Timber Design Using Eurocode

December 4, 2017 | Author: margitorsi | Category: Strength Of Materials, Lumber, Bending, Stress (Mechanics), Solid Mechanics
Share Embed Donate


Short Description

Timber Design...

Description

Seminar on Sustainable Future through Timber Design UITM, Dec. 16.12.2014

Design Timber Structures using Eurocode 5

Simon Aicher Page 1 of 119

Contents of lecture Basics of permissible stress and

semi-probabilistic partial factor concept

Interrelationship of - Eurocodes, - harmonized (timber) product standards, - classification standards, calculation standards and - test test standards Basics of Eurocode 5 structure and contents Design example: straight glulam beam (EC 5 vs. permissible concept) Design example: curved glulam beam (EC 5 vs. permissible concept) Aicher

Page 2 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

2

Aicher

Page 3 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

3

Page 4 of 119

100 years old glulam beams, train repair hall, Bellinzona, Italy

Olympic Ice rink Hammar, Norway, 1994 glulam truss beams, span:97m

Page 5 of 119

Manufacture of timber parasols for Expo 2000, Hannover

Page 6 of 119

Page 7 of 119

HESS – Limitless –Verbindung (22)

Aicher

Page 8 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

8

HESS – Limitless –Verbindung (23)

Aicher

Page 9 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

9

7-storey timber Page 10 of 119

building, Berlin, 2011

10-storey timber building, Melbourne, Page 11 of 119

Australia 2013

Eurocodes and supporting product and test standards Eurocodes regulate design of timber, steel, concrete structures in conjunction with national application documents but give no provisions on material properties Harmonized product standards regulate material properties of harmonized building products (e.g. not adhesives) such as EN 14080 glulam EN 14081-1 solid timber in conjunction with national grading rules and classification standard EN 1912 and strength class standard EN 338 EN 15497 finger jointed lumber EN 16351 cross laminated timber EN 14374 LVL EN 13986 panel products in conjunction with product / production standards, e.g. EN 300 for OSB Test standards, e.g. EN 408, EN 789,….. Calculation standards, e.g. EN 14358 on characteristic values Page 12 of 119

Permissible stress concept σact = σ95

acting loads, hence resulting section forces E and stresses σ represent in general 95% quantiles of the distributions

Design verification σact ≤ σpermissible where in case of structural timber (roughly)

σpermissible = f50 /3 f50 Aicher

mean value of strength

Page 13 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

13

Semiprobabilistic design concept with partial factors

σact = σ95

as in permissible stress concept the loads / section forces/ stress distributions represent 95% quantiles of the distributions

Design verification σd design stress

σd ≤ fd

fd design strength

σd = σact · γL γL partial factor for load (1,5 for live load; 1,35 for perm. load) f d = fk · kmod / γM fk

characteristic strength property (5% quantile)

kmod modification factor (time, climate) γM partial factor for strength (material dependant; 1,1 to 1,3) Aicher

Page 14 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

14

Semiprobabilistic vs. permissible stress design concept f05 = f50 (1 - 1,64 · COV) assuming COV = 0,12 f05 = f50 (1 – 0,2) = f50 / 1,25 f05 · kmod γM

=

γL = 1,5 partial factor for load

f50 · kmod 1,25 γM

with γM = 1,3 and kmod = 0,8 f05 · kmod γM

=

f50 · 0,8 1,25 · 1,3



f50 2

f05 · kmod f50 = σd = σact · γL = σact · 1,5 ≤ fd = γM 2 f50 σact ≤ f50 2 · 1,5 = 3 = σpermissible Aicher

Page 15 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

15

Graphical illustration of semiprobabilistic design concept Probability density

ms fs

β · σz = mz = kmod · mR - ms fz

ms 95 pf = 10 -6 Aicher

ms 95· γs

kmod · mR 05

=

kmod · mR fR

R, s

kmod · mR 05 / γR

Page 16 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

16

Eurocode 5: Design of Timber Structures – Part 1-1

Aicher

Page 17 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

17

Structural Eurocode Program comprises

Aicher

Page 18 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

18

Scope of EN 1995

Aicher

Page 19 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

19

Structure of Eurocode 5 ( = EN 1995)

Aicher

Page 20 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

20

Subjects / Topics of EN 1995-1-1

Aicher

Page 21 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

21

Normative References

Aicher

Page 22 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

22

Normative References (continued)

Aicher

Page 23 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

23

Normative References (continued)

