Thermodynamic-Formulas.pdf

April 25, 2018 | Author: Akki Arora | Category: Enthalpy, Entropy, Heat, Systems Theory, Physical Quantities
Share Embed Donate


Short Description

Download Thermodynamic-Formulas.pdf...

Description

Mechanical Engineering – GATE Exam

Mechanical Engineering – GATE Exam

Thermodynamics Symbol/Formula

Parameter

M

Molar mass (M/)

m

Mass (M)

n  

Number of moles ( )

m  M 

E

Energy or general extensive property

e  

 E 

e

 E 

Specific molar energy (energy per unit mass) or general extensive property per unit mass

m n

 eM 

Specific energy (energy per unit mole) or general extensive property per unit mole

P

Pressure (ML-1T-2)

V

Volume (L 3); Specific volume or volume per unit mass, v (L 3M-1) and the volume per unit mole v (L3-1)

T

Temperature ( Θ)



Density (ML-3);  = 1/v.

x

Quality

U

Thermodynamic internal energy (ML 2T-2); Internal energy per unit mass, u (L 2T-2), and the internal energy per unit mole, u  (ML2T-2-1)

H = U + PV

Thermodynamic enthalpy (ML 2T-2); Enthalpy per unit mass, h = u + Pv (dimensions: L 2T-2) and the internal energy per unit mole h  (ML2T-2-1)

S

Entropy (ML2T-2Θ-1); Entropy per unit mass, s(L 2T-2Θ-1) and the internal energy per unit mole s (ML2T-2Θ-1-1)

W

Work (ML2T-2)

Q

Heat transfer (ML 2T-2)

 : W  u

The useful work rate or mechanical power (ML 2T-3)

 : m

The mass flow rate (MT -1)

Mechanical Engineering – GATE Exam 



The kinetic energy per unit mass (L 2T-2)

2

2

: The potential energy per unit mass (L 2T-2)

gz:



Etot:

The total energy = m(u +

V  2

2

+ gz) (ML2T-2)

Q :

The heat transfer rate (ML 2T-3)

dEcv : dt

The rate of change of energy for the control volume.(ml 2t-3)

M

Molar mass (M/)

m

Mass (M)

n  

Number of moles ( )

m  M 

E

Energy or general extensive property

e  

 E 

e

 E 

Specific molar energy (energy per unit mass) or general extensive property per unit mass

m n

 eM 

Specific energy (energy per unit mole) or general extensive property per unit mole

P

Pressure (ML-1T-2)

V

Volume (L 3); Specific volume or volume per unit mass, v (L 3M-1) and the volume per unit mole v (L3-1)

T

Temperature ( Θ)



Density (ML-3);  = 1/v.

x

Quality

U

Thermodynamic internal energy (ML 2T-2); Internal energy per unit mass, u (L 2T-2), and the internal energy per unit mole, u  (ML2T-2-1)

H = U + PV

Thermodynamic enthalpy (ML 2T-2); we also have the enthalpy per unit mass, h = u + Pv (dimensions: L 2T-2) and the internal energy per unit mole h  (ML2T-2-1)

S

Entropy (ML2T-2Θ-1); Entropy per unit mass, s(L 2T-2Θ-1) and the internal energy per unit mole s (ML2T-2Θ-1-1)

Mechanical Engineering – GATE Exam W

Work (ML2T-2)

Q

Heat transfer (ML 2T-2)

 : W  u

The useful work rate or mechanical power (ML 2T-3)

 : m

The mass flow rate (MT -1)



V  2

2

The kinetic energy per unit mass (L 2T-2) : The potential energy per unit mass (L 2T-2)

gz:



Etot:

The total energy = m(u +



2

2

+ gz) (ML2T-2)

Q :

The heat transfer rate (ML 2T-3)

dEcv : dt

The rate of change of energy for the control volume.(ml 2t-3)

M

Molar mass (M/)

m

Mass (M)

n  

Number of moles ( )

m  M 

E

Energy or general extensive property

e  

 E 

e

 E 

Specific molar energy (energy per unit mass) or general extensive property per unit mass

m n

 eM 

Specific energy (energy per unit mole) or general extensive property per unit mole

P

Pressure (ML-1T-2)

V

Volume (L 3); we also have the specific volume or volume per unit mass, v (L3M-1) and the volume per unit mole v (L3-1)

T

Temperature ( Θ)



Density (ML-3);  = 1/v.

x

Quality

U

Thermodynamic internal energy (ML 2T-2); we also have the internal energy per unit mass, u (L 2T-2), and the internal energy per unit mole, u  (ML2T-2-1)

H = U + PV

Thermodynamic enthalpy (ML 2T-2); we also have the enthalpy per unit mass, h = u + Pv (dimensions: L 2T-2) and the internal energy per unit mole h  (ML2T-2-1)

Mechanical Engineering – GATE Exam S

Entropy (ML2T-2Θ-1); we also have the entropy per unit mass, s(L 2T2 -1 2 -2 -1 -1 Θ ) and the internal energy per unit mole s (ML T Θ  )

W

Work (ML2T-2)

Q

Heat transfer (ML 2T-2)

 : W  u

The useful work rate or mechanical power (ML 2T-3)

 : m

The mass flow rate (MT -1)



The kinetic energy per unit mass (L 2T-2)

V  2

:

2

The potential energy per unit mass (L 2T-2)

gz:



Etot:

The total energy = m(u +

V  2

2

+ gz) (ML2T-2)

Q :

The heat transfer rate (ML 2T-3)

dEcv : dt

The rate of change of energy for the control volume. (ml 2t-3)

Unit conversion factors For metric units 

Basic:





2

1 N = 1 kg·m/s ; 1 J = 1 N·m; o 1 W = 1 J/s; o 2 o 1 Pa = 1 N/m . Others: 3 1 kPa·m  = 1 kJ; o o T(K) = T( C) + 273.15; o 3 o 1 L (liter) = 0.001 m ; 2 2 1 m /s  = 1 J/kg. o Prefixes (and abbreviations) : -9 nano(n) –  10 ; o -6 micro() –  10 ; o -3 o milli(m) –  10 ; 3 kilo(k) –  10 ; o 6 mega(M) –  10 ; o 9 giga(G) –  10 . o A metric ton (European word: tonne) is 1000 kg. o o

For engineering units

Mechanical Engineering – GATE Exam 

 

Energy: 3 1 Btu = 5.40395 psia·ft  = 778.169 ft·lbf  = (1 kWh)/3412.14 = (1 hp·h )/2544.5 = o 2 2 25,037 lbm·ft /s . Pressure : 2 2 o 1 psia = 1 lbf /in  = 144 psfa = 144 lbf /ft . Others: o T(R) = T( F) + 459.67; o 2 1 lbf  = 32.174 lbm·ft/s ; o o 1 ton of refrigeration = 200 Btu/min.

Concepts & Definitions Formula Pressure



Units

 P  

Units

Pa

 F   A

1  Pa  1 N / m2 1 bar  105 Pa  0.1 Mpa 1 atm  101325 Pa

Specific Volume Density

v    

Static Pressure Variation Absolute Temperature

m3 / kg 

V  m m

   



kg / m3

1 v

  ,    P    gh T ( K )  T (C )  273.15

Pa

Properties of a Pure Substance Formula Quality

 x 

mvapor  mtot 

1   x   

(vapour mass fraction)

mliquid  mtot 

(Liquid mass fraction)

Specific Volume

v  v f  xv fg 

Average Specific Volume

v  (1  x)v f  xvg 

Ideal –gas law

 P  P c



Equations

 Pv  RT 

Units

m3 / kg 

T  T c

(only two phase mixture)

 Z   1

 PV  mRT  nRT 

m3 / kg 

Mechanical Engineering – GATE Exam 

Universal Gas Constant



Gas Constant

Compressibility Factor  Z  Reduced Properties

 R   8.3145

 R

 R 

kJ / kmol K  kJ / kg K  

 M  = molecular mass

 M   Pv  ZRT   P   P r   ,  P c

T r  

T  T c

Work & Heat Formula Displacement Work Integration

 W  W 

2

1 2

1

Specific Work Power (rate of work) 

Velocity



Torque

Polytropic Process ( n  1) 

Polytropic Exponent



n=1

Polytropic Process Work

w

n=1

Fdx 

Conduction Heat Transfer

1

m

 J   J / kg 

W  FV  PV  T    

W  rad / s  Nm

V  r   T  Fr  n n  PV n  Const  PV 1 1  PV  2 2

 Pv n  C 

 P  ln  2

  P 1   n V  ln  1   V 2   PV  Const  PV 1 1  PV  2 2 W2 

1 1 n

( PV 2 2  PV 1 1)

 W2  PV  2 2 ln  

V 2

n 1

 V 1 

 J   J 

Q  0

Q   kA

dT  dx

, k  =conductivity

Convection Heat Transfer

Q  hAT  

Radiation Heat Transfer

4 Q    A(T s4  Tamb  )

, h =convection coefficient

Terminology: = heat Q2 = heat transferred during the process between state 1 and state 2 Q1

 J 

PdV  

(work per unit mass)

1

Adiabatic Process



2

PdV  P (V2  V1 ) 



1



Units



W  W 

Mechanical Engineering – GATE Exam = rate of heat transfer W  = work 1W 2 = work done during the change from state 1 to state 2 W  = rate of work = Power. 1 W=1 J/s Q

The First Law of Thermodynamics Formula

Units

Total Energy

 E  U  KE  PE  dE  dU  d (KE )  d (PE )

Energy

dE   Q   W  E2  E1  1 Q2  1W2  

 J   J 

Kinetic Energy Potential Energy

 KE  0.5mV  2  PE  mgZ  PE2  PE1  mg ( Z 2  Z 1 )

 J   J 

Internal Energy

U  U liq  U vap  mu  mliqu f  mvapu g

Specific Internal Energy of Saturated Steam (two-phase mass average) Total Energy

u  (1  x)u f  xug 

kJ / kg  

u  u f  xu fg 

U 2  U1 

m(V22  V 12 ) 2

 mg ( Z 2  Z1 )  1 Q2  1W2  

Specific Energy

e  u  0.5V 2  gZ  

Enthalpy

 H  U  PV  h  u  Pv  Pv  RT and u  f (T )

Specific Enthalpy For Ideal Gasses 

Enthalpy



R Constant

 J 

kJ / kg  

h  u  Pv  u  RT   u  f (t )  h  f (T )   h  (1  x) h f  xhg 

Specific Enthalpy for Saturation State (two-phase mass average) Specific Heat at Constant Volume

C v 

Specific Heat at Constant Pressure

C  p 

h  h f  xh fg 

1  Q  1   U    u         m   T v m   T  v   T  v   (ue  ui )  Cv (Te  Ti )  1  Q  1  H    h         m   T  p m   T  p   T  p 

 ( he  hi )  C p (Te  Ti )  Solids & Liquids

 

Incompressible, so v=constant

C  Cc  C p

(Tables A.3 & A.4)

u2  u1  C (T2  T1 ) 

h2  h1  u 2  u1  v (P2  P1 ) 

kJ / kg  

Mechanical Engineering – GATE Exam h  u  Pv  u  RT   u2  u1  Cv (T2  T1 ) 

Ideal Gas

h2  h1  C p (T2  T1 ) 

 E  Q  W

Energy Rate

( rate   in  out )

  E2  E1  1 Q2  1W2 (change   in  out )

First-Law Analysis for Control Volume Formula Volume Flow Rate Mass Flow Rate Power

Units



V  V dA  AV   (using average velocity)



m   VdA   AV  A

V  v

W  mCv T  

W  mC p T  

m  V 

W flow  PV  mPv

Flow Direction

From higher P to lower P unless significant KE or PE

Total Enthalpy



v

Flow Work Rate



kg / s

(using average values)

htot   h  1 V 2  gZ   2

Instantaneous Process

m  m



Continuity Equation

mC.V . 



Energy Equation

 EC .V .  QC .V .  WC .V . 

Steady State Process

i

e

m h

  me htot e

i tot i

 Q   mi (hi  1 2 V 2  gZ i ) 

dE  dt 

 First

Law

  me he  1 2V 2  gZ e W  





A steady-state has no storage effects, with all properties constant with time



No Storage

mC .V .  0, E C .V .    0



Continuity Equation



Energy Equation

 m   m (in = out) Q  m h  W  m h (in = out)  First Law  Q   m (h  1 2 V  gZ )  W   m  h  1 2 V  gZ   i

e

C .V .

i tot i



Specific Heat Transfer Specific Work

SS Single Flow Eq. Transient Process 

e tot e

2

i



C .V .

q

QC .V .

w

W C .V  .

i

2

i

e

e

e

kJ / kg  

m kJ / kg  

m

q  htot i  w  htot e

(in = out)

Change in mass (storage) such as filling or emptying of a container.

Mechanical Engineering – GATE Exam 





m2  m1 

Continuity Equation Energy Equation

QC .V 

m  m i

e

 E2  E1  QC.V  WC.V . 

m h

  mehtot e

i tot i







 E2  E1  m2 u2  1 V22  gZ 2  m1 u1  1 V12  gZ 1 2 2

mh

i tot i



  me htot e   m2 u2  1 2 V22  gZ 2  m1 u1  1 2 V22  gZ1   WC .V .  C .V  .









The Second Law of Thermodynamics Formula All W , Q can also be rates W , Q Heat Engine 





Thermal efficiency





Real Heat Engine





W HE

 HE 

     HP    HP 

Q H W HP



Q H

QH 

1

T L T H  T L T H 

QH  QH  QL

Q H



Q H  QL Q H W HP

T H  TH  TL  

  Carnot HP  

T H  TH  T L

W REF  QH  QL

Coefficient of Performance

   REF  

Carnot Cycle

   

Absolute Temperature

Q L

QL

W HP  QH  QL

Carnot Cycle

Real Refrigerator

Q H

1

  Carnot HE   1 

Q H

     HP 

Real Heat Pump

W HE

 Thermal   1 

Coefficient of Performance

Refrigerator 

  HE  

Carnot Cycle

Heat Pump 

W HE  QH  QL

T H

W REF Q L

Q H  QL

  REF  T L

Q L



Q L W REF

QL QH 

 

QL QH  QL T L TH  TL  

  Carnot REF  

T L TH  T L

Units

 

Mechanical Engineering – GATE Exam Entropy Formula Inequality of Clausis Entropy

Change of Entropy

Specific Entropy



 Q T 

Units

0

  Q    T   rev

kJ / kgK  

dS   

kJ / kgK  

2

  Q  1  T  rev  s  (1  x)s f  xsg  S 2  S 1  

kJ / kgK  

 s  s f  xs fg  Entropy Change 

Carnot Cycle

Isothermal Heat Transfer: S 2

 S1 

1 T H

2



 Q 

1

1

Q2

T H 

  Q    T   rev

Reversible Adiabatic (Isentropic Process): dS    4

Reversible Isothermal Process: S4

Q   Q   S 3    3 4  T  rev T L 3

Reversible Adiabatic (Isentropic Process): Entropy decrease in process 3-4 = the entropy increase in process 1-2. 

Reversible HeatTransfer Process

Gibbs Equations Entropy Generation

2 2 h fg  1   Q  1 1 q2  s2  s1  s fg     Q      m 1  T rev mT 1 T T  





Tds  du  Pdv Tds  dh  vdP   Q dS    S  gen T  Wirr  PdV  T  Sgen   2





1

1

S 2  S1  dS  Entropy Balance Equation Principle of the Increase of Entropy Entropy Change 

Solids & Liquids

2

 Q T 

 1 S 2 gen 

 Entropy  in  out  gen

dSnet  dSc.m.  dS surr 

 s2  s1  c ln Reversible Process: ds gen

0

Adiabatic Process: dq   0

 S

 T 2 T 1

  0

gen

Mechanical Engineering – GATE Exam 

Ideal Gas

2

Constant Volume:  s2

dT 

 s1   Cv0



1 2

Constant Pressure:  s2

 s1   Cp0

 R ln v2

dT 

1



 R ln P 2

1

 s2  s1  Cp0 ln T 

 s   0 T 

T 0

Change in Standard Entropy

C  p 0 T 

T2

T1

1

 R ln P 2

P 1 kJ / kgK  

dT 

 s2  s1   sT0 2  sT 0 1   R ln

Ideal Gas Undergoing an Isentropic Process

 P 1

 s1  Cv0 ln T2 T  R ln v2 v

Constant Specific Heat:  s2

Standard Entropy

v1

 P 2

kJ / kgK  

 P 1

 s2  s1  0  Cp0 ln

T2

P   R ln 2 T1 P 1  R

 P 2  Cp0     T1  P 1  C  C v 0 k   1  R  ,   p 0  T2

but

k  

C p 0

C  p 0 C v 0

Cp0



 = ratio of specific heats

v    1  T1  v2  T2

k 1

,

v   1  P1  v2 

P2



Special case of polytropic process where k = n:  Pv n n  PV n  const  PV 1 1  PV  2 2

Reversible Polytropic Process for Ideal Gas

n

V    1  ,  P1  V2   P2



Work

2

 1

Values for n

2

Isobaric process: n  0,

dV 

V

W2  PdV  const  

1



 const 



1

n

P  2  T1  P1 

T2



 PV 2 2  PV 1 1 1 n

P  const   T  const   Isothermal Process: n  1, s  const   Isentropic Process: n  k , Isochronic Process: n  , v  const  



n 1

n

 V    1   V 2 

mR(T2  T 1) 1 n

n 1

Mechanical Engineering – GATE Exam Second-Law Analysis for Control Volume Formula nd

2  Law Expressed as a Change of Entropy Entropy Balance Equation

dS c.m .



Q

 S  gen dt T  rateof change   in  out  generation 

dSC .V .

  mi si   me se  

dt

where SC.V . and S gen Steady State Process

dS C .V  . dt 

 Continuity equation

QC .V . T 

   sgen dV  S gen. A  S gen .B  ...

0

m s  m s   e e

QC .V .

i i



 Sgen  

 m( se  si )  

mi  me  m

QC .V . T 

C .V .



Adiabatic process

Transient Process

 S gen  

   sdV  mc.v. s  mA sA  mB sB  ...

C .V .



Units

 S gen  

 se  si  s gen  s i

d  dt

 ms C.V .   mi si   me se  

QC .V . T 

 Sgen   t 

  m2 s2  m1s1 C .V  .   mi si   me se   0

If Process Reversible & Adiabatic

Reversible Steady State Process  se  si e



he  hi  vdP   i

w   hi  he   e

   vdP 

Vi 2  V e 2

Vi 2  V e 2

i

If Process is Reversible and Isothermal

m  se  si   or T  se

2

1 T

 si  

2



 g ( Zi  Z e )  

 g ( Zi  Ze ) 

QC .V .  

C .V  .

QC .V  . m

QC .V  . T 

q e

 T  se  si    he  hi    vdP   i

QC .V . T 

dt  1 S 2 gen

Mechanical Engineering – GATE Exam Incompressible Fluid Reversible Polytrophic Process for Ideal Gas

v  Pe  Pi  

Ve2  V i 2 2

 g  Ze  Zi    0

 Bernoulli Eq.

e



w   vdP

Pv n  const  C n 

and

i e

e

dP  w   vdP  C   1 n i i  P  n nR     Pe ve  Pv  Te  T i  i i n 1 n 1 Isothermal Process (n=1)





e

e



w   vdP  C i

Principle of the Increase of Entropy

Turbine

Compressor (Pump) Cooled Compressor

Nozzle

dSnet dt



  

wa

  

w s

  

w s wa

dP 

  P

  Pv i i ln

i

dSC .V . dt



dSsurr   dt  

 

 P e P i

  S  gen  0

Efficiency h h  i e Turbine work is out hi  hes h h  i es Compressor work is in hi  he

wT  w

1 V  2 e    2 2 1 V  2 es

Kinetic energy is out

Note:

°F = (°C x 9/5) + 32 °C = (°F - 32) x (5/9) °K = °C + 273 Q = mC∆T thermal energy = mass x specific heat x change in T Q = mHf thermal energy = mass x heat of fusion Q = mHv thermal energy = mass x heat of vaporization ∆L = αLi∆T change in length = coefficient of expansion x initial length x change in T ∆V = βVi∆T change in volume = coefficient of expansion x initial volume x change in T ∆U = Q –  W internal energy = heat energy - work

Mechanical Engineering – GATE Exam Plausible Physical Name Situations Insulated  Add weight  Adiabatic sleeve to or push compression or rapid down on  process piston Insulated Remove  Adiabatic sleeve or  weight from expansion rapid or pull up  process on piston Heat gas Locked Isochoric piston or rigid container Cool gas Locked Isochoric piston or rigid container Heat gas Piston free Isobaric to move, expansion load unchanged Cool gas Piston free Isobaric to move, compression load unchanged Immerse  Add weight Isothermal gas in to piston compression large bath Immerse gas in large bath

Remove  weight from piston

Isothermal expansion

Unknown

Unknown

No Name

State Variables PV γ = Const;  TV γ-1 = Const PV γ = Const;  TV γ-1 = Const

P

V

Up

Down

T

Down

Up

Up

Down

V fixed;

PαT

Up

Fixed

Up

V fixed;

PαT

Down

Fixed

Down

P fixed;

 V α T

Fixed

Up

Up

P fixed;

 V α T

 T fixed at temperature of bath, PV = Const  T fixed at temperature of bath, PV = Const PV/T = Const

Fixed

Up

Down

?

Down

Down

Up

?

Down

Fixed

Fixed

?

ΔEth

Q

W s

W

nC v ΔT > 0

0

-nC v ΔT < 0

nC v ΔT > 0

nC v ΔT < 0

0

-nC v ΔT > 0

nC v ΔT < 0

nC v ΔT > 0

nC v ΔT >0

0

0

nC v ΔT < 0

nC v ΔT 0

nCpΔT >0

PΔV > 0

-PΔV < 0

nC v ΔT < 0

nCpΔT 0

nC v ΔT = nRT*ln(  nRT*ln(V f/   0  V f /V  )i  V  )i < 0 0

nC v ΔT = nRT*ln(  nRT*ln(V f/   0  V f /V  )i  V  )i > 0 >0

-nRT* ln(V f/  )i <   V  0

nC v ΔT

- PdV = ± area under curve in PV diagram

ΔEth +

PdV = ±

 W s

area under curve in PV diagram

ALL THE BEST for GATE 2016 Exam!!!

Mechanical Engineering – GATE Exam

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF