 m2 . The density of photons on that sphere is N / A / s m2 .
The area of the pupil of the eye is 2.5 103 m , so the number of photons 2
entering the eye per second is:
n N / A 2.5 10 m 3
2
1.77 10
20
/ s 2.5 103 m 100 m2
1.77 1020 / s 2.5 103 m 1.10 1013 photons / s 2
59
2
Chapter 3 – Quantization of Charge, Light, and Energy 3-23. Equation 3-18: u
8 hc 5 A 5 Letting A hc , B hc / kT , and U ehc / kT 1 eB / 1
5 1 e B / B 2 du d A 5 5 6 B/ A 2 B/ d d eB / 1 e 1 e 1 6 6 B / A B B/ A e B e 5 e B / 1 5 1 e B / 0 2 2 B/ B / e 1 e 1
The maximum corresponds to the vanishing of the quantity in brackets.
Thus,
5 1 e B / B . This equation is most efficiently solved by iteration; i.e., guess at a
value for B/λ in the expression 5 1 e B / , solve for a better value of B/λ; substitute the new value to get an even better value, and so on. Repeat the process until the calculated value no longer changes. One succession of values is: 5, 4.966310, 4.965156, 4.965116, 4.965114, 4.965114. Further iterations repeat the same value (to seven digits), so we have:
6.63 1034 J s 3.00 108 m / s hc hc 4.965114 mT m m kT 4.965114 k 4.965114 1.38 1023 J / K B
mT 2.898 103 m K
(Equation 3-5)
3-24. Photon energy E hf hc / (a) For λ = 380nm: E 1240eV nm / 380nm 3.26eV For λ = 750nm: E 1240eV nm / 750nm 1.65eV (b) E hf 4.14 1015 eV s 100 106 s 1 4.14 107 eV
3-25. (a) hf hc / 0.47eV .
max
4.14 10 hc 4.87eV
15
eV s 3.00 108 m / s 4.87eV
60
2.55 107 m 255nm
Chapter 3 – Quantization of Charge, Light, and Energy (Problem 3-25 continued) (b) It is the fraction of the total solar power with wavelengths less than 255nm, i.e., the area under the Planck curve (Figure 3-6) up to 255nm divided by the total area. The latter is: R T 4 5.67 108W / m2 K 4 5800K 6.42 107W / m2 . 4
Approximating the former with u with 127nm and 255nm : 8 hc 127 109 m 5 255 109 m 1.23 104 J / m3 u 127nm 255nm 9 ehc / kT 12710 1
R 0 255nm c 1.23 104 J / m 3 4 R 8 4 3 3.00 10 m / s 1.23 10 J / m fraction = 1.4 104 4 6.42 107W / m2
R 0 255nm
3-26. (a) t
hc
1240eV nm 653nm, 1.9ev
ft
h
1.9eV 4.59 104 Hz 15 4.136 10 eV s
1 hc 1 1240eV nm (b) V0 1.9eV 2.23V e e 300nm 1 hc 1 1240eV nm (c) V0 1.9eV 1.20V e e 400nm
3-27. (a) Choose λ =550nm for visible light. nhf E
dn dE hf P dt dt
0.05 100W 550 109 m dn P P 1.38 1019 / s 34 8 dt hf hc 6.63 10 J s 3.00 10 m / s (b) flux
number radiated / unit time 1.38 1019 / s 2.75 1017 / m2 s 2 area of the sphere 4 2m
61
Chapter 3 – Quantization of Charge, Light, and Energy 3-28. (a) hf ft (b) f c /
h
4.22eV 1.02 1015 Hz 15 4.14 10 eV s
3.00 108 m / s 5.36 1014 Hz 9 560 10 m
No.
Available energy/photon hf 4.14 1015 eV s 5.36 1014 Hz 2.22eV . This is less than .
3-29. (a) E hf hc / hc / E For E 4.26eV : 1240eV nm / 4.26eV 291nm and since f c / ,
f 3.00 108 m / s / 291nm 1.03 1015 s 1
(b) This photon is in the ultraviolet region of the electromagnetic spectrum.
3-30. (a) First, add a row f 1014 Hz to the table in the problem, then plot a graph Ek ,max versus f . The slope of the graph is h/e; the intercept on the Ek ,max axis is
work function. The graph below is a least squares fit to the data.
λ nm
544
Ek ,max eV
0.360 0.199 0.156 0.117 0.062
f 1014 Hz
5.51
594
5.05
62
604
4.97
612
4.90
633
4.74
Chapter 3 – Quantization of Charge, Light, and Energy (Problem 3-30 continued)
Slope h / e 3.90 1015 eV s (b)
(3.90 1015 4.14 1015 ) eV s 5.6 percent 4.14 1015 eV s
(c) The work function is the magnitude of the intercept on the Ek ,max axis, 1.78 eV. (d) cesium
En
hc
3-32. (a)
hc
3-31.
(b) Ek
hc
60 6.63 1034 J
s 3.00 108 m / s 9
550 10 m
1240eV nm 1.90eV 653nm
1240eV nm 1.90eV 2.23eV 300nm
63
2.17 1017 J
Chapter 3 – Quantization of Charge, Light, and Energy 3-33. Equation 3-25: 2 1
6.63 10 9.1110
34
31
1
100
J s 1 cos135
kg 3.00 10 m / s
3-36.
p
h
8
4.14 1012 m 4.14 103 nm
4.14 103 nm 100 5.8% 0.0711nm
3-34. Equation 3-24: m
3-35.
h 1 cos mc
1.24 103 1.24 103 nm 0.016nm V 80 103V
hc c
(a) p
1240eV nm 6.63 1034 J s 3.10eV / c 1.66 1027 kg m / s c 400nm 400 109 m
(b) p
1240eV nm 6.63 1034 J s 1.24 104 eV / c 6.63 1024 kg m / s c 0.1nm 0.1109 m
(c) p
1240eV nm 6.63 1034 J s 5 4.14 10 eV / c 2.211032 kg m / s 3 102 m c 3 107 nm
(d) p
1240eV nm 6.63 1034 J s 620eV / c 3.32 1025 kg m / s 9 c 2nm 2 10 m
2 1
6.63 1034 J s 1 cos110 h 1 cos 3.26 1012 m 31 8 mc 9.1110 kg 3.00 10 m / s
6.63 1034 J s 3 108 m / s hc 1 2.43 1012 m E1 0.511106 eV 1.60 1019 J / eV
2 1 3.26 1012 m 2.43 3.26 1012 m 5.69 1012 m
64
Chapter 3 – Quantization of Charge, Light, and Energy (Problem 3-36 continued)
E2
hc
2
1240eV nm 2.18 105 eV 0.218MeV 3 5.69 10 nm
Electron recoil energy Ee E1 E2 (Conservation of energy)
Ee 0.511MeV 0.218MeV 0.293MeV . The recoil electron momentum makes an angle θ with the direction of the initial photon. PE θ
h/λ1
110° h/λ2 20° h
2
cos 20 pe sin 1/ c E 2 mc 2 sin 2
3.00 10 m / s 6.63 10 8
sin
5.69 10
12
(Conservation of momentum) 34
J s cos 20
2 2 m 0.804MeV 0.511MeV
1/ 2
1.60 10
13
J / MeV
0.330 or 19.3
3-37. (a) First, add a row ( 1 cos ) to the table in the problem, then plot a graph of versus ( 1 cos ). The slope of the graph is the Compton wavelength of the electron. pm degrees 1 cos
0.647 1.67 2.45 3.98 4.80 45 75 90 135 170 0.293 0.741 1.000 1.707 1.985
65
Chapter 3 – Quantization of Charge, Light, and Energy
h (4.5 1.0) nm slope 2.43nm mc (1.88 0.44)
(b) The graph above is a least squares fit to the data. The percent difference is (2.43 2.426) nm 0.004 nm 100 100 0.15percent 2.426 nm 2.426 nm
3-38.
2 1
1 100
3-39. (a) E1
h 1 cos 100 0.00243nm 1 cos90 0.243nm mc
hc
1
(b) 2 1 (c) E2
h 1 cos 0.011 Equation 3-25 mc
hc
2
1240eV nm 1.747 104 eV 0.0711nm
h 1 cos 0.0711nm 0.00243nm 1 cos180 0.0760nm mc
1240eV nm 1.634 104 eV 0.0760nm
(d) Ee E1 E2 1.128 103 eV
66
Chapter 3 – Quantization of Charge, Light, and Energy 3-40. (a) h / mc 1 cos From protons: 6.63 1034 J s / 1.67 1027 kg 3.00 108 m / s 1 cos120 1.99 1015 m 1.99 106 nm
(b) Similarly, for electrons ( m 9.111031 kg ) 2.43 1012 m 2.43 103 nm
(c) Similarly, for N2 molecules ( m 4.68 1026 kg ) 4.72 1017 m 4.72 108 nm
3-41.
2 1
h 1 cos 0.0711 0.00243nm 1 cos mc
λ2 0.0750
0.0730
0.0710
0 Slope =
1
1 cos
θ
1 cos
2 (nm)
0°
0
0.0711
45°
0.293
0.0718
90°
1
0.0735
135°
1.707
0.0752
2
0.0745 0.0720 nm 2.381103 1.50 0.45 h h 2.381103 nm 9.111031 kg 3.00 108 m / s 6.5110 34 J s mc
67
Chapter 3 – Quantization of Charge, Light, and Energy
3-42. (a) Compton wavelength =
electron:
h mc
h 6.63 1034 J s 2.43 1012 m 0.00243nm 31 8 mc 9.1110 kg 3.00 10 m / s
h 6.63 1034 J s proton: 1.32 1015 m 1.32 fm 27 8 mc 1.67 10 kg 3.00 10 m / s (b) E
hc
(i) electron: E (ii) proton: E
1240eV nm 5.10 105 eV 0.510MeV 0.00243nm
1240eV nm 9.39 108 eV 939MeV 6 1.32 10 nm
3-43. Photon energy E hf hc / allows us to rewrite Equation 3-25 as hc hc h (1 cos ) E2 E1 mc
Rearranging the above, hc h hc (1 cos ) E2 mc E1
Dividing both sides of the equation by hc yields 1 1 1 ( E1 / mc 2 )(1 cos ) 1 (1 cos ) E2 mc 2 E1 E1
Or E2
E1 ( E1 / mc )(1 cos ) 1 2
3-44. (a) eV0 hf hc / e 0.52V hc / 450nm
(i)
e 1.90V hc / 300nm
(ii)
68
Chapter 3 – Quantization of Charge, Light, and Energy (Problem 3-44 continued) Multiplying (i) by 450nm / e and (ii) by 300nm / e , then subtracting (ii) from (i) and rearranging gives:
300nm 1.90V 450nm 0.52V 2.24eV e 150nm
e 300 109 m 4.14V hc (b) 1.90 2.24 h 6.63 1034 J s 8 e 300nm 3.00 10 m / s
3-45. Including Earth’s magnetic field in computing y2, first show that y2 is given by
y2
e B 2 x1 x2 1 BE x22 m E 2 E
where the second term in the brackets comes from Fy euBE ma y and y
1 2 a yt . 2
e B 2 x1 x2 1 BE x22 Thus, 1 The first term inside the brackets is the reciprocal of m Ey2 2 Ey2
0.7 1011 C, Thomson’s value for e/m. Using Thomson’s data (B = 5.5 104 T , E 1.5 104V / m,
x1 5cm,
y2 / x2 8 / 110 ) and the modern value for e/m =
1.76 1011 C / kg and solving for BE. 1 BE Bx22 8.20 1012. The minus sign means that B and BE are in opposite directions, 2 Ey2
which is why Thomson’s value underestimated the actual value.
BE
m
8.20 1012 2 1.5 104V / m 8 / 110
5.5 10 T 8 10 4
2
69
2
3.1 105 T 31T
Chapter 3 – Quantization of Charge, Light, and Energy
3-46. (a) Q Ne and cM T N
mu 2 where N = number of electrons, c = specific heat of 2
the cup, M = mass of the cup, and u = electron’s speed.
Q 2cM T e mu 2
N (b)
eB mu
u
e Qu 2 m 2cM T
eB m
Substituting u into the results of (a), e Q eB / m m 2cM T
2
Solving for e/m,
e 2cM 2 T m QB 2 2
3-47. Calculate 1/λ to be used in the graph. 1/λ (106/m)
5.0
3.3
2.5
2.0
1.7
V0 (V)
4.20
2.06
1.05
0.41
0.03
5 4 3
V0 (V)
2 1 0 -1 -2
1
2
3
4
5
1/λ (106/m)
(a) The intercept on the vertical axis is the work function . 2.08eV .
70
Chapter 3 – Quantization of Charge, Light, and Energy (Problem 3-47 continued) (b) The intercept on the horizontal axis corresponds to the threshold frequency. 1
t
1.65 106 / m
ft
c
t
3.00 108 m / s 1.65 106 / m 4.95 1014 Hz
(c) The slope of the graph is h/e. Using the vertical intercept and the largest experimental point.
4.20V 2.08V h 1 V0 4.19 1015 eV / Hz 8 6 e c 1 / 3.00 10 m / s 5.0 10 / m 0
3-48. In the center of momentum reference frame, the photon and the electron have equal and opposite momenta. p E / c pe .
The total energy is: E Ee E pe2c 2 m2c 4
1/ 2
E E2 m2c 4
1/ 2
By conservation of momentum, the final state is an electron at rest, pe 0 . Conservation of energy requires that the final state energy E is
E E Ee
mc E p c mc 2
2 2
1/ 2
2 mc 2 E p 2 c 2 mc 2
Squaring yields, mc 2
2
2
2 1/ 2
2 E2 mc 2
2mc 2 E E2 E2 mc 2
1/ 2
2
mc 2 E 0. This can be true
only if E vanishes identically, i.e., if there is no photon at all.
3-49. Bragg condition:
m 2d sin . (2)(0.28nm)(sin 20) 1.92 1010 m 0.192nm.
This is the minimum wavelength m that must be produced by the X ray tube.
m
1.24 103 nm V
or
V
1.24 103 6.47 103V 6.47kV 0.192
71
Chapter 3 – Quantization of Charge, Light, and Energy
3-50. (a) E 100W 104 s 100 J / s 104 s 106 J The momentum p absorbed is p (b)
E 106 J 3.33 103 J s / m 8 c 3.00 10 m / s
p m v f vi 2 103 kg v f 0 3.3 103 J s / m v
3
3.33 10 J s / m 1.67m / s 2 103 kg
2 103 kg 1.67m / s 1 2 (c) E mv f 2.78 103 J 2 2 2
The difference in energy has been (i) used to increase the object’s temperature and (ii) radiated into space by the blackbody. 3-51. Conservation of energy: E1 mc2 E2 Ek mc 2 Ek E1 E2 hf1 hf 2 From Compton’s equation, we have: 2 1 Thus,
h 1 cos , mc
1 1 h 1 cos f 2 f1 mc 2
1 1 h 1 cos f2 f1 mc 2
f2
f1mc 2 mc 2 hf1 1 cos
Substituting this expression for f 2 into the expression for Ek (and dropping the subscript on f1 ): hfmc 2 hf 1 cos hfmc 2 hfmc 2 Ek hf 2 mc hf 1 cos mc 2 hf 1 cos 2
hf mc 2 1 hf 1 cos
Ek has its maximum value when the photon energy change is maximum, i.e., when so cos 1. Then Ek
hf mc 2 1 2hf
72
Chapter 3 – Quantization of Charge, Light, and Energy
3-52. (a) mT 2.898 103 m K
(b) Equation 3-18:
T
2.898 103 m K 3.50 104 K 9 82.8 10 m
70nm / ehc /70nmkT 1 u 82.8nm 82.8nm 5 / ehc / 82.8nmkT 1 5
u 70nm
6.63 1034 J s 3.00 108 m / s hc 5.88 and where 70nm kT 70 109 m 1.38 1023 J / K 3.5 104 K
70nm / e5.88 1 0.929 u 82.8nm 82.8nm 5 / e4.97 1 5
u 70nm
hc 4.97 82.8nm kT
Similarly,
100nm / e4.12 1 0.924 u 82.8nm 82.8nm 5 / e4.97 1 5
u 100nm
3-53. Fraction of radiated solar energy in the visible region of the spectrum is the area under the Planck curve (Figure 3-6) between 350nm and 700nm divided by the total area. The latter is 6.42 107W / m2 (see solution to Problem 3-25). Evaluating u with
525nm (midpoint of visible) and 700nm 350nm 350nm. u
8 6.63 1034 J s 3.00 108 m / s 525nm
5
350nm
6.63 10 J s 3.00 10 m / s 1 exp 23 1.38 10 J / k 5800 K 525nm
R 350 700
34
8
0.389 J / m3
c u 3.00 108 m / s 0.389 J / m3 / 4 2.92 107W / m2 4
Fraction in visible = R 350 700 / R 2.92 107 W / m2 / 6.42 107 W / m2 0.455
3-54. (a) Make a table of f c / vs. V0 .
f 1014 Hz
V0 (V)
11.83
9.6
8.22
7.41
6.91
2.57
1.67
1.09
0.73
0.55
73
Chapter 3 – Quantization of Charge, Light, and Energy (Problem 3-54 continued) 3
Li
2
Pb
1 0 2
−1
4
6
8
10
12
−2 −3 −4
The work function for Li (intercept on the vertical axis) is 2.40eV . (b) The slope of the graph is h/e. Using the largest V0 and the intercept on the vertical
4.97V 1.60 1019 C h 2.57V 2.40V axis, or, h 6.89 1034 J s 14 14 11.53 10 Hz e 11.53 10 Hz 0 (c) The slope is the same for all metals. Draw a line parallel to the Li graph with the work function (vertical intercept) of Pb, 4.14eV . Reading from the graph, the threshold frequency for Pb is 9.8 1014 Hz; therefore, no photon wavelengths larger
than c / ft 3.00 108 m / s 9.8 1014 Hz 306nm will cause emission of photoelectrons from Pb.
3-55. (a) Equation 3-18: u gives u (b)
8 hc 5 Letting C 8 hc and a hc / kT ehc / kT 1
C 5 ea / 1
5 1 ea / a 2 du d C 5 5 6 a/ C 2 a/ d d ea / 1 e 1 e 1 6 6 a / C a a/ C e a e 5 ea / 1 5 1 ea / 0 2 2 ea / 1 ea / 1
74
Chapter 3 – Quantization of Charge, Light, and Energy (Problem 3-55 continued) The maximum corresponds to the vanishing of the quantity in brackets. Thus, 5 1 e a / a
(c) This equation is most efficiently solved by trial and error; i.e., guess at a value for
a / in the expression 5 1 e a / a , solve for a better value of a / ; substitute
the new value to get an even better value, and so on. Repeat the process until the calculated value no longer changes. One succession of values is 5, 4.966310, 4.965156, 4.965116, 4.965114, 4.965114. Further iterations repeat the same value (to seven digits), so we have
a
m
4.965114
hc m kT
6.63 1034 J s 3.00 108 m / s hc (d) mT 4.965114 k 4.965114 1.38 1023 J / K
Therefore, mT 2.898 103 m K
3-56. (a) I
Equation 3-5
P 1W 1 2 2 19 4 R 4 1m 1.602 10 J / eV
17 2 4.97 10 eV / m s
(b) Let the atom occupy an area of 0.1nm . 2
dW 2 IA 4.97 1017 eV / m2 s 0.1nm 109 m / nm dt
(c) t
dW / dt
2
4.97 103 eV / s
2eV 403s 6.71 min 4.97 103 eV / s
3-57. (a) The nonrelativistic expression for the kinetic energy pf the recoiling nucleus is
p 2 15MeV / c 1u Ek 1.10 104 eV 2 2m 2 12u 931.5MeV / c 2
Internal energy U 15MeV 0.0101MeV 14.9899MeV
75
Chapter 3 – Quantization of Charge, Light, and Energy (Problem 3-57 continued) (b) The nucleus must recoil with momentum equal to that of the emitted photon, about 14.98 MeV/c.
p 2 14.98MeV / c 1u Ek 1.00 102 eV 2 2m 2 12u 931.5MeV / c 2
E U Ek 14.9899MeV 0.0100MeV 14.9799MeV
3-58. Derived in Problem 3-47, the electron’s kinetic energy at the Compton edge is
Ek
hf 1 mc 2 / 2hf
hf E 520keV 1 511keV / 2hf
520keV
2 hf
2
2hf 511keV
Thus, hf 520 hf 520 511 / 2 0 2
2
2 520 520 2 520 511 708keV Solving with the quadratic formula: hf 2
(only the + sign is physically meaningful). Energy of the incident gamma ray hf 708keV .
hc
708keV
6.63 10
34
J s 3.00 108 m / s
708keV 1.60 10
16
J / keV
1.76 10
3-59. (a) Ek 50keV and 2 1 0.095nm hc
1
hc
2
5.0 104 eV
1
1
12 0.095nm
2hc 5 104 eV
1 5.0 104 eV 1 0.095 hc
21 0.095 5.0 104 eV 12 0.0951 hc
0.095nm hc 1 5 104 eV 0
12 0.045411 2.36 103 0
76
12
m 1.76 pm
Chapter 3 – Quantization of Charge, Light, and Energy (Problem 3-59 continued) Applying the quadratic formula,
2 0.04541 0.04541 4 2.36 103 1 2
1/ 2
1 0.03092nm and 2 0.1259nm hc
(b) E1
1
3-60. Let x
kT
1240eV nm 40.1 keV 0.03092nm
Eelectron 9.90keV
hf in Equation 3-15: kT
e
f n A e nx A e0 e x e x n 0 n 0
2
3
x
A 1 y y 2 y3
1
Where y e x . This sum is the series expansion of
1 y
1
, i.e., 1 y 1 y y 2 y3 1
. Then
f
A 1 y 1 gives A 1 y. 1
n
Writing Equation 3-16 in terms of x and y.
n 0
n 0
n 0
E En Ae En / kT A nhfe nhf / kT Ahf ne nx
Note that
ne
nx
ne
nx
d / dx e nx . But e nx 1 y , so we have 1
d d dy 1 2 2 e nx 1 y 1 y y 1 y dx dx dx
x dy d e Since e x y. dx dx
Multiplying this sum by hf and by A 1 y , the average energy is
E hfA ne nx hf 1 y y 1 y 2
n 0
hfy hfe x 1 y 1 e x
Multiplying the numerator and the denominator by e x and substituting for x, we obtain
E
hf e
hf / kT
1
, which is Equation 3-17.
77
Chapter 4 – The Nuclear Atom
4-1.
1
mn
1 1 R 2 2 where R 1.097 107 m1 (Equation 4-2) n m
The Lyman series ends on m =1, the Balmer series on m =2, and the Paschen series on 1 m =3. The series limits all have n , so 0 n 1 1 R 2 1.097 107 m1 L 1 L limit 1.097 107 m1 91.16 109 m 91.16nm
1 R 2 1.097 107 m1 / 4 B 2 B limit 4 / 1.097 107 m1 3.646 107 m 364.6nm 1
1 R 2 1.097 107 m1 / 9 P 3 1
P limit 9 / 1.097 107 m1 8.204 107 m 820.4nm
4-2.
1
mn
1 1 R 2 2 where m 2 for Balmer series (Equation 4-2) n m
1 1.097 107 m1 1 1 2 9 2 379.1nm 10 nm / m 2 n 1 1 109 nm / m 2 0.2405 4 n 379.1nm 1.097 107 m1
1 0.2500 0.2405 0.0095 n2 n2
1 0.0095
n 1 / 0.0095
1/ 2
10.3
n 10 n 2
79
n 10
Chapter 4 – The Nuclear Atom
4-3.
1
mn
1 1 R 2 2 where m 1 for Lyman series (Equation 4-2) n m 1 1.097 107 m1 1 1 2 9 164.1nm 10 nm / m n 1 109 nm / m 1 1 0.5555 0.4445 n2 164.1nm 1.097 107 m1
n 1 / 0.4445
1/ 2
1.5
No, this is not a hydrogen Lyman series transition because n is not an integer.
4-4.
1
mn
1 1 R 2 2 n m
(Equation 4-2)
For the Brackett series m = 4 and the first four (i.e., longest wavelength lines have n = 5, 6, 7, and 8.
1 1 1.097 107 m1 2 2 2.468 105 m1 45 4 5 1
45
1 4.052 106 m 4052nm. Similarly, 5 1 2.68 10 m
46
1 2.625 106 m 2625nm 3.809 105 m1
47
1 2.166 106 m 2166nm 5 1 4.617 10 m
48
1 1.945 106 m 1945nm 5 1 5.142 10 m
These lines are all in the infrared.
4-5.
None of these lines are in the Paschen series, whose limit is 820.4 nm (see Problem 4-1) and whose first line is given byL
1 1 R 2 2 34 1875nm. Also, none are in 34 3 4 1
the Brackett series, whose longest wavelength line is 4052 nm (see Problem 4-4). The Pfund series has m = 5. Its first three (i.e., longest wavelength) lines have n = 6, 7, and 8.
80
Chapter 4 – The Nuclear Atom (Problem 4-5 continued)
1 1 1.097 107 m1 2 2 1.341 105 m1 56 5 5 1
56
1 7.458 106 m 7458nm. Similarly, 5 1 1.341 10 m
57
1 4.653 106 m 4653nm 5 1 2.155 10 m
58
1 3.740 106 m 3740nm 2.674 105 m1
Thus, the line at 4103 nm is not a hydrogen spectral line.
4-6.
(a) f b2 nt (Equation 4-5)
For Au, n 5.90 1028 atoms / m3 (see Example 4-2) and for this foil t 2.0 m 2.0 106 m. 2 kq Q 2 79 ke 90 2 79 1.44eV nm b cot cot m v 2 2 2 K 2 2 7.0 106 eV
5
1.63 10 nm 1.63 10
f 1.63 1014 m
(b)
For 45,
14
m
5.90 10 2
28
/ m3 2.0 106 m 9.8 105
b 45 b 90 cot 45 / 2 / cot 90 / 2 b 90 tan 90 / 2 / tan 45 / 2 3.92 105 nm 3.92 1014 m
and f 45 5.7 10 4 For 75,
b 75 b 90 tan 90 / 2 / tan 75 / 2 2.12 105 nm 2.12 1014 m
and f 75 1.66 104
Therefore, f 45 75 5.7 104 1.66 104 4.05 104
81
Chapter 4 – The Nuclear Atom (Problem 4-6 continued) (c) Assuming the Au atom to be a sphere of radius r,
4 3 M 197 g / mole r 23 3 NA 6.02 10 atoms / mole 19.3g / cm3
3 197 g / mole r 23 4 6.02 10 atoms / mole 19.3g / cm3
1/ 3
r 1.62 103 cm 1.62 1010 m 16.2nm
4-7.
N
1
sin / 2 4
A
(From Equation 4-6), where A is the product of the two
sin / 2 4
quantities in parentheses in Equation 4-6.
N 10
(a)
N 1
N 30
(b)
4-8.
N 1
sin4 0.5 sin4 15
sin4 0.5 sin4 5
1.01 104
1.29 106
(Equation 4-3)
k 2e Ze 1.44MeV fm Z cot cot 2 m v 2 Ek 2
4-9.
A / sin4 1 / 2
kq Q cot 2 m v 2
b
=
A / sin4 10 / 2
rd
1.44MeV
fm 79
7.7 MeV
cot
kq Q ke2 2 79 Ek 1 / 2 m v 2
2 8.5 1013 m 2
(Equation 4-11)
1.44MeV
For Ek 5.0MeV :
rd
For Ek 7.7MeV :
rd 29.5 fm
For Ek 12MeV :
fm 2 79
5.0MeV
rd 19.0 fm
82
45.5 fm
Chapter 4 – The Nuclear Atom
4-10.
rd
kq Q ke2 2 79 Ek 1 / 2 m v 2
Ek
4-11.
1.44MeV
fm 2 13
4 fm
xrms N
n
(Equation 4-11)
9.4MeV
10 N 0.01 N 10 / 0.01 106 collisions 2
t 106 m 10 104 layers t 10 m
104 atomic layers is not enough to produce a deflection of 10 , assuming 1 collision/layer.
4-12. (a) f b2 nt
(Equation 4-5)
For 25 (refer to Problem 4-6).
2 79 ke2 25 2 79 1.44eV b cot 2 K
2 7.0 10 eV
2
6
nm
25 cot 2
7.33 105 nm 7.33 1014 m
f 7.33 1014 m
5.90 10 2
Because N f N 1000 For 45, b
28
N 1000 / 1.992 103 5.02 105
2 79 1.44eV
f 3.92 1014 m
nm
2 7.0 10 eV 6
5.90 10 2
28
/ m3 2.0 106 m 1.992 103
45 cot 3.92 1014 m 2
/ m3 2.0 106 m 5.70 104
Because N 45 f N 5.70 104 5.02 105 286 (b)
N 25 45 1000 286 714
(c)
For 75 , b b 25 tan 25 / 2 / tan 75 / 2 2.12 1014 m
f 1.992 103 2.12 1014 m
/ 7.33 10 2
1.992 103 2.12 / 7.33 1.67 104 2
83
14
m
2
Chapter 4 – The Nuclear Atom (Problem 4-12 continued) For 90, b b 25 tan 25 / 2 / tan 90 / 2 1.63 1014 m
f 1.992 103 1.63 1014 m
/ 7.33 10 2
14
m
2
1.992 103 1.63 / 7.33 9.85 105 2
N f N 9.85 105 5.02 105 49 N 75 90 84 49 35 n2 a0 4-13. (a) rn Z r6
(Equation 4-18)
62 0.053nm 1
(b) r6 He
4-14.
a0
mke2
E1
2
(Equation 4-19)
mk 2 e4 2 2
(from Equation 4-20)
mc 2 ke2 2 c
2
2
2
mc 2 ke2 1 2 2 mc 2 2 c
c 0.00243nm 0.053nm 2 2 1 / 137
1 1 Z 2R 2 2 n f ni 1
0.95nm
c c 1 1 h 1 2 2 c 2 2 mcke mc ke / c 2 mc ke / c 2
a0
4-15.
62 0.053nm
2
1.91nm
E1
(Equation 4-22)
84
1 2 2 5.11 105 eV mc 13.6eV 2 2 2 137
Chapter 4 – The Nuclear Atom (Problem 4-15 continued)
1 1 n2 1 R 2 2 =R i 2 ni 1 ni ni 1
ni
ni2
n i2 91 . 17 nm 2 1.0968 107 m n i2 1 ni 1
=
n i2
R ni2 1
4 9 91.17nm 121.57nm 3 91.17nm 102.57nm 3 8 16 4 91.17nm 97.25nm 91.17 nm 15 None of these are in the visible; all are in the ultraviolet.
2
∞
4
3
2
λ, nm 80
4-16.
90
L mvr n
100
110
120
(Equation 4-17) vE 2 r / 1y 2 r / 3.16 107 s
mE 5.98 1024 kg
n m 2 r / 3.16 107 s r / 2 mr 2 / 3.16 107 s
2 5.98 1024 kg 1.50 1011 m
3.16 10 s 1.055 10 7
mv n / r
130
34
J s
2
2.54 1074
E mv / 2m n / r / 2m 2
2
(from Equation 4-17)
2 1.055 1034 J s 2.54 1074 1 1 E 0.210 1040 J 2nn 2 11 24 r 2 m 1.50 10 m 5.98 10 kg 2
This would not be detectable.
n E
2.54 10 r 5.34 10 r 5.98 10 kg
34 2r 1.055 10 J s 2m r 3 1.50 1011 m 2
40
or r 0.210 10
2
74
2
33
2
24
J / 5.34 1033 J / m 3.93 1075 m
The orbit radius r would still be 1.50 1011 m. 85
Chapter 4 – The Nuclear Atom
4-17.
f rev
mk 2 Z 2e4 2 3n3
(Equation 4-29)
mc 2 Z 2 ke2
2 n3 c
2
2
2
ke2 cZ 2 cZ 2 2 h / mc n3 c c n3
3.00 10 m / s 1 1 8.22 10 Hz 0.00243 10 m 2 137 N f t 8.22 10 Hz 10 s 8.22 10 revolutions 2
8
2
14
9
3
8
14
6
rev
4-18. The number of revolutions N in 10-8 s is: N 108 s / time/revolution 108 s / circumference of orbit/speed
N 108 s / C / v 108 s / 2 r / v The radius of the orbit is given by: r
2 n2 a0 4 0.0529nm Z 3
so the circumference of the orbit C 2 r is C 2 42 0.0529nm / 3 1.77nm 1.77 109 m
The electron’s speed in the orbit is given by
8.99 10 N m / mr 9.11 10 9
v kZe 2
2
2
kg 1.77 10 m
/ C 2 3 1.60 1019 C
31
2
9
v 6.54 105 m / s
Therefore, N 108 s / C / v 3.70 106 revolutions In the planetary analogy of Earth moving around the sun, this corresponds to 3.7 million “years”.
4-19. (a) au (b) E
2
ke2
k 2e4 2
2
2 e e 9.11 1031 kg a 0.0529nm 2.56 104 nm e ke2 0 1.69 1028 kg
e k 2 e 4 1.69 1028 kg E 13.6eV 2520eV e 2 2 e 0 9.11 1031 kg
86
Chapter 4 – The Nuclear Atom (Problem 4-19 continued) (c) The shortest wavelength in the Lyman series is the series limit ( ni , n f 1). The photon energy is equal in magnitude to the ground state energy E .
hc 1240eV nm 0.492nm E 2520eV
(The reduced masses have been used in this solution.)
1/ 2
4-20.
E Z E0 / n 2
n 2 E Z= E0
2
22 5.39eV 13.6eV
1/ 2
1.26
4-21. Energy (eV) n=∞ n=4 n=3
0 -2
(d) n=2
-4
(b)
(c)
-6 -8 -10 -12 n=1 (a) -14
(a) Lyman limit, (b) H line, (c) H line, (d) longest wavelength line of Paschen series
4-22. (a)
1 1 R 2 2 n f ni 1
For Lyman α:
EL
hc
L
1 1 1.097373 107 m1 2 2 1 2 1
L 121.5023nm
E 1240eV nm 10.2056eV and pL L 10.2056eV / c 121.5023nm c
87
Chapter 4 – The Nuclear Atom (Problem 4-22 continued) Conservation of momentum requires that the recoil momentum of the H atom
pH pL and the recoil energy EH is: EH pH / 2mH pH c / 2mH c 2
2
2
10.2056eV / c
2 1.007825uc 2 931.50 106 eV / uc 2
5.55 108 eV
EH 5.5 108 eV (b) 5 109 EL EH 10.21eV
4-23. (a) For C5+ (Z = 6) En 13.6 0
Z2 489.6 2 2 n n
n=∞ n=5 n=4 n=3
E∞ = 0 eV E5 = -19.6 eV E4 = -30.6 eV E3 = -54.4 eV E2 = -122.4 eV E1 = -489.6 eV
-100 n=2
En (eV) -200
-300
-400
n=1 -500
(b)
hc hc 1240eV nm 18.2nm E E3 E2 54.4 122.4 eV
(c) 18.2nm lies in the UV (ultraviolet) part of the EM spectrum.
88
2
Chapter 4 – The Nuclear Atom 4-24. (a) The reduced mass correction to the Rydberg constant is important in this case. 1 R R 1 m / M En hcR / n2
1 6 1 R 2 5.4869 10 m
(from Equation 4-26)
(from Equations 4-23 and 4-24)
E1 1240eV nm 5.4869 106 m1 109 m / nm / 1 6.804eV 2
Similarly, E2 1.701eV and E3 0.756eV (b) Lyman α is the n 2 n 1 transition.
hc
E2 E1
hc 1240eV nm 243nm E2 E1 1.701eV 6.804eV
Lyman β is the n 3 n 1 transition.
hc 1240eV nm 205nm E3 E1 0.756eV 6.804eV
4-25. (a) The radii of the Bohr orbits are given by (see Equation 4-18) r n2 a0 / Z where a0 0.0529nm and Z 1 for hydrogen.
For n 600, r 600 0.0529nm 1.90 104 nm 19.0 m 2
This is about the size of a tiny grain of sand. (b) The electron‟s speed in a Bohr orbit is given by v2 ke2 / mr with Z 1
Substituting r for the n = 600 orbit from (a), then taking the square root,
2
v 2 8.99 109 N m2 1.609 1019 C / 9.11 1031 kg 19.0 106 m
v2 1.33 107 m2 / s 2
v 3.65 103 m / s
For comparison, in the n = 1 orbit, v is about 2 106 m / s
89
Chapter 4 – The Nuclear Atom
4-26. (a)
1 2 1 R Z 1 2 2 n1 n2 1
1
1 2 1 3 1.097 107 m1 42 1 2 2 6.10 1011 m 0.0610nm 1 3
1
1 2 1 4 1.097 107 m1 42 1 2 2 5.78 1011 m 0.0578nm 1 4
(b) lim it
4-27.
1
2 1 1.097 107 m1 42 1 2 0 5.42 1011 m 0.0542nm 1
1 1 2 1 2 1 R Z 1 2 2 R Z 1 2 2 for K 1 2 n1 n2 1
1/ 2
1/ 2 1 1 Z 1 R 1 1 0.0794nm 1.097 102 / nm 3 / 4 4 Z 1 39.1 40 Zirconium
4-28. (a) Z 43; f 1 / 2 21 108 Hz1 / 2
f 4.4 1018 Hz
Z 61; f 1 / 2 30 108 Hz1 / 2
f 9.0 1018 Hz
Z 75; f 1 / 2 37 108 Hz1 / 2
f 1.4 1019 Hz
Note: f 1 / 2 for Z 61 and 75 are off the graph 4-19; however, the graph is linear and extrapolation is easy. (b) For Z = 43
1
(Equation 4-37)
1 R Z 1 1 2 n 2
where R 1.097 107 m1 and n 2
1
1.097 10 m 7
1
1 43 1 1 4 2
90
6.89 1011 m 0.0689nm
Chapter 4 – The Nuclear Atom (Problem 4-28 continued) Similarly, For Z = 61, λ = 0.0327nm For Z = 75, λ = 0.0216nm
4-29.
n2 a0 (Equation 4-18) Z The n =1 electrons “see” a nuclear charge of approximately Z 1 , or 78 for Au. rn
r1 0.0529nm / 78 6.8 104 nm 109 m / nm 1015 fm / m 680 fm , or about 100 times
the radius of the Au nucleus.
4-30.
En 13.6
Z2 eV n2
(Equation 4-20)
For Fe (Z = 26) E1
26 13.6
2
12
9.194keV
The fact that E1 computed this way (i.e., by Bohr theory) is approximate, is not a serious problem, since the Kα x-ray energy computed from Figure 4-19 provides the correct spacing between the levels. The energy of the Fe Kα x-ray is:
E Fe K hf where f 1 / 2 12.2 108 Hz1 / 2
E Fe K 6.626 1034 J s 12.2 108 Hz1 / 2
2
9.862 1016 J 6.156keV
Therefore, E2 E1 E K 9.194 6.156 3.038keV The Auger electron energy E K E2 6.156 3.038 3.118keV
4-31.
E me c 2
511keV
1 2.25 10 / 3.00 10 m / s 8
8
2
772.6keV
After emitting a 32.5 keV photon, the total energy is:
91
Chapter 4 – The Nuclear Atom (Problem 4-31 continued) E 740.1keV
511keV 1
2 v 1 511 / 740
1/ 2
4-32. (a) E1 E0 Z 2 / n2
2 v 2 / c 2 1 511 / 740
2
2
c 2.17 108 m / s
(Equation 4-20)
13.6eV 74 1 / 1 7.25 104 eV 72.5keV 2
(b)
2
E1 E0 Z / n2 69.5 103 eV 13.6eV 74 / 1 2
74
2
2
2
69.5 103 eV / 13.6eV
74 69.5 103 eV / 13.6eV
1/ 2
2.5
4-33. Element
Al
Ar
Sc
Fe
Ge
Kr
Zr
Ba
Z
13
18
21
26
32
36
40
56
E (keV)
1.56
3.19
4.46
7.06
10.98
14.10
17.66
36.35
6.14
8.77
10.37
13.05
16.28
18.45
20.64
29.62
f 1 / 2 108 Hz1 / 2
60 Z 40
20
0
0
5
10
15
20
25
30
f 1 / 2 108 Hz1 / 2
92
Chapter 4 – The Nuclear Atom (Problem 4-33 continued)
slope =
58 10 1.90 108 Hz 1 / 2 8 30 4.8 10
slope (Figure 4-19) =
30 13 2.13 108 Hz 1 / 2 8 5 7 10
The two values are in good agreement.
4-34. (a) The available energy is not sufficient to raise ground state electrons to the n =5 level which requires 13.6 − 0.54 = 13.1eV. The shortest wavelength (i.e., highest energy) spectral line that will be emitted is the 3rd line of the Lyman series, the n = 4 → n = 1 transition. (See Figure 4-16.) (b) The emitted lines will be for those transitions that begin on the n = 4, n = 3, or n = 2 levels. These are the first three lines of the Lyman series, the first two lines of the Balmer series, and the first line of the Paschen series.
60
4-35.
60 15.7eV
50 E (eV)
44.3
40 14.7eV
Average transition energy = 15.7 eV 30
29.6 16.6eV
20 13.0
10
93
Chapter 4 – The Nuclear Atom
4-36.
E
hc
1240eV nm 1.610eV . The first decrease in current will occur when the 790nm
voltage reaches 1.61V. 4-37. Using the results from Problem 4-24, the energy of the positronium Lyman α line is
E E2 E1 1.701eV 6.804eV 5.10eV . The first Franck-Hertz current decrease would occur at 5.10V, the second at 10.2V.
4-38. In an elastic collision, both momentum and kinetic energy are conserved. Introductory physics texts derive the following expression when the second object (the Hg atom here)
m m2 is initially at rest: v1 f 1 v1i . The fraction of the initial kinetic energy lost by m1 m2 the incident electron in a head-on collision is: 2
f
KEei KEef KEei
v12i v12f v12i
m m2 2 v 1 v m1 m2 1i v12i 2 1i
2 0.511MeV 200uc 2 931.5MeV / uc 2 m1 m2 = 1 1 0.511MeV 200uc 2 931.5MeV / uc 2 m1 m2
2
= 1.10 105 If the collision is not head-on, the fractional loss will be less. 4-39. (a) Equation 4-24: En E0 / n2 13.6 / n2 eV 1 1 1 1 En1 En 13.6 2 eV 13.6 2 2 eV=2.89 104 eV 2 46 45 (n 1) n
(b) Ionization energy En 13.6 / n2 13.6 / 452 6.72 103 eV (c) E hf hc / f E / h (2.89 104 eV)(1.60 1019 J/eV)/6.63 1034 J s
f 6.97 1010 Hz c / f (3.00 108 m/s)/(6.96 1010 Hz) 4.30 103 m=4.30mm 94
Chapter 4 – The Nuclear Atom (Problem 4-39 continued) (d) Equation 4-18: rn n2 a0 / Z r45 452 a0 /1 107 nm 1.07 104 mm , or 2025× the radius of the
For hydrogen:
hydrogen atom ground state.
1 7 1 4-40. (a) Equation 4-26: R R where R 1.0973732 10 m 1 m / M 1 Rd R 31 27 1 9.1094 10 kg / 3.3436 10 kg Rd 1.0970743 107 m 1 1 Rt R 31 27 1 9.1094 10 kg / 5.0074 10 kg Rt 1.0971736 107 m 1
(b) Equation 4-22:
1 1 R 2 2 with Z 1 . n f ni 1
1 1 1 1 5 The Balmer α transition is n 3 n 2 . 2 2 2 2 n f ni 2 3 36
d t
36 1 1 5.3978 1011 m 5.3978 102 nm 5 Rd Rt
(c) Computed as in (b) above with RH 1.096762 107 m1 ,
H t
36 1 1 2.4627 1010 m 2.4627 101 nm 5 RH Rt
95
Chapter 4 – The Nuclear Atom
4-41.
N I 0 2 b db where b and db
kq Q cot 2 m v 2
(Equation 4-3)
kq Q csc d 2 2m v 2 2
kq Q 1 N I 0 2 2 cot csc 2 d 2 2 m v 2 Using the trigonometric identities:
csc 2
1 sin / 2 2
and cot
2
sin sin sin 2 2 1 cos 1 cos / 2 sin / 2 2 sin2 / 2
kq Q 1 sin 1 N I 0 2 2 d 2 2 2 sin / 2 sin / 2 m v 2 2
and inserting 2e q and Ze Q, 2
kZe2 sin d N I 0 2 2 4 m v sin / 2 4-42. Those scattered at 180 obeyed the Rutherford formula. This is a head-on collision where the α comes instantaneously to rest before reversing direction. At that point its kinetic energy has been converted entirely to electrostatic potential energy, so k 2e 79e 1 where r = upper limit of the nuclear radius. m v 2 7.7 MeV 2 r r
4-43. (a)
k 2 79 e2 7.7 MeV
i qf rev =e
2 79 1.440MeV fm 7.7 MeV
Z 2 mk 2 e4 e 2 3n3
1
mc 2 ke 2 2
2
c 1 2
1.602 10 =
19
2
3
29.5 fm
(from Equation 4-28) 2
ec ke 2 ec 2 c h / mc c
C 3.00 1017 nm / s 1 2 1.054 103 A 0.00243nm 137
96
Chapter 4 – The Nuclear Atom (Problem 4-43 continued)
(b)
emk 2 e4 2 e = 3 2 2 mke 2m
iA i a02
1.602 10 C 1.055 10 2 9.11 10 kg 19
=
34
J s
31
9.28 10
24
A m2
or
= 1.054 103 A 0.529 1010 m
2
9.27 1024 A m2
4-44. Using the Rydberg-Ritz equation (Equation 4-2), set-up the columns of the spreadsheet to carry out the computation of λ as in this example (not all lines are included here).
4-45.
C=m2 D=n2
1/λ
λ (nm)
0.96
10534572
94.92
16
0.9375
10287844
97.20
1
9
0.888889
9754400
102.52
2
1
4
0.75
8230275
121.50
2
6
4
36
0.222222
2438600
410.07
2
5
4
25
0.21
2304477
433.94
2
4
4
16
0.1875
2057569
486.01
2
3
4
9
0.138889
1524125
656.11
3
7
9
49
0.090703
995346.9
1004.67
3
6
9
36
0.083333
914475
1093.52
3
5
9
25
0.071111
780352
1281.47
3
4
9
16
0.048611
533443.8
1874.61
m
n
1
5
1
25
1
4
1
1
3
1
1 1 R 2 2 n f ni
Because R ,
1
1/C−1/D
d R 2 d
dR / d R / . R
97
2
1
1 1 dR 2 2 n f ni d
1 1 2 2 n f ni
1
R / /
Chapter 4 – The Nuclear Atom (Problem 4-45 continued)
H
me m p me m p
D
me md me md
me md m p m m / me md m / me md D H D 1 e d 1 d 1 H H m p me md me m p / me m p m p / me m p
If we approximate md 2mp and me
/ 656.3nm
md , then
me and 2m p
0.511MeV 0.179nm 2 938.28MeV
4-46. For maximum recoil energy for the Hg atoms, the collision is „head-on‟. (a) Before collision
Ek
kinetic energy
1 2 mvei 2
pei mvei
momentum
After collision Ek
1 2 mvef 2
EHg
1 2 MvHg 2
pef mvef pHg M vHg
Conservation of momentum requires: mvei mvef MvHg vHg
m vei vef M
Therefore, the maximum Hg recoil kinetic energy is given by: 2
2 1 1 m m2 2 2 MvHg M vei vef vei 2vei vef vef2 2 2 M 2M 2 m 4vei2 since m M , vei vef 2M 4m 1 2 4m mvei Ek M 2 M
98
Chapter 4 – The Nuclear Atom (Problem 4-46 continued)
(b) Since the collision is elastic, kinetic energy is conserved, so the maximum kinetic energy gained by the Hg atom equals the maximum kinetic energy lost by the electron. If Ek = 2.5eV, then the maximum lost is equal to:
9.11 1031 kg 2.5eV m 4 2.5eV 4 2.7 105 eV 27 M 201 u 1 . 66 10 kg / u
4-47. (a) En E0 Z 2 / n2
(Equation 4-20)
For Li++, Z = 3 and En 13.6eV 9 / n2 122.4 / n2eV The first three Li++ levels that have the same (nearly) energy as H are:
n 3, E3 13.6eV
n 6, E6 3.4eV
n 9, E9 1.51eV
Lyman α corresponds to the n = 6 → n = 3 Li To the n = 9 → n = 3 Li
++
++
transitions. Lyman β corresponds
transition.
(b) R H R 1 / 1 0.511MeV / 938.8MeV 1.096776 107 m1 R Li R 1 / 1 0.511MeV / 6535MeV 1.097287 107 m1
For Lyman α: 1 R H 1 2 1.096776 107 m1 109 m / nm 3 / 4 121.568nm 2
1
For Li++ equivalent: 1 1 1 1 2 R Li 2 2 Z 2 1.097287 107 m1 109 m / nm 3 3 6 9 36
1
121.512nm
0.056nm
2
1 I A nt kZe2 (Equation 4-6) 4-48. N 0 SC 2 r 2 EK sin4 2 3 where ASC 0.50cm r 10cm t 106 m
99
Chapter 4 – The Nuclear Atom (Problem 4-48 continued)
10.5g / cm 6.02 10 n Ag 3
23
atoms / mol
107.5 g / mol 5.88 10 atoms / cm3 5.88 1028 atoms / m3 22
EK 6.0MeV
1 I 0 1.0nA 109 C / s 2 1.60 1019 C
3.18 109 alphas / s
(a) At θ = 60°
3.13 109 / s 0.50cm 2 5.88 1028 / m3 106 N 102 cm 2
9 109 N m 2 / C 2 1.60 1019 C 2 47 1 = 468 / s 13 2 6.0 MeV 1.60 10 J / MeV 4 60 sin 2
60 4 120 (b) At θ = 120°: N N 60 sin4 / sin 52 / s 2 2
4-49.
En E0 Z 2 / n2
(Equation 4-20)
For Ca, Z = 20 and E1 13.6eV 20 / 1 5.440keV 2
2
The fact that E1 computed this way is only approximate is not a serious problem because the measured x-ray energies provide us the correct spacings between the levels.
E2 E1 3.69keV 5.440 3.69 1.750keV E3 E2 0.341keV 1.750 0.341 1.409keV E4 E3 0.024keV 1.409 0.024 1.385keV These are the ionization energies for the levels. Auger electron energies E En where E 3.69keV . Auger L electron: 3.69keV 1.750keV 1.94keV Auger M electron: 3.69keV 1.409keV 2.28keV Auger N electron: 3.69keV 1.385keV 2.31keV
100
Chapter 4 – The Nuclear Atom 4-50. (a) E hc / 1240eV nm / 0.071nm 17.465keV E hc / 1240eV nm / 0.063nm 19.683keV
(b) Select Nb (Z = 41) The Kβ Mo x-rays have enough energy to eject photoelectrons, producing 0.693 keV electrons. The Kα Mo x-rays could not produce photoelectrons in Nb.
180 4-51. (a) b R sin R sin 2
R cos 2
(b) Scattering through an angle larger than θ corresponds to an impact parameter smaller than b. Thus, the shot must hit within a circle of radius b and area πb2. The rate at which this occurs is I 0 b 2 I 0 R 2 cos2
2
(c) b R cos R 2 2 2
2 0
(d) An α particle with an arbitrarily large impact parameter still feels a force and is scattered. 4-52. For He: En 13.6eV Z 2 / n2 54.4eV / n2
(Equation 4-20)
(a) ∞
0 5
4 3 -10 2
Energy (eV) -20
-30
E1 = -54.4 eV E2 = -13.6 eV E3 = -6.04 eV E4 = -3.04 eV E5 = -2.18 eV E∞ = 0 eV
-40
-50 1
101
Chapter 4 – The Nuclear Atom (Problem 4-52 continued)
(b) Ionization energy is 54.5eV. (c) H Lyman α: hc / E 1240eV nm / 13.6eV 3.4eV 121.6nm H Lyman β: hc / E 1240eV nm / 13.6eV 1.41eV 102.6nm He+ Balmer α: hc / E 1240eV nm / 13.6eV 6.04eV 164.0nm He+ Balmer β: hc / E 1240eV nm / 13.6eV 3.40eV 121.6nm 42.4nm 19.0nm (The reduced mass correction factor does not change the energies calculated above
to three significant figures.) (d) En 13.6eV Z 2 / n2 because for He+, Z = 2, then Z 2 = 22. Every time n is an even number a 22 can be factored out of n 2 and cancelled with the Z 2 = 22 in the numerator; e.g., for He+, E2 13.6eV 22 / 22 13.6eV
(H ground state)
E4 13.6eV 2 / 4 13.6eV / 2
(H 1st excited state)
E6 13.6eV 22 / 62 13.6eV / 32
(H 2nd excited state)
2
2
2
etc. Thus, all of the H energy level values are to be found within the He+ energy levels, so He+ will have within its spectrum lines that match (nearly) a line in the H spectrum. 4-53. Element
P
Ca
Co
Kr
Mo
I
Z
15
20
27
36
42
53
Lα λ(nm)
10.41
4.05
1.79
0.73
0.51
0.33
1.70
2.72
4.09
6.41
7.67
9.53
f 1 / 2 108 Hz
where f 1 / 2 3.00 108 m / s 109 nm / m /
Slope =
1/ 2
50 15 4.62 108 Hz 1 8 9 . 15 1 . 58 10 Hz
Slope (Figure 4-19) =
74 46 4.67 108 Hz 1 8 14 8 10 Hz
102
Chapter 4 – The Nuclear Atom (Problem 4-53 continued)
The agreement is very good. 50
40 Z 30
20
10
f 1 / 2 108 Hz1 / 2 1
2
3
4
5
6
7
8
9
10
The f 1 / 2 0 intercept on the Z axis is the minimum Z for which an Lα X-ray could be emitted. It is about Z = 8.
4-54. (a) En
ke2 ke2 2 2rn 2n ro
hf En En 1
En 1
ke2 2 n 1 ro 2
ke2 ke2 2n2 ro 2 n 12 ro
2 2 ke2 1 1 ke2 n n 2n 1 f 2 2hro n 12 n 2 2hro n 2 n 1
(b) f rev
ke2 2n 1 ke2 for n 2hro n2 n 12 ro hn3 v 2 r
2 f rev
1
v2 1 mv 2 1 ke2 ke2 4 2 r 2 4 2 mr r 4 2 mr r 2 4 2 mro3n6
103
Chapter 4 – The Nuclear Atom (Problem 4-54 continued)
(c) The correspondence principle implies that the frequencies of radiation and revolution are equal. 2
2
ke2 ke2 2 f f rev 3 2 3 6 4 mro n ro hn
2 ke2 hn3 h2 ro 4 2 mn6 ke2 4 2 mke2 mke2
2
which is the same as ao in Equation 4-19.
4-55.
kZe2 mv 2 r r
kZe2 mv r2 mr
1/ 2
kZe2 v mr
2
(from Equation 4-12)
v 1 2
2 kZe2 kZe2 c 2 2 kZe2 2 Therefore, c 1 2 mr mr mr
1 kZe2 2 c mao 2
0.0075Z 1 / 2
v 0.0075cZ 1 / 2 2.25 106 m / s Z 1 / 2
1 kZe2 kZe2 2 E KE kZe / r mc 1 mc 1 2 r r 1 2
2
And substituting 0.0075 and r ao 1 E 511 10 eV 1 28.8Z eV 2 1 0.0075 3
14.4eV 28.8Z eV 14.4Z eV
104
Chapter 4 – The Nuclear Atom 4-56. (The solution to this problem depends on the kind of calculator or computer you use and the program you write.)
4-57.
Energy (eV)
23
22
Levels constructed from Figure 4-26.
21
20
0
4-58. Centripetal acceleration would be provided by the gravitational force: Mm mv 2 FG G 2 r r L mvr n
rn
n m GM / rn
1/ 2
1/ 2
GM M proton mass and m electron mass, so v r r n / mv or
The total energy is: E
rn2
n2 2 rn n2 2 and, r n m2GM GMm2
1 2 GMm 1 GM mv m 2 r 2 r
GMm GMm GMm En 2rn 2n 2 2
2
G M 2
2
2n 2
11
N m2 / kg 2
GMm2
m3
G 2 M 2 m3 1 1 2 2 22 32 2
27
34
105
2
GMm 2r
1.67 10 kg 9.11 10 2 1.055 10 2
ao
2
The gravitational Hα line is: E E2 E3
6.67 10 E
2
31
kg
0.1389 3
Chapter 4 – The Nuclear Atom (Problem 4-58 continued) 5.85 1098 J 3.66 1079 eV
E 5.85 1098 J f 8.28 1065 Hz 34 h 6.63 10 J s For the Balmer limit in each case,
E 3.66 1079 eV 0.250 / 0.1389 6.58 1079 eV f 6.58 1079 eV / h 1.59 1064 Hz These values are immeasurably small. They do not compare with the actual H values.
4-59. Refer to Figure 4-16. All possible transitions starting at n = 5 occur. n = 5 to n = 4, 3, 2, 1 n = 4 to n = 3, 2, 1 n = 3 to n = 2, 1 n = 2 to n = 1 Thus, there are 10 different photon energies emitted. ni
nf
fraction
no. of photons
5
4
1/4
125
5
3
1/4
125
5
2
1/4
125
5
1
1/4
125
4
3
1/ 4 1 / 3
42
4
2
1/ 4 1 / 3
42
4
1
1/ 4 1 / 3
42
3
2
1 / 2 1 / 4 1 / 4 1 / 3
83
3
1
1 / 2 1 / 4 1 / 4 1 / 3
83
2
1
1 / 2 1 / 4 1 / 4 1 / 3 1 / 4 1 / 3 1 / 4
250 Total = 1,042
Note that the number of electrons arriving at the n = 1 level (125+42+83+250) is 500, as it should be.
106
Chapter 4 – The Nuclear Atom
4-60.
m k 2e4 Z2 En Eo 2 where Eo n 2 2
m 1.88 1028 kg
Eo 4.50 1016 J 2.81 103 eV
Z2 Thus, for muonic hydrogen-like atom: En 2.81 10 eV 2 n 3
(a) muonic hydrogen 0
n=∞ n=5 n=4 n=3
-500 n=2
En (eV)
E∞ = 0 eV E5 = -112 eV E4 = -176 eV E3 = -312 eV E2 = -703 eV E1 = - 2.81 103 eV
-1000
-1500
-2000
-2500 n=1 -3000
2 2 n2 2 n2 4 n (b) rn 2.56 10 nm mkZe2 mke2 Z Z
For H, Z = 1: r1 2.56 104 nm For He1+ , Z = 2: r1 1.28 104 nm For Al12+ , Z = 13: r1 1.97 105 nm For Au 78+ , Z = 79: r1 3.2 106 nm
107
(Equation 4-18)
Chapter 4 – The Nuclear Atom (Problem 4-60 continued) (c) Nuclear radii are between about 1 and 8 105 m , or 1 8 106 nm . (See Chapter 11.) The muon n = 1 orbits in H, He1+, and Al12+ are about roughly 10nm outside the nucleus. That for Au78+ is very near the nucleus’ surface. (d) hf hc / E2 E1 For H:
1 2
hc / E2 E1
hc 5.89 1010 m 0.589nm 3 2.81 10 1 1 / 4
Similarly, For He1+: 0.147nm For Al12+: 0.00349nm For Au78+: 9.44 105 nm
108
where En 2.81 103 eV
Zn
2 2
Chapter 5 – The Wavelike Properties of Particles
5-1.
(b) v
h 6.63 1034 J s 6.6 1029 m / s 2.1 1021 m / y 3 2 m 10 kg 10 m
h h hc 1240MeV fm 12.4 fm p E/c E 100MeV
5-2.
5-3.
hc p2 Ek eVo 2m 2mc 2 2
5-4.
1240eV nm 1 Vo 940V e 2 5.11 105 eV 0.04nm 2
2
h p
h 2mEk
2
hc
(b) For a proton:
(from Equation 5-2)
2mc 2 Ek
(a) For an electron:
1240eV nm
2 0.511 106 eV
4.5 103 eV
1/ 2
1240eV nm
2 983.3 106 eV
(c) For an alpha particle:
5-5.
6.63 1034 J s 3.16 107 s / y h h (a) 2.1 1023 m 3 p mv 10 kg 1m / y
4.5 10 eV 3
1/ 2
0.0183nm
4.27 104 nm
1240eV nm
2 3.728 109 eV
h / p h / 2mEk hc / 2mc 2 1.5kT
1/ 2
4.5 10 eV 3
1/ 2
2.14 104 nm
(from Equation 5-2)
Mass of N2 molecule = 2 14.0031u 931.5MeV / uc 2 2.609 104 MeV / c 2 2.609 1010 eV / c 2
109
Chapter 5 – The Wavelike Properties of Particles (Problem 5-5 continued)
5-6.
5-7.
1240eV nm
2 2.609 1010 eV 1.5 8.617 105 eV / K 300 K
h p
h
hc
2mEk
2
2mc Ek
1/ 2
0.0276nm
1240eV nm
2 939.57 106 eV
0.02eV
1/ 2
0.202nm
(a) If there is a node at each wall, then n / 2 L where n 1, 2, 3,... or 2 L / n . E p 2 / 2m hn / 2L / 2m h 2n 2 / 8mL2
(b) p h / hn / 2L En
hc
2
2
n2
8mc 2 L2
For n = 1: E1
1240eV
nm 1
8 938 106 eV
2
2
0.01nm
2.05eV
2
For n = 2: E2 2.05eV 2 8.20eV 2
5-8.
(a) / c 102 is a nonrelativistic situation, so
/ c hc Ek
2mc 2 Ek
mc 2 2 c
2
hc mc mc 2
0.511 106 eV
2 102
2
2
2Ek
1/ 2
25.6eV
(b) / c 0.2 is a relativistic for an electron, so h mu u h m .
uc 1 u / c
u c 2 1 u / c 2
2
h c mc
c
2
u c
c / 1/ 2
1 / 2 c
110
Chapter 5 – The Wavelike Properties of Particles (Problem 5-8 continued)
u c
1 0.2 0.981 1 1 0.2 2
5.10
Ek mc2 1 0.511MeV 1 2.10MeV (c) c 103
1 10 u c 1 1 10 3
3
2
1/ 2
0.9999
1000
Ek mc2 1 0.511MeV 999 510MeV
5-9.
Ek mc 2 1
p mu
(a) Ek 2GeV
mc 2 0.938GeV
1 Ek mc2 2GeV 0.938GeV 2.132 Thus, 3.132 Because, 1
1 u / c
2
where u / c 0.948
h h hc 2 p mc u / c mc u / c
1240eV nm 4.45 107 nm 0.445 fm 6 3.132 938 10 eV 0.948
(b) Ek 200GeV
1 Ek mc2 200GeV 0.938GeV 213 Thus, 214 and u / c 0.9999
5-10.
1240eV nm 6.18 103 fm 214 938MeV 0.9999
n D sin (Equation 5-5) n n hc sin (see Problem 5-6) D D 2mc 2 Ek
111
Chapter 5 – The Wavelike Properties of Particles (Problem 5-10 continued)
5.705eV 1 1240eV nm 1/ 2 0.215nm 2 5.11 105 eV Ek Ek
1/ 2
(a)
5.705eV sin
(b)
5.705eV sin
1/ 2
75eV
0.659
sin1 0.659 41.2
0.570
sin1 0.570 34.8
1/ 2
5-11.
100eV
h p
h 2m p Ek
0.25nm
Squaring and rearranging,
hc 1240eV nm h2 Ek 0.013eV 2 2 2m p 2 m p c 2 2 2 938 106 eV 0.25nm 2
2
n D sin
sin n / D 1 0.25nm / 0.304nm
sin 0.822
55
5-12. (a) n D sin D
(b) sin
n nhc sin sin 2mc 2 Ek
11240eV
nm
sin 55.6 2 5.11 105 eV 50eV
1/ 2
11240eV nm n 0.584 D 0.210nm 2 5.11 105 eV 100eV 1 / 2
sin1 0.584 35.7
112
0.210nm
Chapter 5 – The Wavelike Properties of Particles 5-13.
d t cos 42
n t d t 1 cos 42 0.30nm 1 cos 42
42°
For the first maximum n = 1, so 0.523nm t
h p
h 2mEk
hc h2 Ek 2 2m 2mc 2 2 2
d
Ek
5-14.
1240eV
2 939 106 eV
nm
2
0.523nm
3.0 103 eV
D sin (Equation 5-6) n For 54eV electrons λ =0.165nm and sin 0.165nm n / 0.215nm 0.767n
For n = 2 and larger sin 1 , so no values of n larger than one are possible.
5-15.
sin n / D
(Equation 5-6)
h / p h / 2mEk hc / 2mc 2 Ek
1240eV nm
2 0.511 106 eV 350eV
1/ 2
0.0656nm
sin n 0.0656nm / 0.315nm 0.208n For n = 1, = 12°. For n = 2, = 24.6°. For n = 3, = 38.6°. For n = 4, = 56.4°. This is the largest possible . All larger n values have sin 1.
1 1 105 s 10 s 1 f 100, 000s 1 1 1 f 1.59 104 Hz (b) f t 2 2t 2 105 s
5-16. (a) t
113
Chapter 5 – The Wavelike Properties of Particles 5-17. (a)
y y1 y2
0.002m cos 8.0 x / m 400t / s 0.002m cos 7.6 x / m 380t / s
1 1 2 0.002m cos 8.0 x / m 7.6 x / m 400t / s 380t / s 2 2 1 1 cos 8.0 x / m 7.6 x / m 400t / s 380t / s 2 2 0.004m cos 0.2 x / m 10t / s cos 7.8x / m 390t / s
(b) v
(c) vs
k
390 / s 50m / s 7.8 / m
20 / s 50m / s k 0.4 / m
(d) Successive zeros of the envelope requires that 0.2x / m , thus 2 x 5 m with k k1 k2 0.4m1 and x 5 m. 0.2 k
5-18. (a) v f Thus,
dv df dv df 2 d f , multiplying by , f 2 v d d d d 2 d
2 d dv v Because k 2 / , dk 2 / 2 d and 2 d d
d dv vs v dk d
(b) v decreases as λ decreases, dv/dλ is positive.
5-19. (a) c f / T
T / c 2 102 m / 3 108 m / s 6.7 1011 s / wave
m 3.73 10 74.6m
The number of waves = 0.25 s / 6.7 1011 s / wave 3.73 103 Length of the packet = # of waves 2 102 (b)
3
f c / 3 108 m / s / 2 102 m 1.50 1010 Hz
(c) t 1
1 / t 1 / 0.25 106 s 4.0 106 rad / s 637kHz
114
Chapter 5 – The Wavelike Properties of Particles 5-20.
t 1
1 / t 1 / 0.25s 4.0rad / s or f 0.6Hz
5-21.
t 1
2f t 1
5-22. (a)
h p
h 2mEk
Thus, t 1 / 2 5000Hz 3.2 105 s
hc
2mc 2 Ek
1240eV nm
2 0.511 106 eV 5eV
1/ 2
0.549nm
d sin / 2 For first minimum (see Figure 5-17).
d
2 sin
0.549nm 3.15nm slit separation 2 sin 5
(b) sin 5 0.5cm / L where L = distance to detector plane L
0.5cm 5.74cm 2 sin 5
5-23. (a) The particle is found with equal probability in any interval in a force-free region. Therefore, the probability of finding the particle in any interval ∆x is proportional to ∆x. Thus, the probability of finding the sphere exactly in the middle, i.e., with ∆x = 0 is zero. (b) The probability of finding the sphere somewhere within 24.9cm to 25.1cm is proportional to ∆x =0.2cm. Because there is a force free length L = 48cm available to the sphere and the probability of finding it somewhere in L is unity, then the probability that it will be found in ∆x = 0.2cm between 24.9cm and 25.1cm (or any interval of equal size) is: Px 1 / 48 0.2cm 0.00417cm.
5-24. Because the particle must be in the box Let u x / L;
A L / sin 2
0
L
0
0
2 2 * dx 1 A sin x / L dx 1
x L u and dx L / du , so we have
x 0 u 0;
L
2
udu A L / sin2 udu 1 2
0
u sin 2u L / A2 / 2 LA2 / 2 1 L / A2 sin2 udu L / A2 4 0 2 0 A2 2 / L A 2 / L
1/ 2
115
Chapter 5 – The Wavelike Properties of Particles 5-25. (a) At x 0 : (b) At x : (c) At x 2 :
Pdx 0, 0 dx Ae0 dx A2 dx 2
2
Pdx Ae
2
/ 4 2
Pdx Ae4
2
2
/ 4 2
2
dx Ae1 / 4 dx 0.61A2 dx 2
2
dx Ae1 dx 0.14 A2 dx
(d) The electron will most likely be found at x = 0, where Pdx is largest.
5-26. (a) One does not know at which oscillation of small amplitude to start or stop counting. N t
f
(b)
N 1 t t
x 2 2 N 2 n 2 and k , so k N x x x
5-27. E t
5-28. xp
f
E / t
1.055 1034 J s 6.6 109 eV 7 19 10 s 1.609 10 J / eV
p mv
2x 1.055 1034 J s v 5.3 1027 m / s 3 2 3 2mx 2 10 kg 10 10 m 2
5-29.
E t
E / t
6.58 1016 eV s 1.99 1021 eV 4 3.823d 8.64 10 s / d
The energy uncertainty of the excited state is ∆E, so the α energy can be no sharper than ∆E.
5-30.
xp
p h
p h / . Because h / p, p h / ; thus, p p.
5-31. For the cheetah p mv 30kg 40m / s 1200kg m / s. Because p p (see Problem 5-30), x / p 50 J s / 1200kg m / s 4.2 102 m 4.2cm
116
Chapter 5 – The Wavelike Properties of Particles 5-32. Because c f for photon, c / f hc / hf hc / E, so hc
E
and p
1240eV nm 2.48 105 eV 5.0 103 nm
E 2.48 105 eV 8.3 107 eV s / m c 3 108 m / s
For electron:
p
h 4.14 1015 eV s 8.3 104 eV s / m x 5.0 1012 m
Notice that ∆p for the electron is 1000 times larger than p for the photon.
5-33. (a) For
48
Ti:
E upper state E lower state
t
t
1.055 1034 J s 4.71 1010 MeV 14 13 1.4 10 s 1.60 10 J / MeV
1.055 1034 J s 2.20 1010 MeV 12 13 3.0 10 s 1.60 10 J / MeV
E total EU EL 6.91 1010 MeV ET 6.91 1010 MeV 5.3 1010 E 1.312MeV (b) For Hα: EU
1.055 1034 J s 6.59 108 eV 8 19 10 s 1.60 10 J / eV
and EL 6.59 108 eV also. ET 1.32 107 eV is the uncertainty in the Hα transition energy of 1.9eV.
5-34.
t 1
2f t 1
For the visible spectrum the range of frequencies is f 7.5 4.0 1014 3.5 1014 Hz The time duration of a pulse with a frequency uncertainty of f is then:
t
1 1 4.5 1016 s 0.45 fs 14 2f 2 3.5 10 Hz
117
Chapter 5 – The Wavelike Properties of Particles 5-35. The size of the object needs to be of the order of the wavelength of the 10MeV neutron.
h / p h / mu. and u are found from: Ek mnc2 1 or 1 10MeV / 939MeV
1 10 / 939 1.0106 1 / 1 u 2 / c 2
1/ 2
or u 0.14c
h hc 1240eV nm 9.33 fm 2 mu mc u / c 1.0106 939 106 eV 0.14 Nuclei are of this order of size and could be used to show the wave character of 10MeV neutrons.
Then,
5-36. (a) E 135MeV , the rest energy of the pion. (b) E t
2
6.58 1016 eV s t 2.44 1024 s 6 2E 2 135 10 eV
5-37.
ps L rps
s
φ r
s r
s r L rps s / r ps s
L r p
In the Bohr model, L n and may be known to within L 0.1 . Then / 0.1
10rad.
This exceeds one revolution, so that is completely
unknown.
5-38.
E hf Et h
E hf E
f t 1 where t 0.85ns
118
Chapter 5 – The Wavelike Properties of Particles (Problem 5-38 continued)
f 1 / 0.85ns 1.18 109 Hz For 0.01nm
f c/
3.00 108 m / s 109 nm / m 3.00 1019 Hz 0.01nm
f 1.18 109 Hz 3.9 1011 19 f 3.00 10 Hz
5-39.
Et
t 2 2E 16 6.58 10 eV s t 1.32 1024 s 6 2 250 10 eV
5-40. In order for diffraction to be observed, the aperture diameter must be of the same order of magnitude as the wavelength of the particle. In this case the latter is
h 6.63 1034 J s 1.66 1033 m 3 p (4 10 kg)(100 m/s)
The diameter of the aperture would need to be of the order of 1033 m. This is many, many orders of magnitude smaller than even the diameter of a proton or neutron. No such apertures are available.
5-41. The kinetic energy of the electron needed must be no larger than 0.1 nm. The minimum kinetic energy of the electrons needed is then given by:
h2 2me 2
h h p 2me E
E
(6.6334 J s) 2 2.411017 J 151eV 31 9 2 2(9.1110 kg)(0.110 nm)
E
119
Chapter 5 – The Wavelike Properties of Particles 5-42. (a) For a proton or neutron: xp v
and p mv assuming the particle speed to be non-relativistic.
2
2mx
1.055 1034 J s 3.16 107 m / s 0.1c (non-relativistic) 27 15 2 1.67 10 kg 10 m
1.67 1027 kg 3.16 107 m / s 1 2 (b) Ek mv 2 2
2
8.34 1013 J 5.21MeV
(c) Given the proton or neutron velocity in (a), we expect the electron to be relativistic, in which case, Ek mc 2 1 and p
2x
mv
v
2mx
For the relativistic electron we assume v c
2mcx
1.055 1034 J s 193 2 9.11 1031 kg 3.00 108 m / s 1015 m
Ek mc 2 1 9.11 1031 kg 3.00 108 m / s
E hf
5-43. (a) E 2 p2c2 m2c4
v
k
(b) vs
k
2
d d dk dk
192 1.58 10 2
p h/ /k
k 2 c 2 m2 c 4 c 1 m2c 2 / k
k 2c 2 m2c 4 k
2
k2 c
c2k k 2c 2 m2c 4 2
5-44.
c2k
c2 k
c2 p u E
2 y 1 2 y (Equation 5-11) x 2 v 2 t 2
(by Equation 2-41)
y3 C1 y1 C2 y2
1 2 y1 1 2 y2 2 y3 2 y1 2 y2 C C C C 1 2 1 2 2 2 2 2 x 2 x 2 x 2 v t v t 120
2
2
11
J 98MeV
2
k 2c 2 m2c 4
Chapter 5 – The Wavelike Properties of Particles (Problem 5-44 continued)
1 2 1 2 y3 C y C y 1 1 2 2 v 2 t 2 v 2 t 2
5-45. The classical uncertainty relations are t 2f t 1 (Equation 5-18)
and x (a) f
2 2
(Equation 5-20)
1 1 0.0541Hz 2t 2 3.0s
(b) Length of the wave traing L vt , where v = speed of sound in air = 330m/s.
L 330m / s 3.0s 990m (c)
2 where x = length of the wave train 990m from (b) 2x
0.13m 2.72 106 2.72 m 2 990m 2
and 0.13m from (d) .
(d) v f
5-46. (a) n / 2 L
v 330m / s 0.13m 13cm f 2500 Hz
2L / n. Because h / p h / 2mE , then
h2 h2 h2 n2 E 2m 2 2m L / n 2 8mL2
h2 n2 If E1 h / 8mL , then En n 2 E1 2 8mL 2
2
hc 1240eV nm h2 (b) For L 0.1nm, E1 2 2 2 8mL 8mc L 8 0.511 106 eV 0.1nm 2 2
2
E1 37.6eV and En 37.6n 2eV
121
Chapter 5 – The Wavelike Properties of Particles (Problem 5-46 continued) n E (eV)
1000
5
800
600
4
400
3
200
0
(c)
f E / h
2 1 0
L
c / E / h
x
hc E
For n 2 n 1 transition, E 112.8eV and
1240eV nm 11.0nm 112.8eV
(d) For n 3 n 2 transition, E 188eV and
1240eV nm 6.6nm 188eV
(e) For n 5 n 1 transition, E 903eV and
1240eV nm 1.4nm 903eV
5-47. (a) For proton: E1
hc
2
8m p c 2 L2
1240MeV fm E1 2 8 938MeV 1 fm
from Problem 5-46.
2
205MeV and En 205n2 MeV
E2 820MeV and E3 1840MeV (b) For n 2 n 1 transition, =
hc 1240MeV fm 2.02 fm E 615MeV
(c) For n 3 n 2 transition, =
hc 1240MeV fm 1.22 fm E 1020MeV
(d) For n 3 n 1 transition, =
hc 1240MeV fm 0.76 fm E 1635MeV
122
Chapter 5 – The Wavelike Properties of Particles 5-48. (a) E
2
/ 2mL2 (Equation 5-28) and E
2
/ 2mA2
(b) For electron with A 1010 m :
E
c
2
2mc 2 A2
197.3eV
nm
2 1
2 0.511 10 eV 10 nm 6
2
3.81eV
For electron with A 1cm or A 102 m :
/ 10 nm 3.8110 eV 1.055 10 J s 2 100 10 g 10 kg / g 2 10
E 3.81eV 101
(c) E
2
2
7
16
34
2 2
2mL
3
2
3
2
2
1.39 1061 J 8.7 1043 eV
5-49. p mv m 0.0001 500m / s 0.05m For proton: xp
x / p 6.58 1016 eV s / 0.05m / s 938 106 eV
1.40 1023 m 1.40 108 fm
For bullet: x 1.055 1034 J s / 0.05m / s 10 103 kg 2.1 1031 m
5-50.
2 y 1 2 y (Equation 5-11) where y f and x vt. x 2 v t 2
y f y 2 f 2 2 f and x x x 2 x 2 x 2 x y f y 2 f 2 2 f and t t t 2 t 2 t 2 t 2 Noting that 2 0, x
1, x
2 0, and v, we then have: 2 t t
f 2 f 1 f 2 f 0 1 2 1 2 0 v 2 v v
2 f 2 f 2 2
123
Chapter 5 – The Wavelike Properties of Particles 5-51. (a) h / p The electrons are not moving at relativistic speeds, so
h / mv 6.63 1034 J s / 9.111031 kg 3 106 m / s 2.43 1019 m 0.243nm (b) The energy, momentum, and wavelength of the two photons are equal. 1 2 1 1 mv mc 2 mc 2 v 2 / c 2 mc 2 mc 2 v 2 / c 2 1 2 2 2
E
1 0.511 106 eV 3 106 / 3 108 2
(c)
1 0.511MeV
2
p E / c 0.511MeV / c
(d) hc / E 1240eV nm / 0.511106 eV 2.43 103 nm
5-52. (a) Q mp c 2 mnc 2 m c 2 1.007825uc2 1.008665uc2 139.6MeV
938.8MeV 939.6MeV 139.6MeV 140.4MeV E 140.4MeV
(b) Et
t / E 6.58 1016 eV s / 140.4 106 eV 4.7 1024 s
(c) d ct 3 108 m / s 4.7 1024 s 1.4 1015 m 1.4 fm 5-53. hf mc 2
hf 1 2 2 mc 1 v
c2 1/ 2
2 2 mc 2 2 mc 1 v 2 v 1 c c hf hf 2 Expanding the right side, assuming mc hf , 2
2
4
v 1 mc 2 1 mc 2 1 c 2 hf 8 hf
and neglecting all but the first two terms,
2
v 1 mc 2 1 Solving this for m and inserting deBroglie’s assumptions that c 2 hf
v 0.99 and 30m, m is then: c
1 0.99 2 6.63 1034 J s m 1.04 1044 kg 8 3.00 10 m / s 30m 1/ 2
124
Chapter 5 – The Wavelike Properties of Particles
5-54. (a)
m
xp
mxvx 1/ 2
2y 1 y0 gt 2 t 0 2 g
vx / mx 1/ 2
2y 1 X vx t vx 0 2 g 1/ 2
2y 2 0 g mx
y0 1/ 2
2y X 2vx 0 g
∆x
(b) If also yp y
v y / my and
t v y / g / mg y so, X
5-55.
1 X x t t where vy g t or 2
2 1/ 2 2 y0 / g / mg y mx
1 3 m v 2 kT 2 2
vrms
23 3kT 3 1.381 10 J / K 300 K m 56u 1.66 1027 kg / u
f fo 1 v / c
1/ 2
hf hf o 1 v / c
E hf hf o hf o v / c
1eV 366m / s 1.2 106 eV 3.0 108 m / s
This is about 12 times the natural line width.
10 eV 366m / s 1.2eV E hf v / c 6
o
366m / s
3.0 108 m / s
This is over 107 times the natural line width.
125
Chapter 5 – The Wavelike Properties of Particles
5-56. recoil E / c (a) Erecoil
1eV
Erecoil 2
2 56uc 2
recoil
2
2m
E2 2mc 2
uc 2 9.6 1012 eV 6 931.5 10 eV
This is about 10-4 times the natural line width estimated at 10-7eV. (b) Erecoil
1MeV
2
2 56uc 2
uc 2 9.6eV 931.5 106 eV
This is about 108 times the natural line width.
126
Chapter 6 – The Schrödinger Equation
6-1.
d d 2 kAekx t k and k 2 2 dx dx Also,
d . The Schrödinger equation is then, with these substitutions, dt
2 k 2 / 2m V i . Because the left side is real and the right side is a pure Imaginary number, the proposed does not satisfy Schrödinger’s equation.
6-2.
For the Schrödinger equation:
2 ik and k 2 . Also, i . 2 x t x
Substituting these into the Schrödinger equation yields: 2
k 2 / 2m V , which is true, provided
2
k 2 / 2m V , i.e., if E Ek V .
For the classical wave equation: (from Equation 6-1)
2 2 2 k and also 2 . Substituting into Equation 6-1 2 2 x t (with replacing E and v replacing c) k 2 1/ v2 2 , which is true for From above:
v / k.
6-3.
(a)
d d 2 x / L2 and dx dx 2
x x 2 2 L L
x2 1 1 2 2 4 L L L
Substituting into the time-independent Schrödinger equation, 2 2 2 2 x V x E 4 2 2mL2 2mL 2mL
Solving for V(x), V x
2 2 2 2 2 x x 1 kx 2 2 4 2 4 2mL 2mL 2mL 2mL 2 2
127
Chapter 6 – The Schrödinger Equation (Problem 6-3 continued) where k
2
/ mL4 . This is the equation of a parabola centered at x = 0. V(x)
0
x
(b) The classical system with this dependence is the harmonic oscillator.
6-4.
(a) Ek x E V x
2
/ 2mL2
x / 2mL4
2 2
2
/ 2mL2 1 x 2 / L2
(b) The classical turning points are the points where E V x or Ek x 0. That occurs when x2 / L2 1, or when x L. (c) For a harmonic oscillator V x m 2 x 2 / 2, so 2
x2 2 x2 / 2 2 2mL4 Thus, E
6-5.
2
/ m2 L4 / mL2
1 2 2mL mL 2 2 2
2
(a) x, t A sin kx t
A cos kx t t i
i A cos kx t t
2 k 2 A sin kx t x 2 2 2 k 2 A sin kx t i 2 2m x 2m t
128
Chapter 6 – The Schrödinger Equation (Problem 6-5 continued) (b) x, t A cos kx t iA sin kx t i
i A sin kx t i 2 A cos kx t t
A cos kx t i A sin kx t
2 2 2 k A cos kx t 2 2m x 2m 2
k2 A cos kx t iA sin kx t 2m t
i
(a)
ik 2 A sin kx t 2m
2
6-6.
2
2
if
k2 it does. (Equation 6-5 with V = 0) 2m
For a free electron V(x) = 0, so
2 d 2 d 2 E 2.5 1010 2 2 2m dx dx
2
Substituting into the Schrödinger equation gives: 2.5 1010
2
2
and, since E Ek p 2 / 2m for a free particle, p 2 2m 2.5 1010
p 2.5 1010
(b)
/ 2m E
2
2
2.64 1024 kg m / s
E p 2 / 2m 2.64 1024 kg m / s / 2 9.11 1031 kg 3.82 1018 J
2
3.82 1018 J 1 / 1.60 1019 J / eV 23.9eV
(c)
6-7.
h / p 6.63 1034 J s 2.64 1024 kg m / s 2.511010 m 0.251nm
x Ce x (a)
2
/ L2
and E 0
d 2 V x 0 2m dx 2 d 2x d 2 4 x 2 2 2 x and 2 dx L dx 2 L4 L 2 2 4x2 2 2 x2 V x 0 so V x 1 And 4 2 2 2 2m L L mL L
2
129
/ 2m and
Chapter 6 – The Schrödinger Equation (Problem 6-7 continued) V(x)
(b)
x
6-8.
a
a
a
a
i kx t i kx t 2 e dx 1 dx A e a
A
2
dx A x 2
a a
A2 2a 1
a
A
1
2a
1/ 2
Normalization between −∞ and +∞ is not possible because the value of the integral is infinite.
6-9.
(a) The ground state of an infinite well is E1 h2 / 8mL2 hc / 8mc 2 L2 2
For m m p , L 0.1nm : E1
(b) For m m p , L 1 fm : E1
1240MeV
8 938.3 106 eV
1240MeV
2
0.1nm
fm
fm
2
0.021eV
2
8 938.3 106 eV 1 fm
2
205MeV
6-10. The ground state wave function is (n = 1) 1 x 2 / L sin x / L (Equation 6-32) The probability of finding the particle in ∆x is approximately: P x x
2 2x 2 x x sin2 x sin L L L L
130
Chapter 6 – The Schrödinger Equation (Problem 6-10 continued) 2 0.002 L 2 L L (a) For x and x 0.002 L, P x x sin 0.004 sin2 0.004 2 L 2 2L 2 0.002 L 2 2 L 2L 2 (b) For x and P x x sin 0.004 sin2 0.0030 3 L 3 3L (c) For x L and P x x 0.004 sin2 0
6-11. The second excited state wave function is (n = 3) 3 x 2 / L sin 3 x / L (Equation 6-32). The probability of finding the particle in ∆x is approximately: P x x
2 3 x sin2 x L L
(a) For 2 0.002 L 2 3 L L 3 x and x 0.002 L, P x x sin 0.004 sin2 0.004 2 L 2 2L 2L 6 L 2 (b) For x and P x x 0.004 sin2 0.004 sin 2 0 3 3 L 3 L (c) For x L and P x x 0.004 sin2 0.004 sin2 3 0 L
6-12.
2 1 n2 2 2 1 2 2mL mvL 2 E mv 2 (Equation 6-24) n mv 2 2 2 2 2mL2
n
mvL
10
9
kg 103 m / s 102 m
1.055 10
34
J s
3 10
19
p 0.0001 p 0.0001 10 kg 10
6-13. (a) x 0.0001L 0.0001 102 m 106 m 9
(b)
xp
10 m10 6
16
1.055 10
kg m / s
34
J s
3
m / s 1016 kg m / s
9 10
11
131
2
Chapter 6 – The Schrödinger Equation 6-14
(a) This is an infinite square well with width L. V(x) = 0, and E Ek p 2 / 2m. From uncertainty principle: Ekmin pmin p / x / L and 2 Emin pmin / 2m
2
/ 2mL2 h2 / 8 2 mL2
(b) The solution to the Schrödinger equation for the ground state is: 1/ 2 1 x 2 / L sin x / L d 2 1 2 and 2 dx L L
1/ 2
2
sin x / L 1 L 2
h2 E or E 1 1 1 2m L 8mL2 The result in (a) is about 1/10 of the computed value, but has the correct 2
2
So,
dependencies on h, m, and L.
6-15. (a) For the ground state, L / 2, so 2L. (b) Recall that state n has n half-wavelengths between x = 0 and x = L, so for n = 3, L 3 / 2, or 2L / 3.
6-16.
(c)
p h / h / 2L in the ground state.
(d)
p 2 / 2m h2 / 4L2 / 2m h2 / 8mL2 , which is the ground state energy.
En
h2 n2 h2 and E E E n 2 2n 1 n n 1 n 2 2 8mL 8mL
or, En 2n 1 3 h so, L 8mc
1/ 2
h2 hc 2 8mL
3 hc 2 8mc
1/ 2
1/ 2
3 694.3nm 1240eV nm 6 8 0 . 511 10 eV
6-17. The uncertainty principle requires that E
0.795nm
2
2mL2
for any particle in any one-dimensional
box of width L (Equation 5-28). For a particle in an infinite one-dimensional square well:
En
n2 h2 8mL2 132
Chapter 6 – The Schrödinger Equation (Problem 6-17 continued)
h2 0. This violates Equation 5-28 and, hence, the 8mL2
For n = 0, then E0 must be 0 since exclusion principle.
6-18. (a) Using Equation 6-24 with L = 0.05 nm and n = 92, the energy of the 92nd electron in the model atom is E92 given by: En n 2
2
2
E92 (92)2
2mL2
(6.63 1034 J s)2 8(9.111031 kg)(0.05 109 m)2
1eV 1.28 106 eV 1.28 MeV 19 1.60 10 J (b) The rest energy of the electron is 0.511 MeV. E92 2.5 the electron’s rest energy. E92 2.04 1013 J
6-19. This is an infinite square well with L = 10cm.
2.0 103 kg 20nm / y h2 n2 1 2 En mv 2 8mL2 2 2 3.16 107 s / y n2
20 10 m 0.1m 2 3.16 10 s 6.63 10 J s 2
8 2.0 103 kg
7
n
9
2
2
34
3.16 10 s 6.63 10 J s
2 2.0 103 kg 20 109 m 0.1m 34
7
6-20. (a) 5 x 2 / L
1/ 2
2
2
2
3.8 1014
sin 5 x / L dx
0.4 L
P
2 / L sin 5 x / L dx 2
0.2 L
Letting 5 x / L u, then 5 dx / L du and x 0.2L u and x 0.4L u 2 , so
133
Chapter 6 – The Schrödinger Equation (Problem 6-20 continued) 2
x sin 2 x 2 L 1 2 L 2 P sin2 udu 4 5 L 5 L 5 2
(b) P 2 / L sin2
5 L / 2 L
0.01L 0.02 where 0.01L x
1240MeV fm E1 2 8 0.511MeV 10 fm 2
6-21. (a) For an electron:
1240MeV fm E1 2 8 938.3Mev 10 fm
3.76 103 MeV
2
(b) For a proton:
2.05MeV
(c) E21 3E1 (See Problem 6-16) For the electron: E21 3E1 1.13 104 MeV For the proton: E21 3E1 6.15MeV
6-22.
F dE / dL comes from the impulse-momentum theorem F t 2mv where t L / v.
So, F
mv2 / L
E / L. Because E1 h2 / 8mL2 , dE / dL h2 / 4mL3 where the minus
sign means “on the wall”. So F h / 4mL 2
3
The weight of an electron is mg 9.11 1031
6.63 10
34
J s
2
m kg 9.8m / s 8.9 10 N 31
4 9.11 10 kg 10 2
10
30
3
1.21 107 N
which is
minuscule by comparison.
2 n x sin L L L n x m x To show that sin sin L dx 0 L 0
6-23. n x
Using the identity 2sin A sin B cos A B cos A B , the integrand becomes
1 cos n m x / L cos n m x / L 2
134
Chapter 6 – The Schrödinger Equation (Problem 6-23 continued)
L sin n m x / L and similarly for the second n m Term with (n + m) replacing (n – m). Since n and m are integers and n ≠ m, the sines both The integral part of the first term is
vanish at the limits x = 0 and x = L.
n x m x sin sin L dx 0 for n m. L 0 L
6-24. (a)
4 x L
(b)
P
x L
6-25. Refer to MORE section “Graphical Solution of the Finite Square Well”. If there are only two allowed energies within the well, the highest energy E2 V0 , the depth of the well. From Figure 6-14, ka / 2 , i.e., ka
2mE2
a 2
where a 1 / 2 1.0 fm 0.5 fm and m 939.6MeV / c 2 for the neutron. Substituting above, squaring, and re-arranging, we have: E2 V0 2 2 2 939.6MeV / c 2 0.5 fm 2
2
c V0 2 8 939.6MeV 0.5 fm 106 nm / fm 2
2
V0 2.04 108 eV 204MeV
135
197.3eV 2
8 939.6 106 eV
nm
2
0.5 10
6
nm
2
Chapter 6 – The Schrödinger Equation 0.5eV and for a finite well also En
6-26. Because E1
n2 E1 , then n = 4 is at about 8eV, i.e.,
near the top of the well. Referring to Figure 6-14, ka 2mE
ka
L
L 2
2 / 7.24 109
6-27. For V2
E
7.24 109 m
1
L
2 .
2
8.7 10 10 m 0.87nm
V1 : x1 is where V
0
:
V1 and x2 and x2 is where V1
V2
From
to 0 and x2 to
is exponential
0 to x1:
is oscillatory; Ek is large so p is large and λ is small; amplitude is small because Ek is large, hence v is large.
x1 to x2:
is oscillatory; Ek is small so p is small and λ is large; amplitude is large
because Ek is small, hence v is small.
6-28. (a) 6 5 4 3 2 1
x -10
+10 0
136
Chapter 6 – The Schrödinger Equation (Problem 6-28 continued)
6-29.
* 3
px L
x
s dx
2 3 x sin L L i x
0
L
2 Li Let
3
i x
3 x L
sin 0
3 x L
y Then x
cos
0
(Equation 6-48)
2 3 x sin dx L L 3 x L y
0,
3 dx L x
L
y
3 , and
3 dx L
dy
dx
L dy 3
Substituting above gives:
2 L Li 3
px
2 Li
3
sin y cos ydy 0
3 L
3
sin y cos ydy 0
2 sin2 y Li 2
3
2 0 0 Li
0
0
Reconiliation: px is a vector pointing half the time in the +x direction, half in the –x direction. Ek is a scalar proportional to v 2, hence always positive.
6-30. For n = 3,
3
2/ L
1/ 2
sin 3 x / L
L
(a)
x 2 / L sin2 3 x / L dx
x 0
137
Chapter 6 – The Schrödinger Equation (Problem 6-30 continued) 3 x / L, then x
Substituting u
x
0
u
0 and x
L
u
Lu / 3 and dx
L/3
du. The limits become:
3
3
2/ L L/3
x
u sin2 udu
1/ 3 0
2
2/ L L/3 2
2 / L 1/ 3
u2 4
u sin 2u 4 2
3
/4
cos 2u 8
3
0
L/2
L
x2
(b)
x 2 2 / L sin2 3 x / L dx 0
Changing the variable exactly as in (a) and noting that: 3 2
u3 6
2
u sin udu 0
u2 4
1 1 3 18
We obtain x 2
L2
2
3
u cos 2u 4
1 sin 2u 8
0
0.328L2
6-31. (a) Classically, the particle is equally likely to be found anywhere in the box, so L
P(x) = constant. In addition,
P x dx 1 so P x
1/ L.
0 L
(b)
L
x / L dx
x
L / 2 and x
2
x 2 / L dx
0
0
2
6-32.
d2 2m dx 2
L2 / 3
1 d 2m i dx
V x d i dx
1 pop pop 2m Multiplying by
x
E x
x
(Equation 6-18)
E V x
x
E V x and integrating over the range of x,
138
Chapter 6 – The Schrödinger Equation (Problem 6-32 continued) 2 pop
dx
2m
E V x
p2 2m
E V x
dx
p2
or
2m E V x x does not vanish and vice versa.
For the infinite square well V(x) = 0 wherever
0 and p 2
Thus, V x
6-33.
x
L2 3
2
x
x
L2 2 2 2
2mE
2m
n2 2 2 2mL2
L2 3
x
L2 2 2
L2 4
1/ 2
for n 1
L2
L 2
(See Problem 6-30.) And x 2
2 2
1 L 12
1/ 2
1
0.181L
2
2
2 2
p
2 x
p
P
6-34.
0
x
x
2
p
A0e A02 xe
x
A02
x
0.)
2
(See Problem 6-32) 1/ 2
2
0
L2
m x2 /
L
. And
dx Letting u 2
ue
m x2 /
/m
/m
u2
du
x
0.181L
p
/L
m x2 / 1
udu
1/ 2
/m
and x
u
xdx; limits are unchanged.
0 (Note that the symmetry of V(x) would also tell us that
dx
3/ 2
3/ 2
u 2e
0.568
1/ 4
m /
where A0
2 xdx . And thus, m /
A02 x 2 e
2 A02
0
2
/m
A02
p
m x2 / 2
m /
2udu
x2
and
L2
u2
du
/4
2 A02
m /
/m 1/ 2
139
3/ 2
/m
u 2e 3/ 2
u2
du
/2
/ 2m
Chapter 6 – The Schrödinger Equation
6-35.
p2 2m
1 m 2
n 1/ 2
x
2 m 2
x2
m
2 2
p2 m
1
6-36. (a)
/2
p 2 / 2m
or
2m
x,t
0
. For the ground state (n = 0),
m /
1/ 4
x2
and
m x2 / 2
e
m
p2 m
1
e
p2 m2 2
1 2
/ 2m
1 m 2
p2
i t/2
2
(b) px op
p
i x
0
A0 m x /
x
2
x, t
0
1/ 4
e
m x2 / 2
e
0
i x
i t/2
2 0
x
2
m x/
A0
p2
2
A02 m /
2
A02 m /
m x/
Letting u p2
2
m x/
m /
m x2 /
1 e
m x2 / 1/ 2
e
m
2
1/ 2
2
m /
m /
m x2 /
m x2 /
1/ 2
u 2e
2
u 2e
u2
1/ 2
1/ 2
m /
m
u2
du
0
2
m x2 / 2
e
e
i t/2
dx
dx
e
du
e
m x2 / 2
x , then
A02 m /
A02 m /
x, t dx
e
u2
du
0
1/ 2
2
/2
140
4
2
u2
du
dx
(See Problem 6-34)
Chapter 6 – The Schrödinger Equation 6-37.
0
x
m x2 / 2
C0e
(a)
0
2
x
(Equation 6-58) 2
dx 1 2
C0
(b) x 2
0
m
(c)
6-38.
1
x
C1 xe
(a)
1
3
1
1 4
with
x
2
x2
dx
3
m /
with
1 m 2
1 2m
m x2 /
2
2
1 4
1 2 m3
2
3
3
dx
C1
with
2
2I 2
m /
3 3
1/ 4
3
dx
m /
1 2m
2
4m3
C1
x
m x2 /
2
C1 x 2e
C1
x
1 2
2
(Equation 6-58)
C1
(b)
e
1 m 2
x2
dx 1
2
=
3
m
m x2 / 2
2
x
m
3
2
m
x2
2I2
1 m 2
V x
2
1/ 4
dx
1 m 2
C0
m
m
2
x2
2I0
dx
2
C0
C0
m x2 /
C0 e
x
3
4m3
3 3
1/ 2
e
m x2 /
141
dx
0
1 4
Chapter 6 – The Schrödinger Equation (Problem 6-38 continued) x
(c)
2
x
2
2 1
4m3
dx
x
6-39. (a)
3
1 m 2
x p
m 2
1 m 2
(1) E
5
/ x
2 0
2
En
2m
n 1/ 2 1
En
limn
En En
2
2 2
2
1 m 2
x2
2
3 8
5
where
m /
2
3 2m
3 4
/ 8mA2
E02 2mA2 4 2 4
m 2
En
E02 4 Ek
4 Ek
1
/4
2 Ek
n 3/ 2
En n 3 / 2 n 1
n 1/ 2
En En
x 2 dx
/ x2 is computed in Problem 6-36(b). Using that quantity,
Ek
En
2
/ 2 also E0
2
6-40.
1/ 2
3 3
2
A2
m x2 /
/ 2A
Because E0 (2)
4m3
h / 2 A / 2m 2
e
3 2m
5
1 m 2
x2
p p 2 / 2m
(b) Ek
5
3
1/ 2
3 3
2I4
3
(d) V x
4m3
1/ 2
3
3 m3 2
2
limn
1 n 1/ 2 1 n 1/ 2
0. In agreement with the correspondence principle.
142
Chapter 6 – The Schrödinger Equation 6-41. (a) Harmonic oscillator ground state is n = 0. x
0
A0e
m x2 / 2
(Equation 6-58) A02
Therefore, for x: x Let m x 2 /
y2
m x2 /
xe
x
dx
m y
dx
m dy
A02
Substituting above yields: x
m
ye
y2
dy
0
by inspection of Figure 6-18, integral tables, or integration by parts. For x 2 :
x2
A02
m x2 /
x 2e
dx
Substituting as above yields: x 2
A02
The value of the integral from tables is
x2
Therefore,
A02
2
m
3/ 2
m
y 2e
y2
dy
2.
3/ 2
(b) For the 1st excited state, n = 1, A1 m / xe
x
1
A12
x
x3 m
e
m x2 / 2
m x2 /
(Equation 6-58) dx
Changing the variable as in (a), x
A12 m A12
3/ 2
m
m
y 3e
y2
dy
y 3e
y2
m
1/ 2
dy
0
by inspection of Figure 6-18, integral tables, or integration by parts. x2
A12
x4 m
e
m x2 /
dx
changing variables as above yields:
143
Chapter 6 – The Schrödinger Equation (Problem 6-41 continued) x2
A12 m A12
2
m 3/ 2
m
y 4e
y 4e
y2
y2
m
1/ 2
dy
The value of the integral from tables is 3
x2
Therefore,
6-42. (a)
A12 3
2 /T
2 f 1 E0 2
4
2 / 1.42s 34
1.055 10
dy
4.
3/ 2
m
4.42rad / s
J s 4.42rad / s / 2
2.33 10
34
J 499.9 mm
500.0 mm
(b) A
500.0
2
499.9
2
10mm 0.1mm
E
n 1/ 2
1 / 2m
2
A
2
A
n 1 / 2 1 / 2 0.010kg 4.42rad / s 10 2 m
2.1 1028 or n
(c)
6-43.
0
f
x
1.055 10
34
J s
2.1 1028
0.70 Hz
2
x2 / 2
A0e
2
1
x
A1
m
xe
m x2 / 2
From Equation 6-58. Note that
0
is an even function of x and
It follows that
0
1
dx
0
144
1
is an odd function of x.
Chapter 6 – The Schrödinger Equation 2
6-44. (a) For x > 0, So, k2 (b) R
k22 / 2m V0 1/ 2
2mV0 2
k1 k2
2
E
k12 / 2m
. Because k1
k1
k2
2
2V0 1/ 2
4mV0
, then k2
k1 / 2
(Equation 6-68)
2
2
1 1/ 2
1 1/ 2
0.0294, or 2.94% of the incident particles are
reflected. (c) T
1 R 1 0.0294 0.971
(d) 97.1% of the particles, or 0.971 106
9.71 105 , continue past the step in the +x
direction. Classically, 100% would continue on.
6-45
(a) Equation 6-76:
T
16
E E 1 e V0 V0
2 a
where
2 2m p (V0
E) /
and a barrier width . 2 a
2(938 MeV/c 2 )(50 44)MeV / 6.58 10
2
(b) decay rate N
44 MeV 44 MeV 1 e 50 MeV 50 MeV
T
16
T
0.577
22
MeV s
10
15
1.075
N T where 2 44 MeV 1.60 10 13 J/MeV 1.67 10 27 kg
v proton 2R
0.577 4.59 1022 s
decay rate
(c) In the expression for T, e
1.075
e
2.150
1/2
1
1 2 10 15 m
2.65 1022 s
, and so T
0.577
4.59 1022 s
So, k2
2
k22 / 2m V0
6mV0
1/ 2
E
2
k12 / 2m
. Because k1
T
0.197 . The decay
2V0
4mV0
145
1/ 2
, then k2
1
1
rate then becomes 9.05 10 21 s 1 , a factor of 0.34× the original value.
6-46. (a) For x > 0,
1.075
3 / 2k1
Chapter 6 – The Schrödinger Equation (Problem 6-46 continued) (b) R
k1 R
k2 k1
2
k2
k1 2
k2 k1
2
2
2
k2
2
3/ 2
1
1
3/ 2
0.0102
Or 1.02% are reflected at x = 0. (c) T
1 R 1 0.0102
0.99
(d) 99% of the particles, or 0.99 106
9.9 105, continue in the +x direction.
Classically, 100% would continue on.
6-47. (a)
E
4eV
2m V0
9eV =V0
E /
2 0.511 106 eV / c2 5eV / 0.6 nm = a
5.11 106 eV 2260eV 197.3eV nm
and Since
a
0.6nm 11.46nm 1 a is not
eV / c 11.46nm
1
6.87
1, use Equation 6-75:
The transmitted fraction
T
Recall that sinh x
T
1
sinh2 a 1 4 E V0 1 E V0 ex
e
x
1
81 sinh2 6.87 80
1
2,
81 e6.87 e 1 80 2
6.87
2
1
4.3 10
(b) Noting that the size of T is controlled by
6
is the transmitted fraction.
a through the sinh2 a and increasing T
implies increasing E. Trying a few values, selecting E = 4.5eV yields T or approximately twice the value in part (a).
146
8.7 10
6
Chapter 6 – The Schrödinger Equation
6-48.
B
E1 / 2 E
E V0
1/ 2
E V0
1/ 2 1/ 2
A
For E
V0 , E V0
denominator are complex conjugates. Thus, B hence T
6-49.
A B
1 R
1/ 2
2
is imaginary and the numerator and 2
A and therefore R
B
2
A
2
0.
C and k1 A k1B
k 2C
Substituting for C, k1 A k1 B B
k1 k1
A
k1 k2 A C k1 k2
(Equations 6-65a & b)
k2 A k2 B and solving for B,
k2 A B
k2 A, which is Equation 6-66. Substituting this value of B into Equation 6-65(a), k2
A
k1
k2 k1 k2 k1 k2
or C
2k1 , which is Equation 6-67. k1 k2
6-50. Using Equation 6-76,
6-51.
T
16
T
16
R
1,
E E 1 e V0 V0 2.0 6.5
k1
k2
k1
k2
1
2 a
2.0 e 6.5
where E 2 10.87 0.5
2.0eV , V0 6.5 10
5
6.5eV , and a
0.5nm.
(Equation 6-75 yields T
6.6 10 5 .)
2
and T
2
1 R
(Equations 6-68 and 6-70)
(a) For protons:
k1
2mc 2 E / c
k2
2mc 2 E V0 / c
R
1.388 0.694 1.388 0.694
40MeV / 197.3MeV fm 1.388
2 938MeV
2
2 938MeV 10MeV / 197.3MeV fm 0.694 2.082
2
0.111 And T
147
1 R
0.889
0.694
Chapter 6 – The Schrödinger Equation (Problem 6-51 continued) (b) For electrons: 1/ 2
0.511 1.388 938
k1
0.0324
0.0324 0.0162 0.0324 0.0162
R
k2
0.511 0.694 938
1/ 2
0.0162
2
0.111 And T
1 R
0.889
No, the mass of the particle is not a factor. (We might have noticed that
m could
be canceled from each term.
6-52. (a) En
E1
(b)
n2 h2 8mL2 hc
The ground state is n = 1, so 2
1240MeV fm
8 mc 2 L2
2000
2
8 938.3MeV 1 fm
2
204.8MeV
(c)
1844 MeV
E21
21
n =3 21
1500 En (MeV)
(d) 1000
hc /
32
1240MeV fm 819 205 MeV
1240MeV fm 1844 819 MeV
2.02 fm
1.21 fm
819 MeV
(e)
500 205 MeV
0
148
31
1240 MeV fm 1844 205 MeV
0.73 fm
Chapter 6 – The Schrödinger Equation 2 x 2 / L sin2 x / L. 6-53. (a) The probability density for the ground state is P x The probability of finding the particle in the range 0 < x < L/2 is:
L/2
P
2L L
P x dx 0 L/3
(b) P
2L L
P x dx 0
/2
sin2 udu
2
sin2 udu
2
4
0 /3
sin 2 / 3 4
6
0
1 where u 2
0
1 3
x/L 3 4
0.195
(Note: 1/3 is the classical result.) 3L / 4
(c) P
2L L
P x dx 0
3 /4
2 3 8
sin2 udu 0
sin 3 / 2 4
3 4
1 2
0.909
(Note: 3/4 is the classical result.)
6-54.
(a) En So,
2
n2 h2 8mL2 En
1
and En En
n2
En
2 n
En En
1
En
n 1 h2 1
8mL2
2n 1 n 2 n2
2n 1 n2
2 1/ n For large n,1 / n n
(b) For n = 1000 the fractional energy difference is
2 1000
0.002
2 and
0.2%
(c) It means that the energy difference between adjacent levels per unit energy for large n is getting smaller, as the correspondence principle requires.
6-55. The n = 2 wave function is 2
Ek
op
2
2m x 2
Therefore, 2
Ek
2
x
2 2 x sin and the kinetic energy operator L L
x
2
2
2 2 x sin L L
x dx
2
2m x 2 2
2
2m x
2
2 2 x sin dx L L
149
Chapter 6 – The Schrödinger Equation (Problem 6-55 continued) L
2
2 L
2m
0
2 2 L 2m
Let
2 x L
2 L
y, then x
2 L
2 x dx L
y
0 and x
0
0
sin ydy 0
6-56. (a) The requirement is that x
x
or
2 2
0
2 2 L 2m
Therefore, Ek
2 L
2
2 x dx L
L
2 2 L 2m
2
sin 2 y 4
y 2
2
sin
sin2
Substituting above gives: Ek 2
2
2 x 2 sin L L
2
2
2
2 L
0
dy
dx
L dy 2
2
L 2
sin2 ydy 0
0 0
x
h2 2mL2
x
x . This can only be true if:
x .
x
(b) Writing the Schrödinger equation in the form of this 2nd order differential equation are: where k
2 dx L
2 and
4 2 2 2mL2
L 2
x
y
d2 dx 2
2mE 2
, the general solutions
A sin kx and
x
x
2mE . Because the boundaries of the box are at x
A cos kx L / 2, both
solutions are allowed (unlike the treatment in the text where one boundary was at
L / 2 provided that an integral number
x = 0). Still, the solutions are all zero at x
L / 2 and x
of half wavelengths fit between x n
x
2/ L
n
x
2/ L
1/ 2
1/ 2
L / 2. This will occur for:
cos n x / L when n 1, 3, 5,
. And for
sin n x / L when n
.
2, 4, 6,
The solutions are alternately even and odd. (c) The allowed energies are: E
2
k 2 / 2m
150
2
n /L
2
/ 2m
n 2 h 2 / 8mL2 .
Chapter 6 – The Schrödinger Equation 6-57.
0
(a)
x2 / 2 L2
Ae d 0 dx
d 1 dx
So,
x 2 / 2 L2
x / L2 Ae
And
1/ L
d2 1 dx 2
0
1/ L d 2 x / L3
and
x/L d
0
L
1
/ dx
0
1/ L d
0
2
/ 2m 3m / L3
x3 / L5
0
2
will make
1
1
0
E
0
0
x 2 / 2mL4 , the Schrödinger equation 2 3
x / 2mL5
0
x/L
0
E
0
L
0
x
2
2 2 2n x x sin dx L L
2 L L n 2 L L n
2
3
x/L
0
or,
. Thus, choosing E appropriately
3
2
/ 2mL2 , or three times the ground state energy.
plotted looks as below. The single node indicates that
x2
0
/ dx 2
1
is the first excited state.
(The energy value in [b] would also tell us that.)
6-58.
x/L
a solution.
(b) We see from (a) that E (c)
x3 / L5
3 2 x / 2mL3
simplifying:
x/ L d2
/ dx
Recalling from Problem 6-3 that V x becomes
x 2 / 2 L2
x / L2 Ae
L
/ dx
x / L3
0
d 0 dx
L n u3 6
Letting u
n x / L, du
n
u 2 sin2 udu 0
u2 4
n
1 sin 2u 8
u cos 2u 4
151
0
n / L dx
Chapter 6 – The Schrödinger Equation (Problem 6-58 continued) 3
2 L L n
6-59.
T
16
2m V0
n 4
0
6
E E 1 e V0 V0
(a)
3
n
2 a
2 m0c 2 V0
E
T
16
10 25
16
10 25
x, t
6-60. (a) For
d2 dx 2
1
k2
1
1
29.68
10 e 25
2.968
A sin kx
and
k2 A sin kx 2m
4.95 10 1
1nm.
c
197.3eV nm 19.84nm
19.84nm
a
2
25eV , and
E
19.84;
1nm
10 e 25
0.1nm :
(b) For a T
19.84nm
a
L2 2n 2
where E 10eV , V0
2 0.511 106 eV 15eV And
L2 3
0
2 a
1
29.68
13
0.1nm
1.984
0.197
t
A cos kx
t
t so the Schrödinger equation becomes:
2
V x A sin kx
t
t
i
Because the sin and cos are not proportional, this for
x, t
A cos kx
(b) For
x, t
A cos kx
d2 dx 2 k2 2m
k2
and
t
cos kx
cannot be a solution. Similarly,
t , there are no solutions. i kx
t
t
i sin kx
i
. And the Schrödinger equation becomes:
t
Ae
2
V x
t
2
for
152
k 2 / 2m V .
, we have that
Chapter 6 – The Schrödinger Equation 6-61. V
mgz E
Classically allowed: 0 < z < z0 Ek = E - mgz
0
z0
z
The wave function will be concaved toward the z axis in the classically allowed region and away from the z axis elsewhere. Each wave function vanishes at z = 0 and as z → ∞. The smaller amplitudes are in the regions where the kinetic energy is larger.
6-62. Writing the Schrödinger equation as: Ek have: Ek
x
E V x
x
x 2
V x
x
E
x from which we
/ 2m d 2 / dx 2 . The expectation value of
153
Chapter 6 – The Schrödinger Equation (Problem 6-62 continued) Ek is Ek
Ek
x dx. Substituting Ek
x
x from above and reordering
2
multiplied quantities gives: Ek
6-63. (a)
p x
x dx .
m v x /m a
v
d2 2m dx 2
x
34
1.055 10
v 1.6 108 m / s
9.11 10
J s
31
10
12
m
0.39c
(b) The width of the well L is still an integer number of half wavelengths, L and deBroglie’s relation still gives: L
nh / 2 p . However, p is not given by: E2
2mEk , but by the relativistic expression: p
p
nhc
Substituting this yields: L 2 E2
En
nhc 2L
hc 4 L2
(c) E1
/2 ,
n
2
mc 2
E2
1/ 2
mc 2
mc 2
2
2
1/ 2
c.
nhc / 2 L
2
1/ 2
2
mc 2
2
1/ 2
2
mc 2
2
1/ 2
1240eV nm 3
4 10 nm
2
2
0.511 106 eV
2
8.03 105 eV
(d) Nonrelativistic: E1
h2 8mL2
hc 2
2
1240eV nm 2
8 mc L
6
2
3
8 0.511 10 eV 10 nm
2
3.76 105 eV
E1 computed in (c) is 2.14 times the nonrelativistic value.
6-64. (a) Applying the boundary conditions of continuity to
and d / dx at x = 0 and x = a,
where the various wave functions are given by Equation 6-74, results in the two pairs of equation below:
154
Chapter 6 – The Schrödinger Equation (Problem 6-64 continued) At x
0:
At x
a : Feika
A B C D and ikA ikB a
Ce
De
a
C
and ikFeika
D Ce
a
De
a
Eliminating the coefficients C and D from these four equations, a straightforward 2
but lengthy task, yields: 4ik A
2
a
ik e
ik e
a
Feika
The transmission coefficient T is then: 2
F
T
A
2
4ik
2
2
eika
1 e 2
Recalling that sinh
2
a
ik e
ik e
a
and noting that
e
complex conjugates, substituting k
2mE
ik and
and
2m V0
ik are E
, T then
1
can be written as T
sinh2 a
1 4
a
(b) If
E E 1 V0 V0
1, then the first term in the bracket on the right side of the * equation in part
(a) is much smaller than the second and we can write:
F A
ik
Or T
6-65.
2 II
ik a
4ik e
16
2
C e
E V0
2 a
F A
and T
2
1
E e V0
2
6
2
k 2e
2
2 a
k2
2
2 a
(Equation 6-72) 2
Where C
2 E1 / 2
2
2m V0
E1 / 2
E
E V0
1/ 2
A
2 0.5V0
2
0.5V0
2 mp c 2 20MeV
155
1/ 2
2
1/ 2
0.5V0
1/ 2
2.000
Chapter 6 – The Schrödinger Equation (Problem 6-65 continued) 2 938.3MeV
x ( fm)
20MeV
e
197.3MeV fm
0.982 fm
2
2 x II
2
C e
1
0.1403
0.5612
2
0.0197
0.0788
3
2.76×10-3
1.10×10-2
4
3.87×10-4
1.55×10-3
5
5.4×10-5
2.2×10-4
156
1
2 x
Chapter 7 – Atomic Physics
7-1.
2
n 2mL 2
En1 n2 n3 E311
2 1
2
2
3 2mL
n22 n32
(Equation 7-4)
2
12 12 11E0 where E0
2
2
2
2
2mL2
E222 E0 22 22 22 12E0 and E321 E0 32 22 12 14E0
The 1st, 2nd, 3rd, and 5th excited states are degenerate.
E (×E0)
14
321
12
222 311
10 221 8
6
211
4 111 2 0
2 n12
2 2 n22 n32 2 n22 n32 = n1 2m L12 L22 L23 2mL12 4 9 2
7-2.
En1 n2 n3
n1 n2 n3 1 is the lowest energy level. E111 E0 1 1 / 4 1 / 9 1.361E0 where E0
The next nine levels are, increasing order,
157
2
2
2mL12
(Equation 7-5)
Chapter 7 – Atomic Physics (Problem 7-2 continued)
7-3.
n1
n2
n3
E E0
1
1
2
1.694
1
2
1
2.111
1
1
3
2.250
1
2
2
2.444
1
2
3
3.000
1
1
4
3.028
1
3
1
3.360
1
3
2
3.472
1
2
4
3.778
(a) n1 n2 n3 x, y, z A cos
nz n1 x ny sin 2 sin 3 L L L
(b) They are identical. The location of the coordinate origin does not affect the energy level structure.
7-4.
7-5.
111 x, y, z A sin
x
121 x, y, z A sin
x
113 x, y, z A sin
x
En1 n2 n3
L1 L1 L1
sin sin sin
y 2 L1
y L1
y 2 L1
z
sin sin
3L1
z 3L1
sin
112 x, y, z A sin
x
122 x, y, z A sin
x
L1 L1
sin sin
y 2 L1
y L1
sin
2 z 3L1
sin
2 z 3L1
z L1
2 n12
2 2 n32 n22 2 n22 n32 2 = n1 2m L1 2 L1 2 4 L1 2 2mL12 4 16 2
2 2 n2 n2 En1 n2 n3 n12 2 3 where E0 4 16 2mL12
158
(from Equation 7-5)
Chapter 7 – Atomic Physics (Problem 7-5 continued) (a)
n1
n2
n3
E E0
1
1
1
1.313
1
1
2
1.500
1
1
3
1.813
1
2
1
2.063
1
1
4
2.250
1
2
2
2.250
1
2
3
2.563
1
1
5
2.813
1
2
4
3.000
1
3
1
3.313
(b) 1,1,4 and 1,2,2
7-6.
7-7.
111 x, y, z A sin
x
113 x, y, z A sin
x
114 x, y, z A sin
x
123 x, y, z A sin
x
124 x, y, z A sin
x
E0
2
2
2mL2
L1 L1 L1 L1
L1
sin sin sin sin
sin
y 2 L1
y 2 L1
y 2 L1
y L1
y L1
z
112 x, y, z A sin
x
3 z 4 L1
121 x, y, z A sin
x
z
122 x, y, z A sin
x
3 z 4 L1
115 x, y, z A sin
x
z
116 x, y, z A sin
x
sin
4 L1
sin sin sin
sin
L1
L1
1.055 10 J s kg 0.10 10 m 1.609 10 2
34
2 9.11 1031
9
E311 E111 E 11E0 3E0 8E0 301eV
159
2
L1 L1 L1 L1
L1
sin sin sin sin
sin
y 2 L1
y L1
y L1
y 2 L1
y 2 L1
sin sin
J / eV
2 L1
z 4 L1
sin
z 2 L1
sin
5 z 4 L1
sin
3 z 2 L1
2
19
z
37.68eV
Chapter 7 – Atomic Physics (Problem 7-7 continued)
E222 E111 E 12E0 3E0 9E0 339eV E321 E111 E 14E0 3E0 11E0 415eV
7-8.
(a) Adapting Equation 7-3 to two dimensions (i.e., setting k3 = 0), we have
n n A sin 1 2
n1 x ny sin 2 L L
(b) From Equation 7-5, En1 n2
2
2
2
2mL
n
2 1
n22
(c) The lowest energy degenerate states have quantum numbers n1 = 1, n2 = 2, and n1 = 2, n2 = 1.
7-9.
0, 1, 2
(a) For n = 3, (b) For
0, m 0 . For
1, m 1, 0, 1 . For
2, m 2, 1, 0, 1, 2 .
(c) There are nine different m-states, each with two spin states, for a total of 18 states for n = 3.
7-10. (a) For
4
L
1 4 5 20
m 4
min cos1 (b) For
4 20
min 26.6
2
L 6
m 2
min cos1
2 6
min 35.3
7-11. (a) L I 105 kg m2 2 735min1 1min / 60s 7.7 104 kg m2 / s (b) L
1 7.7 104 kg m2 / s
160
Chapter 7 – Atomic Physics (Problem 7-11 continued)
7.7 10 kg m / s 1 1.055 10 J s 4
2
34
2
2
7.7 104 kg m2 / s 7.3 1030 34 1.055 10 J s
7-12. (a) +1
1 L 2 0
−1
(b) +2
+1
2 L 6
0
−1 −2
161
Chapter 7 – Atomic Physics (Problem 7-12 continued) (c) +4 +3 +2
4
+1
L 20
0 −1 −2 −3 −4
(d) L
7-13.
1
(See diagrams above.)
L2 L2x L2y L2z L2x L2y L2 L2z (a)
L
2 x
L2y
(b)
L
L2y
2 x
min
max
6 22
6 02
(c) L2x L2y 6 1
2
5
2
2
2
2
6
1
2
m
L
(b) For 1,
m 1, 0, 1
6 m2
2
2
Lx and Ly cannot be determined separately.
1 2 1.49 1034 J s
(a) For 1,
2
2
(d) n = 3
7-14
162
Chapter 7 – Atomic Physics (Problem 7-14 continued) (c)
Z
+1ћ
L 2 0
−1ћ
(d) For 3,
L
1 12 3.65 1034 J s and m 3, 2, 1, 0,1, 2, 3 Z 3ћ 2ћ 1ћ 0
−1ћ −2ћ −3ћ
7-15.
L= r× p
dL dr dp p+ r dt dt dt
dr dp p v mv = mv v 0 and r r F . Since for V =V(r), i.e., central forces, dt dt
F is parallel to r, then r F = 0 and
7-16. (a) For (b) For
dL 0 dt
3, n = 4, 5, 6, … and m = −3, −2, −1, 0, 1, 2, 3
4, n = 5, 6, 7, … and m = −4, −3, −2, −1, 0, 1, 2, ,3 ,4
163
Chapter 7 – Atomic Physics (Problem 7-16 continued) (c) For
0, n = 1 and m = 0
(d) The energy depends only on n. The minimum in each case is: E4 13.6eV / n2 13.6eV / 42 0.85eV E5 13.6eV / 52 0.54eV
E1 13.6eV 7-17. (a) 6 f state: n 6, 3 (b) E6 13.6eV / n2 13.6eV / 62 0.38eV (c) L (d) Lz m
1 3 3 1 12 3.65 1034 J s
Lz 3 , 2 , 1 , 0, 1 , 2 , 3
7-18. Referring to Table 7-2, R30 = 0 when
2r 2r 2 0 1 2 3a0 27a0 Letting r a0 x, this condition becomes x2 9 x 13.5 0 Solving for x (quadratic formula or completing the square), x = 1.90, 7.10. Therefore, r a0 1.90, 7.10 . Compare with Figure 7-10(a). 2
kZe2 7-19. Equation 7-25: En 2 2n
Using SI units and noting that both Z and n are unitless, we have: 2
(N m2 / C2 ) C2 J kg J s 2
N m2 Cancelling the C and substituting J N m on the right yields J kg . N m s 2
164
Chapter 7 – Atomic Physics (Problem 7-19 continued) 2
m Cancelling the N and m gives J kg J , since kg m2 / s2 are the units of kinetic s
energy.
7-20. (a) For the ground state n = 1,
100 R10Y00 (b) 2
2 a03
e r / a0
0, and m = 0. 1 4
2 4 a02
e r / a0
4 a03
at r a0
1 2 r / a0 1 e 3 e2 at r a0 3 a0 a0
(c) P r 2 4 r 2
4 2 e at r a0 a0
7-21. (a) For the ground state, P r r 2 4 r 2 r
4r 2 2 r / a0 e r a03
For r 0.03a0 , at r a0 we have P r r (b) For r 0.03a0 , at r 2a0 we have P r r
7-22.
2e1
4a02 2 e 0.03a0 0.0162 a03
4 2a0 3 0
a
2
e 4 0.03a0 0.0088
P r Cr 2e2 Zr / a0 For P(r) to be a maximum, 2Z 2 Zr / a0 dP 2Zr a0 C r 2 2re2 Zr / a0 0 C r e2 Zr / a0 0 e dt a0 Z a0
This condition is satisfied with r = 0 or r = a0 /Z. For r = 0, P(r) = 0 so the maximum P(r) occurs for r = a0 /Z.
165
Chapter 7 – Atomic Physics 2
7-23.
2 2 2 d r sin drd d 1 0 0 0
4 r dr 4 C 2 2
2 210
0
2
Zr 2 Zr / a 0 a0 r e 0 dr 1
Z 2 r 4 Zr / a0 2 4 C210 0 a02 e dr 1
Letting x Zr / a0 , we have that r a0 x / Z and dr a0dx / Z and substituting these above, 2 4 a03C210 4 x d Z 3 0 x e dx 2
Integrating on the right side
x e
4 x
dx 6
0 1/ 2
Solving for C
7-24. 200
Z 32 a0 1
P r r 200
2
3/ 2
2 210
yields:
2 210
C
r r / 2 a0 1 e a0
Z3 Z3 C 210 3 24 a03 24 a0
(Z = 1 for hyrdogen) 2
1 1 r 4 r r 1 e r / a0 4 r 2 r 3 32 a0 a0 2
(a) For r 0.02a0 , at r a0 we have P r r
4 1 1 2 1 1 e1a02 0.02a0 0 e1 0.02 0 3 32 a0 8
(b) For r 0.02a0 , at r 2a0 we have P r r
4 1 1 2 1 e2 a02 0.02a0 1 e2 0.02 3.4 104 3 32 a0 8
166
Chapter 7 – Atomic Physics 7-25. 210 C210
Zr Zr / 2 a0 e cos a0
P r 210
2
4 r 4 r
4 C210
2
2
Z
2
(Equation 7-34)
2
C210
2
Z 2 r 2 r / a0 e cos2 a02
/ a02 r 4e r / a0 cos2
Ar 4e r / a0 cos2
where A 4 C210
7-26. 200
1 32 a0 1
2
Z
3/ 2
(a) At r a0 , 200
2
/ a02 , a constant.
r r / 2 a0 2 e 2a0
(Z = 1 for hyrdogen)
1 0.606 1 1 / 2 3 2 1 e 32 a0 32 a0 1
1 1 0.368 1 3 e 32 a03 32 a0 1
(b) At r a0 ,
200
(c) At r a0 ,
P r 200
2
3/ 2
2
4 r 2
4 0.368a02 0.368 32 a03 8a0
7-27. For the most likely value of r, P(r) is a maximum, which requires that (see Problem 7-25) Z dP A cos2 r 4 e Zr / a0 4r 3e Zr / a0 0 dr a0
For hydrogen Z = 1 and A cos2 r 3 / a0 4a0 r e r / a0 0 . This is satisfied for r = 0 and r = 4a0. For r = 0, P(r) = 0 so the maximum P(r) occurs for r = 4a0.
7-28. From Table 7-1, Y21 , From Table 7-2, R32 r
15 sin cos ei 8
r 2 r 3a0 e 2 81 30a02 a0 4
167
Chapter 7 – Atomic Physics (Problem 7-28 continued)
321 r, ,
4
1 2 81 30a03 a0
15 2 r 3a0 r e sin cos ei 8
To be sure that is normalized, we do the usual normalization as follows, where C is the normalization constant to be compared with the coefficient above. 2
2
0 0 0
0 0 0
2 2 4 2 r 3a0 C32 sin2 cos2 r 2 sin dr d d 1 1 dr C32 1 r e 2
d 2 , we have
Noting that
0
2 C
2 32 1
r e
6 2 r 3 a0
0
dr sin3 cos2 d 1 0
Evaluating the integrals (with the aid of a table of integrals) yields: 4 2 4 2 C32 a07 1 1 1.23 10 15
C32 1 0.00697
a07
This value agrees with the coefficient of 32 1 above.
7-29. 100
2
e r / a0
4 a
3 0
Because 100 is only a function of r, the angle derivatives in Equation 7-9 are all zero.
d dr r2
d dr
2
e r / a0
4 a
3 0
1 2 r / a0 r e 4 a03 a0 2
d 2 d r dr dr
1 d 2 d r r 2 dr dr
1 2 1 r 2r e r / a0 4 a03 a0 a0
2
1 2 1 r / a0 Substituting into Equation 7-9, e 4 a03 a0 r a0 2
168
Chapter 7 – Atomic Physics (Problem 7-29 continued)
1 2 2 100 V 100 E 100 2 a0 a0 r 2
For the 100 state r a0 and 2 a0 2 / k or a0 1 / k, so
1 2 1 2 1 2 2 2 2 2 k a0 a0 a0 r a0 a0 Thus, 2
k2
2
2 2 1 2 k and we have that 2 2 a0 a0 r 2 2
V E, satisfying the Schrödinger equation.
7-30. (a) Every increment of charge follows a circular path of radius R and encloses an area
R 2 , so the magnetic moment is the total current times this area. The entire charge Q rotates with frequency f / 2 , so the current is i Qf q / 2
iA Q / 2 R2 Q R2 / 2 L I
g
1 MR 2 2
2M 2MQ R 2 / 2 2 QL QMR 2 / 2
(b) The entire charge is on the equatorial ring, which rotates with frequency f / 2 . i Qf Q / 2
iA Q / 2 R2 Q R2 / 2 g
2M 2MQ R 2 / 2 5 / 2 2.5 QL QMR 2 / 5
169
Chapter 7 – Atomic Physics 7-31. Angular momentum S I 2 / 5 mr 2 v / r or v 5 / 2 S 1 / mr 5S / 2mr 5 3 / 4
1/ 2
1.055 10 2 9.11 10 kg 10
5 3 / 4
1/ 2
34
31
J s
15
m
/ 2mr
2.51 10
11
m / s 837c
0 , so two lines due to spin of the single s electron would
7-32. (a) The K ground state is be seen.
0 with two s electrons whose spins are opposite resulting
(b) The Ca ground state is
in S = 0, so there will be one line. (c) The electron spins in the O ground state are coupled to zero, the orbital angular momentum is 2, so five lines would be expected. (d) The total angular momentum of the Sn ground state is j = 0, so there will be one line.
7-33.
Fz ms g L B dB / dz mAg az
(From Equation 7-51)
and az mS g L B dB / dz / mAg Each atom passes through the magnet’s 1m length in t = (1/250)s and cover the additional 1m to the collector in the same time. Within the magnet they deflect in the z direction an amount z1 given by: z1 1 / 2 az t 2 1 / 2 ms g L B dB / dz / mAg 1 / 250 and leave 2
the magnet with a z-component of velocity given by vz az t . The additional z deflection in the field-free region is z2 vz t az t 2 . The total deflection is then z1 z2 0.5mm 5.0 104 m.
5.0 104 m z1 z2 3 / 2 az t 2 3 / 2 ms g L B dB / dz / mAg 1 / 250 or, 2
5.0 104 m 250 mAg dB dz ms g L B 2
2
5.0 10 m 250s 1.79 10 kg 2 0.805T / m 3 1 / 2 1 9.27 10 J / T 4
1
2
25
24
170
Chapter 7 – Atomic Physics 7-34. (a) There should be four lines corresponding to the four mJ values −3/2, −1/2, +1/2, +3/2. (b) There should be three lines corresponding to the three m values −1, 0, +1.
7-35. (a) For the hydrogen atom the n = 4 levels in order of increasing energy are: 4 2S1 / 2 , 4 2 P1 / 2 , 4 2 P3 / 2 , 4 2 D3 / 2 , 4 2 D5 / 2 , 4 2 F5 / 2 , 4 2 F7 / 2
(b) 2j + 1
7-36. For
2,
L
1 6 2.45 ,
j 1 / 2 3 / 2, 5 / 2 and J
For j 3 / 2,
J
3 / 23 / 2 1
15 / 4 1.94
For j 5 / 2,
J
5 / 25 / 2 1
35 / 4 2.96
j j 1
7-37. (a) j 1 / 2 2 1 / 2 5 / 2 or 3 / 2 (b) J
5 5 / 2 1 2.96 2
j j 1
or
3 3 / 2 1 1.94 2
(c) J L S J Z LZ SZ m ms m j where m j j, j 1,..., j 1, j. For j = 5/2 the z-components are 5 / 2, 3 / 2, 1/ 2, 1/ 2, 3 / 2, 5 / 2. For j = 3/2 the z-components are 3 / 2, 1 / 2, 1 / 2, 3 / 2.
7-38. (a) d5 / 2
L cos1 s 3/ 4
ms =1/2
θ
(b) d3 / 2
L
θ cos1
ms =−1/2
s 3/ 4 171
1/ 2 3/ 4
54.7
1 / 2 125.3 3/ 4
Chapter 7 – Atomic Physics 7-39.
m
n
−3, −2, −1, 0, 1, 2, 3 −2, −1, 0, 1, 2 −1, 0, 1 0 −2, −1, 0, 1, 2 −1, 0, 1 0 −1, 0, 1 0
3 2 1 0 2 1 0 1 0
4
3 2
ms 1 / 2 for each m state
1 / 2 for each m state 1 / 2 for each m state
7-40. (a) L L1 L2
1
2
,
1
1,...,
2
1
2
1 1, 1 1 1, 1 1 2, 1, 0
(b) S S1 S2
s s1 s2 , s1 s2 1,..., s1 s2 1 / 2 1 / 2 , 1 / 2 1 / 2 1, 0 (c) J L S
j s , For
s 1 ,..., s
2 and s 1, j 3, 2, 1 2 and s 0, j 2
For
1 and s 1, j 2, 1, 0 1 and s 0, j 1
For
0 and s 1, j 1 0 and s 0, j 0
(d) J1 L1 S1
J 2 L2 S2 (e) J J1 J 2
j1 j2
1
1 / 2 3 / 2, 1 / 2
2
1 / 2 3 / 2, 1 / 2
j j1 j2 ,
j1 j2 1,...,
For j1 3 / 2 and j2 3 / 2, j 3, 2, 1, 0 j1 3 / 2 and j2 1 / 2, j 2, 1 For j1 1 / 2 and j2 3 / 2, j 2, 1 j1 1 / 2 and j2 1 / 2, j 1, 0
These are the same values as found in (c).
172
j1 j2
Chapter 7 – Atomic Physics 7-41. (a)
E hf f E / h (4.372 106 eV)(1.602 1019 J/eV) / 6.63 1034 J s=1.056 109 Hz (b) c f c / f (3.00 108 m/s) / (1.056 109 Hz) 0.284m 28.4cm (c) short wave radio region of the EM spectrum
7-42. (a) E3 / 2
hc
E3 / 2
Using values from Figure 7-22, 1239.852eV nm 2.10505eV 588.99nm
E1 / 2
1239.852eV nm 2.10291eV 589.59nm
(b) E E3 / 2 E1 / 2 2.10505eV 2.10291eV 2.14 103 eV (c) E 2 B B B
7-43. 12 x1, x2 C sin
E 2.14 103 eV 18.5T 2 B 2 5.79 104 eV / T
x1 L
sin
2 x2 L
Substituting into Equation 7-57 with V = 0,
2 12 2 12 2 2 1 4 2 12 E 12 2m x12 x22 2m L 2
Obviously, 12 is a solution if E
7-44.
En
n 2 2 2 2mL2
5 2 2 2mL2
Neutrons have antisymmetric wave functions, but if spin is ignored then
one is in the state n = 1 state, but the second is in the n = 2 state, so the minimum energy
is: E E1 E2 12 22 E1 5E1 where
E1
hc
2
2
2mc 2 L2
197.3 2 2 2 939.6 2.0 2
51.1MeV
173
E 5E1 255MeV
Chapter 7 – Atomic Physics 7-45. (a) For electrons: Including spin, two are in the n = 1 state, two are in the n = 2 state, and one is in the n = 3 state. The total energy is then:
E 2 E1 2 E2 E3 where E1
hc
2
2
2me c 2 L2
where En
n2 2 2 2mL2
197.3
2
2
2 0.511 106 1.0
E 2 E1 2 22 E1 32 E1 19 E1
2
0.376eV
E 19 E1 7.14eV
(b) Pions are bosons and all five can be in the n = 1 state, so the total energy is: E 5E1 where E1
0.376eV 0.00142eV 264
E 5E1 0.00712eV
7-46. (a) Carbon: Z 6; 1s 2 2s 2 2 p 2 (b) Oxygen: Z 8; 1s 2 2s 2 2 p 4 (c) Argon: Z 18; 1s 2 2s 2 2 p6 3s 2 3 p6
7-47. Using Figure 7-34: Sn (Z = 50)
1s 2 2s 2 2 p6 3s 2 3 p6 3d 10 4s 2 4 p6 4d 10 5s 2 5 p 2 Nd (Z = 60)
1s 2 2s 2 2 p6 3s 2 3 p6 3d 10 4s 2 4 p6 4d 10 5s 2 5 p6 4 f 4 6s 2 Yb (Z = 70)
1s 2 2s 2 2 p6 3s 2 3 p6 3d 10 4s 2 4 p6 4d 10 4 f 14 5s 2 5 p6 6s 2 Comparison with Appendix C. Sn: agrees Nd: 5 p6 and 4 f 4 are in reverse order Yb: agrees 7-48. Both Ga and In have electron configurations ns np outside of closed shells 2
n 1, s n 1, p n 1, d 2
6
10
. The last p electron is loosely bound and is more easily
removed than one of the s electrons of the immediately preceding elements Zn and Cd. 174
Chapter 7 – Atomic Physics 7-49. The outermost electron outside of the closed shell in Li, Na, K, Ag, and Cu has
0. The
ground state of these atoms is therefore not split. In B, Al, and Ga the only electron not in a closed shell or subshell has
1, so the ground state of these atoms will be split by the
spin-orbit interaction.
7-50.
En
Z eff2 E1
Z eff n
n2
(Equation 7-25)
En 5.14eV 3 1.84 E1 13.6eV
7-51. (a) Fourteen electrons, so Z = 14. Element is silicon. (b) Twenty electrons, so Z = 20. Element is calcium.
7-52. (a) For a d electron, (b) For an f electron,
2, so Lz 2 , 1 , 0, 1 , 2 3, so Lz 3 , 2 , 1 , 0, 1 , 2 , 3
7-53. Like Na, the following atoms have a single s electron as the outermost shell and their energy level diagrams will be similar to sodium’s: Li, Rb, Ag, Cs, Fr. The following have two s electrons as the outermost shell and will have energy level diagrams similar to mercury: He, Ca, Ti, Cd, Mg, Ba, Ra.
7-54. Group with 2 outer shell electrons: beryllium, magnesium, calcium, nickel, and barium. Group with 1 outer shell electron: lithium, sodium, potassium, chromium, and cesium.
7-55. Similar to H: Li, Rb, Ag, and Fr. Similar to He: Ca, Ti, Cd, Ba, Hg, and Ra.
175
Chapter 7 – Atomic Physics 7-56. n
j
4
0
1/2
4
1
1/2
4
1
3/2
5
0
1/2
3
2
3/2
3
2
5/2
5
1
1/2
5
1
3/2
4
2
3/2
4
2
5/2
6
0
1/2
4
3
5/2
4
3
7/2
Energy is increasing downward in the table.
7-57. Selection rules: 1 j 1, 0 Transition
∆ℓ
∆j
Comment
4S1/2 → 3S1/2
0
0
ℓ - forbidden
4S1/2 → 3P3/2
+1
+1
allowed
4P3/2 → 3S1/2
−1
−1
allowed
4D5/2 → 3P1/2
−1
−2
j – forbidden
4D3/2 → 3P1/2
−1
−1
allowed
4D3/2 → 3S1/2
−2
−1
ℓ - forbidden
5D3/2 → 4S1/2
−2
−1
ℓ - forbidden
5P1/2 → 3S1/2
−1
0
allowed
7-58. (a) E1 13.6eV Z 1 13.6eV 74 1 7.25 104 eV 72.5keV 2
2
(b) E1 exp 69.5keV 13.6eV Z 13.6eV 74 1 2
74 69.5 103 eV / 13.6eV
1/ 2
71.49
74 71.49 2.51
176
2
Chapter 7 – Atomic Physics 7-59.
j 1, 0
no j 0 j 0
(Equation 7-66)
The four states are 2 P3 / 2 , 2 P1 / 2 , 2 D5 / 2 , 2 D3 / 2 Transition
∆ℓ
∆j
Comment
D5/2 → P3/2
−1
−1
allowed
D5/2 → P1/2
−1
−2
j - forbidden
D3/2 → P3/2
−1
0
allowed
D3/2 → P1/2
−1
−1
allowed
7-60. (a) E hc /
E 3P1 / 2 E 3S1 / 2
1240eV nm 2.10eV 589.59nm
E 3P1 / 2 E 3S1 / 2 2.10eV 5.14eV 2.10eV 3.04eV E 3D E 3P1 / 2
1240eV nm 1.52eV 818.33nm
E 3D E 3P1 / 2 1.52eV 3.04eV 1.52eV 1.52eV (b) For 3P :
Z eff 3
3.04eV 1.42 13.6eV
For 3D :
Z eff 3
1.52eV 1.003 13.6eV
(c) The Bohr formula gives the energy of the 3D level quite well, but not the 3P level.
7-61. (a) E gm j B B
(Equation 7-73) where s 1 / 2, 0 gives j 1 / 2 and
(from Equation 7-73) g 2.
m j 1 / 2.
E 2 1 / 2 5.79 105 eV / T 0.55T 3.18 105 eV
The total splitting between the m j 1 / 2 states is 6.37 105 eV . (b) The m j 1 / 2 (spin up) state has the higher energy. (c) E hf f E / h 6.37 105 eV / 4.14 1015 eV s 1.54 1010 Hz This is in the microwave region of the spectrum. 177
Chapter 7 – Atomic Physics
7-62.
E
hc
E
7-63. (a) E
dE hc 2 2 E d hc
e B 5.79 105 eV / T 0.05T 2.90 106 eV 2m
(b)
2 hc
579.07nm 2.90 106 eV 2
E
1240eV nm
7.83 104 nm
(c) The smallest measurable wavelength change is larger than this by the ratio
0.01nm 7.83 104 nm 12.8. The magnetic field would need to be increased by this same factor because B E . The necessary field would be 0.638T.
7-64.
13.6eV Z
2 5.39eV
En 13.6eV Zeff2 n2 E2
2 eff
2
Zeff 2 5.39 13.6
1/ 2
7-65. 100
1 Z a0
1.26
3/ 2
e Zr / a0
* P r 4 r 2 100 100
(Equations 7-30 and 7-31)
(Equation 7-32)
Z 3 Zr / a0 4Z 3 2 2 Zr / a0 4 r e 3 r e a03 a0 2
4Z 3 3 2 Zr / a0 r rP r dr 3 r e dr a0 0 0 3
a0 2Zr 2 Zr / a0 a 3a d 2Zr / a0 0 3! 0 e 4Z 0 a0 4Z 2Z
178
Chapter 7 – Atomic Physics
7-66. (a) E
1
2
: 0 1: 1 E : 0
2I
30E1
E5 = 30E1
20E1
E4 = 20E1
1 2 2 3 1E1 6E1
3 4 4 5 12E1 20E1
5 … 6 … 30E1 …
E3 = 12E1
10E1
E2 = 6E1 2
E1 = 0
/I
E0 = 0
(b) E 1 E
2
1 2 2I
2
1 2 2I
The values of
1
2
I
1 1 E1
0, 1, 2, … yield all the positive integer multiples of E1.
2 2 c 1 2 2 (c) I m p r 2 E1 2 2 I mp r mpc2r 2 2
(d)
2 197.3eV nm
2
938.28 10 eV 0.074nm 6
2
1.52 102 eV
hc 1.24 106 eV nm 8.18 105 m 81.8 m E1 1.52 102 eV
7-67. (a) Fz ms g L B dB / dz (From Equation 7-51) From Newton’s 2nd law, Fz mH az ms g L B dB / dz
az ms g L dB / dz / mH 1 / 2 1 9.27 1024 J / T 600T / m / 1.67 1027 kg 1.67 106 m / s 2
179
Chapter 7 – Atomic Physics (Problem 7-67 continued)
(b) At 14.5km / s v 1.45 104 m / s, the atom takes t1 0.75m / 1.45 104 m / s
5.2 105 s to traverse the magnet. In that time, its z deflection will be:
z1 1 / 2 az t12 1 / 2 1.67 106 m / s 2 5.2 105 s
2
2.26 103 m 2.26mm
Its vz velocity component as it leaves the magnet is vz az t1 and its additional z deflection before reaching the detector 1.25m away will be:
z2 vz t2 az t1 1.25m 1.45 104 m / s
1.67 106 m / s 2 5.2 105 s 1.25 1.45 104 m / s
7.49 103 m 7.49mm
Each line will be deflected z1 z2 9.75mm from the central position and, thus, separated by a total of 19.5mm = 1.95cm.
7-68. min cos1 m
cosmin
or, sin min 1 2
1 with m .
1 . Thus, cos2 min 2
1
1
2
2
1
2
1 1 sin2 min
2 1
1/ 2
1 And, sinmin 1
For large , min is small. 1/ 2
1 Then sinmin min 1
1
1/ 2
7-69. (a) E1 hf hc / 1 1240eV nm / 766.41nm 1.6179eV
E2 hf hc / 2 1240eV nm / 769.90nm 1.6106eV (b) E E1 E2 1.6179eV 1.6106eV 0.0073eV (c) E / 2 gm j B B B
E 0.0073eV 63T 2 gm j B 2 2 1 / 2 5.79 105 eV / T
180
Chapter 7 – Atomic Physics
7-70.
P r
4Z 3 2 2 Zr / a0 re a03
(See Problem 7-65)
For hydrogen, Z = 1 and at the edge of the proton r R0 1015 m. At that point, the exponential factor in P(r) has decreased to: e2 R0 / a0 e
2 1015
0.52910
10
m
e3.7810 1 3.78 105 1 5
Thus, the probability of the electron in the hydrogen ground state being inside the nucleus, to better than four figures, is: r0
4r 2 P r 3 a0
P P r dr 0
R0
4r 2 4 3 3 a0 a0
0
R0
4 r3 r dr 0 a03 3
j j 1 s s 1
7-71. (a) g 1
2 j j 1
For 2 P1 / 2 :
g 1
j 1 / 2,
1
g 1
9.0 1015
1, and s 1 / 2
2 1 / 2 1 / 2 1
j 1 / 2,
3
(Equation 7-73)
1 / 2 1 / 2 1 1 / 2 1 / 2 1 11 1
For 2S1 / 2 :
0
3
4 1015 m 4 R03 3 a0 3 3 0.529 1010 m
R0
2
1
3/ 4 3/ 4 2 2/3 3/ 2
0, and s 1 / 2
1 / 2 1 / 2 1 1 / 2 1 / 2 1 0 2 1 / 2 1 / 2 1
1
3/ 4 3/ 4 2 3/ 2
The 2 P1/ 2 levels shift by: E gm j B B
2 1 1 B B B B 3 2 3
The 2 S1/ 2 levels shift by: 1 E gm j B B 2 B B B B 2
181
(Equation 7-72)
Chapter 7 – Atomic Physics (Problem 7-71 continued) To find the transition energies, tabulate the several possible transitions and the corresponding energy values (let Ep and Es be the B = 0 unsplit energies of the two states.): Transition
Energy
P1 / 2,1 / 2 S1 / 2,1 / 2
1 2 E p 3 B B Es B B E p Es 3 B B
P1 / 2, 1 / 2 S1 / 2,1 / 2
1 4 E p 3 B B Es B B E p Es 3 B B
P1 / 2,1 / 2 S1 / 2, 1 / 2
1 4 E p 3 B B Es B B E p Es 3 B B
P1 / 2, 1 / 2 S1 / 2, 1 / 2
1 2 E p 3 B B Es B B E p Es 3 B B
Thus, there are four different photon energies emitted. The energy or frequency spectrum would appear as below (normal Zeeman spectrum shown for comparison).
anomolous
normal
(b) For 2 P3 / 2 :
g 1
j 3 / 2,
1, and s 1 / 2
3 / 2 3 / 2 1 1 / 2 1 / 2 1 11 1 2 3 / 2 3 / 2 1
1
15 / 4 3 / 4 2 4/3 30 / 4
These levels shift by: E gm j B B
4 1 2 B B B B 3 2 3
182
E
4 3 B B 2 B B 3 2
Chapter 7 – Atomic Physics (Problem 7-71 continued) Tabulating the transitions as before: Transition
Energy
P3 / 2, 3 / 2 S1 / 2,1 / 2
E
P3 / 2, 3 / 2 S1 / 2, 1 / 2
forbidden, m j 2
P3 / 2,1 / 2 S1 / 2,1 / 2
2 1 E p 3 B B Es B B E p Es 3 B B
P3 / 2,1 / 2 S1 / 2, 1 / 2
2 5 E p 3 B B Es B B E p Es 3 B B
P3 / 2, 1 / 2 S1 / 2,1 / 2
2 5 E p 3 B B Es B B E p Es 3 B B
P3 / 2, 1 / 2 S1 / 2, 1 / 2
2 1 E p 3 B B Es B B E p Es 3 B B
P3 / 2, 3 / 2 S1 / 2,1 / 2
forbidden, m j 2
P3 / 2, 3 / 2 S1 / 2, 1 / 2
E
p
2B B Es B B E p Es B B
p
2B B Es B B E p Es B B
There are six different photon energies emitted (two transitions are forbidden); their spectrum looks as below:
anomolous
normal
7-72. (a) Substituting r, into Equation 7-9 and carrying out the indicated operations yields (eventually)
2
2
r, 2 / r 2 1 / 4a02
2
2
r, 2 / r 2 V r, E r,
183
Chapter 7 – Atomic Physics (Problem 7-72 continued) Canceling r, and recalling that r 2 4a02 (because given is for n = 2) we have
1 / 4a v E 2 2
2 0
The circumference of the n = 2 orbit is: C 2 4a0 2 a0 / 4 1 / 2k. Thus,
(b) or
2 2 1 k V E V E 2 2 4 / 4k 2 2
p2 v E and Equation 7-9 is satisfied. 2m 2
r r / a 2 2 0 dx A a0 e 0 cos r sin drd d 1 2
2
2
2 r A e r / a0 r 2 dr cos2 sin d d 1 a 0 0 0 0
2
Integrating (see Problem 7-23),
A2 6a03 2 / 3 2 1
A2 1 / 8a03 A 1 / 8a03
7-73.
g L B L
(Equation 7-43)
(a) The 1s state has The 2p state has
0, so it is unaffected by the external B. 1, so it is split into three levels by the external B.
(b) The 2 p 1s spectral line will be split into three lines by the external B. (c) In Equation 7-43 we replace B with k e / 2mk , so
kz 11 e / 2mk B me / mk
(From Equation 7-45)
Then E B me / mk B
5.79 105 eV / T 0.511 106 MeV / c 2 / 497.7MeV / c2 1.0T 5.94 108 eV
184
Chapter 7 – Atomic Physics (Problem 7-73 continued)
hc
E (From Problem 7-62) where λ for the (unsplit) 2p → 1s transition
is given by
hc Ek and Ek E2 E1 13.6eV mk / me 1 1 / 4 9.93 103 eV and 1240eV nm 9.93 103 eV 0.125nm
and
7-74.
E B
0.125nm 5.94 108 eV 1240eV nm
12
ke2 S L where, for n 3, r a0 n 2 9a0 r 3m mc 2
For 3P states S L E
5.98 10
2
6.58 10 9 0.053nm 0.511 10 eV 2
1.440eV nm 3.00 108 m / s 109 nm / m 3
For 3D states S L
2
6
16
eV s
2
1.60 104 eV
2
/3
E 1.60 104 eV / 3 0.53 104 eV
= B L 2 S
7-75. (a) J = L + S
J
(Equation 7-71)
B L 2 S / L + S B L L 2 S S 3S L J J J
J
B J
L
2
2S 2 3S L
(b) J 2 J J L + S L + S L L + S S + 2 S L S L (c) J
B
(d) Z J
1 2 J L2 S 2 2
3 L2 2S 2 J 2 L2 S 2 B 3J 2 S 2 L2 J 2 2 J
JZ J B 3J 2 S 2 L2 Z B 3J 2 S 2 L2 J 2 J J 2 J
185
Chapter 7 – Atomic Physics (Problem 7-75 continued)
J 2 S 2 L2 J Z B 1 2J 2 (e) E Z B
(Equation 7-69)
j j 1 s s 1 B B 1 2 j j 1 gm j B B
1 mj
(Equation 7-72)
j j 1 s s 1 where g 1 2 j j 1
1
(Equation 7-73)
7-76. The number of steps of size unity between two integers (or half-integers) a and b is b – a. Including both values of a and b, the number of distinct values in this sequence is b – a + 1. For F = I + J, the largest value of f is I + J = b. If I < J, the smallest value of f is J – I = a. The number of different values of f is therefore (I + J) – (J – I) + 1 = 2I + 1. For I > J, the smallest value of f is I – J = a. In that case, the number of different values of f is (I + J) – (I – J) + 1 = 2J + 1. The two expressions are equal if I = J.
7-77. (a) N B
e 5.05 1027 J / T 2m p
2km 2km 2.8 N 2km 2.8 N r3 r3 a03
2 107 H / m 2.8 5.05 1027 J / T
0.529 10
10
m
3
0.0191T
(b) E 2B B 2 5.79 104 eV / T 0.0191T 2.21 106 eV
(c)
hc 1.24 106 eV m 0.561m 56.1cm E 2.21 106 eV
186
Chapter 8 – Statistical Physics 1/ 2
8-1.
(a) vrms
3RT 3 8.31J / mole K 300 K M 2 .0079 103 kg / mole
1930m / s
2 2 1.0079 103 kg / mole 11.2 103 m / s Mvrms (b) T 3R 3 8.31J / mole K
8-2.
8-3.
2
1.01 104 K
2 13.6eV 2 Ek 1.05 105 K 5 3k 3 8.617 10 eV / K
(a) Ek
3 kT 2
(b) Ek
3 3 kT 8.67 105 eV / K 107 K 1.29keV 2 2
T
3RT M
vrms
(a) For O2: vrms (b) For H2: vrms
1/ 2
3 8.31J / K mol 273K 32 103 kg / mol 3 8.31J / K mol 273K 2 103 kg / mol
J / mole K K kg / mole
1/ 2
461m / s
1840m / s
1/ 2
kg m2 / s 2 kg
8-4.
3RT M
8-5.
3 3 (a) EK n RT 1 mole 8.31J / mole K 273 3400 J 2 2
m/ s
(b) One mole of any gas has the same translational energy at the same temperature.
187
Chapter 8 – Statistical Physics
8-6.
v2
v
2
1 2 v n v dv N0 m 2 kT
4
I4
v
2
vrms
8-7.
3 8
1/ 2
m 2 kT
4
v2
m 2 kT
4
3/ 2 v2
v 4e
dv where
m / 2kT
0
3/ 2
I 4 where I 4 is given in Table B1-1.
3 8
5/ 2
3/ 2
3 8
1/ 2
1/ 2
m / 2kT 5/ 2
2kT m
5/ 2
3kT m
3RT mN A
3RT M
3RT M
v
8kT m
8 1.381 10
vm
2kT m
2 1.381 10
n v
4 N m / 2 kT
23
27
1.009u 1.66 10
At the maximum:
23
dn dv
v 2e
27
mv 2 / kT
1/ 2
2220m / s
kg / u
(Equation 8-28)
0
4 N m / 2 kT
0
ve
mv 2 / 2 kT
2510m / s
kg / u
J / K 300 K
1.009u 1.66 10 3/ 2
1/ 2
J / K 300 K
3/ 2
2v v 2
mv / kT e
mv 2 / 2 kT
2 mv 2 / kT
The maximum corresponds to the vanishing of the last factor. (The other two factors give minima at v = 0 and v = ∞.) So 2 mv 2 / kT
188
0 and vm
2kT / m
1/ 2
.
Chapter 8 – Statistical Physics 8-8.
8-9.
n v dv
4 N
dn dv
A v2
A
2mv3 2kT
m 2 kT
2vm 2kT
2v e
3/ 2
v 2e
2v e mv2 / 2 kT
mv 2 / 2 kT
mv2 / 2 kT
dv
(Equation 8-8)
The v for which dn / dv
0 is vm .
0
Because A = constant and the exponential term is only zero for v → ∞, only the quantity in [] can be zero, so or v 2
2kT m
vm
2mv3 2kT 2kT m
2v
0
(Equation 8-9)
8-10. The number of molecules N in 1 liter at 1 atm, 20°C is: N
1 1g mol / 22.4
N A molecules / g mol
Each molecule has, on the average, 3kT/2 kinetic energy, so the total translational kinetic
189
Chapter 8 – Statistical Physics (Problem 8-10 continued) 23 6.02 1023 3 1.381 10 J / K 293K 22.4 2
energy in one liter is: KE
8-11.
n2 n1
g2e g1e
e
T
E2 / kT
g2 e g1
E1 / kT
g2 g1
E2 E1 / kT
E2
163J
E2 E1 / kT
n1 n2
E1 / kT
E2
ln
E1
g2 g1
n1 n2
10.2eV 8.617 10 5 eV / K ln 4 106
k ln g 2 / g1 n1 / n2
7790 K
4 10 3 eV
8-12.
n2 n1
g2 e g1
E2 E1 / kT
3 e 1
8.617 10 5 eV / K 300 K
2.57
8-13. There are two degrees of freedom, therefore,
8-14.
Cv
2 R/2
cv
3R / M
(a) Al: cv (b) Cu: cv (c) Pb: cv
R, C p
R
R
3 1.99cal / mole K 27.0 g / mole 3 1.99cal / mole K 62.5 g / mole 3 1.99cal / mole K 207 g / mole
2 R, and
2R / R
0.221cal / g K
2.
0.215cal / g K
0.0955cal / g K
0.0920cal / g K
0.0288cal / g K
0.0305cal / g K
The values for each element shown in brackets are taken from the Handbook of Chemistry and Physics and apply at 25° C.
190
Chapter 8 – Statistical Physics
8-15.
2 N
n( E )
kT
3/ 2
E1 / 2e
E / kT
dn dE
0
At the maximum:
(Equation 8-13)
2 N kT 1/ 2
E
1 2
E / kT
e
1 E 2
3/ 2
1/ 2
E1 / 2
1 kT
e
E / kT
E / kT
The maximum corresponds to the vanishing of the last factor. (The vanishing of the other two factors corresponds to minima at E = 0 and E = ∞.)
1/ 2 E / kT
0
E 1/ 2kT.
3/ 2
m 4 N 2 kT
8-16. (a) n v
4 N 3/ 2
v 2e
v 2e
v 2 / vm2
n v
v
v 2 m / 2 kT
2kT / m
where vm 2
4N 1 v vm vm N
(Equation 8-8)
3/ 2
m 2kT
4 N v2 e vm3
mv 2 / 2 kT
v / vm
e
2
4N A 1 v vm vm
1.36 1022 v vm 2
(b)
N
1.36 1022 0 e
(c)
N
1.36 1022 1 e
(d)
N
1.36 1022 2 e
(e)
N
1.36 1022 8 e
2
0
2
e
2
v / vm
e
v / vm
2
0.01vm
2
0
1
5.00 1021
2
2
2
8
2
9.96 1020
2
1.369 10
191
4
(or no molecules most of the time)
Chapter 8 – Statistical Physics
mk 2e4 1 2 2 n2
8-17. For hydrogen: En
13.605687 eV using values of the constants accurate n2
to six decimal places. E1
13.605687eV
E2
3.401422eV
E2
E1
10.204265eV
E3
1.511743eV
E3
E1
12.093944eV
(a)
(b)
n2 n1
g2 e g1
n3 n1
g3 e g1
n2 n1
0.01 4e
E2 E1 / kT
E3 E1 / kT
(c)
n3 n1
10.20427 / 0.02586
18 e 2
4e
12.09394 / 0.02586
10.20427 / kT
10.20427 / kT
T
8 e 2
e
ln 0.0025
12.09394 / 8.61734 10
5
19,760
9e
4 10
468
10.20427 / kT
172
9 10
203
0
0
0.0025
5.99146
10.20427eV 5.99146 8.61734 10 5 eV K 9e
395
19, 760 K
0.00742
0.7%
B field
8-18.
m
1
no field
E
m
E
m
hf
0 1
E
ground state
Neglecting the spin, the 3p state is doubly degenerate: levels equally populated. E
hf
hc /
1.8509eV
670.79nm
192
0,1 hence, there are two m = 0
Chapter 8 – Statistical Physics (Problem 8-18 continued) e B 2me
E
2.315 10 4 eV
(a) The fraction of atoms in each m-state relative to the ground state is: (Example 8-2) n1 n
e
1.8511 / 0.02586
n0 n
2 e
n0 n1
e
71.58
e
1.8509 / 0.02586
1.8507 / 0.02586
10 71.57
2e 71.56
e
31.09
8.18 10
2 10
10
31.08
31.08
32
1.64 10
8.30 10
31
32
(b) The brightest line with the B-field “on” will be the transition from the m = 0 level, the center line of the Zeeman spectrum.
With that as the “standard”, the relative
intensities will be: 8.30 / 16.4 / 8.18
N h3 V 2 2 me kT
8-19. (a) e
N V
e
2 2 me kT
(Equation 8-44)
3/ 2
3/ 2
e
h3
2 2 me c 2 kT hc
5.11 105 eV
2
1240eV nm
8-20. (a) e
O2
3/ 2
3/ 2
3
2.585 10 2 eV
1 2
N h3 V 2 MkT
0.51/ 1.00 / 0.50
3
1/ 2
107 nm 1cm
3
2.51 1019 / cm3
(Equation 8-44)
3
hc NA VM 2 Mc 2 kT
3/ 2
6.022 1023 / mole 22.4 103 cm3 / mole
1.24 10 4 eV cm 2
3
32uc 2 931.5 106 eV / u 8.617 10 5 eV / K 273K
1.75 10 7
193
Chapter 8 – Statistical Physics (Problem 8-20 continued) (b) At temperature T, e 7
1.75 10
1
273K
1.75 10
T
7
1.75 10
O2
2/3
3/ 2
/ T 3/ 2
7
273
T 3/ 2
3/ 2
/ T 3/ 2
1.75 10
7
273K
3/ 2
8.5mK
273K
8-21. Assuming the gasses are ideal gases, the pressure is given by: P
2N E for classical, 3 V
FD, and BE particles. PFD will be highest due to the exclusion principle, which, in effect, limits the volume available to each particle so that each strikes the walls more frequently than the classical particles. On the other hand, PBE will be lowest, because the particles tend to be in the same state, which in effect, is like classical particles with a mutual attraction, so they strike the walls less frequently.
1
8-22. (a) f BE
e e
E / kT
1 e
E / 5800 k
1
1 1
For e E / 5800 k
0.35V ,
1 0.35 / kT
1
0.5
0.5
= 0 and f BE
e0.35 / kT
3
0.35eV 8.62 10 5 eV / K T
T
8-23.
h p
ln 2
0.347eV
(b) For E
e
5800 K
2
E 5800 K 8.62 10 5 eV / K
E
1, at T
= 0 and f BE
0.35eV ln 3 8.62 10 5 eV / K
h
h
2m E
2m 3kT / 2
ln 3
3700 K
h 3mkT
1/ 2
The distance between molecules in an ideal gas V / N
194
1/ 3
is found from
Chapter 8 – Statistical Physics (Problem 8-23 continued) PV
nRT
nRT N A N A
and equating this to
V /N
NkT
above, kT / P
1/ 3
kT / P
h
1/ 3
3mkT
h3
kT P
3mkT
3/ 2
2/5
Ph
T
3/ 2
k 3mk
8-24.
N0 N
1
(a) For T
(b) For T
(c) For T
(d) For T
T TC
N0 N
TC / 2
N0 N
TC / 4
N0 N
TC / 8
N0 N
which for small
TC
J s
kg 1.38 10
23
2/5
3
4.4 K
5/ 2
J/K
(Equation 8-52)
3TC / 4
h2 2mk 2
27
34
3/ 2
3/ 2
8-25. For small values of
8-26.
101kPa 6.63 10 3 2 1.67 10
1/ 2
P h3 k 3mk
and solving for T , yields: T 5 / 2
3
1/ 3
,e
1
3T 4TC
1
T 2TC
1
T 4TC
1
T 8TC
1
3/ 2
0.351 3/ 2
0.646 3/ 2
0.875 3/ 2
0.956
2
/ 2!
values becomes: N0 1
2/3
N 2.315 V
(Equation 8-48)
The density of liquid Ne is 1.207 g/cm3, so
195
and N0
1
N0
1 e
1
N0 e
1 or N0
1
1
1
Chapter 8 – Statistical Physics (Problem 8-26 continued)
1.207 g / cm3 6.022 1023 molecules / mol 106 cm2 / m3
N V T
3.601 1028 / m3
20.18 g / mol 34
6.626 10 27
2 20u 1.66 10 20
Thus, TC at which
2
J s
23
kg / u .381 10
2/3
3.601 1028 m3 2 2.315
J /K
0.895K
Ne would become a superfluid is much lower than its freezing
temperature of 24.5K.
8-27. Power per unit area R arriving at Earth is given by the Stefan-Boltzmann law: R is Stefan’s constant. For a 5% decrease in the Sun’s temperature,
where
T4
R 0.95T
R T
0.95T
R T
8-28.
E
T
hf e
hf / kT
(a) For T
10hf / k;
(b) For T
hf / k;
(c) For T
0.1hf / k;
hf hf
kT / 10 kT
hf
E 10kT
According to equipartition E
8-29.
CV e hf / kT
CV
0.95
1
4
4
0.186 , or a decrease of 18.6%.
(Equation 8-60)
1
hf 3N A k kT
4
2
1
1 / 10
e
hf 1
e
1
kT 1.718
1
hf
E
10
e
1
kT / 10 0.1051
0.951kT
0.582kT 10kT 2.20 104
As T
2
, hf / kT gets small and
1 hf / kT
hf 3N A k kT
2
1 hf / kT hf / kT
4.54 10 4 kT
kT in each case.
ehf / kT ehf / kT
hf
E
2
3N A k
The rule of Dulong and Petit.
196
3N A R / N A
3R
T4
Chapter 8 – Statistical Physics
8-30.
CV
3R
2
hf kT
ehf / kT ehf / kT
Writing hf / kT CV
3R Af
1
(Equation 8-62)
2
h / kT
Af where A
e Af
2 2
e Af
CV
3R / e Af
e Af
8-31.
CV
3R
3 8.31
ln
f
hf kT
ehf / kT e
hf / kT
1
3R 1
2
e1 e1 1
2
22.95K / K mol
, so
8.97 1011 Hz
13
2.46 1012 Hz
(Equation 8-62)
2
At the Einstein temperature TE CV
2
(From Figure 8-13)
1 / 2.40 10
13.8
2
13
13.8 J / K mol
For Si, CV 200 K
1 / e Af
(From Figure 8-13)
1 / 2.40 10
20.1
2
ln 3R / CV 1 / A
f
20.1J / K mol
3 8.31
ln
f
Af
0 and e Af dominates Af
3R / CV
For Al, CV 200 K
e
1
Because Af is “large”, 1 / e Af
200 K ,
when T
1
2
eR Af
2e Af
13
2.40 10
hf / k,
3R 0.9207
3 8.31J / K mol 0.9207
5.48cal / K mol
3/ 2
8-32. Rewriting Equation 8-69 as
V
E1 / 2
8mc 2
n E 2
hc
2
e
E EF / kT
1
Set up the equation on a spreadsheet whose initial and final columns are E(eV) and n(E)/V (eV•nm3)-1, respectively.
197
Chapter 8 – Statistical Physics (Problem 8-32 continued) E eV
n E /V
eV nm3
4.5
14.4
4.6
14.6
4.7
14.5
4.8 (=EF)
7.46
4.9
0.306
5
0.0065
5.1
0.00014
1
The graph of these values is below.
From the graph, about 0.37 electrons/nm3 or 3.7 1026 electrons / m3 within 0.1eV below EF have been excited to levels above EF.
198
Chapter 8 – Statistical Physics 8-33. The photon gas has the most states available, since any number of photons may be in the ground state. In contrast, at T = 1K the electron gas’s available states are limited to those within about 2kT
2 8.62 10 5 eV K 1K
1.72 10 4 eV of the Fermi level. All
other states are either filled, hence unavailable, or higher than kT above the Fermi level, hence not accessible.
8-34. From the graph. TE Au TE Be
136 K 575K
TE Al
243K
TE Diamond
off the graph (well over 1000K)
8-35. Approximating the nuclear potential with an infinite square well and ignoring the Coulomb repulsion of the protons, the energy levels for both protons and neutrons are given by En
n2h2
8mL2 and six levels will be occupied in
protons and six levels with 12 neutrons. EF protons
5
2
1240MeV fm
2
8 1.0078u 931.5MeV / u 3.15 fm
199
2
516MeV
22
Ne , five levels with 10
Chapter 8 – Statistical Physics (Problem 8-35 continued) 6
EF neutrons
2
1240 MeV fm
2
8 1.0087u 931.5MeV / u 3.15 fm 3 / 5 EF
E protons
742 MeV
310MeV
3 / 5 EF
E neutrons
2
445MeV
As we will discover in Chapter 11, these estimates are nearly an order of magnitude too large. The number of particles is not a large sample.
8-36.
E1
h 2 / 8mL2 . All 10 bosons can be in this level, so E1 total
8-37. (a) f FD E
1 e
E EF / kT
e
E EF / 0.1EF
e
E EF / 0.5 EF
(Equation 8-68)
1
1
(b) f FD E
1 1
10 E EF / EF
e
1
1
1 1
e
2 E EF / EF
200
1
10h 2 / 8mL2 .
Chapter 8 – Statistical Physics
8-38.
NO N
3/ 2
T Tc
1
N (a) O N
N (b) O N
(Equation 8-52) 3/ 2
1
Tc / 2 Tc
1
Tc / 4 Tc
3/ 2
1
1 2
1
1 4
3/ 2
0.646 3/ 2
0.875
n2 h2
8-39. For a one-dimensional well approximation, En
8mL2 . At the Fermi level EF,
n=N/2, where N = number of electrons. 2
N / 2 h2
EF
2
h2 N 32m L
8mL2
where N / L = number of electrons/unit length,
i.e., the density of electrons. Assuming 1 free electron/Au atom,
N L EF
6.02 1023 electrons / mol 19.32 g / cm3 102 cm / m
1/ 3
NA M
3
197 g / mol 2
6.63 10
34
J s
3.81 109 m
32 9.11 10
31
kg 1.602 10
19
1
1/ 3
3.81 109 m
1
2
1.37eV
J / eV
This is the energy of an electron in the Fermi level above the bottom of the well. Adding the work function to such an electron just removes it from the metal, so the well is
1.37eV
4.8eV
8-40. (a) At T
6.2eV deep.
850 K
v
vrms
vm
8kT m 3kT m
1/ 2
1/ 2
2kT m 4
3 2
/2
2 1.3807 10
23
J / K 850 K
6.94 10
1/ 2
vm
207.5m / s
1/ 2
vm
225.2m / s
201
25
kg
1/ 2
183.9m / s
Chapter 8 – Statistical Physics (Problem 8-40 continued) The times for molecules with each of these speeds to travel across the 10cm diameter of the rotating drum is:
0.10m 183.9m / s
t vm
5.44 10 4 s
t v
0.10m 207.5m / s
4.82 10 4 s
t vrms
0.10m 225.2m / s
4.44 10 4 s
The drum is rotating at 6250rev/min = 104.2rev/s or 9.600 10 3 s / rev. The fraction of a revolution made by the drum while molecules with each of these three speeds are crossing the diameter is:
5.44 10 4 s 9.600 10 3 s / rev
for vm :
0.05667rev
for v :
4.82 10 4 s 9.600 10 3 s / rev
0.05021rev
for vrms :
4.44 10 4 s 9.600 10 3 s / rev
0.04625rev
Assuming that point A is directly opposite the slit s2 when the first (and fastest) molecules enter the drum, molecules with each of the three speeds will strike the plate at the following distances from A: (The circumference of the drum C vm :
0.05667 rev 0.314159m / rev
0.01780m 1.780cm
v :
0.05021rev 0.314159m / rev
0.01577m 1.577cm
vrms :
0.04625rev 0.314159m / rev
0.01453m 1.453cm
0.10 m .)
(b) Correction is necessary because faster molecules in the oven will approach the oven’s exit slit more often than slower molecules, so the speed distribution in the exit beam is slightly skewed toward higher speeds. (c) No. The mean speed of N2 molecules at 850K is 710.5m/s, since they have a smaller mass than Bi2 molecules.
Repeating for them the calculations in part (a),
N2
molecules moving at vm would strike the plate only 0.4cm from A. Molecules moving at v and vrms would be even closer to A.
202
Chapter 8 – Statistical Physics
8-41.
1 m vescape 2
EK ( escape)
0
1 2 3 mv v e 2
0
1 2 mv F v dv 2 mv 2 / 2 kT
v 3e
mv 2 / 2 kT
3
m
dv
1 I5 m 2 I3
dv
0
1 m 2
8-42. (a) f u du 1
(b)
8-43.
Ce
2
/2
E / kT
du
f u du
Ce
Ce
2C
1/ 2
C
kT / A
C
Au 2
vx
2kT
du
du
2C e
/ 2 where
du
A / kT
Au 2 A / kT e
A A / kT 2
1 A A / kT kT / A 2
3/ 2
e
Au 2 / kT
A / kT
Au 2 f u du
1/ 2
m 2kT
where
(from Equation 8-5)
A A / kT 2I 2
m / 2 kT
f vx
2kT m
Au 2 / kT
Au 2 / kT
2CI 0
E
m
mvx2 / 2 kT
/4
Au 2 / kT
du
3/ 2
where
A / kT
1 kT 2
(from Equation 8-6)
vx f vx dvx 0
vx m / 2 kT
1/ 2
e
mvx2 / 2 kT
vx m / 2 kT
dvx 0
2 m / 2 kT
1/ 2
vx e
mvx2 / 2 kT
dvx
0
2 m / 2 kT
1/ 2
I1
with
m / 2kT
203
1/ 2
e
mvx2 / 2 kT
dvx
Chapter 8 – Statistical Physics (Problem 8-43 continued) 1/ 2
2 m / 2 kT
8-44.
1
f FD
e
E EF / kT
E EF / kT
1
f FD
N
1
EF , e
For E
8-45.
1
E / kT
e e
e
e
2kT m
1/ 2
1
1 and
4
EF / kT
e
3/ 2
2me h
V
e
=
E / kT
E1 / 2 e
3
EF kT
where
1
E EF / kT
2kT m
E / kT
1 e e E / kT
dE
fB
(Equation 8-43)
0
Considering the integral, we change the variable: E / kT E
kTu 2 , E1 / 2
E1 / 2 e
E / kT
kT
dE
1/ 2
2 kT
0
u, and dE
3/ 2
u 2e
u2
kT 2u du. So,
du
0
/ 4, so
The value of the integral (from tables) is
N
u 2 , then
e
4
3/ 2
2me
V 2 kT
h3
8-46. (a) N
ni
3/ 2
or e
4
f 0 E0
f1 E1
2 2me kT
3/ 2
Nh3
(with g0
g1
1)
i
Ce0
So, C (b)
E
Ce
N 1 e 0 n0
/ kT
/ kT
/ kT
n1 N
C 1 e
Ce N
/ kT
N e 1 e
/ kT / kT
204
N
e 1 e
/ kT / kT
V
, which is Equation 8-44.
Chapter 8 – Statistical Physics (Problem 8-46 continued) / kT
As T
0,
e
As T
,
e
(c) CV
1/ e
/ kT
1/ e
d N E
dE dT
1 e 2
Nk
kT
/ kT
2
/ kT
e
0, so E
e
/ kT
2
e
/ kT
1 e
/ kT
0
0, so E
/2
/ kT
d N e dT 1 e
dT
N 2 kT 2
/ kT
/ kT
/ kT
1 e
/ kT
2
(d) T
/k
CV
Nk
8-47. (a) p
k
L
2 x
n12
k
2 y
n22
1
k
2 z
0.1
0.25
0.5
1.0
2.0
3.0
0.005
0.28
0.42
0.20
0.06
0.03
1/ 2
n32
1/ 2
n1 L
2
n2 L
N L 205
2
n3 L
2
1/ 2
Chapter 8 – Statistical Physics (Problem 8-47 continued)
E
pc
c N L
(b) Considering the space whose axes are n1, n2 , and n3 . The points in space correspond to all possible integer values of n1, n2 , and n3 , all of which are located in the all positive octant. Each state has unit volume associated with it. Those states between N and N + dN lie in a spherical shell of the octant whose radius is N and whose thickness is dN. Its volume is 1 / 8 4 N 2 dN . Because photons can have two polarizations (spin directions), the number of possible state is 2
1 / 8 4 N 2 dN
N 2 dN .
(c) This number of photon states has energy between E and E+dE, where N
EL / hc.
The density of states g(E) is thus: g E dE
number of photon states at E
dE
number of photon states at N
dN
N 2dN EL
c
8 L3 2
c
2
L
c dE
8 L3
2
3
E dE
hc
3
E 2 dE
The probability that a photon exists in a state is given by:
f BE E
1 e e
E / kT
1 1
e
E / kT
1
(Equation 8-24)
The number of photons with energy between E and E+dE is then:
n E dE
f BE E g E dE
3
L / hc E 2 dE
8
e E / kT
1
(d) The number of photons per unit volume within this energy range is n E dE / L3. Because each photon has energy E, the energy density for photons is:
u E dE
8 E 3dE
3
E n E dE / L
hc
3
e E / kT
1
which is also the density of photons with wavelength between λ and λ+dλ, where 206
Chapter 8 – Statistical Physics (Problem 8-47 continued)
hc / E d
u
E
d dE dE
d
hc / . So, 2
hc dE E2
u E dE
hc
8
dE 3
hc / hc
dE
3
hc /
ehc /
kT
207
hc 2
2
1
d
d
8 hc 3d ehc / kT 1
Chapter 9 – Molecular Structure and Spectra
9-1.
(a) 1
19 23 eV eV 1.609 10 J 6.022 10 molecules 1 molecule molecule eV mole
J 1cal 96472 mole 4.184 J
cal kcal 23057 mole 23.06 mole
eV 23.06kcal / mole (b) Ed 4.27 98.5kcal / mole molecule 1eV / molecule eV 1eV / molecule (c) Ed 106 1.08eV / molecule molecule 96.47kJ / mole
9-2.
Dissociation energy of NaCl is 4.27eV, which is the energy released when the NaCl molecule is formed from neutral Na and Cl atoms. Because this is more than enough energy to dissociate a Cl2 molecule, the reaction is exothermic. The net energy release is 4.27eV – 2.48eV = 1.79eV.
9-3.
From Cs to F: 3.89eV – 3.40eV = 0.49eV From Li to I: 5.39eV – 3.06eV = 2.33eV From Rb to Br: 4.18eV – 3.36eV = 0.82eV
9-4.
Ed U C CsI :
NaF :
LiI :
ke2 Eion r0
ke2 1.440eV nm Eion 3.89eV 3.06eV Ed 3.44eV r0 0.337nm
ke2 1.440eV nm Eion 5.14eV 3.40eV Ed 5.72eV r0 0.193nm
ke2 1.440eV nm Eion 5.39eV 3.06eV Ed 3.72eV r0 0.238nm
While Ed for CsI is very close to the experimental value, the other two are both high. Exclusion principle repulsion was ignored.
209
Chapter 9 – Molecular Structure and Spectra
9-5.
(a) Total potential energy: U r
ke2 Eex Eion r
(Equation 9-1)
ke2 1.44eV nm attractive part of U r0 5.39eV r0 0.267nm
(b) The net ionization energy is:
Eion ionization energy of Rb electron affinity of Cl 4.18eV 3.62eV 0.56eV
Neglecting the exclusion principle repulsion energy Eex ,
dissociation energy U r0 5.39eV 0.56eV 4.83eV (c) Including exclusion principle repulsion,
dissociation energy 4.37eV U r0 5.39eV 0.56eV Eex Eex 5.39eV 4.37eV 0.56eV 0.46eV
9-6.
Uc
ke2 1.440eV nm Eion 4.34eV 3.36eV 4.13eV r0 0.282nm
The dissociation energy is 3.94eV. Ed U c Eex 3.94eV 4.13eV Eex
Eex 0.19eV at r0 0.282nm
9-7.
Eex
A rn
(Equation 9-2)
0.19eV
A
0.282nm
n
At r0 the net force on each ion is zero, so we have (from Example 9-2) U c r0 r0 n
ke2 nA n A n 18.11eV / nm n1 n 0.19eV 2 r0 r0 r0 r0 r0
18.11eV / nm 0.282nm 26.9 27 0.19eV
A Eex r0n 0.19eV 0.282nm 2.73 1016 eV nm27 27
210
Chapter 9 – Molecular Structure and Spectra 9-8.
Ed 3.81eV per molecule of NaBr (from Table 9-2)
1eV / molecule 1eV / molecule 1.609 1019 J / eV
6.02 10
23
molecules / mol / 1cal / 4.186 J 23.0kcal / mol
Ed NaBr 3.81eV / molecule 23.0kcal / mol / 1eV / molecule 87.6kcal / mol
9-9.
For KBr : U C
1.440eV nm 4.34eV 3.36eV 4.13eV 0.282nm
Ed 3.94eV UC Eex 4.13eV Eex Eex 0.19eV For RbCl : U C
1.440eV nm 4.18eV 3.62eV 4.60eV 0.279nm
Ed 4.37eV UC Eex 4.60eV Eex
Eex 0.23eV
9-10.
H 2 S , H 2Te, H3 P, H3Sb
9-11. (a) KCl should exhibit ionic bonding. (b) O2 should exhibit covalent bonding. (c) CH4 should exhibit covalent bonding. 9-12. Dipole moment pionic er0
(Equation 9-3)
1.609 1019 C 0.0917nm 1.47 1020 C nm 109 m / nm 1.47 1029 C m
if the HF molecule were a pure ionic bond. The measured value is 6.64 1029 C m , so
the HF bond is 6.40 1030 C m
1.47 10
211
29
C m 0.44 or 44% ionic.
Chapter 9 – Molecular Structure and Spectra 9-13.
pionic er0 1.609 1019 C 0.2345 109 m
(Equation 9-3)
3.757 1029 C m, if purely ionic. The measured value should be:
pionic measured 0.70 pionic 0.70 3.757 1029 C m 2.630 1029 C m
9-14.
pionic er0 1.609 1019 C 0.193 109 m
(Equation 9-3)
3.09 1029 C m
The measured values is 2.67 1029 C m, so the BaO bond is
2.67 10
29
Cm
3.09 10
29
C m 0.86 or 86% ionic.
9-15. Silicon, germanium, tin, and lead have the same outer shell configuration as carbon. Silicon and germanium have the same hybrid bonding as carbon (their crystal structure is diamond, like carbon); however, tin and lead are metallic bonded. (See Chapter 10.)
9-16.
p = p1 p2 and p 6.46 1030 C m and p p1 cos 52.25 p2 cos 52.25
If bonding were ionic, pionic er0 1.609 1019 C 0.0956 109 m 1.532 1029 C m
p1 actual p / 2 cos 52.25 6.46 1030 C m / 2 cos 52.25 5.276 1030 C m Ionic fraction = fraction of charge transferred =
5.276 1030 C m 0.34 or 34% 1.532 1029 C m
9-17. U k 2 p12 / r 2 (Equation 9-10) (a) Kinetic energy of N2 0.026eV , so when U 0.026eV the bond will be broken.
1.110 0.026eV r
6
1.110
37
37
m C 2 / N 9 109 N m2 / C 2
6.46 10 2
30
Cm
2
r6
6.46 10 J / eV
m C 2 / N 9 109 N m2 / C 2
0.026eV 1.60 10
r 6.7 1010 m 0.67nm
212
19
2
30
Cm
2
8.94 1056 m6
Chapter 9 – Molecular Structure and Spectra (Problem 9-17 continued) (b) U
ke2 1.440eV nm U 0.026eV r 55nm r r
(c) H2O-Ne bonds in the atmosphere would be very unlikely. The individual molecules will, on average, be about 4nm apart, but if a H2O-Ne molecule should form, its U 0.003eV at r 0.95nm , a typical (large) separation. Thus, a N2 molecule with
the average kinetic energy could easily dissociate the H2O-Ne bond. 9-18. (a) E 0.3eV hc / 1240eV nm / 1240eV nm / 0.3eV 4.13 103 nm (b) Infrared (c) The infrared is absorbed causing increased molecular vibrations (heat) long before it gets to the DNA.
9-19. (a) NaCl is polar. The Na+ ion is the positive charge center, the Cl− ion is the negative charge center. (b) O2 is nonpolar. The covalent bond involves no separation of charges, hence no polarization of the molecule.
9-20. For N 2
E0 r 2.48 104 eV
2.48 104 eV 2 I r02
2
/ 2I where I
1 2 mr0 and m 14.0067u 2
2
2
2.48 10
4
eV 14.0067u
2 1.055 1034 J s r0 2.48 104 eV 1.60 1019 J / eV 14.0067u 1.66 1027 kg / u
1.611010 m 0.161nm
213
1/ 2
Chapter 9 – Molecular Structure and Spectra
9-21.
E0 r
E0 r
2
(Equation 9-14) where I
2I 2 2 0
mr
c
197.3eV
2
2 2 0
mc r
16uc 931.5 10 2
9-22. For Co: f 6.42 1013 Hz
EV v 1 / 2 hf
1 2 mr0 for a symmetric molecule. 2
6
nm
eV / uc
2
2
0.121nm
2
1.78 104 eV
(See Example 9-6)
(Equation 9-20)
(a) E1 E0 3hf / 2 hf / 2 hf
4.14 1015 eV s 6.42 1013 Hz
0.27eV
(b)
n1 E E / kT e 1 0 n0 0.01 e
(from Equation 8-2)
0.27 / 8.62105 T
ln 0.01 0.27eV 8.62 105 eV / K T
T
0.27eV
ln 0.01 8.62 105 eV / K
T 680K
9-23. For LiH: f 4.22 1013 Hz
(from Table 9-7)
(a) EV v 1 / 2 hf E0 hf / 2 4.14 1015 eV s 4.22 1013 Hz / 2
E0 0.087eV (b)
(c) f
m1m2 m1 m2
(Equation 9-17)
7.0160u 1.0078u 0.8812u 7.0160u 1.0078u 1 2
K
(Equation 9-21)
214
Chapter 9 – Molecular Structure and Spectra (Problem 9-23 continued)
K 2 f 2 4.22 1013 Hz 0.8812 1.66 1027 kg / u 2
2
K 117 N / m
(d) En n2 h2 8mr02 r02 n2 h2 8mEn r0 h 8mE0
1/ 2
r0
6.63 1034 J s
8 0.8812u 1.66 1027 kg / u 0.087eV 1.60 1019 J / eV
1/ 2
r0 5.19 1011 m 0.052nm
1.0078u 0.504u mm 9-24. (a) For H2: 1 2 m1 m2 2 1.0078u 2
14.0067u 7.0034u 2 14.0067u 2
(b) For N2:
(c) For CO:
12.0111u 15.9994u 6.8607u
(d) For HCl:
9-25. (a)
12.0111u 15.9994u
1.0078u 35.453u 0.980u 1.0078u 35.453u
39.1u 35.45u 18.6u m1m2 m1 m2 39.1u 35.45u
(b) E0 r
2
2I
E0 r r0
(Equation 9-14) I r02 2
2 r02
c
2
2 c 2 r02
c
2 c E
1/ 2
2
V
r 2 0
c
2
2 c 2 EV 197.3eV nm
1/ 2
2 10.6uc 2 931.5 106 eV / uc 2 1.43 105 eV
r0 0.280nm
215
Chapter 9 – Molecular Structure and Spectra
9-26.
1 2
f
K
(Equation 9-21)
(a) For H35Cl: μ = 0.980u and f 8.97 1013 Hz .
K 2 f 2 8.97 1013 Hz 2
2
(b) For K79Br: 2
1 2
K
2
27
kg / u 517 N / m .
39.102u 78.918u 26.147u and f 6.93 1012 Hz m1m2 m1 m2 39.102u 78.918u
K 2 f 2 6.93 1012 Hz
9-27. 1. f
0.980u 1.66 10
2
26.147u 1.66 10 2
27
kg / u 82.3N / m
(Equation 9-21) Solving for the force constant, K (2 f )2
2. The reduced mass of the NO molecule is
mN mO (14.01u)(16.00 u) 7.47 u mN mO 14.01u 16.00 u
3. K (2 5.63 1013 Hz)2 7.47 u 1.66 1027 kg/u 1.55 103 N/m ( Note: This is equivalent to about 8.8 lbs/ft, the force constant of a moderately strong spring.)
9-28.
E0r
2
2I Treating the Br atom as fixed,
I mH r02 1.0078u 1.66 1027 kg / u 0.141nm E0 r
1.055 10
34
J s
2
2
2 1.0078u 1.66 1027 kg / u 0.141nm 109 m / nm 2
1.67 1022 J 1.04 103 eV
E
1 E0r for 0, 1, 2,
(Equation 9-13)
216
2
Chapter 9 – Molecular Structure and Spectra (Problem 9-28 continued) 14
The four lowest states have energies:
E0 0
E
3
12
10
3
eV
10
3
E1 2E0r 2.08 10 eV
8
3
E2 6E0r 6.27 10 eV
2
6
E3 12E0r 12.5 103 eV 4
9-29.
2
1
0
0
E hf where f 1.05 1013 Hz for Li. Approximating the potential (near the bottom)
2 2 with a square well, E 2 1 22 1 2 hf 2 mr0
For Li2: r02
3 2 1 3 2 2 f 4 f
3 1.055 1034 J s r 4 1.05 1013 Hz 6.939u 1.66 1027 kg / u
4.53 1011 m 0.045nm
9-30.
E0 r
2
2I
where I r02
(Equation 9-14)
For K35Cl:
39.102u 34.969u 18.46u
For K37Cl:
39.102u 34.966u 19.00u
39.102u 34.969u 39.102u 34.966u
r0 0.267nm for KCl.
217
1/ 2
Chapter 9 – Molecular Structure and Spectra (Problem 9-30 continued)
E0 r K Cl 35
1.055 10
34
J s
2
2 18.46u 1.66 1027 kg / u 0.267 109 m
2
2.55 1024 J 1.59 105 eV
E0 r K 37Cl
1.055 10
34
J s
2
2 19.00u 1.66 1027 kg / u 0.267 109 m
2
2.48 1024 J 1.55 105 eV E0r 0.04 105 eV
9-31. (a) NaF – ionic
(b) KBr – ionic
(c) N2 – covalent
9-32.
E0,1
1 I
(d) Ne – dipole-dipole
2
2
r02
(a) For NaCl: r0 0.251nm (from Table 9-7)
m Na m
22.9898 34.9689 13.8707u m Na m 35Cl 22.9898 34.9689
E0,1
35
Cl
1.055 10
13.8707u 1.66 10
27
kg / u 0.251 10 m 34
J s
2
9
2
E0,1 7.67 1024 J 4.80 105 eV (b) E0,1 hf f E0,1 / h
7.67 1024 J 6.63 1034 J s
f 1.16 1010 Hz
c / f 3.00 108 m / s 1.16 1010 Hz 0.0259nm 2.59cm
218
Chapter 9 – Molecular Structure and Spectra 9-33. (a) 2400nm E hc / 2400nm
E2 E1 3.80eV
1240eV nm 0.517eV 2400nm
E3 E2 0.500eV
E4 E3 2.9eV
E5 E4 0.30eV
The E3 E2 and E5 E4 transitions can occur. (b) None of these can occur, as a minimum of 3.80eV is needed to excite higher states. (c) 250nm E 1240eV nm 250nm 4.96eV . All transitions noted in (a) can occur. If the temperature is low so only E1 is occupied, states up to E3 can be reached, so the E2 E1 and E3 E2 transitions will occur, as well as E3 E1 . (d) E4 E3 2.9eV hc or 1240eV nm 2.9eV 428nm
E4 E2 3.4eV hc or 1240eV nm 3.4eV 365nm E4 E1 7.2eV hc or 1240eV nm 7.2eV 172nm
9-34.
A21 ehf / kT 1 B21u f
(Equation 9-42)
For the Hα line λ=656.1nm At T = 300K,
hf hc 1240eV nm 73.1 kT kT 656.1nm 8.62 105 eV / K 300 K
ehf / kT 1 e73.1 1 5.5 1031
Spontaneous emission is more probable by a very large factor!
9-35.
n E1
n E0
e E1 / kT E0 / kT i.e., the ratio of the Boltzmann factors. e
For O2: f 4.74 1013 Hz and
E0 hf 2 4.14 1015 eV s 4.74 1013 Hz 2 0.0981eV
E1 3hf 2 0.294eV
At 273K, kT 8.62 105 eV / K 273K 0.0235eV
219
Chapter 9 – Molecular Structure and Spectra (Problem 9-35 continued)
n E1
n E0
e0.0294 / 0.0235 e12.5 4.17 2.4 104 0.0981 / 0.0235 e e
Thus, about 2 of every 10,000 molecules are in the E1 state. Similarly, at 77K,
9-36.
E
n E0
1.4 1013
1 E0r for 0, 1, 2,
Where E0 r E0 r
n E1
2
2I
(Equation 9-13)
and I r02 with m / 2
1.055 10
2 18.99u 1.66 10
27
kg / u 0.14 10 m 34
J s
2
9
2
1.80 1023 J 1.12 104 eV
(a) E0 0 E1 2E0r 2.24 104 eV
E1 E0 2.24 104 eV
E2 6E0r 6.72 104 eV
E2 E1 4.48 104 eV
E3 12E0r 13.4 104 eV
E3 E2 6.72 104 eV
14
3
12
E
10
4
eV
10 8
2
6 4
1 0
2 0
220
Chapter 9 – Molecular Structure and Spectra (Problem 9-36 continued)
E hc hc E
(b) 1
For E1 E0 :
1240eV nm 5.54 106 nm 5.54nm 4 2.24 10 eV
For E2 E1 :
1240eV nm 2.77 106 nm 2.77nm 4.48 104 eV
For E3 E2 :
1240eV nm 1.85 106 nm 1.85nm 4 6.72 10 eV
9-37. (a) 10MW 107 J / s E 107 J / s 1.5 109 s 1.5 102 J (b) For ruby laser: 694.3nm, so the energy/photon is:
E hc 1240eV nm 694.3nm 1.786eV
1.5 10 J Number of photons = 1.786eV 1.60 10 2
19
9-38.
J / eV
5.23 106
4mW 4 103 J / s
E hc
1240eV nm 1.960eV per photon 632.8nm
4 103 J / s 1.28 1016 / s Number of photons = 19 1.960eV 1.60 10 J / eV
9-39. (a) sin 1.22 / D 1.22 600 109 m
10 10 m 7.32 10 2
6
7.32 106 radians
S / R where S diameter of the beam on the moon and R distance to moon.
S R 3.84 108 m 7.32 106 radians 2.81 103 m 2.81km
(b) sin 1.22 600 109 m
1m 7.32 10
7
radians
S R 3.84 108 m 7.32 107 radians 281m
221
Chapter 9 – Molecular Structure and Spectra
9-40. (a)
n E2 n E1
e E2 / kT E E / kT e 2 1 E1 / kT e
At T 297 K,
E2 E1 hc 1240eV nm 420nm 2.95eV
kT 8.61 105 eV / K 297 K 0.0256eV
n E2 n E1 e2.95 / 0.0256 2.5 1021 e115 2 1029 0
(b) Energy emitted = 1.8 1021 2.95eV / photon 5.31 1021 eV 850 J
9-41. (a) Total potential energy: U r
ke2 Eex Eion r
the electrostatic part of U r at r0 is
ke2 1.44eV nm 6.00eV r0 0.24nm
(b) The net ionization energy is:
Eion ionization energy of Na electron affinity of Cl 5.14eV 3.62eV 1.52eV
dissociation energy of NaCl =4.27eV (from Table 9-2)
4.27eV U r0 6.00eV 1.52eV 4.67eV Eex Eex 6.00eV 4.27eV 1.52eV 0.21eV (c) Eex
A rn
(Equation 9-2)
At r0 0.24nm, Eex 0.21eV At r0 0.14nm, U r 0 and Eex At r0 : Eex 0.21eV
A
0.24nm
At r 0.14nm : Eex 8.77eV
n
ke2 Eion 8.77eV r
A 0.21eV 0.24nm A
0.14nm
n
A 8.77eV 0.14nm
Setting the two equations for A equal to each other:
0.24nm n 0.14nm
2
2
0.24 8.77eV 0.14 0.21eV
n 1.71 41.76
222
n
n
Chapter 9 – Molecular Structure and Spectra (Problem 9-41 continued) n log1.71 log 41.76
n log 41.76 log1.71 6.96 A 0.21eV 0.24nm 0.21eV 0.24nm n
9-42. (a)
sin 1.22 / D 1.22 694.3 109 m
6.96
1.02 105 eV nm6.96
0.01m 8.47 10
5
8.47 105 radians (b) E photon hc / 1240eV nm / 694.3nm 1.786eV / photon For 1018 photons / s :
Etotal 1.786eV / photon 1.602 1019 J / eV 1018 photons / s
0.286 J / s 0.286W
Area of spot A is: A d 2 / 4 8.47cm / 4 2
2 and E Etotal / A 0.286W / 8.47cm / 4 5.08 103W / cm2
9-43. (a) U att
ke2 1.440eV nm 5.39eV r 0.267nm
(b) To form K and Cl requires Eion 4.34eV 3.61eV 0.73eV
ke2 Ed U C Eion 5.39eV 0.73eV 4.66eV r (c) Eex 4.66eV 4.43eV 0.23eV at r0
9-44.
E0 r
2
2I
where I r02 with r0 0.267nm and
39.102u 35.453u 18.594u m1m2 m1 m2 39.102u 35.453u
E0 r
1.055 10
2 18.594u 1.66 10
27
kg / u 0.267 10 m 34
J s
2
9
223
2
2.53 1024 J 1.58 105 eV
Chapter 9 – Molecular Structure and Spectra
9-45. (a) Ed
kp1 where p1 qa, being the separation of the charges q and q of the dipole x3
(b) U p E and p E p = E So the individual dipole moment of a nonpolar molecule in the field produced by p1 is p2 Ed kp1 x3 and U p2 Ed kp1 x6 2
Fx
dU d k 2 p12 dx dx
x6 6 k 2 p12 x7
9-46. 1. The energies E of the vibrational levels are given by Equation 9-20: 1 E ( )hf for 0, 1, 2, 3, 2 The frequencies are found from Equation 9-21 and requires first that the reduced mass
for each of the molecules be found using Equation 9-17. mH mH (1.01u)(1.01u) 0.51u 2 mH mH 1.01u 1.01u HD 0.67 u
H Similarly,
D 1.01u 2
2. The vibrational frequencies for the molecules are then: f H2
Similarly,
1 2
K
H
2
1 2
580 N/m 1.32 1014 Hz 27 (0.51u)(1.66 10 kg/u)
f HD 1.15 1014 Hz f D2 9.36 1013 Hz
3. The energies of the four lowest vibrational levels are then: For H 2 : 1 1 hf H2 (6.63 1034 J s)(1.32 1014 Hz) 4.38 1020 J 2 2 4.38 1020 J E0 0.27 eV 1.60 1019 J/eV E0
224
Chapter 9 – Molecular Structure and Spectra (Problem 9-46 continued) E1 0.82 eV
Similarly,
E2 1.37 eV E3 1.91eV
For HD: 1 1 hf HD (6.63 1034 J s)(1.15 1014 Hz) 3.811020 J 2 2 3.811020 J E0 0.24 eV 1.60 1019 J/eV And again similarly, E1 0.72 eV E0
E2 1.19 eV E3 1.67 eV
For D 2 : 1 1 E0 hf D2 (6.63 1034 J s)(9.36 1013 Hz) 3.10 1020 J 2 2 3.10 1020 J E0 0.19 eV 1.60 1019 J/eV And once again similarly, E1 0.58eV E2 0.97 eV E3 1.36 eV 4. There are three transitions for each molecule:
3 2; 2 1; 1 0 For H 2 : E hf hc / hc / E 1240eV nm / E eV E E 3 E 2 (1.91 1.37)eV 0.54eV 32 1240eV nm / 0.54eV 2.30 103 nm Similarly,
21 2.25 103 nm 10 2.25 103 nm
For HD:
E E 3 E 2 (1.67 1.19)eV 0.48eV 32 1240eV nm / 0.48eV 2.58 103 nm
225
Chapter 9 – Molecular Structure and Spectra (Problem 9-46 continued)
21 2.64 103 nm
And again similarly,
10 2.58 103 nm
For D 2 :
E E 3 E 2 (1.36 0.97)eV 0.39eV 32 1240eV nm / 0.39eV 3.18 103 nm And once again similarly,
21 3.18 103 nm 10 3.18 103 nm
9-47. (a) E3 hc 1240eV nm 0.86mm 106 nm / mm 1.44 103 eV
1240eV nm 2.59mm 10 nm / mm 4.79 10
E2 1240eV nm 1.29mm 106 nm / mm 9.61 104 eV E1
6
4
eV
These are vibrational states, because they are equally spaced. Note the v 0 state at the ½ level spacing.
18
v3
16 14
v2
12
Ev 104 eV
10
v 1
8 6 4
v0
2 0
226
Chapter 9 – Molecular Structure and Spectra (Problem 9-47 continued) (b) Approximating the potential with a square well (at the bottom), E1 4.79 104 eV n 2
2
2
2 mr02
2 22 12 2 1.055 1034 J s r0 2 28.01u 1.66 1027 kg / u 4.79 104 eV 1.60 1019 J / eV
1/ 2
2.15 1010 m 0.215nm
9-48. Using the NaCl potential energy versus separation graph in Figure 9-23(b) as an example (or you can plot one using Equation 9-1): The vibrational frequency for NaCl is 1.14 1013 Hz (from Table 9-7) and two vibrational levels, for example v = 0 and v = 10 yield (from Equation 9-20)
E0 1 / 2hf 0.0236eV
E10 11 / 2hf 0.496eV
above the bottom of the well. Clearly, the average separation for v10 > v0.
2
9-49. (a) E0 r
2 r02
E0 r
E
where r0 0.128nm for HCl and
1.0079u 35.453u 0.980u m1m2 m1 m2 1.0079u 35.453u
1.055 10
2 0.980u 1.66 10
E0 0
27
34
J s
2
9
kg / u 0.128 10 m
2
2.089 1022 J 1.303 103 eV
1 E0 r E1 2E0r 2.606 103 eV
E01 E1 E0 2.606 103 eV
f 01 E01 h
E2 6E0r 7.82 103 eV E12 E2 E1 5.214 103 eV
2.606 103 eV 0.630 1012 Hz 4.136 1015 eV s
227
Chapter 9 – Molecular Structure and Spectra (Problem 9-49 continued)
f12 E12 h
5.214 103 eV 1.26 1012 Hz 4.136 1015 eV s
f01 f f01 6.884 1014 Hz 0.63 1012 6.890 1014 Hz; 6.878 1014 Hz
01 c f01 435.5nm; 436.2nm f02 f f02 6.884 1014 Hz 1.26 1012 6.897 1014 Hz; 6.871 1014 Hz
02 c f02 435.0nm; 436.6nm (b) From Figure 9-29: f01 0.6 1012 Hz and f12 1.2 1012 Hz The agreement is very good!
Ev v 1 / 2 hf
9-50. (a) Li2 :
E1 3 / 2 4.14 1015 eV s 1.05 1013 Hz 0.0652eV 6.52 102 eV
E
1 E0 r
E1 2 8.39 105 eV 1.68 104 eV
(b) K 79 Br :
Ev v 1 / 2 hf
E1 3 / 2 4.14 1015 eV s 6.93 1012 Hz 4.30 102 eV
E
1 E0 r
E1 2 9.1 106 eV 1.8 105 eV
9-51.
HCl 0.980u
(See solution to Problem 9-49)
From Figure 9-29, the center of the gap is the characteristic oscillation frequency f : f 8.65 1013 Hz E 0.36eV
K 2 8.65 1013 Hz 2
Thus, f
0.980u 1.66 10 2
228
27
1 2
K
or K 2 f
kg / u 480 N / m
2
Chapter 9 – Molecular Structure and Spectra 9-52.
n En
g En e
En / kT
694.3nm
21
E2
E2
E1
hc
1.7860eV
E1
1240eV nm 694.3nm
21
0.0036eV
1.7860eV
1.7896eV
Where E2 is the lower energy level of the doublet and E2 is the upper. Let T = 300K, so kT = 0.0259eV. (a)
n E2
g E2
n E1
g E1
n E2
1 e 2
n E1
1.7896 / 0.0259
(b) If only E2
2 e 4
E2 E1 / kT
e
1.7896 / 0.0259
5.64 10
1 e 2
69
4.91 10
31
31
E1 transitions produce lasing, but E2 and E2 are essentially equally
populated, in order for population inversion between levels E2 and E1 , at least 2/3 rather than 1/2) of the atoms must be pumped. The required power density (see Example 9-8) is:
p
9-53. (a) Ev
so I (c) I
h/ 4
r 2 , where
mH mCl mH mCl
(Equation 9-20)
E 2
J s 4.32 1014 Hz
3 3 10 s
hf / 2
1,
34 3
v 1 / 2 hf
For v = 0, E0 (b) For
2 2 1019 cm3 6.63 10
2 N hf 3 ts
f
6.63 10 2
/I
34
J s 8.66 1013 Hz / 2
h f
6.63 10 34 J s 4 2 6 1011 Hz
2.8 10
is given by Equation 9-17.
0.973u
r
0.132nm
229
47
kg m 2
0.179eV
1273W / cm3
Chapter 9 – Molecular Structure and Spectra
9-54. (a)
dU dr
U0
12a12 r
For Umin,
dU / dr
(b) For U
U min ,
r
13
6a 6 r
2
0, so
12a12 r
a then U min
(c) From Figure 9-8(b): r0
7
6
U0
12a6 a a
0
12
0.074nm ( a )
2 U0
r a a
6
a
6
1 2 U0 32.8eV
6
r / r0
r0 / r
0.85
7.03
−5.30
+56.7
0.90
3.5
−3.8
−9.8
0.95
1.85
−2.72
−28.5
1.00
1
−2.0
−32.8
1.05
0.56
−1.5
−30.8
1.10
0.32
−1.12
−26.2
1.15
0.19
−0.86
−22.0
1.20
0.11
−0.66
−18.0
2 r0 / r
230
a
6
(d) 12
r
U
U0
Chapter 9 – Molecular Structure and Spectra
ke2 r
9-55. (a) U r
Eex
Eion
(Equation 9-1)
4.27eV and r0
For NaCl, Ed Eion Na
Eaff Cl
Eex
4.27
ke2 1.52 0.236
Ar
n
0.31eV
0.31eV
9-56. For H
4.27eV
0.31eV
ke2 r02
25.85eV / nm
n A r0 r0n
25.85eV / nm 0.236nm / 0.31eV
Solving for n: n
Ed
(Equation 9-2)
Following Example 9-2,
A
(Table 9-1).
5.14 3.62 1.52eV and U r0
Eion
(b) Eex
0.236nm
0.236nm
H system, U r
20
8.9 10
ke2 r
14
n 0.31eV r0 19.7
20
eV nm20
Eion
There is no Eex term, the two electrons of H are in the n = 1 shell with opposite spins.
Eion
ionization energy for H
electron affinity for H = 13.6eV
1.440eV nm 12.85eV r
U r
dU r dr
For U r to have a minimum and the ionic H
0.75eV
12.85eV .
1.440 r2 H molecule to be bound, dU / dr
As we see from the derivative, there is no non-zero or finite value of r for which this occurs.
9-57. (a)
u 35
u 37
35
1.007825u 34.968851u
0.979593u
1.007825u 34.968851u 1.007825u 36.965898u
0.981077u
1.007825u 36.965898u 1.52 10
3
(b) The energy of a transition from one rotational state to another is:
231
0.
Chapter 9 – Molecular Structure and Spectra (Problem 9-57 continued)
E,
2
1
f
hf
(Equation 9-15)
1 h2
hI f
4
2
4
2
1 h
2 0
h r
2
2
r
1 h
r02
f f
4
1.53 10
r02
1
2 0
1 h 4
2
4
1 h
df d
f f
(c)
/I
1
1
3
2
1
r02
from part (b). In Figure 9-29 the
f between the 35Cl
lines (the taller ones) and the 37Cl lines is of the order of 0.01 1013 Hz, so f / f
9-58. (a) For CO : I
r02
m1m2 m1 m2
0.113
6.861u 1.66 10 2
E0 r
r0
0.0012, about 20% smaller than
2I
(b) E
1.055 10
34
2 1.454 10
46
27
J s
0
E1
2E0r
4.78 10 4 eV
E2
6E0r
1.43 10 3 eV
E3
12E0r
2.87 10 3 eV
E4
20E0r
4.78 10 3 eV
E5
30E0r
7.17 10 3 eV
12.0112u 15.9994u 12.0112u 15.9994u
kg / u 0.113 10
9
2
1.454 10
46
2
kg m
2
3.827 10
1 E0 r
E0
/ .
232
23
J
2.39 10 4 eV
6.861u kg m2
Chapter 9 – Molecular Structure and Spectra (Problem 9-58 continued) (c) (See diagram) E54
7.17 4.78
10 3 eV
2.39 10 3 eV
E43
4.78 2.87
10 3 eV
1.91 10 3 eV
E32
2.87 1.43
10 3 eV
1.44 10 3 eV
E21
1.43 0.48
10 3 eV
0.95 10 3 eV
E10
4.78 10 4 eV
8 7
5
6
Ev
10 3 eV
5
4
4 3
3
2
2 1
1 0
0
hc / E
(d) 54
43
32
21
10
1240eV nm 2.39 10 3 eV
5.19 105 nm
0.519mm
1240eV nm 1.91 10 3 eV
6.49 105 nm
0.649mm
1240eV nm 1.44 10 3 eV
8.61 105 nm
0.861mm
1240eV nm 0.95 10 3 eV
13.05 105 nm 1.31mm
1240eV nm 4.78 10 4 eV
25.9 105 nm
2.59mm
All of these are in the microwave region of the electromagnetic spectrum.
233
Chapter 9 – Molecular Structure and Spectra
n 1, v 1,
#2
9-59.
1
# 3 n 1, v #1 n 1, v
0,
0
(a) E 1
1 hf H 2 2
1 E0 r
E 2
3 hf H 2 2
2 E0 r since
1
E 3
1 hf H 2 2
6 E0 r since
2
1 hf H since 2 2
A
E 2
E 1
3 hf H 2 2
2 E0 r
B
E 2
E 3
3 hf H 2 2
2 E0 r
Re-writing [A] and [B] with E0r A1
hf H 2
B1
hf H 2
2
2
0
1 hf H 2 2
h 1.356 1014 Hz
1 hf H 2 2 2
6 E0 r
h 1.246 1014 Hz
/ 2I :
h 1.356 1014 Hz
I 2
0,
I
h 1.246 1014 Hz
Subtracting [B1] from [A1] and cancelling an h from each term gives: 3h 4
I
2
2
4
3h 0.110 1014 Hz
2 0
(b) I
r
r0
I/
r0
0.110 1014 Hz
I
4.58 10
4.58 10
7.40 10 11 m
kg m2
1.007825
For H 2 : 1/ 2
48
2
2 1.007825 48
kg m2
0.503912u
0.5039u 1.66 10
27
kg / u
1/ 2
0.0740nm in agreement with Table 9-7.
Canceling an h from [B1] and substituting the value of I from (a) gives: 2
I 1.246 1014 Hz
f H2
2h 4
f H2
1.32 1014 Hz also in agreement with Table 9-7.
234
2
Chapter 10 – Solid State Physics 10-1. U r0
ke2 1 1 r0 n
(Equation 10-6)
ke2 1 E U r0 1 r0 n
1
1 Ed r0 741kJ / mol 0.257nm 1eV / ion pair 0.7844 n ke2 1.7476 1.44eV nm 96.47kJ / mol n
1 4.64 1 0.7844
10-2. The molar volume is
M
2 N A r03
M 74.55 g / mole r0 23 3 2 N A 2 6.022 10 / mole 1.984 g / cm
10-3. The molar volume is
M
1/ 3
3.15 108 cm 0.315nm
2 N A r03
M 42.4 g / mole 3 23 2 N A r0 2 6.022 10 / mole 0.257 107 cm
10-4. (a) U att
ke2 r0
(Equation 10-1)
ke2 1 1 (b) Ed U r0 r0 n
3
2.07 g / cm3
(Equation 10-6)
1 8.01eV 1 7.12eV / ion pair 9
96.47kJ / mol 1cal 7.12eV / ion pair 164kcal / mole 1eV / ion pair 4 / 186 J
235
Chapter 10 – Solid State Physics (Problem 10-4 continued) (c) 1
1 Ed r0 165.5kcal / mol 0.314nm 4.186 J 1eV / ion pair 0.8960 n ke2 1.7476 1.44eV nm 1cal 96.47kJ / mol
Therefore, n
1 9.62 1 0.8960
10-5. Cohesive energy (LiBr) 1mol 1eV = 788 103 J / mol 8.182ev / ion pair 23 19 6.02 10 ion pairs 1.60 10 4.09eV / atom
This is about 32% larger than the value in Table 10-1.
10-6. Molecular weight Na = 22.990 Molecular weight Cl = 35.453
the NaCl molecule is by weight 0.3934 Na and 0.6066 Cl. Since the density of NaCl = 2.16 g/cm3, then
mol of Na / cm3 0.3934 2.16 g / cm3
2.990g / mol 0.03696 mol / cm
3
mol of Cl / cm3 0.03696 mol / cm3 , also since there is one ion of each element per molecule. Number of Na ions / cm3 0.03696 N A Number of Cl ions / cm3 0.03696 N A
Total number of ions / cm3 0.07392 6.022 1023 4.45 1022 Nearest neighbor distance = equilibrium separation r0 .
1 r0 4.45 1022 ions / cm3 102 cm / m
3
1/ 3
236
2.88 1010 m 0.288nm
Chapter 10 – Solid State Physics 10-7.
r0 KCl 0.315nm 3.15 1010 m
N ions / m3 1 / r03 3.20 1028 / m3 3.20 1022 / cm3
Half of the ions in 1cm3 are K and half are Cl , so there are 1.60 1022 / cm3 of each element. This number of ions equals: 1.60 1022 ions 1.60 1022 ions 0.02657 mol NA 6.022 1023 / mol
This is the moles of each ion in 1 cm3. Molecular weight of K = 39.102 g/mol. Molecular weight of Cl = 35.453 g/mol.
Weight of Cl/cm3 = 35.453g / mol 0.02657mol / cm 0.942 g / cm Weight of K/cm3 = 39.102 g / mol 0.02657mol / cm3 1.039 g / cm3 3
3
density of KCl 1.039 0.942 g / cm3 1.98 g / cm3
10-8. (a)
8.0 7.0
Cohesive Energy (eV)
6.0 5.0 4.0 3.0 2.0 1.0 500
1000
1500
2000
2500
Melting point, K
(b) Noting that the melting points are in kelvins on the graph, Co melting point = 1768 K, cohesive energy = 5.15 eV Ag melting point = 1235 K, cohesive energy = 3.65 eV Na melting point = 371 K, cohesive energy = 1.25 eV
237
Chapter 10 – Solid State Physics 2 2 2 2 2 2 10-9. U att ke2 a 2a 3a 4a 5a 6a
2 1 2 1 U att ke2 2 1 3 3 5 3
The quantity in parentheses is the Madelung constant α. The 35th term of the series (2/35) is approximately 1% of the total, where α = 4.18.
10-10. (a)
(b)
me v ne2
(Equation 10-13)
9.1110
8.47 10
28
electrons / m 1.60 10
1/ 2
100 K 300 K
100 300
19
2
9
7
m
(from Equation 10-9) 1/ 2
100
1.23 10 C 0.4 10 m
kg 1.17 105 m / s 3
v kT / me v
31
1 3
3 7.00 108 m
4 103 A I I 10-11. (a) j A d 2 / 4 1.63 103 m
2
479 A / m3
(from Equation 10-10)
I d 479 A / m2 3.53 108 m / s (b) vd 28 3 19 Ane ne 8.47 10 / m 1.602 10 C
3.53 106 cm / s
10-12. (a) There are na conduction electrons per unit volume, each occupying a sphere of
volume 4 rs3 3 : na 4 rs3 / 3 1 rs3
3 4 na
rs 3 / 4 na
1/ 3
238
Chapter 10 – Solid State Physics (Problem 10-12 continued)
3 (b) rs 4 8.47 1028 / m3
1/ 3
1.41 1010 m 0.141nm
10-13. (a) n N A / M for 1 electron/atom
10.5g / cm 6.022 10 n 3
23
/ mole
107.9 g / mole
19.3g / cm 6.022 10 n 3
(b)
23
/ mole
196.97 g / mole
5.86 10
5.90 10
22
22
/ cm3
/ cm3
Both agree with the values given in Table 10-3.
10-14. (a) n 2 N A / M for two free electrons/atom
2 1.74 g / cm3 6.022 1023 / mole
n
24.31g / mole
2 7.1g / cm3 6.022 1023 / mole
(b) n
65.37 g / mole
8.62 10
13.110
22
22
/ cm3 8.62 1028 / m3
/ cm3 13.1 1028 / m3
Both are in good agreement with the values in Table 10-3, 8.61 1028 / m3 for Mg and 13.2 1028 / m3 for Zn.
10-15. (a)
me v ne2
(Equation 10-13)
1
ne2 me v
(Equation 10-13)
9.1110 kg 1.08 10 m / s 1.22 10 8 . 47 10 m 1 . 602 10 C 0 . 37 10 m 31
28
1
3
5
19
2
1 1 8.17 106 m 7 1.22 10 m
239
9
7
m
Chapter 10 – Solid State Physics (Problem 10-15 continued)
(b)
v
8kT me
(Equation 10-9)
200K 300K v 200K
v 300K
300K 200K / 300K
1/ 2
1.22 107 m 200 K / 300K
200 K
1/ 2
1 1 1 1.00 107 m 8 200 K 9.96 10 m
(c) 100K 300K v 100K
v 300K
1.22 107 m 100K / 300K
100 K
10-16. E
3 EF 5
9.96 108 m
1/ 2
7.04 108 m
1 1 1 1.42 107 m 8 100 K 7.04 10 m
(Equation 10-22)
(a) for Cu:
E
3 7.06eV 4.24eV 5
(b) for Li:
E
3 4.77eV 2.86eV 5
EF
hc
2
N 3 2 2mc 8 V V
1240eV
2/3
3 2 28 3 nm 3 5.90 10 m 109 m 8 2 5.11 105 eV 1nm
240
1/ 3
5.53eV
Chapter 10 – Solid State Physics 10-17. A long, thin wire can be considered one-dimensional.
hc N h2 N EF 32m L 32mc 2 L 2
2
2
For Mg: N / L 8.61 1028 / m2
1/ 3
1240eV nm 10 m / nm 8.61 10 32 0.511 10 eV 2
9
EF
(Equation 10-15)
28
/ m3
2/3
1.87eV
6
10-18. (a) For Ag: h 2 3N EF 2m 8 V
2/3
1240eV nm 10 m / nm 2 0.511 10 eV 9 6
2
3 5.86 1028 m3 8
2/3
5.50eV
For Fe: Similarly, EF 11.2eV (b) For Ag: EF kTF TF
(Equation 10-23)
EF 5.50eV 6.38 104 K k 8.617 105 eV / K
For Fe: Similarly, TF 13.0 104 K Both results are in close agreement with the values given in Table 10-3.
10-19. Note from Figure 10-11 that most of the excited electrons are within about 2kT above the Fermi energy EF , i.e., E 2kT . Note, too, that kT
EF , so the number N of excited
electrons is: N N EF n EF E N EF 1 / 2 2kT N EF kT and 8 V 2m N 3 h2
3/ 2
EF3 / 2
(from Equation 10-20)
Differentiating Equation 10-19 gives: N EF
V 8m
N 2 Then, N 8 V 3
3/ 2
1/ 2 EF kT 3 h kT EF 3/ 2 2 2m 3/ 2 2 EF h 2
241
V 8m 2 h2
3/ 2
EF1/ 2
Chapter 10 – Solid State Physics (Problem 10-19 continued) EF for Ag 5.35eV , so
1/ 2
2E 10-20. uF F me
N 3 8.617 105 eV / K 300 K 5.53eV 0.0070 0.1% 2 N
1/ 2
2E c F2 me c
(Equation 10-24)
2 3.26eV (a) for Na: uF 3.00 10 m / s 5 5.11 10 eV
8
1/ 2
1.07 106 m / s
2 5.55eV (b) for Au: uF 3.00 10 m / s 5 5.11 10 eV
8
2 10.3eV (c) for Sn: uF 3.00 10 m / s 5 5.11 10 eV
10-21.
meuF ne2
8
(Equation 10-25)
1/ 2
1.40 106 m / s
1/ 2
1.90 106 m / s
meuF ne2
9.11 10 kg 1.07 10 m / s (a) for Na: 2.65 10 m 1.609 10 C 4.2 10 31
28
3
6
19
2
8
m
3.42 108 m 34.2nm
9.11 10 kg 1.40 10 m / s (b) for Au: 5.90 10 m 1.609 10 C 2.04 10 31
28
3
6
19
2
8
m
4.14 108 m 41.4nm
9.1110 kg 1.90 10 m / s 14.8 10 m 1.609 10 C 10.6 10 31
(c) for Sn:
28
3
6
19
4.31 108 m 43.1nm
242
2
8
m
Chapter 10 – Solid State Physics 10-22. Cv electrons
2
Cv electrons
2
assuming T
T
2
2
R
T TF
R
kT because EF kTF . EF
(Equation 10-30)
TE (rule of Dulong and Petit):
0.10 3 2 EF
k 2
0.60 7.06eV
8.617 10 eV / K 5
2
Cv due to the lattice vibrations is 3R,
2 2
R
kT 0.10 3R EF
4.98 103 K
This temperature is much higher than the Einstein temperature for a metal such as copper.
10-23. U
kT 3 NEF N kT 5 EF
(Equation 10-29)
kT 3 Average energy/electron = U N EF 5 EF
3 2 kT kT E F 5 4 EF
2
For copper: E 7.06eV , so At T = 0K: U N
3 7.06eV 4.236eV 5
5 3 2 8.61 10 eV / K At T = 300K: U N 7.06eV 5 4 7.06
300K 2
2
4.236eV
The average energy/electron at 300K is only 0.0002eV larger than at 0K, a consequence of the fact that 300K is very small compared to the TF for Cu (81,600K). The classical value of U N 3 / 2 kT 0.039eV , is far too small.
10-24. Cv electrons
2 2
R
T TF
(Equation 10-30)
Melting temperature of Fe = 1811K (from Table 10-1) TF for Fe 13 104 K (from Table 10-3)
The maximum Cv for the Fe electrons, which is just before Fe melts, is:
243
Chapter 10 – Solid State Physics (Problem 10-24 continued)
Cv electrons
2
1811K R 0.0219 R 2 13 104 K
The heat capacity of solids, including Fe, is 3R (rule of Dulong and Petit, see Section 8-1). Cv electrons
Cv
10-25. P
M B kT
9.285 10 P 1.38 10
24
23
10-26.
0.0291R 0.0073 3R
0 M
B
J /T
(Equation 10-35)
2.0T 6.7 10
J / K 200 K
3
0 2 kT 2
N 1 J 1
units 2 3 A m T J
NJ 2 NJ NJ NJA2 m2 A2 m3T 2 J A2 m3 Wb / m 2 A2 m3 N / Am 2 A2 m3 N 2
J Nm 1 dimensionless Nm Nm
10-27. E hc (a) For Si: hc E 1240eV nm 1.14eV 1.088 103 nm 1.09 106 m 1.09 103 nm (b) For Ge: Similarly, 1.722 103 nm 1.72 106 m 1.72 103 nm (c) For diamond: Similarly, 1.77 102 nm 1.72 107 m
10-28. (a) For Ge: All visible light frequencies (wavelengths) can excite electrons across the 0.72eV band gap, being absorbed in the process. No visible light will be transmitted through the crystal.
244
Chapter 10 – Solid State Physics (Problem 10-28 continued) (b) For insulator: No visible light will be absorbed by the crystal since no visible frequencies can excite electrons across the 3.6eV band gap. The crystal will be transparent to visible light. (c) Visible light wavelengths are 380-720nm corresponding to photon energies E hf hc / 1240eV nm /
380nm E 3.3eV 720nm E 1.7eV Visible light photons will be absorbed, exciting electrons for band gaps 3.3eV .
10-29. (a) E hc 1240eV nm 3.35 m 103 nm / m 0.37eV (b) E kT 0.37eV T 0.37eV / k 0.37eV / 8.617 105 eV / K 4300K
2.33g / cm3 100nm 107 cm / nm mN A VN A 10-30. (a) N M M 28 g / mol
6.02 10 3
23
/ mol
5.01107 Si atoms
(b) E 13eV 4 5.01 107 6.5 108 eV
2
1 ke2 m 1 10-31. (a) E1 2 2 2 1
(Equation 10-43)
2
9 109 N m2 / C 2 1.60 1019 C 2 31 1 0.2 9.11 10 kg E1 2 2 2 11.8 1.055 1034 J s
3.12 1021 J 0.0195eV
Ionization energy = 0.0195eV (b)
r1 a0 1 me m 2
(Equation 10-44)
0.0529nm 1 / 0.2 11.8 3.12nm
(c) Eg ( Si ) 1.11eV at 293K
245
Chapter 10 – Solid State Physics (Problem 10-31 continued) E1 / Eg 0.0195 / 1.11 0.0176 or about 2%.
2
1 ke2 m 1 10-32. (a) E1 2 2 2 1
(Equation 10-43)
2
9 109 N m2 / C 2 1.60 1019 C 2 0.34 9.11 1031 kg 1 E1 2 2 2 15.9 1.055 1034 J s
2.92 1021 J 0.0182eV
(b)
r1 a0 1 me m 2
(Equation 10-44)
0.0529nm 1 / 0.34 15.9 2.48nm
10-33. Electron configuration of Si: 1s 2 2s 2 2 p6 3s 2 3 p 2 (a) Al has a 3s 2 3 p configuration outside the closed n = 2 shell (3 electrons), so a p-type semiconductor will result. (b) P has a 3s 2 3 p3 configuration outside the closed n = 2 shell (5 electrons), so an n-type semiconductor results.
T 0.01eV / 8.617 105 eV / K 116K
10-34. E kT 0.01eV
10-35. (a) VH vd Bw
dBw iB nq qnt
(Equation 10-45 and Example 10-9)
The density of charge carriers n is:
n
(b) N
20 A 0.25T iB 7.10 1028 carriers/m3 19 3 6 qtVH 1.60 10 C 0.2 10 m 2.2 10 V
NA M
5.75 10 kg / m 6.02 10 3
3
118.7kg / mol
26
/ mol
2.92 10
28
Each Sn atom contributes n / N 7.10 1028 / 2.92 1028 2.4 charge carriers
246
Chapter 10 – Solid State Physics
10-36. I net I 0 eeVb / kT 1
(Equation 10-49)
(a) eeVb / kT 10, so eVb / kT ln 10 . Therefore,
1.60 10 C V 1.38110 J / K 300K ln 10 V 1.38 10 J / K 300K ln 10 1.60 10 C 0.0596V 59.6mV 19
23
b
23
19
b
(b) eeVb / kT 0.1 Vb 0.0596V ln 0.1 / ln10 0.0596 59.6mV
10-37. I net I 0 eeVb / kT 1
(Equation 10-49)
(a) eeVb / kT 5, so eVb / kT ln 5. Therefore,
Vb
kT ln 5
1.38 10 J / K 200K ln 5 0.0278V 27.8mV 1.60 10 C 23
19
e
(b) eeVb / kT 0.5
eVb / kT ln 0.5 Vb
kT ln 0.5
1.38 10 J / K 200K ln 0.5 0.0120V 12.0mV 1.60 10 C 23
19
e
10-38. I net I 0 eeVb / kT 1
(Equation 10-49)
Assuming T = 300K, I 0.2V I 0.1V I 0.1V
I0 e
e 0.2V / kT
1 I0 e
I0 e
e 0.1V / kT
e 0.1V / kT
1
e
1
e 0.2V / kT
e
e
e 0.1V / kT
e 0.1V / kT
1
47.7
10-39. (a) From Equation 10-49, exp eVb / kT 10 Taking ln of both sides and solving for Vb,
1.38 10 J / K 77 K ln 10 0.0153 volts 15.3mV kT / e ln 10 1.60 10 C 23
Vb
19
247
Chapter 10 – Solid State Physics (Problem 10-39 continued) (b) Similarly, for exp eVb / kT 1; Vb 0
I net =1mA 10 1 9mA
(c) For (a): I net I 0 eeVb / kT 1 For (b): I net 0
10-40. E hc /
For 484nm
E Egap
Egap hc / 484nm 1240eV nm / 484nm 2.56eV
10-41. M Tc constant
(Equation 10-55)
First, we find the constant for Pb using the mass of natural Pb from Appendix A, Tc for Pb from Table 10-6, and α for Pb from Table 10-7. constant 207.19u
0.49
7.196K 98.20
For
206
Pb : Tc constant / M 98.20 205.974u
For
207
Pb : Tc constant / M 98.20 206.976u
For
208
Pb : Tc constant / M 98.20 207.977u
10-42. (a) Eg 3.5kTc
0.49
7.217 K
0.49
7.200K
0.49
7.183K
(Equation 10-56)
Tc for I is 3.408K, so, Eg 3.5 8.617 105 eV / K 3.408K 1.028 103 eV
(b) Eg hc /
hc / Eg 1240eV nm / 1.028 103 eV 1.206 106 nm 1.206 103 m 1.206mm
10-43. (a) Eg 3.5kTc
For Sn : Tc 3.722K
Eg 3.5 8.617 105 eV / K 3.722 K 0.0011eV
248
Chapter 10 – Solid State Physics (Problem 10-43 continued) (b) Eg hc /
hc / Eg 1240eV nm / 6 104 eV 2.07 106 nm 2.07 103 m Eg T / Eg 0 0.95 where Eg 0 3.5kTc (Equation 10-56)
10-44. At T / Tc 0.5
So, Eg T 0.95 3.5 kTc 3.325kTc (a) For Sn : (b) For Nb : (c) For Al : (d) For Zn :
E T 3.325 8.617 10 eV / K 9.25K 2.65 10 E T 3.325 8.617 10 eV / K 1.175K 3.37 10 E T 3.325 8.617 10 eV / K 0.85K 2.44 10
Eg T 3.325 8.617 105 eV / K 3.722K 1.07 103 eV 5
3
g
5
4
g
5
g
10-45. BC T BC 0 1 T / TC
2
4
eV
eV
2
(a) BC T BC 0 0.1 1 T / TC
T / TC
eV
2
1 0.1 0.9
T / TC 0.95 (b) Similarly, for BC T BC 0 0.5
T / Tc 0.71 (c) Similarly, for BC T BC 0 0.9
T / Tc 0.32
10-46. 1. Referring to Figure 10-56, notice that the length of the diagonal of a face of the cube is r; therefore, a 2 a 2 (4r )2 a 8 r 2. Volume of the unit cube Vcube a3 83/2 r 3
249
Chapter 10 – Solid State Physics (Problem 10-46 continued) 3. The cube has 8 corners, each occupied by ⅛ of an atom’s volume. The cube has 6 faces, each occupied by ½ of an atom’s volume. The total number of atoms in the unit cube is then 8×⅛ + 6×½ = 4. Each atom has volume 4 r 3 / 3 . The total volume occupied by atoms is then Vatoms 4 (4 r 3 / 3) . 4. The fraction of the cube’s volume occupied by atoms is then: Vatoms 4 (4 r 3 ) 0.74 Vcube 83/2 r 3
10-47. TF for Cu is 81,700K, so only those electrons within EF kT of the Fermi energy could be in states above the Fermi level. The fraction f excited above EF is approximately:
f kT / EF T / TF (a) f 300K / 81, 700K 3.7 103 (b) f 1000K / 81, 700K 12.2 103
10-48. −e ● −6
−e ● −4
+e ● −5
−e ● −2
+e ● −3
−e ● 0
+e ● −1
+e ● 1
−e ● 2
+e ● 3
−e ● 4
+e ● 5
−e ● 6
r0 (a) For the negative ion at the origin (position 0) the attractive potential energy is: 2ke2 1 1 1 1 1 V 1 r0 2 3 4 5 6
(b) V
ke2 , so the Madelung constant is: r0
1
1
1
1
1
2 1 2 3 4 5 6
250
Chapter 10 – Solid State Physics (Problem 10-48 continued) Noting that ln 1 x x
x 2 x3 x 4 2 3 4
ln 2 1
,
1 1 1 2 3 4
and 2 ln 2 1.386
10-49. Cv TF
2
R
2
2
R
2
T TF
(Equation 10-30)
T 3.74 10 J / mol K T
and EF kTF
4
2 2
R
kT 3.74 104 J / mol K T
2 8.314 J / mol K 1.38 1023 J / K
2 3.74 104 J / mol K
1.51 1018 J 1 / 1.60 1019 J / eV 9.45eV
10-50. (a) N
EF
EF
g E dE AE 0
(b) N
1/ 2
dE A 2 / 3 E
EF
0 EF
EF kT
2 A / 3 EF3 / 2
3/ 2 0
AE1 / 2 dE 2 A / 3 EF3 / 2 EF kT
3/ 2
2 A / 3 EF3 / 2 EF3 / 2 1 kT / EF
3/ 2
Because kT
EF for most metals,
1 kT / EF
3/ 2
1 3 / 2 kTEF1 / 2
N 2 A / 3 EF3 / 2 EF3 / 2 3 / 2 kTEF1 / 2 AkTEF1 / 2 AkTEF1 / 2 N 3kT The fraction within kT of EF is then f 3/ 2 N 2 A / 3 EF 2 EF
(c) For Cu EF 7.04eV ; at 300K ,
f
3 0.02585eV 2 7.04eV
251
0.0055
Chapter 10 – Solid State Physics
0.72eV / pair 1.63 10 1.33 10 eV / photon 0.72eV / pair 1.85 10
10-51. (a) N1 1.17 106 eV / photon N2
6
6
pairs / photon
6
pairs / photon
(b) N1 N1 1.23 103 N1 / N1 7.8 104 N2 N2 1.36 103 N2 / N2 7.4 104
(c) Energy resolution
E N E N
E1 / E1 0.078% E2 / E2 0.074%
10-52.
meff v
(Equation 10-13)
n e2
v 3kT / meff
1/ 2
3 1.38 1023 J / K 300 K 0.2 9.11 1031 kg
1/ 2
2.61 105 m / s
Substituting into λ:
0.2 9.11 1031 kg 2.61 105 m / s
10
22
m
3
5 10
3
m 1.60 10
19
C
2
3.7 108 m 37nm
2 7.06eV 31 9.11 10 kg
1/ 2
For Cu: uF 2 EF / me
1/ 2
1.57 106 m / s
n 8.47 1028 m3 and 1.7 108 m (Example 10-5) Substituting as above, 3.9 108 m 39nm The mean free paths are approximately equal.
252
Chapter 10 – Solid State Physics 10-53. Compute the density of Cu (1) as if it were an fcc crystal and (2) as if it were a bcc crystal. The result closest to the actual measured density is the likely crystalline form. 1. The unit cube of an fcc crystal of length a on each side composed of hard, spherical atoms each of radius r contains 4 atoms. The side and radius are related by a 8 r and the volume of the cube is Vcube a3 83/2 r 3 . (See problem 10-46 and Appendix B3.) The density of fcc Cu would be: mCu 4( M / N A ) Vcube 83/2 r 3 where M = molar mass (atomic weight) and N A = Avagadro’s number. d
d
4(63.55g/mol) 8.90g/cm3 8 3 23 8 (1.28 10 cm) (6.022 10 / mol) 3/2
2. For a bcc crystal (refer to Appendix B3), let the length of a side = a, the diagonal of a face = f, and the diagonal through the body = b. Then from geometry we have
a 2 f 2 b2 (4r )2 and a 2 a 2 f 2 . Combing these yields:
4r 3 The unit cube has 8 corners with ⅛ of a Cu atom at each corner plus 1 Cu atom at the a 2 f 2 3a 2 (4r )2 a
center, or 8×⅛ + 1 = 2 atoms. The density of bcc Cu is then: d
2( M / N A ) m 2(63.55g/mol) 33/2 8.17 g/cm3 3 8 3 23 3 Vcube (4r / 3) 4 (1.28 10 cm) (6.022 10 /mol)
Based on the above density calculations, metallic Cu is most likely a face-centered cubic crystal.
253
Chapter 10 – Solid State Physics 10-54. (a) For small Vb (from Equation 10-49) eeVb / kT 1 eVb / kT , so I I 0eVb / kT Vb / R
R Vb
I0eVb / kT kT
eI 0 0.025eV e 109 A 25.0M
(b) For Vb 0.5V ;
R Vb I 0.5 109 A 500M
(c) For Vb 0.5V ;
I 109 A e0.5 / 0.025 1 0.485 A
Thus, R Vb I 0.5 / 0.485 1.03 (d)
10-55. a0
eI 0 eVb / kT dI e dVb kT
dVb kT eVb / kT e 25M e20 0.0515 dI eI 0
Rac
0 h2 o h2 2 me e2 me eff e2 me eff ke2
silicon: a0
kg 9 10 N m
/ C 1.602 10
12 1.055 1034 J s
0.2 9.11 1031
9
2
2
2
19
C
2
3.17 109 m 3.17nm
This is about 14 times the lattice spacing in silicon (0.235nm) germanium: : a0
kg 9 10 N m
16 1.055 1034 J s
0.10 9.11 1031
9
2
2
/ C 2 1.602 1019 C
8.46 109 m 8.46nm
This is nearly 35 times the lattice spacing in germanium (0.243nm)
2
1 ke2 m 1 10-56. (a) En 2 2 2 n
(Equation 10-44)
6 2 2 1 1.440eV nm 0.015 0.511 10 eV / c 2 6.582 1016 eV s 182
or
254
1 n
2
2
Chapter 10 – Solid State Physics (Problem 10-56 continued)
9 2 2 19 1 2 9 10 N m / C 1.60 10 C 2 6.63 1034 J s
2
2
0.015 9.11 1031 kg 182
1 n
2
1.01 1022 J 6.28 104 eV / n2 n2
donor ionization energy = 6.28 104 eV (b) r1 a0
me m
(Equation 10-45)
0.0529nm 1 / 0.01518
r1 63.5nm (c) Donor atom ground states will begin to overlap when atoms are 2r1 127nm apart. 3
109 nm / m 20 3 donor atom concentration 4.88 10 m 127nm / atom
10-57. (a)
meuF ne2
(Equation 10-25)
So the equation in the problem can be written as m i . Because the impurity increases m by 1.1 108 m, i 1.1 108 m and
i
meuF 8
ne 1.18 10 m 2
and uF 2EF / me
1/ 2
where n 8.47 1028 electrons / m3 (from Table 10-3)
1.57 106 m / s. Therefore,
9.11 10 kg 1.57 10 m / s 8.47 10 / m 1.60 10 C 1.1 10 31
i
28
6
19
3
(b) 1 / na r 2 and d 2r
2
8
m
6.00 108 m 60.0nm
(Equation 10-12)
So we have d 2 4 / nii where ni 1% of n 8.47 1026 / m3
d 2 4 / 8.47 1028 / m3 6.60 108 m 2.28 1022 m2 d 0.0151nm
255
Chapter 10 – Solid State Physics 10-58. (a) The modified Schrödinger equation is:
d 2 dR r ke2 r 2mr 2 dr dr r 2
1 R r ER r 2m r
2
2
The solution of this equation, as indicated following Equation 7-24, leads to solutions of the form: Rn r a0 e r / a0 n r 1Ln r / a0 , where a0
2 / ke2m
2
(b) By substitution into Equation 7-25, the allowed energies are: 2
E1 1 ke2 m 1 ke2 En where E m 1 2 n2 n2 2
(c) For As electrons in Si: m 0.2me (see Problem 10-31) and Si 11.8,
2
9 109 N m2 / C 2 1.60 1019 C 2 31 1 0.2 9.11 10 kg E1 2 2 2 11.8 1.055 1034 J s
3.12 1021 J 0.0195eV
Energy 102 eV n 0 5 4 1.0
3 2
2.0
3.0
4.0
10-59. U
F
ke2 r0
r 1 r n 0 0 r n r
(Equation 10-5)
n 1 ke dU Kr yields K dr r03
2
(a) For NaCl: 1.7476, n 9.35, and r0 0.282nm and
256
1
Chapter 10 – Solid State Physics (Problem 10-59 continued)
m Na m Cl
22.99u 35.45u 13.95u m Na m Cl 22.99u 35.45u
2 K 1 n 1 ke M 2 13.95u r03
1/ 2
1 f 2
9 2 2 19 1 1.7476 8.35 9 10 N m / C 1.60 10 C 3 27 9 2 13 . 95 u 1 . 66 10 kg / u 0 . 282 10 m
2
1/ 2
1.28 1013 Hz
(b) c / f .00 108 m / s / 1.28 1013 Hz 23.4 m This is of the same order of magnitude as the wavelength of the infrared absorption bands in NaCl.
10-60. (a) Electron drift speed is reached for: dv 0 vd eE / m dt
(b) Writing Ohm’s law as j E and j vd ne (from Equation 10-11)
j eE ne / m E ne2 / m, which satisfies Ohm’s law because j E. Thus,
ne2 / m and 1 / m / ne2. 10-61. (a) For r, s, and t all even 1
r s t
1 and the ion’s charge at that location is:
1 1.60 1019 C 1.60 1019 C.
Similarly, for any permutation of r, s even; t odd: 1
r s t
1, ion charge = 1.60 1019 C.
r even; s, t odd: 1
r s t
1, ion charge = 1.60 1019 C.
r, s, and t all odd: 1
r s t
1, ion charge = 1.60 1019 C.
257
Chapter 10 – Solid State Physics (Problem 10-61 continued) (b) U
ke2 r
If the interatomic distance r = a, then a cube 2a on each side 4 4 2 4 4 4 4 U ke2 2a a 2a 2a 3a 3a a
U
ke2 2.1335 where 2.1335. a
Similarly, for larger cubes (using spreadsheet). The value of α is approaching 1.7476 slowly.
10-62. (a) M
M
M
e B / kT e B / kT tanh B / kT e B / kT e B / kT
and M tanh B / kT (b) For B
0 M B
kT , T
0 and tanh B / kT B / kT
0 B BkT
0 2 kT
258
Chapter 11 – Nuclear Physics 11-1. Isotope
Protons
Neutrons
F
9
9
Na
11
14
V
23
28
Kr
36
48
120
Te
52
68
148
Dy
66
82
175
W
74
101
222
Rn
86
136
18 25
51
84
11-2. The momentum of an electron confined within the nucleus is:
p / x 1.055 1034 J s / 1014 m
1.055 1020 J s / m 1 / 1.602 1013 J / MeV
6.59 108 MeV s / m
The momentum must be at least as large as p, so pmin 6.59 108 MeV s / m and the electron’s kinetic energy is:
Emin pminc 6.59 108 MeV s / m 3.00 108 m / s 19.8MeV .
This is twenty times the observed maximum beta decay energy, precluding the existence of electrons in the nucleus.
11-3. A proton-electron model of 6 Li would consist of 6 protons and 3 electrons. Protons and electrons are spin −1/2 (Fermi-Dirac) particles. The minimum spin for these particles in the lowest available energy states is 1 / 2 , so 6 Li S 0 cannot have such a structure.
259
Chapter 11 – Nuclear Physics 14
11-4. A proton-electron model of
N would have 14 protons and 7 electrons. All are Fermi-
Dirac spin-1/2 particles. In the ground state the proton magnetic moments would add to a small fraction of the proton magnetic moment of 2.8 N , but the unpaired electron would give the system a magnetic moment of the order of that of an electron, about 1 B . Because B is approximately 2000 times large than N , the
14
N magnetic moment would
be about 1000 times the observed value, arguing against the existence of electrons in the nucleus. 11-5. The two proton spins would be antiparallel in the ground state with S 1/ 2 1/ 2 0. So the deuteron spin would be due to the electron and equal to 1 / 2 . Similarly, the proton magnetic moments would add to zero and the deuteron’s magnetic moment would be 1 B . From Table 11-1, the observed spin is 1
(rather than 1 / 2 found above) and the
magnetic moment is 0.857 N , about 2000 times smaller than the value predicted by the proton-electron model.
11-6. Isotopes (a)
18
(b)
208
(c)
120
17
F
Pb
206
Sn
119
F
Isotones 19
Pb
210
Sn
118
F
16
Pb
207
Sn
121
N
17
O
Tl
209
Sb
122
Bi
Te
11-7. Nuclide (a)
14 8
O6
(b)
63 28
(c)
236 93
Isobars 14 6
C8
Ni35
63 29
Np143
236 92
Cu34 U144
260
Isotopes 14 7
63 30 236 94
N7
Zn33
Pu142
16 8
O8
60 28 235 93
Ni32
Np142
Chapter 11 – Nuclear Physics
11-8.
mass Au A 1.66 1027 kg / u
volume 4 / 3 R 3 4 / 3 R0 A1 / 3
where R0 1.2 fm 1.2 1015 m
A 1.66 1027 kg / u mass density = 2.29 1017 kg / m3 3 15 volume 4 / 3 1.2 10 m A
11-9.
B ZM H c2 NmN c2 M Ac2 (a)
9 4
Be5
(Equation 11-11)
0.062443uc 931.5MeV / uc
B 4 1.007825uc 2 5 1.008665uc 2 9.012182uc 2 0.062443uc 2
2
2
58.2MeV B / A 58.2MeV / 9 nucleons 6.46MeV / nucleon (b)
13 6
C7
0.104250uc 931.5MeV / uc
B 6 1.007825uc 2 7 1.008665uc 2 13.003355uc 2 0.104250uc 2
2
2
91.1MeV B / A 91.1MeV / 13 nucleons 7.47 MeV / nucleon 57 26
(c)
Fe31
B 26 1.007825uc 2 31 1.008665uc 2 56.935396uc 2
0.536669uc 2 0.536669uc 2 931.5MeV / uc 2 499.9MeV B / A 499.9MeV / 57 nucleons 8.77 MeV / nucleon 11-10. R R0 A1 / 3 where R0 1.2 fm O R 1.2 fm 16
1/ 3
(a)
16
(b)
56
(c)
197
(d)
238
(Equation 11-3)
3.02 fm
Fe R 1.2 fm 56
1/ 3
4.58 fm
Au R 1.2 fm 197
6.97 fm
U R 1.2 fm 238
7.42 fm
1/ 3
1/ 3
261
3
Chapter 11 – Nuclear Physics
11-11. (a) B M
3
He c 2 mn c 2 M
4
He c 2
3.016029uc2 1.008665uc2 4.002602uc2
0.022092uc 2 931.5MeV / uc 2 20.6MeV
(b) B M
Li c 6
2
Li c
mn c 2 M
7
2
6.015121uc2 1.008665uc2 7.016003uc2
0.007783uc 2 931.5MeV / uc 2 7.25MeV
(c) B M
N c 13
2
mn c 2 M
N c 14
2
13.005738uc2 1.008665uc2 14.003074uc2
0.011329uc 2 931.5MeV / uc 2 10.6MeV
11-12. B a1 A a2 A2 / 3 a3 Z 2 A1 / 3 a4 A 2Z A1 a5 A1 / 2 c 2 2
(This is Equation 11-13
on the Web page www.whfreeman.com/tiplermodernphysics6e.) The values of the ai in MeV/c2 are given in Table 11-3 (also on the Web page). For 23Na:
B 15.67 23 17.23 23 184.9MeV M
2/3
0.75 11 23 2
Na c 2 11m p c 2 12mnc 2 B
23
1 / 3
93.2 23 2 11 23 0 23 2
1
(Equation 11-14 on the Web page)
11 1.007825uc 2 12 1.008665uc 2 184.9 MeV M
Na 23.190055u 184.9MeV / c 2 1 / 931.5MeV / c 2 u
23
23.190055u 0.198499u 22.991156u This result differs from the measured value of 22.989767u by only 0.008%. 11-13. R 1.07 0.02 A1 / 3 fm (Equation 11-5) (a)
16
(b)
63
O: Cu :
R 1.4 A1 / 3 fm (Equation 11-7)
R 1.07 A1 / 3 2.70 fm and R 1.4 A1 / 3 3.53 fm R 1.07 A1 / 3 4.26 fm and R 1.4 A1 / 3 5.57 fm
262
1 / 2
c2
Chapter 11 – Nuclear Physics (Problem 11-13 continued) (c)
208
11-14. U
R 1.07 A1 / 3 6.34 fm and R 1.4 A1 / 3 8.30 fm
Pb :
3 1 e2 2 2 Z Z 1 5 4 0 R
(Equation 11-2)
where Z = 20 for Ca and U 5.49MeV from a table of isotopes (e.g., Table of Isotopes 8th ed., Firestone, et al, Wiley 1998).
3 1 e2 2 R Z 2 Z 1 5 4 0 RU
0.6 8.99 109 N m2 / C 2 1.60 1019 C 2.02 192 / 5.49 106 eV 6.13 1015 m 6.13 fm
11-15. (a) R R0et R0e at t 0 :
ln 2t / t1 / 2
(Equation 11-19)
R R0 4000 counts / s
at t 10s :
R R0e
ln 210 s / t1 / 2
1000 4000e 1/ 4 e
ln 2 10 s / t1 / 2
ln 2 10 s / t1 / 2
ln 1 / 4 ln 2 10s / t1/ 2 t1/ 2 5.0s
(b) at t 20s :
11-16. R R0e
ln 2t / 2 min
R 4000counts / s e
at t 0 :
ln 2 20 s / 5 s
200counts / s
R R0 2000counts / s
(a) at t 4 min :
R 2000counts / s e
(b) at t 6 min :
R 2000counts / s e
(c) at t 8 min :
R 2000counts / s e
ln 2 4 min / 2 min
500counts / s
ln 2 6 min / 2 min
250counts / s
ln 2 8 min / 2 min
125counts / s
263
Chapter 11 – Nuclear Physics 11-17. R R0et R0eln 2t / t1/ 2 (a) at t 0 :
(Equation 11-19)
R R0 115.0 decays / s
at t 2.25h :
R 85.2 decays / s
85.2 decays / s 115.0 decays / s e
2.25 h
85.2 / 115.0 e 2.25h ln 85.2 / 115.0 2.25h
ln 85.2 / 115.0 / 2.25h 0.133h1 t1 / 2 ln 2 / ln 2 / 0.133h1 5.21h (b)
dN N dt
dN0 R0 N0 dt
(from Equation 11-17)
N0 R0 / 15.0 atoms / s / 0.133h 1 1h / 3600s 3.11 106 atoms
11-18. (a)
226
t1 / 2 1620 y
Ra
R
dN ln 2 ln 2 N A m N N dt t1 / 2 t1 / 2 M
ln 2 6.022 1023 / mole 1g
1620 y 3.16 10
7
s / y 26.025 g / mole
1Ci 3.7 1010 s 1, or nearly the same.
(b) Q M
226
Ra c 2 M
222
Rn c 2 M
4
He c 2
226.025402uc 2 222.017571uc 2 4.002602uc 2
0.005229uc 2 0.005229uc 2 931.5MeV / uc 2
4.87MeV
264
3.61 1010 s 1
Chapter 11 – Nuclear Physics 11-19. (a) R
dN ln 2 t / t R0e 1 / 2 dt
when t 0,
R R0 8000 counts / s
when t 10 min, e
(from Equation 11-19)
R 1000 counts / s 8000 counts / s e
10 ln 2 / t1 / 2
10 ln 2 / t1 / 2
1000 / 8000 1 / 8
10 ln( 2) / t1 / 2 ln 1 / 8
t1 / 2
10 ln 2 ln 1 / 8
3.33 min
Notice that this time interval equals three half-lives. (b) ln 2 / t1 / 2 ln 2 / 3.33 min = 0.208 min-1 (c) R R0e
t ln 2 / t1 / 2
R0et Thus, R 8000 counts / s e
0.2081
6500 counts / s
11-20. (a) and (b)
(c) Estimating from the graph, the next count (at 8 min) will be approximately 220 counts.
265
Chapter 11 – Nuclear Physics 11-21.
62
Cu is produced at a constant rate R0 , so the number of 62Cu atoms present is:
N R0 / 1 e t (from Equation 11-26). Assuming there were no 62Cu atoms initially
present. The maximum value N can have is R0 / N 0 ,
N N 0 1 e t
0.90 N 0 N 0 1 e e
t ln 2 / t1 / 2
t ln 2 / t1 / 2
1 0.90 0.10
t ln 2 / t1 / 2 ln 0.10 t 10 ln 0.10 / ln 2 33.2 min 11-22. (a) t1 / 2 ln 2 / ln 2 / 9.8 1010 y 1 7.07 108 y (Equation 11-22) (b) Number of
235
U atoms present is:
106 g 6.02 1023 atoms / mol 1.0 gN A N 2.56 1015 atoms M 235 g / mol
dN N 9.8 1010 y 1 1 / 3.16 107 s / y 2.56 1015 atoms dt
0.079 decays / s (c) N N0et
(Equation 11-18)
N 2.56 1015 e
9.81010 y 1 106 y
2.558 1015
11-23. (a) t1 / 2 ln 2 / ln 2 / 0.266 y 1 2.61y (Equation 11-22) (b) Number of N atoms in 1 g is:
23 1.0 gN A 1g 6.02 10 atoms / mol N 2.74 1022 atoms M 22 g / mol
dN N 0.266 y 1 1 / 3.16 107 s / y 2.74 1022 atoms dt 2.3 1014 decays / s 2.3 1014 Bq
266
(Equation 11-17)
Chapter 11 – Nuclear Physics (Problem 11-23 continued) (c)
dN N 0 e t dt
(Equation 11-19)
0.266 y 1 1 / 3.16 107 s / y 2.74 1022 e
0.266 y 3.5 y
9.1 1013 decays / s 9.1 1013 Bq
(d) N N0et
(Equation 11-18)
N 2.74 1022 e
11-24. (a)
22
0.266 y 1 3.5 y
1.08 1022
Na has an excess of protons compared with 23 Na and would be expected to decay
by β+ emission and/or electron capture. (It does both.) (b)
24
Na has an excess of neutrons compared with 23 Na and would be expected to decay
by β− emission. (It does.)
11-25. logt1 / 2 AE1 / 2 B
for t1 / 2 1010 s, for t1 / 2 1s,
(Equation 11-30)
E 5.4MeV
E 7.0MeV
log 1010 A 5.4
1 / 2
from Figure 11-16
B
(i) 10 0.4303A B log 1 A 7.0
1 / 2
B
(ii) 0 0.3780 A B B 0.3780 A Substituting (ii) into (i),
10 0.4303A 0.3780 A 0.0523 A,
267
A 191, B 0.3780 A 72.2
Chapter 11 – Nuclear Physics 11-26. 237
Np
144 233
P
142
a 229
140
A
c
229
T
h
138
225
R
a 225
136
Ac
221
F
134
r
N
217
A
132
c 213
217
i
n
B
130 209
Tl
R
213
P
128
o 209
P
126
b 80
82
84
86
88
92
Z 11-27.
232 90
Th
QM
228 88
Ra
Th c 2 M
232
228
Ra c 2 M
4
He c 2
232.038051uc2 228.031064uc2 4.002602uc2
0.004385uc2 931.50MeV / uc 2 4.085MeV
The decay is a 2-particle decay so the Ra nucleus and the α have equal and opposite momenta.
2m E Ra 2mRa ERa where E ERa 4.085MeV 2m E 2M Ra ERa 2M Ra 4.085 E E
228.031064 4.085MeV M Ra 0.983 4.085MeV 4.01MeV 4.085MeV M Ra m 228.031064 4.002602
268
Chapter 11 – Nuclear Physics 11-28.
7 4
Be3 73 Li4 ve
(a) Yes, the decay would be altered. Under very high pressure the electrons are “squeezed” closer to the nucleus. The probability density of the electrons, particularly the K electrons, is increased near the nucleus making electron capture more likely, thus decreasing the half-life. (b) Yes, the decay would be altered. Stripping all four electrons from the atom renders electron capture impossible, lengthening the half-life to infinity.
11-29.
67
E .C .
Ga
QM
67
Zn ve
Ga c 2 M
67
67
Zn c 2
66.9282uc2 66.972129uc2
0.001075uc2 931.50MeV / uc 2 1.00MeV
11-30.
72
Zn 72 Ga ve
QM
72
Zn c 2 M
72
Ga c 2
71.926858uc2 71.926367uc2
0.000491uc2 931.50MeV / uc 2 0.457MeV 457keV
11-31.
233
Np
232
Np n and
For n emission: Q M
233
233
Np
232
Up
Np c 2 M
232
Np c 2 mnc 2
233.040805uc2 232.040022uc2 1.008665uc2
0.007882uc2
Q 0 means M products M For p emission: Q M
233
Np c 2 M
233
U c2 mnc 2
232
233.040805uc2 232.037131uc2 1.008665uc2
0.004991uc2
269
Np ; prohibited by conservation of energy.
Chapter 11 – Nuclear Physics (Problem 11-31 continued)
Q 0 means M products M
233
Np ; prohibited by conservation of energy.
11-32. 286
247
280
235
174
124
80
61
30
286
−
280
6
−
247
39
33
−
235
50
45
12
−
174
112
106
73
61
−
124
162
156
123
111
50
−
80
206
200
167
155
94
44
−
61
225
219
186
174
113
63
19
−
30
256
250
217
205
144
91
50
31
−
0
286
280
247
235
174
124
80
61
30
0
−
Tabulated γ energies are in keV. Higher energy α levels in Figure 11-19 would add additional columns of γ rays.
11-33. 8 Be 2 QM
Be c 8
2
M
4
He c 2
8.005304uc2 2 4.002602 uc 2
0.000100uc2 931.50MeV / uc2 0.093MeV 93keV
11-34.
80
Br 80 Kr ve and
For decay: Q M
80
80
Br
Br c 2 M
80
Se ve and
80
80
E.C .
Br
Kr c 2
79.918528uc2 79.916377uc2
0.002151uc2 931.50MeV / uc 2 2.00MeV
270
80
Se ve
Chapter 11 – Nuclear Physics (Problem 11-34 continued) For decay: Q M
80
Br c 2 M
80
Se c2 2mec 2
79.918528uc2 79.916519uc2 2 0.511MeV
0.002009uc2 931.50MeV / uc 2 1.022MeV 0.85MeV
For E.C.: Q M
80
Br c 2 M
80
Se c 2
79.918528uc2 79.916519uc2
0.002009uc2 931.50MeV / uc 2 1.87MeV
11-35. R R0 A1 / 3 where R0 1.2 fm For 12C : R 1.2 12
1/ 3
(Equation 11-3)
2.745 fm 2.745 1015 m and the diameter = 5.490 10 15 m
9.00 109 1.6 1019 C ke2 Coulomb force: FC 2 2 r 5.490 1015 m
Gravitational force: FG G
m2p r
2
2
7.65 N
6.67 1011 1.67 1027 kg
5.490 10
15
m
2
6.18 1036 N
2
The corresponding Coulomb potential is: UC FC r 7.65N 5.490 1015 m
4.20 1014 J 1.60 1013 J / MeV 0.26MeV
The corresponding gravitational potential is:
UG FG r 6.18 1036 N 5.490 1015 m
3.39 1050 J 1 / 1.60 1013 J / MeV 2.12 1037 MeV
The nuclear attractive potential exceeds the Coulomb repulsive potential by a large margin (50MeV to 0.26MeV) at this separation. The gravitational potential is not a factor in nuclear structure.
271
Chapter 11 – Nuclear Physics
11-36. The range R of a force mediated by an exchange particle of mass m is: R / mc
(Equation 11-50)
mc2 c / R 197.3MeV fm / 5 fm 39.5MeV m 39.5MeV / c2
11-37. The range R of a force mediated by an exchange particle of mass m is: R / mc
(Equation 11-50)
mc2 c / R 197.3MeV fm / 0.25 fm 789MeV m 789MeV / c 2
11-38. Nuclide
Last proton(s)
Last neutron(s)
2s1 / 2
0
1/2
1d3 / 2
2
3/2
1
3/2
3
7/2
Si15
1d5 / 2
Cl20
1d3 / 2
71 31
Ga40
2 p3 / 2
3
2 p1 / 2
59 27
Co32
1 f7 / 2
7
2 p3 / 2
73 32
Ge41
2 p3 / 2
29 14 37 17
6
j
4
2
4
4
1g9 / 2
4
9/2
2
3/2
4
9/2
33 16 17
S
2s1 / 2
2
1d3 / 2
81 38
Sr49
2 p3 / 2
1g9 / 2
6
9
The nucleon configurations are taken directly from Figure 11-35, and the are those of the unpaired nucleon.
272
and j values
Chapter 11 – Nuclear Physics
11-39. Isotope
Odd nucleon
Predicted μ μ N
29 14
Si
neutron
−1.91
27 17
Cl
proton
+2.29
71 31
Ga
proton
+2.29
59 27
Co
proton
+2.29
73 32
Ge
neutron
−1.91
S
neutron
−1.91
Sr
neutron
−1.91
33 16 87 38
11-40. Nuclear spin of 14 N must be 1= because there are 3 mI states, +1, 0, and 1.
11-41.
36
S,
53
Mn,
82
Ge,
88
Sr,
94
Ru,
131
In,
145
Eu
11-42.
3
H
3
14
He
273
N
14
C
Chapter 11 – Nuclear Physics (Problem 11-42 continued)
n
11-43.
3 2
He,
15
40 20
Ca,
p
n
15
N
60 28
Ni,
124 50
204 82
Sn,
p
n
O
16
p
O
Pb
11-44. (a)
1p1/2
1p3/2
1s1/2 n
p 13
N
(b) j = ½ due to the single unpaired proton. (c) The first excited state will likely be the jump of a neutron to the empty neutron level, because it is slightly lower than the corresponding proton level. The j = 1/2 or 3/2, depending on the relative orientations of the unpaired nucleon spins.
274
Chapter 11 – Nuclear Physics (Problem 11-44 continued) (d)
1p1/2
1p3/2
1s1/2 n
p
First excited state. There are several diagrams possible.
11-45.
30 14
Si
j0
37 17
Cl
j 3/ 2
55 27
Co
j 7/2
90 40
Zr
j0
107 49
In
j 9/ 2
H c M H c M H c 2 2.014102uc 3.016049uc 1.007825uc 0.004330uc 931.5MeV / uc 4.03MeV Q M He c M H c M He c M H c
11-46 (a) Q M
H c 2
2
M
2
2
3
2
3
1
2
2
2
(b)
2
2
2
2
2
2
4
2
1
2
3.016029uc2 2.014012uc2 4.002602uc2 1.007825uc2
0.019704uc2 931.5MeV / uc 2 18.35MeV
275
Chapter 11 – Nuclear Physics (Problem 11-46 continued)
Li c
(c) Q M
6
2
mnc 2 M
H c 3
2
M
4
He c 2
6.01512uc2 1.008665uc2 3.016049uc2 4.002602uc2
0.005135uc 2 931.5MeV / uc 2 4.78MeV
H c
11-47. (a) Q M
3
2
M 1H c 2 M
He c 3
mN c 2
2
3.016049uc2 1.007825uc2 3.016029uc2 1.0078665uc2
0.000820uc2 931.5MeV / uc 2 0.764MeV
(b) The threshold for this endothermic reaction is: Eth
(c) Eth
11-48.
14
mM Q M
(Equation 11-61)
3.016049uc 2 1.007825uc 2 0.764MeV 3.05MeV 1.007825uc 2
1.007825uc 2 3.016049uc 2 3.016049uc 2
0.764MeV 1.02MeV
N 2 H 16O
O 16O
O 14 N 2 H
16
O 15 N p
16
16
Possible products:
O 12C
16
11-49. (a)
O 15O n
16
C , p 15 N
12
QM
Cc 12
2
M
4
He c 2 M
N c 15
2
mpc2
12.000000uc2 4.002602uc2 15.000108uc2 1.007825uc2
0.005331uc2 931.5MeV / uc2 4.97 MeV
(b)
O d, p 17O
16
QM
O c 16
2
M
H c 2
2
M
O c 17
2
mpc2
15.994915uc2 2.014102uc2 16.999132uc2 1.007825uc2
0.002060uc2 931.5MeV / uc 2 1.92MeV
276
Chapter 11 – Nuclear Physics 75
11-50. The number of
N
As atoms in sample N is:
1cm 2cm 30 m 104 cm / m 5.73g / cm3 6.02 1023 atoms / mol V NA M 74.9216 g / mol
2.76 1020
75
As atoms 75
The reaction rate R per second per R I
As atoms is:
(Equation 11-62
4.5 1024 cm2
75
As 0.95 1013 neutrons / cm2 s
4.28 1011 s 1
Reaction rate = NR
.76 1020 atoms 4.28 1011 / s atom 1.18 1010 / s
11-51. (a)
23
Ne p, n 23 Na
22
(b)
11
B , p 14C
(c)
29
Si , d 31P
11-52. (a)
14
(e)
14
11-53.
C
N
(b) n 160
(f)
Ne d, n 23 Na
20
14
N n, p 14C
13
32
P p, d 31P
32
Er
C d , p 14C
Ni
(d) α
(g) 3 H
(i) p
(c)
58
Q m p mn md c2 1.007276u 1.008665u 2.013553u
0.002388u
(See Table 11-1.)
Q 0.002388u 931.5MeV / uc 2 c 2 224MeV
277
F , n 23 Na
Si n, d 31P
Chapter 11 – Nuclear Physics 11-54. P
dW dN E dt dt
dN P 500 106 J / s 1eV 6 dt E 200 10 eV / fission 1.60 1019 J
19 1.56 10 fissions / s
11-55. The fission reaction rate is:
R N R 0 k N
(see Example 11-22 in More section)
k N R N / R 0 N log k log R N / R 0
N
log R N / R 0 log k
(a) For the reaction rate to double R N 2 R 0 : (b) For R N 10 R 0 : (c) For R N 100 R 0 :
N
N
log10 24.2 log1.1
N
log100 48.3 log1.1
(d) Total time t N 1ms N ms : (a) 7.27ms
(b) 24.2ms
(e) Total time t N 100ms 100 N ms : (a) 0.727ms
11-56.
235 92
U143
log 2 7.27 log1.1
134 101 40 Zr61 52 Te82 n 101 Nb 133 Sb 2n 41 60 51 82 n 101 132 43 Tc58 49 In83 3n 102 130 45 Rh57 47 Ag83 4n
278
(c) 48.3ms
(b) 2.42ms
(c) 4.83ms
Chapter 11 – Nuclear Physics J 1MeV 1 fusion 11-57. 500MW 500 1.78 1014 fusions / s 13 s 1.60 10 J 17.6MeV
Each fusion requires one 2 H atom (and one 3 H atom; see Equation 11-67) so 2 H must be provided at the rate of 1.78 1014 atoms / s.
238
11-58. The reactions per R I
U atom is:
(Equation 11-62)
1m2 0.02 1024 cm2 atom 5.0 1011 n / m2 4 2 1.00 1018 / atom 10 cm
238
The number N of
N
U atoms is:
5.0 g 6.02 1023 atoms / mol
Total
1.26 1022
238.051g / mol
238
U atoms
239
U atoms produced = RN
1.00 1018 / atom 1.26 1022 atoms 1.26 104
11-59. Q1 M 1H c 2 M 1H c 2 M
H c 2
239
U atoms
2
1.007825uc2 1.007825uc2 2.014102uc2
0.001548uc2 931.50MeV / uc 2 1.4420MeV Q2 M
2
He c 2 M 1H c 2 M
He c 3
2
2.014102uc2 1.007825uc2 3.016029uc2
0.005898uc2 931.50MeV / uc 2 5.4940MeV
2 3.016029uc 4.002602uc 2 1.007825uc 0.013806uc 931.50MeV / uc 12.8603MeV
Q3 M
He c 3
2
M 2
2
He c 3
2
M
4
He c 2 2m 1H c 2
2
2
2
Q Q1 Q2 Q3 1.4420MeV 5.4940MeV 12.8603MeV 19.80MeV
279
Chapter 11 – Nuclear Physics 11-60. Total power = 1000MWe / 0.30 3333MW
3.33 109 J / s 1MeV / 1.60 1013 J 2.08 1022 MeV / s
(a) 1 day 8.64 104 s
Energy/day 2.08 1022 MeV / s 8.64 104 s / day 1.80 1027 MeV / day
The fission of 1kg of 235
1kg
(b) 1kg
235
U provides 4.95 1026 MeV (from Example 11-19)
U / day 1.80 1027 MeV 4.95 1026 MeV / kg 3.64kg / day
U / year 3.64 kg
235
U / day 365days / year 1.33 103 kg / year
235
(c) Burning coal produces
3.15 107 J / kg 1MeV / 1.60 1013 J 1.97 1020 MeV / kg coal
Ratio of kg coal needed per kg of For 1 day: 3.64kg
235
235
U is:
4.95 1026 MeV / kg 235U 2.51 106 20 1.97 10 MeV / kg coal
U 2.51 106 9.1 106 kg This is about 10,000 tons/day,
the approximate capacity of 100 railroad coal hopper cars. For 1 year: 9.12 106 kg / day 365days / year 3.33 109 kg / year
11-61. H 2O 1000kg / m3, so (a) 1000kg :
106 g 6.02 1023 molecules H 2O / mol 2H / molecule 0.00015 2 H 18.02 g / mol
1.00 1025 2 H atoms Each fusion releases 5.49MeV.
5.49 10 MeV 1.60 10
Energy release = 1.00 1025 5.49MeV 5.49 1025 MeV 25
13
J / MeV 8.78 1012 J
(b) Energy used/person (in 1999) = 3.58 1020 J 5.9 109 people
6.07 1010 J / person y
280
Chapter 11 – Nuclear Physics (Problem 11-61 continued) Energy used per person per hour = 6.07 1010 J / person y
1y 8760h
6.93 106 J / person h At that rate the deuterium fusion in 1m3 of water would last the “typical” person
8.80 1012 J 1.27 106 h 145 y 6 6.93 10 J / person h
11-62. (a) Q M
235
U c 2 mnc 2 M
Cd c 2 M
120
110
Ru c 2 5mnc 2
235.043924uc2 1.008665uc2 119.909851uc2 109.913859uc2
5 1.008665uc 2
1.186uc2 931.5MeV / uc 2 1.10 103 MeV
(b) This reaction is not likely to occur. Both product nuclei are neutron-rich and highly unstable.
11-63. The original number N0 of 14 C nuclei in the sample is:
N0 15g 6.78 1010 nuclei / g 1.017 1012 where the number of
of C was computed in Example 11-27. The number N of N N 0 e t N 0 e
ln 2 t / t1 / 2
1.017 1012 e
C nuclei per gram
C present after 10,000y is:
(Equation 11-18)
ln 210000 / 5730
R N ln 2 t1 / 2 N
14
14
3.034 1011
(Equation 11-19)
ln 2 5730 y 1y 3.16 107 s 3.034 1011
1.16 decays / s
11-64. If from a living organism, the decay rate would be:
15.6decays / g min 175g 20.230decays / min
(from Example 11-27)
The actual decay rate is: 8.1decays / s 60s / min 486decays / min
281
Chapter 11 – Nuclear Physics (Problem 11-64 continued) 2
486decays / min 1 2 20, 230decays / min (from Example 11-27)
2n 20, 230 / 486 n ln 2 ln 20, 230 / 486 n ln 20, 230 / 486 ln(2) 5.379 half lives Age of bone = 5.379 half lives 5730 y / half life 30,800 y
t
11-65. t1 / 2
87
t1 / 2 ln 1 N D / N P ln 2
(Equation 11-92)
Rb 4.88 1010 y and N P / N D 36.5
t
4.88 1010 y ln 1 1 / 36.5 1.90 109 y ln 2
11-66. The number of X rays counted during the experiment equals the number of atoms of interest in the same, times the cross section for activation x , times the particle beam intensity, where I = proton intensity = 250nA eC / proton 1.56 1012 protons / s 1
x 650b 650 1024 cm2 m mass 0.35mg / cm2 0.00001 3.5 106 mg / cm2 n number of atoms of interest mN A / A t exposure time detector efficiency 0.0035 overall efficiency 0.60 detector efficiency
N I x
mN A t A
250 109 C / s 24 2 N 650 10 cm 19 1.60 10 C / proton
282
Chapter 11 – Nuclear Physics (Problem 11-66 continued)
0.35 103 g / cm2 0.00001 6.02 1023 mol 1 80 g / mol
15 min 60s/min 0.60 0.0035 5.06 104 counts in 15 minutes
t
11-67. t1 / 2
232
NP
232
ND
208
t1 / 2 ln 1 N D / N P ln 2
(Equation 11-92)
Th 1.40 1010 y
1.066 10
4.11g 6.02 1023 atoms / mol
0.88 g 6.02 1023 atoms / mol
Th
Pb
232.04 g / mol
208 g / mol
22
2.547 10
atoms
21
atoms
N D N P 2.547 1021 1.066 1022 0.2389
t
11-68. f
1.40 1010 y ln 1 0.2389 4.33 109 y ln 2
E 2 z p B h h
(a) For Earth’s field: f
2 2.79 N 3.15 108 eV / T 1 N 0.5 104 T
4.14 1015 eV s
2.13 103 Hz 2.12 kHz
(b) For B = 0.25T: f 2.12 103 Hz 0.25T 0.5 104 T 1.06 107 Hz 10.6 MHz
(c) For B= 0.5T: f 2.12 103 Hz 0.5T 0.5 104 T 2.12 107 Hz 21.2 MHz
283
Chapter 11 – Nuclear Physics
11-69. (a) N
14
12
C
3
12
C
12 10
6
3 1.60 10
(b) mass
19
C
1.50 1016
C ratio 1500 1.50 1016 1013
1.50 10 C
15
12
C / s 10 min 60s / min
atoms / min 75 min 12 1.66 1027 kg
0.015
1.49 107 kg 1.49 104 g 0.149mg (c) The
14
C
12
sample living
C ratio in living C is 1.35 1012. 14
C 14 C
C 1013 0.10 1 12 12 C 1.35 10 1.35 2 12
n
where n = # of half-lives elapsed. Rewriting as (see Example 11-28)
2n
1.35 13.5 0.10
n ln 2 ln 13.5
n ln 13.5 / ln 2 3.75
age of sample = 3.75t1 / 2 3.75 5730 y 2.15 104 y
11-70. If from live wood, the decay rate would be 15.6 disintegrations/g•min. The actual rate is 2.05 disintegrations/g•min. 2
2.05decays / g min 1 2 15.6decays / g min (from Example 12-13)
2n 15.6 / 2.05
n ln 2 ln 15.6 / 2.05 n ln 15.6 / 2.05 ln 2 2.928 half lives of 14 C Age of spear thrower = nt1 / 2 2.928 5730 y 16,800 y
284
Chapter 11 – Nuclear Physics 11-71. Writing Equation 11-14 as:
M Z, A c2
Zm2p
a1 A a2 A2 / 3 a3 A
A Z mnc 2
1/ 3 2
z
a4 A 2Z
2
A
1
a5 A
1/ 2
c2
and differentiating,
M Z
mp
mn
0
mp
mn
2a3 A
0
mp
mn
4a4
mp
Z
mn
2a3 A
1/ 3
2a3 A
4a4 8a4 A
1/ 3
1/ 3
Z
Z
2a4 A 2Z
1/ 3
where a3
1
1
8a4 A 1Z
4a4
2a3 A
2 A
8a4 A
1
Z
0.75 and a4
93.2
1.008665 1.007825 931.5MeV / uc 2
(a) For A = 27: Z
2 0.75 27
1/ 3
8 93.2 27
4 93.2 1
13.2
Minimum Z = 13 (b) For A = 65: Computing as in (a) with A = 65 yields Z = 31.5. Minimum Z = 29. (c) For A = 139: Computing as in (a) with A = 139 yields Z = 66. Minimum Z = 57.
11-72. (a) R
0.31 E 3 / 2
(b) R g / cm2 (c) R cm
0.31 5MeV
R cm
3/ 2
3.47cm
3.47cm 1.29 10 3 g / cm3
R g / cm2
4.47 10 3 g / cm2
4.47 10 3 g / cm2
2.70 g / cm3
1.66 10 3 cm
11-73. For one proton, consider the nucleus as a sphere of charge e and charge density c
3e 4 R3. The work done in assembling the sphere, i.e., bringing charged shell dq
up to r, is: dU c
Uc
k
2 c
16 2 R5 15
k
c
4 r3 3
c
4 r 2 dr
1 and integrating from 0 to R yields: r
3 ke2 5 R
For two protons, the coulomb repulsive energy is twice Uc, or 6ke 2 5 R.
285
Chapter 11 – Nuclear Physics
11-74. The number N of
dN dt
144
Nd atoms is: N
N
11-75. R
ln 2
R0e
144 g / mol
2.25 1023 atoms
dN dt N 2.36s
t1 / 2
53.94 g 6.02 1023 atoms / mol
1
ln 2 1.05 10
t ln 2 / t1 / 2
2.25 1023 23
s
1
1.05 10
6.61 1023 s
23
s
1
2.09 1015 y
(from Equation 11-19)
(a) At t = 0: R = R0 = 115.0 decays/min At t = 4d 5h = 4.21d: R = 73.5 decays/min ln 2 4.21d / t1 / 2
73.5decays / min = 115.0decays / min e 73.5 / 115.0
e
ln 73.5 / 115.0
ln 2 4.21d / t1 / 2
ln 2 4.21d / t1 / 2 ln 2 2.41d / ln 73.5 / 115.0
t1 / 2
(b) R 10decays / min = 115.0decays / min e t
ln 10 / 115.0 6.52d ln 2
t
ln 2 t / 6.52 d
23.0d
2.5decays / min = 115.0decays / min e
(c) R
6.52d
ln 2.5 / 115.0 6.52d ln 2
ln 2 t / 6.52 d
36.0d
(because t = 0)
This time is 13 days (= 2t1/2) after the time in (b).
11-76. For
227
For
223
Th : t1 / 2 Ra : t1 / 2
18.72d
(nucleus A)
11.43d
(nucleus B)
At t = 0 there are 106 Th atoms and 0 Ra atoms (a) N A NB
N 0 Ae N0 A B
At
A
(Equation 11-18) e
At
e
Bt
N0Be
Bt
A
286
(Equation 11-26 on the Web page)
Chapter 11 – Nuclear Physics (Problem 11-76 continued) ln 2 15 d / 18.72 d
106 e
NA
5.74 105
106 ln 2 18.72d
NB
ln 2 1 / 11.43d 1 / 18.72d
(b) N A
N0 A
At
N B means N 0 Ae
B
ln 2 15 / 18.72
e
A
e
At
e
e
ln 2 15 / 11.43
0
2.68 105
Bt
A
Cancelling N0A and rearranging, B
A
1 e
A
t
B
A
ln 2 A
0.0370d
18.82d B
ln
A
1
ln 2
1 B
B
A
11.43d
0.0606d
1
t
A
B
ln
t
A
1
A
B
0.0606 0.0370 1 0.0370
ln
A
0.0370 0.0606
43.0d
/
11-77. (a)
6.582 10
hf
(b) Er
2
16
eV s 0.13 10 9 s
0.12939MeV
2Mc 2
2M
4.71 10 8 MeV
191
5.06 10 6 eV
2
(Equation 11-47)
I c2
4.71 10 2 eV
(c) (See Section 1-5) The relativistic Doppler shift Δf for either receding or approaching is: f
v c
f0
E
v c
v
c
E
h f
hf 0
E
5.06 10 6 eV
3.00 108 m / s
0.12939MeV 106 eV / MeV
287
0.0117m / s
1.17cm / s
Chapter 11 – Nuclear Physics 11-78. B
ZM 1H c 2
For 3 He :
B
Nmnc 2
M Ac 2
2 1.007825uc 2
1.008665uc 2
3.016029uc 2
0.008826uc 2 931.5MeV / uc 2
For 3 H :
B 1.007825uc 2
7.72MeV
2 1.008665uc 2
3.016029uc 2
0.009106uc 2 931.5MeV / uc 2
R Uc
R0 A1 / 3
1.2 fm31 / 3
ke2 / R
8.48MeV 15
1.730 fm 1.730 10 8.32 105 eV
ke / R eV
m
0.832MeV
or about 1/10 of the binding
energy.
11-79. For 47Ca : B
M
46
Ca c 2
mn c 2
M
47
Ca c 2
45.953687uc2 1.008665uc2 46.954541uc2 0.007811uc 2 931.5MeV / uc 2
7.28MeV
For 48Ca : B
M
47
Ca c 2
mn c 2
M
48
Ca c 2
45.954541uc2 1.008665uc2
47.952534uc2
0.010672uc 2 931.5MeV / uc 2
9.94MeV
Assuming the even-odd
Ca to be the “no correction” nuclide, the average magnitude of
47
the correction needed to go to either of the even-even nuclides 46Ca or
48
Ca is
approximately B – average binding energy of the odd neutron, 9.94MeV
7.28MeV / 2
MeV and for
8.61MeV . So the correction for 46Ca is 8.16 – 7.28 = 0.88
Ca is 9.94 – 8.16 = 1.78 MeV, an “average” of about 1.33 MeV. The
48
estimate for a5 is then: a5 A 1 / 2
1.33MeV
a5
30% below the accepted empirical value of a5 = 12.
288
1.33 / 48 1 / 2
9.2 . This value is about
Chapter 11 – Nuclear Physics 11-80. For a nucleus with I > 0 the α feels a centripetal force
mv2 / r
Fc
dV / dr where r
distance of the
from the nuclear center. The
ln r and becomes larger (i.e., more negative) as r
corresponding potential energy V
increases. This lowers the total energy of the α near the nuclear boundary and results in a wider barrier, hence lower decay probability.
11-81. (a) R
R0 A1 / 3 where R0
R
141
R
92
(b) V
1.2 f
Ba
1.2 fm 10
Kr
1.2 fm 10
15
15
(Equation 11-3)
m / fm 141
m / fm 92
1/ 3
1/ 3
6.24 10 5.42 10
15
8.998 109 N m2 / C 2 56 1.60 10
kq1q2 / r
6.24 10
2.49 108 eV
15
m 5.42 10
15
15
m
m
19
C 36 1.60 10
m 1.60 10
19
19
C
J / eV
249MeV
This value is about 40% larger than the measured value.
11-82. (a) In the lab, the nucleus (at rest) is at x = 0 and the neutron moving at vL is at x. xCM V
M 0 M
mx m
mx M m
vL
x and V dt
dxm dt
m x / dt M
m
mvL M m
(b) The nucleus at rest in the lab frame moves at speed V in the CM frame before the collision.
In an elastic collision in the CM system, the particles reverse their
velocities, so the speed of the nucleus is still V, but in the opposite direction. (c) In the CM frame in the nucleus velocity changes by 2V. This is also the change in the lab system where the nucleus was initially at rest. It moves with speed 2V in the lab system after the collision. (d)
1 M 2V 2
1/ 2
2mvL 1 M 2 M m
1 2 mvL 2
289
4mM M
m
2
Chapter 11 – Nuclear Physics (Problem 11-82 continued) Before collision: Ei
1 2 mvL 2 1 2 mvL 2
After collision: E
1 2 mvL 2
4mM M
m
11-83. At the end of the two hour irradiation the number of R0
N
For
32
t
1 e
M
P and
56
m
2
Mn atoms are given by
I (Equation 11-62)
P: 24
0.180 10
N0
R0t1 / 2 1 e ln 2 1.29 10
56
32
from Equation 11-26 where R0
R0
For
4mM
Ei 1
2
cm2 1012 neutrons / cm2 s
1.80 10
ln 2 t / t1 / 2
13
1.80 10
13
32
P atoms / s per 31 P
/ s 3600s / h 342.2h ln 2
9 32
1 e
ln 2 2 h / 342.2 h
P atoms / 31 P atom
Mn :
R0
N0
13.3 10
1.33 10
24
cm2 1012 neutrons / cm2 s
11
/ s 3600s / h 2.58h
1 e
ln 2 7.42 10
8 56
1.33 10
11
56
Mn atoms / s per 55 Mn
ln 2 2 h / 2.58 h
Mn atoms / 55 Mn atom
(a) Two hours after the irradiation stops, the activities are: dN dt
For
N 0e 32
56
N 0 ln 2 t1 / 2
e
ln 2 t / t1 / 2
P:
dN dt For
t
1.29 10
9
ln 2 4
14.26d 8.64 10 s / d
e
ln 2 2 h / 342.2 h
Mn :
290
7.23 10
16
decays / 31 P atom
Chapter 11 – Nuclear Physics (Problem 11-83 continued) 8
7.42 10
dN dt
ln 2
2.58h 3600s / h
e
ln 2 48 h / 2.58 h
1.39 10
17
decays / 56 Mn atom
The total activity is the sum of these, each multiplied by the number of parent atoms initially present.
11-84. Q E N
200MeV / fission. 7.0 1019 J
NQ
N 200MeV / fission 1.60 10
7.0 1019 J 200MeV / fission 1.60 10 235
Number of moles of
13
2.19 1030 6.02 1023
Fissioned mass/y = 3.63 106 moles 235 g / mole That is 3% of the mass of the
235
J / MeV
2.19 1030 fissions
J / MeV
U needed = N / N A
13
8.54 108 g
3.63 106 moles 8.54 105 kg
U atoms needed to produce the energy consumed.
Mass needed to produce 7.0 1019 J
8.54 105 kg / 0.03
2.85 107 kg.
Since the energy conversion system is 25% efficient: Total mass of
11-85. The number of
87
235
U needed = 1.14 108 kg.
Sr atoms present at any time is equal to the number of
have decayed, because
87
Rb nuclei that
Sr is stable.
N Sr
N 0 Rb
N Rb
0.010
N 0 Rb N Rb
N Sr
N Sr
87
N Rb
N Rb
N Sr
N Rb
N 0 Rb N Rb
1N
1 1.010
and also N Rb N0 Rb ln 2 t t1 / 2
t
e
ln 2 t / t1 / 2
1 / 1.010
ln 1 / 1.010
t1 / 2 ln 1 / 1.010 / ln( 2)
4.9 1010 y ln 1 / 1.010 / ln( 2)
291
7.03 108 y
Chapter 11 – Nuclear Physics 11-86. (a) Average energy released/reaction is: 3.27 MeV
P
E t
4W
4J / s
N 3.65MeV 1.60 10
4J / s 3.65MeV / reaction 1.60 10
N
13
4.03MeV / 2 13
3.65MeV
J / MeV
J / MeV
6.85 1012 reactions / s
Half of the reactions produce neutrons, so 3.42 1012 neutrons / s will be released. 0.10 3.42 1012
(b) Neutron absorption rate
3.42 1011 neutrons / s
Energy absorption rate = 0.5MeV / neutron 3.42 1011 neutrons / s 1.60 10
13
J / MeV
2.74 10 2 J / s
Radiation dose rate =
2.74 10 2 J / s / 80kg 3.42 10 2 rad / s 4
3.42 10 3 rad / s
100rad / J / kg 0.137 rem / s
493 rem / h
(c) 500 rem, lethal to half of those exposed, would be received in: 500rem / 492rem / h
11-87. R t
N0 I 1 e
For Co: N 0
For Ti: N 0
t
1.02h
(Equation 11-86) 35Bq
19 10
24
cm
2
12
3.5 10 / s cm
2
1 e
1.319 10
115 Bq 0.15 10
11-88. The net reaction is: 5 2 H
24
cm
2
3
12
3.5 10 / s cm
He
4
He
1
H
2
1 e
0.120 2
2
2.00 1017 atoms
1.03 1015 atoms
n 25MeV
Energy release / 2 H
5MeV (assumes equal probabilities)
4 water
2 1.007825
4000 g
6
15.994915 g / mol
222.1 moles
4 of water thus contains 2(222.1) moles of hydrogen, of which 1.5 10 4 is 2 H , or
Number of 2 H atoms = 292
Chapter 11 – Nuclear Physics (Problem 11-88 continued) 2 222.1 moles 6.02 1023 atoms / mol 1.5 10
Total energy release = 4.01 1022 5MeV
4
4.01 1022
2.01 1023 MeV
3.22 1010 J
Because the U.S. consumes about 1.0 1020 J / y, the complete fusion of the 2 H in 4 of water would supply the nation for about 1.01 10 2 s 10.1ms
2hc / Mc 2
11-89. (a)
hc
hc
E
2
2
2
hc
E 2 2hc E hc Mc 2
Ep
2E 2 Mc 2
E 2 Mc 2 E p / 2
E
Ef E
Ei
M
4mM
Ei 1
m
Mc 2 E p / 2
E
M
m
2
1 m/M
2
5.7MeV 938.28MeV / 2
(b) E
1/ 2
Ei
2
4m / M
4mM
Ei
E2 hc
4mM
Ei
M
m
2
which is Equation 11-82 in More section. 1/ 2
51.7 MeV
(c) O 14N (M)
x vL CM neutron (m)
The neutron moves at vL in the lab, so the CM moves at v
vL mN / mN
M
toward
the right and the 14N velocity in the CM system is v to the left before collision and v to the right after collision for an elastic collision. Thus, the energy of the nitrogen nucleus in the lab after the collision is:
E
14
N
1 M 2v 2
2
2Mv
2
mvL 2M m M
293
2
Chapter 11 – Nuclear Physics (Problem 11-89 continued)
2Mm mvL2 m M
4Mm
2
1 2 mvL 2
2
m M
4 14.003074u 1.008665u 1.008665u 14.003074u
5.7 MeV
2
= 1.43 MeV 14.003074uc 2 931.5MeV / uc 2 1.43MeV / 2
(d) E
1/ 2
96.5MeV
11-90. In the lab frame: photon
E
hv
p
hv / c
deuteron, M at rest
pc E /c
In CM frame:
For E
photon
deuteron, M
E p
EK
1 / 2Mv 2
p
2MEK
pc E/c
p 2 / 2M
pc in CM system means that a negligible amount of photon energy goes to
recoil energy of the deuteron, i.e.,
p2 2M E
pc pc
E 2Mc 2
or
pc 2Mc
2
pc
2
2 1875.6MeV
pc
2Mc 2
3751.2 MeV
(see Table 11-1)
In the lab, that incident photon energy must supply the binding energy B = 2.22 MeV plus the recoil energy EK given by: EK
p 2 / 2M 2.22 MeV
2
pc / 2Mc 2
2
B / 2Mc 2
2
2 1875.6 MeV
0.0013MeV
294
Chapter 11 – Nuclear Physics (Problem 11-90 continued) So the photon energy must be E
2.22MeV
0.001MeV
2.221MeV , which is much
less than 3751 MeV.
ZM 1H c 2
11-91. (a) B
For 7 Li :
Nmn c 2
M Ac 2
3 1.007825uc 2
B
(Equation 11-11)
4 1.008665uc 2
7.016003uc 2
0.042132uc 2 931.5MeV / uc 2 For 7 Be :
4 1.007825uc 2
B
39.25MeV
3 1.008665uc 2
0.040367uc 2 931.5MeV / uc 2
7.016928uc 2
37.60MeV
B 1.65MeV
For 11B :
B
5 1.007825uc 2
6 1.008665uc 2
11.009305uc 2
0.0081810uc 2 931.5MeV / uc 2 For 11C :
B
6 1.007825uc 2
76.21MeV
5 1.008665uc 2
11.011433uc 2
0.078842uc 2 931.5MeV / uc 2
B
73.44MeV
2.77MeV
For 15 N :
7 1.007825uc 2
B
8 1.008665uc 2
0.123987uc 2 931.5MeV / uc 2 For 15O :
B
8 1.007825uc 2
115.5MeV
7 1.008665uc 2
0.120190uc 2 931.5MeV / uc 2
B (b)
B
a3
For A
15.000108uc 2
15.003065uc 2 112.0MeV
3.54MeV Z2 A 7; Z
For A 11; Z
1/ 3
4: 6:
a3 a3 a3
B
Z2 A
1.65MeV 7 7
1/ 3
2.77 MeV 11 11
295
1/ 3
0.45MeV 1/ 3
0.56MeV
Chapter 11 – Nuclear Physics (Problem 11-91 continued) For A 15; Z
8:
1/ 3
3.54 MeV 15 15
a3
0.58MeV
0.53MeV
a3
0.75MeV .
These values differ significantly from the empirical value of a3
11-92. (a) Using M Z Z
mn
mp
2a3 A
1 2A
0 from Problem 11-71. 4
4
1/ 3
8a4 A
mn
mp
1
(b) & (c) For A
a3 A 29 :
1
where a3
2a4
Z
93.2MeV / c 2
a4
A 1 mn m p 4a4 2 1 a3 A2 / 3 4a4
4a4
1/ 3
0.75MeV / c 2 ,
29 1 2
1.008665 1.007276 931.5 / 4 93.2 1 0.75 29
The only stable isotope with A = 29 is
29 14
2/3
14
/ 4 93.2
Si
For A =59: Computing as above with A = 59 yields Z = 29. The only stable isotope with A = 59 is
59 27
Co
For A = 78: Computing as above with A = 78 yields Z = 38. stable. Stable isotopes with A = 78 are
78 34
The only stable isotope with A = 119 is
119 50
Se and
78 38
78 38
Sr is not
Kr .
Sn .
For A = 140: Computing as above with A = 140 yields Z = 69. stable. The only stable isotope with A = 140 is
140 69
Tm is not
140 58
Ce .
The method of finding the minimum Z for each A works well for A ≤ 60, but deviates increasingly at higher A values.
296
Chapter 11 – Nuclear Physics 11-93. (a)
(b) j = 3/2
n
1d5/2
1d5/2
1p1/2
1p1/2
1p3/2
1p3/2
1s1/2
1s1/2 n
p
11
Ground state B
(c) j = 5/2
1d5/2
1p1/2
1p3/2
1s1/2 n
2nd excited state 11B
j = 1/2
p
297
1st excited state 11B
p
Chapter 11 – Nuclear Physics (Problem 11-93 continued) (d)
17
n
O Ground state (j = 5/2)
1d5/2
1d5/2
1p1/2
1p1/2
1p3/2
1p3/2
1s1/2
1s1/2
p
n
(e) 2s1/2 1d5/2
1p1/2
1p3/2
1s1/2 n
17
p
O nd 2 excited state (j = 1/2)
298
17
O 1st excited state (j = 1/2)
p
Chapter 11 – Nuclear Physics 11-94. (a) Data from Appendix A are plotted on the graph. For those isotopes not listed in Appendix A, data for ones that have been discovered can be found in the reference sources, e.g., Table of Isotopes, R.B. Firestone, Wiley – Interscience (1998). Masses for those not yet discovered or not in Appendix A are computed from Equation 11-14 (on the Web). Values of M(Z, 151) computed from Equation 11-14 are listed below. Because values found from Equation 11-14 tend to overestimate the mass in the higher A regions, the calculated value was adjusted to the measured value for Z = 56, the lowest Z known for A = 151 and the lower Z values were corrected by a corresponding amount. The error introduced by this correction is not serious because the side of the parabola is nearly a straight line in this region. On the high Z side of the A = 151 parabola, all isotopes through Z = 70 have been discovered and are in the reference cited.
Z
N
M Z , 151 [Equation 11-14]
50
101
152.352638
151.565515
51
100
152.234612
151.447490
52
99
152.122188
151.335066
53
98
152.015365
151.228243
54
97
151.914414
151.127292
55
96
151.818525
151.031403
56
95
151.728507
150.941385*
* This value has been measured.
299
M Z , 151
[adjusted]
Chapter 11 – Nuclear Physics (Problem 11-94 continued)
(b) The drip lines occur for: protons: M Z , 151
M Z 1, 150
neutrons: M Z , 151
M Z , 150
mp mn
0 0
Write a calculator or computer program for each using Equation 11-14 (on Web page) and solve for Z.
11-95. (a) M Z , A
Zmp
Nmn
a1 A a2 A2 / 3
a3 A
1/ 3
a4 A 2Z
2
A
1
a5 A
1/ 2
from Equation 11-14 on the Web page.
15.67 310 M 126, 310
126m p 184mn
17.23 310
0.75 126
2
310
313.969022u
(b) For β− decay: (126, 310) → (127, 310) + β− + ve Computing M(127, 310) as in (a) yields 314.011614u.
300
1/ 3
93.2 310 2 126 12 310
M 126, 310
2/3
1
2
310
12 310
1/ 2
Chapter 11 – Nuclear Physics (Problem 11-95 continued) Q
M 126, 310 c 2
M 127, 310 c 2
313.969022uc2 314.011614uc2 0.042592u 931.5MeV / uc 2
39.7 MeV
Q < 0, so β− decay is forbidden by energy conservation. For β+ decay: (126, 310) → (125, 310) + β+ + ve Computing M(125, 310) as in (a) yields 313.923610u. Q
M 126, 310 c 2
M 125, 310 c 2
2mec 2
313.969022uc2 313.923610uc2 1.022MeV 41.3MeV β+ decay and electron capture are possible decay modes. For α decay: (126, 310) → (124, 310) + α Computing M(124, 310) as in (a) yields 309.913540u. 313.969022uc 2
Q
309.913540uc 2
4.002602uc 2
49.3MeV α decay is also a possible decay mode. 11-96. (a) If the electron’s kinetic energy is 0.782MeV, then its total energy is:
E E2
p
mec2
0.782MeV pc
E2
2
2
me c 2
me c 2
0.511MeV
1.293MeV
(Equation 2-32)
1/ 2
2
c 2
1.293MeV
0.782MeV
0.511MeV
2
1/ 2
c
1.189MeV / c (b) For the proton p 1.189MeV / c also, so Ekin
p 2 / 2m
pc
1.189MeV
2
2
2mc 2 2 938.28MeV
301
7.53 10 4 MeV
0.753keV
Chapter 11 – Nuclear Physics (Problem 11-96 continued) (c)
11-97.
7.53 10 4 MeV 100 0.782MeV
dN dt
Rp
(a)
N
N Rp
(Equation 11-17) N 0e
Rp /
N
0.0963%
t
1 e
Rp t
Rp e
t
Rp 1 e
(from Equation 11-17) R p / , its maximum value
At t = 0, N(0) = 0. For large t, N t
(b) For dN / dt Rp
N
N
t
0 N
Rp /
Rp / ln 2 / t1 / 2
100s 1 / ln 2 / 10 min 8.66 104
11-98. (a) 4n + 3 decays chain
100s
1
60s / min / ln 2 / 10 min
62
Cu nuclei
235 92
U143
207 82
Pb125 There are 12 α decays in the chain. (See graph
below.)
302
Chapter 11 – Nuclear Physics (b) There are 9 β− decays in the chain. (See graph below.)
(Problem 11-98 continued) (c) Q
235
U c2
M
207
M
235.043924uc 2
Pb c 2
7M
4
206.975871uc 2
0.049839uc 2 931.50MeV / uc 2
He c 2 7 4.002602 uc 2
46.43MeV
(d) The number of decays in one year is:
dN dt
N0e
t
ln 2 / t1 / 2
where
ln 2 / 7.04 108 y
1kg 1000 g / kg 6.02 1023 atoms / mol
N0
235 g / mol
dN dt
9.85 10
10
y
1
2.56 1024 e
1y
9.85 10
10
y
1
2.56 1024 atoms
2.52 1015 decays / y
Each decay results in the eventual release of 46.43 MeV, so the energy release per year Q is: Q
2.52 1015 decays / y 46.43MeV / decay
1.17 1017 MeV / y 1.60 10
13
J / MeV
1.87 104 J / y 1cal / 4.186 J
4.48 103 cal / y
The temperature change ΔT is given by:
Q
cm T or T
Q / cm where m 1kg 1000g
and the specific heat of U is c T
4.48 103 cal / y
0.0276cal / g C .
0.0276cal / g C 1000 g
303
162 C
Chapter 11 – Nuclear Physics (Problem 11-98 continued) 235
U
α
144 231
Th
β−
142
231
Pa
α 237
140
Ac
β−
α 223
138
α
β−
136 219
α 215
N
β
α − 215
Po
β−
215
At
211
α
Pb
β
128
− 211
Bi
β−
α 126
Ra
Rn
α
130
223
219
Bi
132
211
Po
207
Tl
α
β
− 207
Pb
124
80
82
84
86
88
90
Z 11-99. The reactions are: (1) 1H
1
(2) 1H
2
H H
2
H
3
ve
He
followed by (3) 3 He
3
Th
α
At
134
227
α
Fr
He
4
He
1
H
1
H or
304
92
Chapter 11 – Nuclear Physics (Problem 11-99 continued) (4) 1H
3
4
He
He
ve
(a) From 2(1) + 2(2) + (3):
61 H
2 2H
2 3He
2 2H
2 3He
4
He 2 1H
2
2ve
2
Cancelling 2 1H , 2 2 H , and 2 3 He on both sides of the sum,
41 H
4
He 2
2ve
2
From (1) + (2) + (4):
41 H
2
3
H
2
He
H
3
4
He
He 2
2ve
Cancelling 2 H , and 3He on both sides of the sum,
41 H (b) Q
4
He 2
4m 1 H c 2
M
4 938.280MeV
2ve 4
He c 2
2mec 2
3727.409MeV
2 0.511MeV
24.7MeV (c) Total energy release is 24.7 MeV plus the annihilation energy of the two β+: energy release
24.7 MeV
2 me c 2
24.7 MeV
2 1.022MeV
26.7MeV
Each cycle uses 4 protons, thus produces
26.7MeV / 4 6.68MeV / proton.
Therefore, 1H (protons) are consumed at the rate: dN dt
4 1026 J / s 1eV 6 6.68 10 eV 1.60 10
P E
19
J
3.75 1038 protons / s
The number N of 1H nuclei in the Sun is: N
1 / 2 2 1030 kg 1.673 10 27 kg
M M
1
H
5.98 1056 protons
which will last at the present consumption rate for t
N dN / dt
5.98 1056 protons 3.75 1038 protons / s
1.60 1018 s
1y 3.16 107 s
1.60 1018 s
5.05 1010 y
305
Chapter 11 – Nuclear Physics 11-100. At this energy, neither particle is relativistic, so 2 pHe 2mHe
EHe
2mHe EHe mHe
EHe En
pn2 2mn
En
pHe
2mn 17.7 MeV
2mn En
17.7 MeV mn
mn EHe
1.008665u 17.7 MeV 2.002602u 1.008665u 17.7 MeV
pn
EHe
EHe
Therefore, EHe
R 0
kN
(b) Because k
1.005 62.5 1
100
R N
1.005 1 1.005
0.00498
0.05
235 f
U
0.05 584b a
R 0
100
neutron flux, the fractional change in flux necessary is equal to the
11-102. (a) For 5% enrichment: f
R 0
62.5 generations
100 137%
fractional change in k:
k 1 k
17.7 MeV
k N (from Example 11-22 in More section)
100 where R N / R 0
1
mn
14.1MeV
Percentage increase in energy production =
1
mHe
5s 0.08s / gen
11-101. (a) The number N of generations is: N
R N
mn
3.56MeV
17.7 3.56 MeV
EHe
17.7MeV
En
0.05
235 a
0.05 97b
0.95
238 f
0.95 0
U
0.95
U
29.2b 238 a
0.95 2.75b
306
U 7.46b
Chapter 11 – Nuclear Physics (Problem 11-102 continued)
2.4 29.2b
f
2.4
k
f
1.91 (Equation 11-68 in More section)
29.2b 2.46b
a
(b) For 95% enrichment: 0.95
f
235 f
0.95 584b a
0.95
235 a
238
0.05
U
f
0.05 0
0.95 97b
554.8b 238
0.05
U
U
a
0.05 2.75b
U 92.3b R 0 kN.
The reaction rate after N generations is R N For the rate to double R N N 5%
ln 2 / ln 1.91
N 95%
kN
2 R 0 and 2
N
ln 2 / ln k .
1.07 generations
ln 2 / ln 2.06
0.96 generations
Assuming an average time per generation of 0.01s t 5%
1.07 10 2 s
0.96 10 2 s
t 95%
Number of generations/second = 1/seconds/generation In 1s: N 5%
93.5 and N 95%
104
One second after the first fission: R 5%
R 0 kN
1 1.91
93.5
1.9 1026
Energy rate = 1.9 1026 fissions / s 200MeV / fission 3.8 1028 MeV / s 1.60 10
6.1 1015 J / s R 95%
R 0 kN
13
J / MeV
6.1 1015W
1 2.06
104
4.4 1032
Energy rate = 4.4 1032 fissions / s 200MeV / fission 8.8 1034 MeV / s 1.60 10
1.4 1022 J / s 1.4 1022W
307
13
J / MeV
Chapter 12 – Particle Physics 12-1. (a) Because the two pions are initially at rest, the net momentum of the system is zero, both before and after annihilation. For the momentum of the system to be zero after the interaction, the momentum of the two photons must be equal in magnitude and opposite in direction, i.e., their momentum vectors must add to zero. Because the photon energy is E pc, their energies are also equal. (b) The energy of each photon equals the rest energy of a or a . E m c 2 139.6MeV (from Table 12-3)
(c) E hf hc / Thus,
hc 1240MeV fm 8.88 fm E 139.6MeV
12-2. (a) E m c2 m c 2 2285MeV 139.6MeV 2424.6MeV (b) E 2mp c2 2 938.28MeV 1876.56MeV (c) E 2m c 2 2 105.66MeV 211.32MeV
12-3. (a)
e
e
e
e
γ
Z
e
e
e
e
(b)
γ
e
γ
e e
γ
e
γ
309
e+ e
Chapter 12 – Particle Physics 12-4. (a)
e
e
γ e
e
(b) See solution to Problem 12-3(a). (c) e e e
12-5. (a)
32
P 32S e assuming no neutrino
QM
P c 32
2
M
S c 32
(electron’s mass is included in that of
2
32
S)
31.973908uc2 31.972071uc2
0.001837uc2 931.5MeV / uc 2 1.711MeV
To a good approximation, the electron has all of the kinetic energy
Ek Q 1.711MeV (b) In the absence of a neutrino, the
32
S and the electron have equal and opposite
momenta. The momentum of the electron is given by:
pc
2
E 2 mec 2
2
(Equation 2-32)
m c
m c
Ek me c 2 Q mec 2
2
2
2
e
2
2
e
2
Q 2 2Qmec 2
310
Chapter 12 – Particle Physics (Problem 12-5 continued) The kinetic energy of the
32
S is then:
pc Q 2 2Qmec 2 p2 Ek 2M 2Mc 2 2M 32 S c 2 2
1.711MeV
2
2 1.711MeV 0.511MeV
2 31.972071uc 2 931.5MeV / uc 2
7.85 105 MeV 78.5eV
(c) As noted above, the momenta of the electron and
32
S are equal in magnitude and
opposite direction.
pc
2
Q2 2Qmec 2 1.711MeV 2 1.711MeV 0.511MeV 2
2 p 1.711MeV 2 1.711MeV 0.511MeV
1/ 2
c
2.16MeV / c
12-6. (a) A single photon cannot conserver both energy and momentum. (b) To conserver momentum each photon must have equal and opposite momenta so that the total momentum is zero. Thus, they have equal energies, each equal to the rest energy of a proton: E mp c 2 938.28MeV (c) E hv hc /
hc 1240MeV fm 1.32 fm E 938.28MeV
3.00 108 m / s (d) v 2.27 1023 Hz 15 1.32 10 m c
12-7. (a) Conservation of charge: +1 +1 → +1 −1 +1 −1 = 0. Conservation of charge is violated, so the reaction is forbidden. (b) Conservation of charge: +1 +1 → +1 −1 = 0. Conservation of charge is violated, so the reaction is forbidden.
311
Chapter 12 – Particle Physics
12-8. (a) 2 / m 5 2 / m 5
a b
c
Since the units of must be seconds s, we have 5
N m2 2 s kg e 2 C 1
5
1 c
5 a b
c
having substituted the internal units of ke2 / c. Re-writing the units, noting that
J N m, gives: s
1 C10 1 5 10 10 kg N m C
J 5 s5 m5 s5
a b
c
Noting that J kg m2 / s 2 and cancelling yields, s kg
a 1
m 2 a b s a b
Since a 1 must be 0, a 1, and since a b 1, b 2.
2 / mc2 5 (b)
2 1.055 1034 J s 137
9.11 10
31
5
kg 3.00 108 m / s
2
1.24 1010 s 0.124ns
12-9. (a) Weak interaction (b) Electromagnetic interaction (c) Strong interaction (d) Weak interaction 12-10. 0 is caused by the electromagnetic interaction; v is caused by the weak interaction. The electromagnetic interaction is the faster and stronger, so the 0 will decay more quickly; the will live longer.
12-11. (a) allowed; no conservation laws violated. (b) allowed; no conservation laws violated. (c) forbidden; doesn’t conserve baryon number. (d) forbidden; doesn’t conserve muon lepton number.
312
Chapter 12 – Particle Physics 12-12. (a) Electromagnetic interaction (b) Weak interaction (c) Electromagnetic interaction (d) Weak interaction (e) Strong interaction (f) Weak interaction
12-13. For neutrino mass m = 0, travel time to Earth is t = d/c, where d =170,000c•y. For neutrinos with mass m 0, t d / v d / c, where v / c. t t t
2
1 1 2
d 1 d1 1 c c (Equation 1-19)
1 1 2 1 1 1
1
1 1 2 since 1 1 2 2
Substituting into t, t
d 1 c 2 2
d mc 2 t 2c E
E mc 2 2 E / mc 2
2
(Equation 2-10)
2
t 2cE 2 mc d 2
1/ 2
2tE 2 d /c
1/ 2
2 2 12.5s 10 106 eV 170, 000c y / c 3.16 107 s / y
m 22eV / c2
313
1/ 2
21.6eV
Chapter 12 – Particle Physics 12-14. The and are members of a isospin multiplet, two charge states of the hadron. Their mass difference is due to electromagnetic effects. The and are a particleantiparticle pair.
12-15. (a)
νμ
μ−
νe W−
W+
μ+
π−
e+
μ−
ντ W−
νμ
τ−
νμ
12-16. (See Table 12-8 in More Section.) (a) 30 MeV (b) 175 MeV (c) 120 MeV 12-17. (a) mp c 2 mn me c 2 Conservation of energy and lepton number are violated.
(b) mn c 2 mp m c 2 Conservation of energy is violated. (c) Total momentum in the center of mass system is zero, so two photons (minimum) must be emitted. Conservation of linear momentum is violated. (d) No conservation laws are violated. This reaction, p p annihilation, occurs. (e) Lepton number before interaction is +1; that after interaction is −1. Conservation of lepton number is violated. (f) Baryon number is +1 before the decay; after the decay the baryon number is zero. Conservation of baryon number is violated.
314
Chapter 12 – Particle Physics 12-18. (a) The u and u annihilate via the EM interaction, creating photons.
u
u
u
(b) Two photons are necessary in order to conserve linear momentum. (c)
W
d
u
12-19. (a) The strangeness of each of the particles is given in Table 12-6. S 1 The reaction can occur via the weak interaction.
(b) S 2 This reaction is not allowed. (c) S 1 The reaction can occur via the weak interaction.
12-20. (a) The strangeness of each of the particles is given in Table 12-6. S 2 The reaction is not allowed.
(b) S 1 This reaction can occur via the weak interaction. (c) S 0 The reaction can occur via either the strong, electromagnetic, or weak interaction.
12-21. (a) n n (b) n p
1 1 T3 1 2 2 1 1 T3 0 2 2
T 1 T 1 or 0
315
Chapter 12 – Particle Physics (Problem 12-21 continued) 1 3 2 2
(c) p
T3 1
(d) n
T3 1
(e) n
T3 1
T
1 3 2 2
1 1 2 2
3 2
T T
3 2
1 3 or 2 2
12-22. (a) e Electron lepton number changes from 0 to 1; violates conservation of electron lepton number. (b) 0 e e ve ve Allowed by conservation laws, but decay into two photons via electromagnetic interaction is more likely. (c) e e v Allowed by conservation laws but decay without the electrons is more likely. (d) 0 Baryon number changes from 1 to 0; violates conservation of baryon number. Also violates conservation of angular momentum, which changes from 1/2 to 0. (e) n p e ve Allowed by conservation laws. This is the way the neutron decays. 12-23. (a) 0
0
(b) p 0
n
(c) 0 p
0 n 0
(d) 0 (e) v
0 e e e e 0
12-24. p 0 Because s have B = 0 and p has B = 1, conservation of B requires the to have B = 1. 0
The has B = 0, so conservation of B requires that the 0 have B = 1.
316
Chapter 12 – Particle Physics 12-25. (a) 0 0 0 0
S is conserved.
(b) 2 0 1
S is not conserved.
(c) 1 1 0
S is conserved.
(d) 0 0 0 1
S is not conserved.
(e) 3 2 0
S is not conserved.
12-26. Listed below are the baryon number, electric charge, strangeness, and hadron identity of the various quark combinations from Table 12-8 and Figure 12-21. Quark Structure
Baryon Number
Electric Charge (e)
Strangeness
Hadron
(a)
uud
+1
+1
0
p
(b)
udd
+1
0
0
n
(c)
uuu
+1
+2
0
Δ++
(d)
uss
+1
0
−2
0
(e)
dss
+1
−1
−2
(f)
suu
+1
+1
−1
(g)
sdd
+1
−1
−1
Note that 3-quark combinations are baryons.
12-27. Listed be below are the baryon number, electric charge, strangeness, and hadron identity of the various quark combinations from Table 12-9 and Figure 12-21. Quark Structure
Baryon Number
Electric Charge (e)
Strangeness
Hadron
(a)
ud
0
+1
0
(b)
ud
0
−1
0
(c)
us
0
+2
+1
(d)
ss
0
0
+1
0
(e)
ds
0
0
−1
0
* forms and along with uu and dd
317
Chapter 12 – Particle Physics 12-28.
u
K0
d
d
c
g
u
b
g
K0
d
b
12-29. (a) T3 = 0 (from Figure 12-20a) (b) T = 1 or 0 just as for ordinary spin. (c) uds
B = 1/3 + 1/3 + 1/3 = 1
S = 0 + 0 + −1 = −1
C = 2/3 – 1/3 – 1/3 = 0
The T = 1 state is the Σ0.
The T = 0 state is the Λ0.
12-30. The +2 charge can result from either a uuu, ccc, or ttt quark configuration. Of these, only the uuu structure also has zero strangeness, charm, topness, and bottomness. (From Table 12-5.) 12-31. The range R is R c / mc2 (Equation 11-50). Substituting the mass of W + (from Table 12-4),
1.055 10 J s 3.00 10 m / s 2.44 10 R 81GeV / c 1.60 10 J / GeV 34 2
8
18
10
12-32.
u
d
0 v
W
ds du
v
s
d
0 318
m 2.44 103 fm
Chapter 12 – Particle Physics 12-33.
p
u 0
p
u
d
d
uds uud ud Z0
Weak decay
u
12-34. n p
d
s
0
Q mn c2 mp c 2 m c 2 939.6 938.3 139.6 MeV 138.3MeV
This decay does not conserve energy.
p
12-35.
u 0
p
d
u
u
d
uds uud ud Z0 Strong decay
u
d
s
12-36. (a) B = 1, S = −1, C = 0, B 0 (b) Quark content is: uds 12-37. (a) The has charge +1, B = 0, and S = +1 from Table 12-6. It is a meson (quarkantiquark) structure. us produces the correct set of quantum numbers. (From Table 12-5.)
319
Chapter 12 – Particle Physics (Problem 12-37 continued) (b) The 0 has charge 0, B = 0, and S = +1 from Table 12-6. The quark-antiquark structure tp produce these quantum numbers is d s . (From Table 12-5.) 12-38. (a) Being a meson, the D+ is constructed of a quark-antiquark pair. The only combination with charge = +1, charm = +1 and strangeness = 0 is the cd . (See Table 12-5.) (b) The D−, antiparticle of the D+, has the quark structure c d .
12-39. The 0 decays via the electromagnetic interaction whose characteristic time is
1020 s.
The and both decay via the weak interaction. The difference between these two being due to their slightly different masses.
12-40. If the proton is unstable, it must decay to less massive particles, i.e., leptons. But leptons have B = 0, so p e ve would have 1 = 0 + 0 = 0 and B is not conserved. The lepton numbers would not be conserved either; a “leptoquark” number would be conserved.
12-41. V H 2O 0.75V 0.75 4 R 2 R , where R(Earth) = 6.37 106 m and R 1km 103 m.
V H 2O 0.75 4 6.37 106 m
10 3.82 10 2
3
17
m3
M H 2O V H 2O 3.82 1017 m3 1000kg / m3 3.82 1020 kg
Number of moles (H2O) = 3.82 1023 g / 18.02 g / mole 2.12 1022 moles Number of H2O molecules = N A # of moles
6.02 1023 molecules / mole 2.12 1022 moles
1.28 1046 molecules H2O
Each molecule contains 10 protons (i.e., 2 in H atoms and 8 in the oxygen atom), so the number of protons in the world’s oceans is N 1.28 1047.
320
Chapter 12 – Particle Physics (Problem 12-41 continued) The decay rate is
dN N where 1 / 1 / 1032 y 1032 y 1 dt
1032 y 1 1.28 1047 protons
1.28 1015 proton decays / y 4 107 decays / s 12-42. (a) p e 0 ve
Q mp c 2 M 0 c 2 mec 2 MeV
938.3 1116 0.511 MeV 178MeV Energy is not conserved. (b) p Spin (angular momentum)
1 0 1 1. Angular momentum is not conserved. 2
(c) p 0 Spin (angular momentum)
1 0 0 0. Angular momentum is not conserved. 2
12-43. n, B = 1, Q = 0, spin = 1/2, S = 0
Quark strucure
u
d
d
B
1/3
+1/3
+1/3
=1
Q
2/3
−1/3
−1/3
=0
spin
1/2↑
1/2↑
1/2↓
= 1/2
0
+0
+0
=0
S
n , B = −1, Q = 0, spin = 1/2, S = 0 u
d
d
B
−1/3
−1/3
−1/3
= −1
Q
−2/3
+1/3
+1/3
=0
spin
1/2↑
1/2↑
1/2↓
= 1/2
0
+0
+0
=0
Quark strucure
S
321
Chapter 12 – Particle Physics (Problem 12-43 continued) (b) 0 , B = 1, Q = 0, spin = 1/2, S = −2 Quark strucure
u
s
s
B
1/3
+1/3
+1/3
=1
Q
2/3
−1/3
−1/3
=0
spin
1/2↑
1/2↓
1/2↑
= 1/2
0
−1
−1
= −2
S
(c) , B = 1, Q = 1, spin = 1/2, S = −1 Quark strucure
u
u
s
B
1/3
+1/3
+1/3
=1
Q
2/3
2/3
−1/3
=0
spin
1/2↑
1/2↓
1/2↑
= 1/2
0
+0
−1
= −1
S
(d) , B = 1, Q = −1, spin = 3/2, S = −3 Quark strucure
s
s
s
B
1/3
+1/3
+1/3
=1
Q
−1/3
−1/3
−1/3
= −1
spin
1/2↑
1/2↑
1/2↑
= 3/2
−1
−1
−1
= −3
S
(e) , B = 1, Q = −1, spin = 1/2, S = −2 Quark strucure
u
d
d
B
1/3
+1/3
+1/3
=1
Q
−1/3
−1/3
−1/3
= −1
spin
1/2↑
1/2↓
1/2↑
= 1/2
0
−1
−1
= −2
S
322
Chapter 12 – Particle Physics 12-44. (a) Quark strucure
d
d
d
B
1/3
+1/3
+1/3
=1
Q
−1/3
−1/3
−1/3
= −3/2
spin
1/2
1/2
1/2
= 3/2, 1/2
0
+0
+0
=0
u
c
B
1/3
−1/3
=0
Q
2/3
−2/3
=0
spin
1/2
1/2
= 1, 0
0
+0
=0
u
b
B
1/3
−1/3
=0
Q
2/3
+1/3
=1
spin
1/2
1/2
= 1, 0
0
+0
=0
s
s
s
B
−1/3
−1/3
−1/3
= −1
Q
1/3
+1/3
+1/3
=1
spin
1/2
1/2
1/2
= 3/2, 1/2
1
+1
+1
=3
S
(b) Quark strucure
S
(c) Quark strucure
S
(d) Quark strucure
S
12-45. The Z 0 has spin 1. Two identical spin 0 particles cannot have total spin 1. 12-46. (a) The final products (p, γ, e−, neutrinos) are all stable. (b) 0 p e ve v v (c) Conservation of charge: 0 1 1 0 0 0 0 Conservation of baryon number: 1 1 0 0 0 0 1
323
Chapter 12 – Particle Physics (Problem 12-46 continued) Conservation of lepton number: (i) for electrons: 0 0 1 1 0 0 0 (ii) for muons: 0 0 0 0 1 1 0 Conservation of strangeness: 2 0 0 0 0 0 0 Even though the chain has S 2, no individual reaction in the chain exceeds
S 1, so they can proceed via the weak interaction. (d) No, because energy is not conserved. 12-47. 2, 1, 0, 1, 0 c u u
0, 1, 2, 1, 0 c s s 0, 0, 1, 0, 1 b s
0, 1, 1, 0, 0 s d u 0, 1, 1, 1, 0 c s d 1, 1, 3, 0, 0 s s s 12-48. (a)
t1 x / u1 t2 x / u2 t t2 t1
x x u2 u1
u u x u t x 1 2 2 c u1u2
(b)
E
mc 2 1 u 2 / c2
(Equation 2-10) 1/2
2 (mc 2 )2 (mc 2 )2 u mc 2 2 2 E 1 u / c 1 1 u 2 / c2 E2 c E Expanding the right side of the equation in powers of (mc 2 / E )2 and keeping only 2
the first term yields
324
Chapter 12 – Particle Physics (Problem 12-48 continued)
u 1 mc 2 1 c 2 E
(c)
2
2 1 mc 2 2 1 mc 2 u1 u2 c 1 1 2 E2 2 E1
c(mc 2 )2 1 1 c(mc 2 ) 2 E12 E22 2 2 2 2 2 2 E2 E1 E1 E2
u u1 u2
c(2.2 eV / c 2 c 2 ) 2 (20 MeV) 2 (5 MeV) 2 (20 MeV) 2 (5 MeV) 2 2
c(2.2 eV) 2 (106 MeV/eV) 2 375 2 2 2 2 (20) (5) (MeV) 2 12 (2.2) (375) 10 c 2.7 105 m/s 2 2 2(20) (5)
And therefore, t
1.7 105 c y 9.46 1015 m / c y 2.7 105 m/s 0.48s (3.0 108 m/s)2
12-49. (a) e ve v Electron lepton number: 0 1 1 0 0 Muon lepton number: 1 0 0 1 1 Tau lepton number: 0 0 0 0 0 (b) v v Electron lepton number: 0 0 0 0 0 Muon lepton number: 0 1 1 0 0 Tau lepton number: 1 0 0 1 1 (c) v Electron lepton number: 0 0 0 0 Muon lepton number: 0 1 1 0 Tau lepton number: 0 0 0 0
325
Chapter 12 – Particle Physics 12-50. 0
hf
E 2 pc m c 2 2
In lab:
2
0
hf
Conservation of momentum requires that each carry half of the initial momentum, hence
the total energy: 2 hf / c cos p cos
2 2 hf E / 2 pc m c 2
1/ 2
p p 1/ 2 2 2 2 hf / c 2 pc m c 2 2c
pc
pc 2 m c 2 2
1/ 2
850MeV 850MeV 2 135MeV 2
1/ 2
0.9876
cos1 0.9876 9.02 12-51. (a) 0 p Energy: 1116MeV 938 140 MeV 38MeV conserved. Electric charge: 0 1 1 0 conserved. Baryon number: 1 1 0 1 conserved. Lepton number: 0 0 0 0 conserved. (b) n p Energy: 1197MeV 940 938 MeV 681MeV not conserved. Electric charge: 1 0 1 1 conserved. Baryon number: 1 1 1 0 not conserved. Lepton number: 0 0 0 0 conserved. This reaction is not allowed (energy and baryon conservation violated).
326
2
Chapter 12 – Particle Physics (Problem 12-51 continued) (c) e ve v Energy: 105.6MeV 0.511MeV 105.1MeV conserved. Electric charge: 1 1 0 0 1 conserved. Baryon number: 0 0 0 0 0 conserved. Lepton number: (i) electrons: 0 1 1 0 0 conserved. (ii) muons: 1 0 0 1 1 conserved.
12-52. (a) The decay products in the chain are not all stable. For example, the neutron decays via n p e ve
Only the e+ and e− are stable.
(b) The net effect of the chain reaction is: p 3e e 3ve 2v 2v (c) Charge: 1 1 3 1 1 conserved Baryon number: 1 1 0 0 0 0 0 0 1 conserved. Lepton number: (i) electrons: 0 0 3 1 3 1 0 0 0 conserved (ii) muons: 0 0 0 0 0 0 2 2 0 conserved Strangeness: 3 0 0 0 0 0 0 0 0 not conserved Overall reaction has S 3; however, none of the individual reactions exceeds
S 1, so they can proceed via the weak interaction.
12-53. The proton and electron are free particles. The quarks are confined, however, and cannot be separated. The gluon clouds give the u and d effective masses of about 330 MeV/c2, about 1/3 of the proton’s mass. 12-54. (a) 0 p
Ekin M 0 mp m c 2
1116MeV / c 2 938.3MeV / c 2 139.6MeV / c 2 c 2 38.1MeV
327
Chapter 12 – Particle Physics (Problem 12-54 continued) (b) Because the 0 decayed at rest, the p and have momenta of equal magnitudes and opposite direction. mp v p m v mp / m v / v p
1 m v2 m m 2 m 938.3 p p 2 6.72 Ekin p 1 m v 2 m p m m 139.6 2 p p Ekin
(c) Ekin Ekin p Ekin Ekin p 6.72Ekin p 7.72Ekin p 38.1MeV
Ekin p 38.1MeV / 7.71MeV 4.94MeV Ekin 6.72Ekin p 33.2MeV
12-55. 0 0 (a) ET for decay products is the rest energy of the 0 , 1193MeV. (b) The rest energy of 0 116MeV , so E 1193MeV 1116MeV 77MeV and p E / c 77MeV / c . (c) The 0 decays at rest, so the momentum of the 0 equals in magnitude that of the photon.
2 Ekin 0 p2 / 2M 77MeV / c / 2 1116MeV / c 2
2.66MeV
small compared to E
(d) A better estimate of E and p are then E 77MeV 2.66MeV 74.3MeV and p 74.3MeV / c.
12-56. (a) t t2 t1 t
x x x u1 u2 Note that u1u2 c 2 u2 u1 u1u2
x u1 u2 c
2
xu c2
328
Chapter 12 – Particle Physics (Problem 12-56 continued) (b) E
mc
2
1 u 2 / c2
1 m c 2 u o (Equation 2-10). Thus, c E2
2
1/ 2
1 m c2 1 o 2 E
2
2 1 m c 2 2 1 mo c 2 o (c) u1 u2 c 1 1 2 E 2 E1 2
2
c mo c 2 c mo c 2 c mo c 2 2 E2 2 E1 2
2
E12 E22 2 2 E1 E2
2 2 2 6 6 c 20eV 20 10 eV 5 10 eV 20 106 eV 2 5 106 eV 2 2
2 2 2 c 20eV 20 5 20 2 52 106 eV 2
7.5 1012 c 2
12 xu 170, 000c y 7.5 10 C T 2 1.28 106 y 40.3s c c2
(d) If the neutrino rest energy is 40eV, then u 3.00 1011 c and t 161s. The difference in arrival times can thus be used to set an upper limit on the neutrino’s mass. 12-57. e ve v
v v d u v The last decay is the most probable (three times as likely compared to each of the others) due to the three possible quark colors.
329
Chapter 12 – Particle Physics
12-58. (i )
(ii )
dp ev B dt
dE 0 which follows from the fact that the Lorentz force is v; therefore, v v = dt
constant and thus v constant. Equation (i) then becomes: For circular orbits
dp dv m ev B dt dt
m v 2 evB or, re-writing a bit, R
m v p eBR and pc ceBR
1GeV 0.35BR GeV 1.60 1019 J
and finally, p 0.35BR GeV / c
330
Chapter 13 – Astrophysics and Cosmology vW
13-1.
vW vE 4km / s. Assuming Sun’s rotation to be uniform, so that vW vE , then vW vE 2km / s.
r
Because v 2 / T , vE 2 r / T or ω T
vE
13-2.
2 6.96 105 km 2 r 2.19 106 s 25.3 days vE 2km / s
11 1.99 1030 2GM 2 2 6.67 10 U R 6.96 108
2
J 7.59 1041 J
The Sun’s luminosity L 3.85 1026W
tL
U L
7.59 1041 J 1.97 1015 s 6.26 107 years 26 3.85 10 J / s
13-3. The fusion of 1H to 4 He proceeds via the proton-proton cycle. The binding energy of 4
He is so high that the binding energy of two 4 He nuclei excees that of 8 Be produced in
the fusion reaction: 4 He 4 He 8 Be and the 8 Be nucleus fissions quickly to two 4
He nuclei via an electromagnetic decay. However, at high pressures and temperatures a
very small amount is always present, enough for the fusion reaction: 8
Be 4 He 12C to proceed. This 3- 4 He fusion to 12C produces no net 8 Be and
bypasses both Li and B, so their concentration in the cosmos is low.
13-4. The Sun is 28, 000c y from Galactic center = radius of orbit
15 2 r 2 28, 000c y 9.45 10 m / c y time for 1 orbit v 2.5 105 m / s
6.65 1015 s 2.11 108 yr
331
Chapter 13 – Astrophysics and Cosmology 1 H atom / m3
13-5. Observed mass (average) missing mass 500 photons / cm 3
9 1.67 10
kg / m3
1.56 10
26
27
kg / m3
10% of total mass (a)
kg / m3
500 106 photons / m 3, so the mass of each photon would be
1.50 10 26 kg / m 3 500 106 photons / m 3
3.01 10
3.01 10 35 kg 1.60 10 19 J / eV
or mv
27
1.67 10
35
kg
m2 s2
c2
16.9eV / c 2
13-6. 5
4
T 3 4 10 K 2
1
0 0
1
2
3
4 M /M
13-7.
1c s
c 1s
1c min 1c h 1c day
3.00 108 m / s 1s
c 1min 60s / min
6
7
8
3/ 8
3.00 108 m 3.00 105 km
3.00 105 km 60s 1.80 107 km
c 1h 3600s / h 1.08 109 km c 24h 3600s / h
13-8. (a) See Figure 13-16. 1AU
2.59 1010 km
1.496 1011 m. R 1pc when
332
1", so R
1AU 1"
Chapter 13 – Astrophysics and Cosmology (Problem 13-8 continued) or R
3600 " 1
1AU 1"
180 rad
3.086 1016 m 9.45 1015 m / c y
1 pc
3.26c y
0.01", R 100 pc and the volume of a sphere with that radius is
(b) When
4 3 R 3
V
3.086 1016 m 1 pc
4.19 106 pc3. If the density of stars is 0.08 / pc3, then the number
of stars in the sphere is equal to 0.08 / pc3 4.19 106 pc3
13-9.
L
4 r2 f
m1
m2
4 rp2 f p and LB
Thus, Lp rp2 f p
rB2 f B
rB2
12 pc,
Because rp
2.5 log f1 / f 2 4 rB2 f B and Lp
0.30 rp f p / f B
rB
f p / fB 1/ 2
13-10. (a) M
0.3M
Te
3300K
(b) M
3.0M
Te
13, 500K
(c) R
M
R
R M
Similarly, R3.0
3.0 R
tL
M
3
(d) tL 0.3 or tL 0.3
tL 0.3M
2.00
12 2
17.0 pc
5 10 2 L
L
L 102 L
1.93 1025W 3.85 1028W
R /M
M
0.3M
R0.3
LB
rp2 f p / f B
1.16 0.41 2.5
log f p / f B
3.4 105 stars.
3
2.09 108 m
0.3R
2.09 109 m 3
M
0.3M
tL / M
3
tL M 3
tL M 3 0.3M
37tL . Similarly, tL 3.0
333
3
0.3
0.04tL
3
tL
Chapter 13 – Astrophysics and Cosmology
S R
13-11. Angular separation 100 106 km 100c y
distance between binaries distance Earth 1011 m 100c y 3.15 107 s / y
1.057 10 7 rad
6.06 10 6 degrees 1.68 10 9 arcseconds
13-12. Equation 13-18: 56 26
13 24 He 4n. m56 Fe
Fe
Energy required: 13 m4 He 1u
4mn
931.49432 MeV / c 2
Equation 13-19:
4 2
He
Energy required: 2m1H
13-13.
55.939395u, m4 He
2n
2mn
m4 He
0.020277u
(a) r
1.5 c y ; assuming constant expansion rate, 2
m1H
Age of Shell (b) Lstar
R
M
Te
M 1/ 2
R mstar , M
Te star
or Rstar
Lstar L
28.3MeV
1.5 c y / 2 2.4 104 m / s
Te
M 1/ 2
Te
L
star
2.95 1011 s
9400 y
1.4Te
M4
L
M4
L /M4
Te 1/ 2 M star , 1/ 2 M
Using either the Te or L relations, Rstar
1.007825
12L
Te / M 1 / 2 ,
R /M , Rstar
120 MeV
2 1H
1.5 c y
M
1.008665u.
0.129104u.
m56 Fe
0.129104u
24 km / s
R
4.002603u, mn
Lstar M star R M
1/ 2
1.86 R
334
L 4 M star 4 M Te star Te
2
R
2
1.4 R
1.96 R
Chapter 13 – Astrophysics and Cosmology
2GM / c2
13-14. RS
(Equation 13-24)
2 6.67 10
(a) Sun RS
(b) Jupiter mJ
318mE
1.99 1030 / c2
2.9 103 m 3km
2.8m
RS
8.86 10 3 m
(c) Earth RS
13-15. M
11
9mm !
2M
(a) (Equation 13-22) R 1.6 1014 M (b) 0.5rev / s
1 I 2
2
2 MR 2 5 I
d
2
1 2 2M 2 5
1.01 104
d
1 / day 108
where
2 8.0 1038 J
d 8
1.99 1030 1011
(b) Its radius would be RS 11
1.8 1042 kg
2GM / c 2 (Equation 13-24).
1.8 1042 / c2
2.6 1015 m 17, 000 AU
72, 000 km / s.
(a) v
Hr
r
v H
72, 000km / s 21.2 km / s 106 c y
3.40 109 c y
(b) From Equation 13-29 the maximum age of the galaxy is: 1/ H
4.41 1017 s
L 1.85 1025W
10% of total
(a) Mass of a central black hole = 9 1.99 1041
13-17. v
8.0 1038 J
1011 stars of average mass M , therefore the visible mass =
1.99 10 41 kg
2 6.67 10
2
1.85 1025 J / s
5
10 d 8.64 10 s / d
13-16. Milky Way contains
RS
1.01 10 4 m
where for a sphere
I d
2
1/ 3
1.6 1014 2 M
rad / s
I (c) d
1/ 3
1.4 1010 y
335
Chapter 13 – Astrophysics and Cosmology (Problem 13-17 continued)
1/ H
r/v
1/ H
1/ H
r/v
1/ H
r r
10%
so the maximum age will also be in error by 10%.
13-18. The process that generated the increase could propagate across the core at a maximum rate of c, thus the core can be at most 1.5 y 3.15 107 s / y 3.0 108 m / s 1.42 1016 m
9.45 104 AU in diameter. The Milky Way diameter is
60, 000c y
3.8 109 AU .
13-19. Combining Hubble’s law (Equation 13-28) and the definition of the redshift (Equation 1327) yields
z
Hor c
0
r 5 106 c y
(a)
Hor 1 c
0
21.7
km 5 106 c y 1 656.3nm s 106 c y 3 108 m/s
656.5nm
(b) r
50 10 6 c y
Similarly, (c) r
(d) r
658.7nm
500 106 c y
Similarly,
680.0nm
5 109 c y
Similarly,
0
893.7nm
336
Chapter 13 – Astrophysics and Cosmology
13-20. Equation 13-33:
3H 2 8 G
c
3 8
1/ H
2
G
3 c
8
1.5 1010 y 3.15 107 s / y
8.02 10
2
6.67 10
11
27
kg / m3
Nm 2 / kg 2
(This is about 5 hydrogen atoms/m3 !)
13-21. Present size
1010 c y
Sp
1 T
1 with T T
Sp
2.7 K
2.7 1010 c yK
(a) 2000 years ago, S = Sp (b) 106 years ago, S = Sp (c) 10 seconds after the Big Bang, S
2.7 1010 c yK / 109 K 2.7 10 9 S p 2.7 1010 c yK / 5 109 K 5.4 10
(d) 1 second after the Big Bang, S
10
Sp
25c y 5c y
(e) 10-6 seconds after the Big Bang, S
13-22.
2.7 1010 c yK / 5 1012 K 5.4 10
proton
3 pl
10
1.67 10 10
osmium
5.5 10 8 kg
m pl
Planck time
15
3
27
kg
m
3
35
m
13
Sp
0.005c y
6.4 10 4 AU
5.5 1097 kg / m3
3
1.67 1018 kg / m3
3
2.45 104 kg / m3
13-23. Wien’s law (Equation 3-11):
max
2.898mm K T
2.898mm K 2.728K
1.062mm
(this is in the microwave region of the EM spectrum)
13-24. Muon rest energy
208me
106MeV / c2 . The universe cooled to this energy (average)
at about 10-3s (see Figure 13-34). 2.728K corresponds to average energy = 10-3 eV. Therefore, m
10 3 eV 1.6 10 c2
19
J / eV
337
1.8 10
39
kg
Chapter 13 – Astrophysics and Cosmology 13-25.
0
M / 4/3
r 3 t0
r t
R t r t0
t
(Equation 13-37) \
M 0
0
4/3 R3 t
r3 t
M / 4/3
r t /R t
M
R3 t
3
4/3
r2 t
t
13-26. B
If Hubble’s law applies in A, then vBA
FBC
vCA
HrCA .
From mechanics,
FBA
vBC
C FCA
HrBA ,
vBA
vCA
H rBA
rCA
HrBC
and Hubble’s lab applies in C, as well, and
A (Milky Way)
by extension in all other galaxies.
13-27. At a distance r from the Sun the magnitude of the gravitational force acting on a dust
GM m where m (4 / 3) a 3 . The force acting on r2 the particle due to the Sun’s radiation pressure at r is given by: (See Equation RP-9.) article of radius a is: F grav
Frad
a 2 Prad
a2
U 3
where
a2 is the cross sectional area of the particle and U
is the energy density of solar radiation at r. U is given by: (See Equation 3-6.)
U
4 R c
4 L c 4 r2
Therefore, Frad
a2
1 4L 3 4 r 2c
The minimum value of a is obtained from the condition that Fgrav
338
Frad :
Chapter 13 – Astrophysics and Cosmology (Problem 13-27 continued) GM m 1 4L a2 2 r 3 4 r 2c GM (4 / 3) a 3 1 4L a2 2 r 3 4 r 2c
Simplifying this expression yields:
L 4 cGM
a
3.84 1026 W 4 (3.00 108 m/s)(6.67 10 11 N m2 / kg 2 )(1.99 1030 kg)(5500 kg/m3 ) a 1.40 10 7 m or 1.40 10 5 cm Note that (i) a is very small and (ii) the magnitude of a is independent of r. a
13-28. (Equation 13-31) Robs M / 4/3
Z
Remit 1 Z
r3
0
Substituting for r0 in the 0
0
M / 4/3 Z / 1 Z
0
or
13-29. (a) H available for fusion = M (b) Lifetime of H fuel =
r 1 Z
M / 4/3
r03
equation:
r 1 Z 3
r0
3
M / 4/3 Z
0
1 Z
r3 1 Z
3
3
0.75 0.13 2.0 1030 kg 0.75 0.13 2.0 1029 kg
2.0 1029 kg 6.00 101 kg / s
3.3 1017 s
3.3 1017 s / 3.15 107 s / y
1.03 1010 y
(c) Start being concerned in 1.03 1010 y 0.46 1010 y
5.7 109 y
13-30. SN1987A is the Large Magellanic cloud, which is 170,000c•y away; therefore (a) supernova occurred 170,000 years BP.
339
Chapter 13 – Astrophysics and Cosmology (Problem 13-30 continued) (b) E
K
mo c 2
mo c 2 1
109 eV ,
v2 c2
mo2
9.28 108 eV
109
9.38 108
9.38 108
v2 1 2 c
0.875c
or v
Therefore, the distance protons have traveled in 170,000y =v
170, 000 y 149, 000c y. No, they are not here yet.
1.99 1030 kg.
13-31. M
(a) When first formed, mass of H = 0.7 M , m 1H number of H atoms
0.7 M 1.007825u 1.66 10
He; 4 1H
(b) If all H produced =
4
27
1.007825u 1.66 10
kg / u
27
8.33 1056
He 26.72eV . The number of He atoms
8.33 106 . 4
Total energy produced =
8.33 106 4
5.56 1057 MeV
26.72MeV
8.89 1044 J
(c) 23% of max possible = 0.23 8.89 1044 J 0.23 8.89 1044 L
tL
13-32. (a) F
Gm1m2 / r 2
v2 / r
ac m2
5.53 1017 s 1.7 1010 y
3.85 1026W
L
v 2 / r m2
Gm1 / r 2 and orbital frequency f
v/2 r
Substituting for f and noting that the period T or, T 2
kg / u, thus
1/ f , 4
4 2 r 3 / Gm1, which is Kepler’s third law.
(b) Rearranging Kepler’s third law in part (a),
340
2
f2
Gm1 / r 3
Chapter 13 – Astrophysics and Cosmology (Problem 13-32 continued)
mE
2 3 moon
4
r
/ GT
4
2
6.67 10
11
2
3.84 108 m
3
Nm2 / kg 2 27.3d 8.64 104 s / d
2
6.02 1024 kg
(c) T
2
11
2 T
12d
2 2
2
1.97 107
r2
2
2 12 24 3600
r2
6.06 10 6 / s 2
2
v2 r
G
m1m2 and r
2 3
m2
r G
from the graph v1
200km / s and v2
3.3 1010 m and, similarly, r2
100km / s
1.6 1010 m
4.9 1010 m
Assuming circular orbits,
m1
1.48 1022 kg
2
m1m2 , then m1 m2
1
5.44 103 s 1.5h
24
3
6.46d 3.1 10 s / d
, and
1/ 2
3
6.02 10
4
200 103 m / s 6.06 10 6 / s r1
11
Gm1m2 or m1 r2
r r
r1 1, v2
r
6.67 10
m2 : reduced mass
m1m2 m1 m2
r1
6.67 106
2
6.67 10
(b) For m1
(c) v1
1/ 2
4
(d) mcomb
13-33. (a) T
rsh3 GmE
m1v12 r1
6.63 1030 kg and m2
m2v22 and m1 r2
1.37 1031 kg
341
r1v22 m2 Substituting yields, r2v12
Chapter 13 – Astrophysics and Cosmology
13-34. E
1 2 mv 2
or GM m / r
GmM / r
1 2 mv 2
mv 2
1 GM m 2 r
E
FG
GM m / r 2
mv 2 / r
1 GM m / r 2
GM m r
1 2
GM m r
13-35. dV
20km / s 106 c y
H
universe V
Current average density = 1H atom / m3
4 3 R 3
V
dV
4 R 2 dR
dR The current expansion rate at R is:
v
dV
HR
20km / s 1010 c y 6 10 c y
dR
20 107 m / s 3.16 107 s / y
4 R 2 dR
1010
4
7.07 1074 m3 106 c y
Current volume V
2
20 104 km / s
20 107 m / s
106 y 106 y
9.45 1015 m / c y
2
20 107 m / s 3.16 107 s / y
106 y 106 y
# of H atoms to be added 106 c y
4 3
"new" H atoms =
1010
3
8.4 1077 m3
7.07 1074 atoms / 106 c y 8.4 1077 m3
342
0.001 "new" H atoms / m3 106 c y ; no
Chapter 13 – Astrophysics and Cosmology 13-36. (a) Equation 8-12: vrms
3RT / M is used to compute vrms vs T for each gas ® = gas
constant. M Gas
3
( 10 kg )
vrms (m/s) at T = :
3R / M 50K
200K
500K
750K
1000K
H2O
18
37.2
263
526
832
1020
1180
CO2
44
23.8
168
337
532
652
753
O2
32
27.9
197
395
624
764
883
CH4
16
39.5
279
558
883
1080
1250
H2
2
111.6
789
1580
2500
3060
3530
He
4
78.9
558
1770
1770
2160
2500
The escape velocities vsc
2 gR
2GM / R , where the planet masses M and
radii R, are given in table below. Planet
Earth
Venus
Mercury
Jupiter
Neptune
Mars
vesc (km/s)
11.2
10.3
4.5
60.2
23.4
5.1
vesc/6 (m/s)
1870
1720
750
10,000
3900
850
On the graph of vrms vs T the vesc/6 points are shown for each planet.
343
Chapter 13 – Astrophysics and Cosmology
(Problem 13-36 continued)
2GM / R
(b) vesc
2GM Pl / RPl
vPl
M Pl / RPl M E / RE
vPl vE
2GM E / RE
vE
M E / RE M E / RE
vPl
vE
M Pl / M E RPl / RE
(c) All six gases will still be in Jupiter’s atmosphere and Netune’s atmosphere, because vesc for these is so high. H2 will be gone from Earth; H2 and probably He will be gone from Venus; H2 and He are gone from Mars. Only CO2 and probably O2 remain in Mercury’s atmosphere.
13-37. (a) α Centauri d in pc
d
1AU sin 0.742 "
(b) Procyon d
Earth's orbit radius (in AU) sin p
2.78 105 pc
1AU sin 0.0286 "
9.06 105 c y
7.21 105 pc
2.35 106 c y
13-38. Earth is currently in thermal equilibrium with surface temperature T 4 and I
Earth radiates as a blackbody I is f
102 L then f
0.338 1.36 103 102
away. vrms
4
459W / m2 . The solar constant
1.36 103W / m 2 currently, so Earth absorbs 459/1360 = 0.338 of incident solar
energy. When L I
300
300K. Assuming
However, 3RT / M
102 f . If the Earth remains in equilibrium.
T 4 or T
the
vrms
3 8.31 949 18 10 3
solution to problem 14-26).
994 K
for
676 C sufficient to boil the oceans
H2 O
molecules
1146m / s 1.15km / s.
at
994K
is
The vesc = 11.2km/s (see
Because vrms ≈ 0.1 vesc, the H2O will remain in the
atmosphere.
344
Chapter 13 – Astrophysics and Cosmology
13-39. (a) a
n = grains/cm3 a
total scattering area =
dust grain
R
which is
R dx
photons N/mrs
N
R 2 na 2 dx
R2 a 2 n dx a2
R2 n dx of the
total area = fraction scattered = dN/N
d
dN N N0
n R 2 dx or N
N 0e
n R2d
0
From those photons that scatter at x = 0 (N0), those that have not scattered again after traveling some distance x = L is N L
N0e
n R2 L
. The average value of L (= d0) is
given by:
L d0
(b) I
0
dN L dL dL
dN L dL dL 0
I 0e
d / d0
1 n R2
Note:
near the Sun d0
1 n
n R 2 N 0e
n R2 L
R 10 5 cm
3000c y
3000c y 9.45 1017 cm / c y
(c)
dN L dL
10
n 1.1 10
2
5
12
/ cm3
2 gm / cm3
grains
mgrains 3
cm of space
mass in 300c y
2
4 3
10
5
3
1.1 10
9.41 10 27 gm / cm3 M 0.0012
12
9.41 10
27
9.45 1017 cm / c y
0.1%M
345
/ cm3
gm / cm3
3
300
Chapter 13 – Astrophysics and Cosmology
13-40. 56 11H
14 142 He
56 26
Fe 2
2e
14 4.002603 m56Fe
14 m4He
2
2e
2.04MeV / c 2
55.939395u
56.036442u 14 26.72 MeV 2.04MeV Net energy difference (release) =
90.40MeV 466.5MeV
56 2 26 Fe
2m
56
Fe
112 48
Cd
4
4e
4
2 55.939395u
m
Net energy required = 2m56Fe
13-41. (a) dt
4.08MeV / c 2
4e
112
111.902762u
Cd
0.023972u 4.08MeV
m112Cd
18.25MeV
1.024 104 2G 2 M dM hc 4 hc 4 1.024 1024
dM dt
rearranging, the mass rate of change is
2
G2M
Clearly, the larger the mass M, the lower the rate at which the black hole loses mass. (b) t t
(c) t
1.024 104
2
6.62 10
2
2.0 1030
2
hc 4 3.35 1044 s
1.024 104
1.06 1037 y far larger than the present age of the universe. 4
6.67 10
6.63 10 t
11
34
11
2
2.0 1030 1012
3.00 108
4
3.35 1068 s 1.06 1061 y
346
2