Aicher

Page 24 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

24

Aicher

Page 25 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

25

Section 2 of EC 5: Basis of design

Aicher

Page 26 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

26

Section 2.2 of EC 5: Principles of limit state design

Aicher

Page 27 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

27

2.2.2 Ultimate limit states

Aicher

Page 28 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

28

2.2.3 Serviceability limit states

Aicher

Page 29 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

29

2.2.3 Serviceability limit states

Aicher

Page 30 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

30

2.3 Basic variables

Aicher

Page 31 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

31

2.3.1.2 Load-duration classes

Aicher

Page 32 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

32

2.3.1.2 Load-duration classes

Aicher

Page 33 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

33

2.3.1.3 Service classes

Aicher

Page 34 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

34

2.3.2 Materials and product properties

Aicher

Page 35 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

35

2.3.2 Materials and product properties

Aicher

Page 36 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

36

2.4 Verification by the partial factor method

5%- quantile value (lognormal dist.)

Aicher

Page 37 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

37

Recommended partial factors γM for material properties EC 5 – Table 2.3

Aicher

Page 38 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

38

2.4.2 Design values of geometrical data

Aicher

Page 39 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

39

2.4.2 Design value of a resistance

Example: Rk = Xk · relevant cross-sectional quantity

Aicher

Page 40 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

40

EC 5 –Section 3 – Materials properties

Aicher

Page 41 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

41

3.1.3/4 Strength and deformation modification factors

Aicher

Page 42 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

42

EC 5 – Table 3.1 Strength modification values kmod

Aicher

Page 43 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

43

EC 5 – Table 3.1 Strength modification values kmod (continued)

Aicher

Page 44 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

44

Strength modification values kmod = f( time; moisture) short 1 min

Strength modification factor

1.2 kmod

10Jahre years50 Jahre 10 1 1 week Woche 66months Monate 10 years

Madison-Kurve

Service class 11/2 and2 Nutzungsklasse

1

0.8

Service class 3

Nutzungsklasse 3

0.6

0.4

very short

short kurz

sehr kurz

medium mittel

permanent ständig

long lang

0.2

0

0 0 .0

1

1 0 . 0

0 .1

1

10

10

0

0 10

0 1

0 00

0 10

0 00

Accumulated duration of load [hours] Aicher

Page 45 of 119

Eurocode 5 Timber Structures

0 10

0

0 00

0

UITM 2014, Malaysia

45

EC 5 – Table 3.2 Deformation modification values kdef

Aicher

Page 46 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

46

EC 5 – Table 3.2 Deformation modification values kdef (continued)

Aicher

Page 47 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

47

EC 5 – 3.2: Solid timber

EN 15497 Aicher

Page 48 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

48

EC 5 – 3.3: Glued laminated timber

Aicher

Page 49 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

49

EC 5 – 3.3: Glued laminated timber

Now large finger joints are directly regulated in the harmonized product standard for glulam,

Aicher

Page 50 of 119

Eurocode 5 Timber Structures

EN 14080

UITM 2014, Malaysia

50

Example of large finger joint (single joint line)

Aicher

Page 51 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

51

Example of large finger joint (two joint lines)

Aicher

Page 52 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

52

Example of large finger joint (two joint lines)

Aicher

Page 53 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

53

EC 5 – 3.3: Glued laminated timber

Aicher

Page 54 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

54

EC 5 – 3.4: Laminated veneer lumber (LVL)

Aicher

Page 55 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

55

EC 5 – 3.4: Laminated veneer lumber (LVL)

Aicher

Page 56 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

56

EC 5 – 3.5: Wood-based panels

Aicher

Page 57 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

57

EC 5 – 3.6: Adhesives

Note: As permissible structural adhesive families and respective classifications have been profoundly changed in conjunction with introduction of one-component Polyurethane (1K-PU) and polymer isocyanate (EPI) adhesives according to EN 15425 and EN 16351 principle P (2) is no more throughout valid because of EPI definitions.

Aicher

Page 58 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

58

EC 5 – 3.7: Metal fasteners

Aicher

Page 59 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

59

EC 5 – Section 4: Durability

Aicher

Page 60 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

60

EC 5 – Section 4: Durability

Aicher

Page 61 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

61

EC 5 – Section 4: Durability

Aicher

Page 62 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

62

EC 5 – Table 4.1 Corrosion protection of fasteners

Aicher

Page 63 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

63

EC 5 - Section 5: Basis of structural analysis

Aicher

Page 64 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

64

5.2 Members

Aicher

Page 65 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

65

5.4 Assemblies

Aicher

Page 66 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

66

5.4 Assemblies

Aicher

Page 67 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

67

5.4.2 Frame structures

Aicher

Page 68 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

68

5.4.4 Plane frames and arches

Aicher

Page 69 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

69

Examples of assumed initial geometry deviations geometry of frames

initial geometry deviation corresponding to symmetrical load

initial geometry deviation corresponding to non-symmetrical load

Aicher

Page 70 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

70

EC 5 - Section 6: Ultimate limit states

Aicher

Page 71 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

71

Tension 6.1.2 Tension parallel to the grain

6.1.2 Tension perpendicular to the grain

Aicher

Page 72 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

72

Compression 6.1.4 Compression parallel to the grain

Aicher

Page 73 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

73

Compression

6.1.4 Compression perpendicular to the grain

where

σc,90,d

is the design compressive stress in the effective contact area perpendicular to the grain;

Fc,90,d

is the design compressive load perpendicular to the grain;

Aef

is the effective contact area in compression perpendicular to the grain;

Fc,90,d

is the design compressive strength perpendicular to the grain;

kc,90

is a factor taking into account the load configuration, the possibility of splitting and the degree of compressive deformation.

Aicher

Page 74 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

74

Compression

6.1.4 Compression perpendicular to the grain

The effective contact area perpendicular to the grain, Aef, should be determined taking into account an effective contact length parallel to the grain, where the actual contact length, ℓ, at each side is increased by 30 mm, but not more than a, ℓ or ℓ1/2, see Figure 6.2. 2. The value of kc,90 should be taken as 1,0 unless the conditions in the following paragraphs apply. In these cases the higher value of kc,90 specified may be taken, with a limiting value of kc,90 = 1,75. 3. For members on continuous supports, provided that ℓ1 ≥ 2h, see Figure 6.2a, the value of kc,90 should be taken as: – kc,90 = 1,25 for solid softwood timber – kc,90 = 1,5 for glued laminated softwood timber where h is the depth of the member and ℓ is the contact length.

Aicher

Page 75 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

75

Compression

6.1.4 Compression perpendicular to the grain

4. For members on discrete supports, provided that ℓ1 ≥ 2h, see Figure 6.2b, the value of kc,90 should be taken as: – kc,90 = 1,5 for solid softwood timber – kc,90 = 1,75 for glued laminated softwood timber provided that I ℓ ≤ 400 mm where h is the depth of the member and ℓ is the contact length.

Aicher

Page 76 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

76

6.1.6 Bending

Aicher

Page 77 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

77

6.1.6 Bending

Aicher

Page 78 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

78

6.1.7 Shear

Aicher

Page 79 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

79

6.1.7 Shear (crack factor issue) 2. For the verification of shear resistance of members in bending, the influence of cracks should be taken into account using an effective width of the member given as: bef = kcr b where b is the width of the relevant section of the member. NOTE: The recommended value for kcr is given as kcr = 0,67

for solid timber

kcr = 0,67

for glued laminated timber

kcr = 1,0

for other wood-based products in accordance with EN 13986 and EN 14374.

Aicher

Page 80 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

80

6.1.7 Shear

Aicher

Page 81 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

81

6.1.8 Torsion

Aicher

Page 82 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

82

6.2.2 Compression stresses at an angle to grain

Aicher

Page 83 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

83

6.2.3 Combined bending and axial tension

Aicher

Page 84 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

84

6.2.3 Combined bending and axial compression

Aicher

Page 85 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

85

6.4 Members with varying cross-section or curved shape

Aicher

Page 86 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

86

6.4 Members with varying cross-section or curved shape

Figure 6.8 Single tapered beam

Aicher

Page 87 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

87

6.4 Members with varying cross-section or curved shape

Aicher

Page 88 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

88

6.4 Members with varying cross-section or curved shape

Aicher

Page 89 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

89

6.4 Members with varying cross-section or curved shape

Aicher

Page 90 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

90

6.4 Members with varying cross-section or curved shape

(a)

Note: In curved beams the apex zone extends over the curved parts of the beam

Figure 6.9 – Double tapered (a) and curved (b) beams with the fibre direction parallel to the lower edge of the beam Aicher

Page 91 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

91

6.4 Members with varying cross-section or curved shape Note: In pitched cambered beams the apex zone extends over the curved parts of the beam

Figure 6.9 – Pitched cambered beam (c) beam with the fibre direction parallel to the lower edge of the beam Aicher

Page 92 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

92

6.4 Members with varying cross-section or curved shape

Aicher

Page 93 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

93

6.4 Members with varying cross-section or curved shape

Aicher

Page 94 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

94

6.4 Members with varying cross-section or curved shape

Aicher

Page 95 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

95

6.4 Members with varying cross-section or curved shape

Aicher

Page 96 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

96

6.4 Members with varying cross-section or curved shape

or Aicher

Page 97 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

97

6.4 Members with varying cross-section or curved shape

Aicher

Page 98 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

98

Design examples

Design of straight glulam member - comparison of Eurocode 5 vs. DIN 1052

Aicher

Page 99 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

99

Straight beam design comparison – EC 5 vs. perm. stress concept

16x80 cm

q = 9 kN/m, g = 6 kN/m

GL 24 / BS 11 10 m

Geometry: l = 10 m b = 160 mm h = 800 mm S = b h²/6 = 17 ⋅ 10-6 mm³ I = b h³/12 = 6.8 ⋅ 10-9 mm4

Aicher

Page 100 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

100

Design comparison – EC 5 vs. perm. stress concept Property

permissible concept

semi-probabilistic concept

Bending strength

σm,perm = 11 N/mm²

fm,k = 24 N/mm²

Shear strength

τv,perm = 1.2 N/mm²

fv,k = 3.5 N/mm²

MOE

Em = 11000 N/mm²

Em,mean = 11000 N/mm²

crack factor

-

kcr = 0.67

modification factor for duration of load and moisture content

kmod = 0.6 (Service Class I/II, medium-term)

Partial factor for material properties

γM = 1.25

(glulam, EC 5)

Deformation factor

kdef = 0.8 (Service Class I)

Partial factor for permanent actions

γG = 1.35

Partial factor for variable actions

γG = 1.5

Factor for quasi-permanent value of a variable action

ψ2,1 = 0.3

Aicher

Page 101 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

101

Design comparison – EC 5 vs. perm. stress concept

Result

permissible concept

semi-probabilistic concept

distributed load

F = g + q = 15 kN/m

Fd = γG g + γQ q = 21.6 kN/m

bending moment M

M = F l² / 8 = 188 kNm

Md = Fd ⋅ l² / 8 = 270 kNm

bending stress

σm = M/S = 11 N/mm²

σm = Md/S = 15.8 N/mm²

utilization (bending)

11 / 11 = 1.00

fm,d = fm,k ⋅kmod /γM = 15.4 N/mm² 15.8 / fm,d = 1.03

shear force V

V = F l/2 = 75 kN

Vd = Fd l/2 = 108 kN

shear stress τv

1.5 V / (b h) = 0.88 N/mm²

1.5 Vd / (b h) = 1.89 N/mm²

1.2 / 0.88 = 0.73

fv,d = fv,k ⋅kmod /γM = 2.24 N/mm² 1.89 / fv,d = 0.84

utilization (shear)

Aicher

Page 102 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

102

Design comparison – EC 5 vs. perm. stress concept

deflection

utilitization (deflection)

Aicher

5 𝐹 𝑙4 𝑢= = 26𝑚𝑚 384𝐸𝐸

𝑢 = 0.78 𝑙/300

Page 103 of 119

Eurocode 5 Timber Structures

𝑢𝑖𝑖𝑖𝑖 = 𝑢𝑖𝑖𝑖𝑖,𝑔 + 𝑢𝑖𝑖𝑖𝑖,𝑞= 5𝑔𝑙 4 5𝑞𝑙 4 + = 10.4 + 15.6 384𝐸𝐸 384𝐸𝐸 = 26𝑚𝑚 𝑢𝑓𝑓𝑓 = 𝑢𝑖𝑖𝑖𝑖,𝑔 (1 + 𝑘𝑑𝑑𝑑 ) + 𝑢𝑖𝑖𝑖𝑖,𝑞 (1 +ψ2,1 𝑘𝑑𝑑𝑑 )= 16.7 + 18.4 = 35.1mm 𝑢𝑖𝑖𝑖𝑖 = 0.78 𝑙/300 𝑢𝑓𝑓𝑓 = 0.53 𝑙/150

UITM 2014, Malaysia

103

Design examples

Design of curved glulam beam - comparison of Eurocode 5 vs. DIN 1052

Aicher

Page 104 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

104

Page 105 of 119

HESS – Limitless –Verbindung (7)

Aicher

Page 106 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

106

Stress distributions in curved beams with const. moment

H

R

H

R

R1 < R2

R1 < R2

H/R2 = 0,09

= 0,09 RH/R 2 / H2 = 11

+

RH/R =2,5 0,4 1 / H1 =

bending stresses parallel to grain

tension stresses perpendicular to grain

σ ⊥ ,max Aicher

H/R1 = 0,4

2  H H  M σ II = 1+ 0,35 + 0,6    R  R   W 

H M = 0,25 R W Page 107 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

107

Stress σt,90 of curved and tapered beams with line loads

stress perp. to grain h

-

+

stress perp. to grain

h

Aicher

Page 108 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

+

108

Aicher

Page 109 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

109

Aicher

Page 110 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

110

Curved beam design comparison – EC 5 vs. perm. stress concept

DIN 1052 BS 14: σm,permissible = 14 N/mm2 EN 14080 GL 28: fm,k = 28 N/mm2 Geometry, dimensions and quality /strength class of example beam Aicher

Page 111 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

111

Curved beam design comparison – EC 5 vs. perm. stress concept

EC5

F = 23,31 kN

Design for bending:

rin/t = 200, kr = 0,96

hap / r = 0,118 k1 = 1; k2 = 0,35, k3 = 0,6 kl = 1,05 Aicher

Page 112 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

112

Curved beam design comparison – EC 5 vs. perm. stress concept

F = 23,31 kN

EC5

Design for bending:

GL28: fm,k = 28 N/mm2

load duration: „medium“, kmod = 0,8

fm,d = fm,k × kmod /γm

kr = 0,96

fm,d =

glulam: γm = 1,25

17,92 N/mm2

ratio = 0,38 kl = 1,05

Map,d = γf × Map

σm,d = 6,85 N/mm2

combined loading: γf = 1,4

Aicher

Page 113 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

113

curved beam design comparison – EC 5 vs. perm. stress concept

EC5

Design for tension perp.:

glulam: V0 = 0,01 m3 kdis = 1,4

V = 0,691 m3

kVol = (V0/V)0,2 = 0,43

hap / r = 0,118 k5 = 0; k6 = 0,25, k7 = 0 kp = 0,0294 Aicher

Page 114 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

114

Example: Curved Beam with pure moment loading F = 23,31 kN

EC5

Design for tension perp.:

glulam: ft,90,k = 0,5 N/mm2

kdis = 1,4 , kVol = 0,43,

load duration: „medium“, kmod = 0,8

ft,90,d = ft,90,k × kmod /γm

glulam: γm = 1,25

ft,90,d = 0,32 N/mm2

1,4 x 0,43 x 0,32 = 0,19 N/mm2 kp = 0,0294

Map,d = γf × Map

σt,90,d = 0,19 N/mm2

ratio = 1,0

combined loading: γf = 1,4

Aicher

Page 115 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

115

Curved beam design comparison – EC 5 vs. perm. stress concept

DIN 1052

F = 23,31 kN

Design for bending: σm ≤ σm,permissible

σm,permissible = 14 N/mm2

ratio = 0,33 σm = kl × 6 Map/b h2 hap / r = 0,118, kl = 1,05 Aicher

σm = 4,66 N/mm2

Page 116 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

116

curved beam design comparison – EC 5 vs. perm. stress concept

DIN 1052

F = 23,31 kN

Design für tension perp.: σt,90 ≤ σt,90,permissible

σt,90,permissible = 0,2 N/mm2

ratio = 0,69

σt,90 = kp× 6 Map/b h2 hap / r = 0,118, kp = 0,0294

Aicher

Page 117 of 119

Eurocode 5 Timber Structures

σt,90 = 0,14 N/mm2

UITM 2014, Malaysia

117

curved beam design comparison – EC 5 vs. perm. stress concept

F = 23,31 kN

bending

tension perp.

EC5

0,40

1,00

DIN 1052

0,33

0,69

no pre-stress effect Aicher

Page 118 of 119

Eurocode 5 Timber Structures

no size effect UITM 2014, Malaysia

118

Now ist time to finish!

Thank you very much for your patient listening!

Aicher

Page 119 of 119

Eurocode 5 Timber Structures

UITM 2014, Malaysia

119

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF