The How and Why Wonder Book of Air and Water
February 24, 2017 | Author: kett8233 | Category: N/A
Short Description
The How and Why Wonder Book of Air and Water How and Why Wonder Book Series Martin L. Keen (Author) , Claire Coope...
Description
*
>
•
THE
A
I
HOW
AND WHY
WONDER
BOOK
OF
R A
N
W
D
A
T
E
R
W r i t t e n b y M A R T I N L. K E E N and
CLAIRE
Illustrated Editorial
COOPER
by T O N Y
Production:
CUNNIFF TALLARICO
DONALD
D.
WOLF
E d i t e d u n d e r t h e s u p e r v i s i o n o f D r . P a u l E. B l a c k w o o d Washington, Text and
illustrations
D.C. approved
by
O a k e s A. W h i t e , B r o o k l y n C h i l d r e n s M u s e u m , B r o o k l y n ,
^W**M;
WONDER BOOKS • NEW YORK A Division of GROSSET & DUNLAP, Inc.
N.Y.
Introduction I like to t h i n k of air a n d w a t e r as bridges, for across t h e m m o v e the airplanes a n d ships t h a t bring closer together the world's people. B u t air a n d w a t e r are bridges in a n o t h e r sense. W h a t scientists h a v e learned a b o u t m a n y of the physical characteristics of these fluids, they h a v e been able t o use as bridges t o u n d e r s t a n d i n g o t h e r fluids — gases a n d liquids. W i t h this How and Why Wonder Book of Air and Water you c a n cross these bridges of discovery with the scientists. Y o u will see just how m a n y of the big ideas a b o u t air a n d w a t e r are t r u e of other gases a n d liquids. P e r h a p s , as you study, you will cross a n o t h e r bridge, the o n e t h a t will b r i n g to you a greater a p p r e c i a t i o n of air a n d water. T h o u g h they are all a r o u n d you, you m a y never h a v e noticed h o w surprising a n d interesting these substances are. Because you m a y w a n t to b e the scientist a n d cross t h a t first bridge yourself, this b o o k suggests experiments for you to try. So r e a d a n d think, experiment, observe, a n d check y o u r findings. H a v e a good passage as you cross n e w bridges with The How and Why Wonder Book of Air and Water. Paul E.
Blackwood
Library of Congress Catalog Card Number: 69-20500 Copyright © 1969 by Grosset & Dunlap, Inc. All rights reserved under International and Pan-American Copyright Conventions. Published simultaneously in Canada. Printed in the United States of America.
C O N T E N T S Page CHARACTERISTICS OF AIR AND WATER W h a t is air?
4 5
W h a t is air m a d e of? H o w can you show t h a t air takes u p space?
6
W h a t is a diving bell?
8
H o w c a n w e p r o v e t h a t air h a s weight? W h y does a p e n n y fall faster t h a n a
8
piece of p a p e r ?
6
11
H o w c a n y o u show t h a t air is elastic? W h a t is w a t e r ?
11 12
W h a t is t h e scientific n a m e for w a t e r ? W h e n is w a t e r n o t wet? W h y is ice lighter t h a n w a t e r ? W h y aren't fish frozen i n t o the ice of
12 12 13
lakes a n d rivers? H o w c a n y o u float a piece of steel?
14 14
Page H o w c a n you d e m o n s t r a t e capillary a c t i o n in plants? W h a t is a t m o s p h e r i c p r e s s u r e ? H o w c a n y o u show t h a t air exerts pressure? W h a t was von Guericke's e x p e r i m e n t ? H o w d o we m e a s u r e a t m o s p h e r i c pressure?
29 31
AIR AND WATER AT WORK H o w did ancient m a n use w a t e r
32
to m e a s u r e time? H o w d o windmills w o r k ? H o w d o w a t e r wheels w o r k ?
32 33 35
H o w c a n y o u m a k e a water wheel?
36
H o w does w a t e r p r o d u c e electricity?
37 38 38 39
AIR AND WATER IN NATURE
16
W h a t a r e the layers of the a t m o s p h e r e ? W h a t are t h e a u r o r a s ? H o w c a n y o u show t h a t cool air takes
16 17
will lift an airplane? H o w does a baseball pitcher t h r o w
up less space t h a n w a r m air? H o w c a n y o u p r o v e t h a t cool air is
17
heavier t h a n w a r m air? W h a t m a k e s the wind blow? W h y is t h e s e a s h o r e cool in
18 18
the s u m m e r ? H o w does water get i n t o t h e air? W h a t is h u m i d i t y ?
19 20 21
How c a n you m e a s u r e h u m i d i t y ? H o w does m o v i n g air h e l p cool your b o d y ?
22 23
H o w do desert plants store w a t e r ?
23
W h a t a r e clouds? How can scientists m a k e r a i n ?
24 24
W h a t is the w a t e r cycle? How does w a t e r get to the
25 26
28 28
H o w does air get into our lungs?
W h a t is Bernoulli's Principle? W h a t holds a n airplane u p ? H o w c a n y o u show why its wings
tops of trees?
27 27
a c u r v e ball? 40 H o w c a n you m a k e a siphon? 40 H o w does a siphon w o r k ? 41 H o w did A r c h i m e d e s solve the p r o b l e m of K i n g Hiero's c r o w n ?
41
W h a t is A r c h i m e d e s ' Principle? H o w c a n you p r o v e A r c h i m e d e s ' Principle?
43
Why How in How
44
d o battleships float? does a fish m o v e u p a n d d o w n water? does a s u b m a r i n e m o v e u p a n d
d o w n in w a t e r ?
43
45 46
W h a t is Pascal's Principle?
46
H o w does a hydraulic j a c k w o r k ? AIR, WATER, AND YOU H o w c a n you help k e e p air a n d
47 48
w a t e r clean?
48
Characteristics
of
A i r a n d w a t e r a r e f a m i l i a r t o all of
Air
a n d
W a t e r
N e x t t o a i r , w a t e r is p r o b a b l y
u s . T h e e a r t h w e live o n is s u r r o u n d e d
substance
b y a g r e a t o c e a n of a i r c a l l e d t h e a t -
living things c o n t a i n water. M o r e t h a n
m o s p h e r e . T h r e e q u a r t e r s of t h e e a r t h ' s
t w o t h i r d s of y o u r b o d y is m a d e
surface
of w a t e r . T h e w a t e r i n y o u r b o d y h e l p s
is c o v e r e d
by
the waters
of
oceans, lakes, rivers, a n d streams.
most
important
the
t o us.
All up
d i s s o l v e t h e f o o d y o u e a t , w h i c h is t h e n
A i r fills a l l t h e o p e n h o l l o w s o n t h e
c a r r i e d i n t h e b l o o d t o y o u r l i v i n g cells.
s u r f a c e of t h e e a r t h . T h e a i r s u r r o u n d -
W a t e r a l s o h e l p s c a r r y a w a y t h e dis-
i n g u s is n e c e s s a r y f o r life. A l l a n i m a l s
s o l v e d w a s t e m a t e r i a l s f r o m t h e cells.
b r e a t h e a i r , a n d if d e p r i v e d of it, t h e y
A n d water helps to keep your body at
die. B e c a u s e air s u r r o u n d s o u r b o d i e s
the right temperature.
all t h e time, w e usually a r e n o t a w a r e of h o w i m p o r t a n t it is. B u t
W a t e r is i m p o r t a n t n o t o n l y i n s i d e
whenever
y o u r b o d y , b u t in y o u r d a i l y life a s w e l l .
m a n travels into space or under water,
I t is u s e d f o r c o o k i n g , b a t h i n g , w a s h -
he realizes air's i m p o r t a n c e because he
ing clothes a n d dishes, a n d
m u s t t a k e a s u p p l y of i t w i t h h i m .
A n d water provides recreation such as
cleaning.
s w i m m i n g , sailing, or water-skiing. Plants, Whenever man travels under water he has to take his supply of air with him. Scuba divers carry theirs in tanks strapped to their backs.
plant
can
too, must grow
have
without
m e a n s t h a t all o u r f o o d
water. water. depends
No This on
has shaped
the coastlines
of
all
the
continents. A i r , too, causes c h a n g e s in t h e e a r t h ' s surface. A
strong wind may pick
p a r t i c l e s of soil a n d m o v e t h e m
up long
distances. W h e n the wind quiets down, t h e p a r t i c l e s of soil fall t o e a r t h . I n t h i s w a y , t h e w i n d m o v e s p o r t i o n s of earth's
surface
About
200,000
Mississippi
from
River
place
square basin
to
place.
miles are
the
of
the
covered
w i t h r i c h soil t h a t w a s c a r r i e d t h e r e b y the wind. M u c h of o u r w e a t h e r is d u e t o t h e a m o u n t of w a t e r i n t h e a i r . C l o u d s , f o g , d e w , r a i n , s n o w , a n d s l e e t a r e f o r m s of w a t e r in t h e air. M o v i n g air c a u s e s m o s t of t h e c h a n g e s i n w e a t h e r .
As
wind
blows w a r m or cold, d a m p or dry, the weather changes. W h e n p l a y i n g o u t d o o r s , y o u feel
the
w i n d o n y o u r face.
On
a very windy day,
you
What is air?
have to lean forward a n d p u s h h a r d in Solid rock is carved into beautiful and strange shapes when sand, carried by the force of the wind, scrapes against it. The rock spires in Colorado's Garden of the Gods are examples of such formations.
order to walk against the wind. W i n d is m o v i n g a i r , s o it is m o v i n g a i r t h a t y o u feel, a n d it is m o v i n g a i r a g a i n s t w h i c h y o u h a v e to p u s h so h a r d to w a l k on a windy day.
w a t e r b e c a u s e all f o o d —
even meat,
w h i c h is t h e flesh of p l a n t - e a t i n g
ani-
mals — comes from plants. Water
is
an
important
Y o u c a n ' t see air, b u t y o u h a v e often seen w h a t m o v i n g air can do. It m o v e s l e a v e s o n t r e e s , a n d it b l o w s p i e c e s of
source
of
paper along the ground. Y o u know that
p o w e r . M a n u s e s t h e f o r c e of r u n n i n g
in s t o r m s t h e w i n d b l o w s t r e e s
w a t e r t o t u r n t h e w h e e l s of m i l l s a n d t o
a n d m a y e v e n b l o w t h e r o o f s off h o u s e s .
m a k e electricity.
A
Water
shapes
the
surface
of
the
strong wind blowing from
over,
the sea
t o w a r d shore c a n p u s h so m u c h w a t e r
e a r t h . T i m e a n d a g a i n , t h e f o r c e of t h e
before
r u n n i n g w a t e r s of s t r e a m s a n d
rivers
m a y b e f l o o d e d . B e c a u s e a i r c a n d o all
has w o r n d o w n whole m o u n t a i n ranges
t h e s e t h i n g s , w e k n o w t h a t it m u s t b e a
u n t i l t h e y b e c a m e flat p l a i n s . A n d t h e
real material, like w o o d or p a p e r .
p o u n d i n g of o c e a n w a v e s o n t h e s h o r e s
it t h a t t o w n s a l o n g t h e
shore
A i r is a k i n d of m a t t e r , t h e s u b s t a n c e
t h i n g s a r e m a d e of. M a t t e r is a n y t h i n g
t o d o t h i s . P l a n t s p r o v i d e f o o d f o r all
that takes u p space and has weight. A
o t h e r living things.
s t o n e is m a t t e r . Y o u c a n s e e t h a t a s t o n e
O n e p a r t i n e v e r y h u n d r e d p a r t s of
t a k e s u p s p a c e , a n d if y o u p i c k it u p ,
a i r is a m i x t u r e of h a l f a d o z e n o t h e r
y o u c a n feel t h a t it h a s w e i g h t . A p i e c e
g a s e s . T w o of t h e s e , h e l i u m a n d h y d r o -
of i r o n , y o u r h a t , a b a l l , a n d a g l a s s a n d
g e n , a r e v e r y l i g h t g a s e s . B e c a u s e of
t h e m i l k it c o n t a i n s a l l a r e e x a m p l e s of
t h e i r l i g h t n e s s , o n e u s e of t h e s e g a s e s is
m a t t e r b e c a u s e t h e y all t a k e u p s p a c e
f o r filling b a l l o o n s ; s m a l l t o y o n e s a n d
and
up
large weather balloons. T h e other four
s p a c e a n d h a s w e i g h t . T h a t is w h y w e
gases in air are neon, argon, krypton,
s a y t h a t a i r is a k i n d of m a t t e r .
a n d x e n o n . N e o n gives the bright red-
have weight. Air, too, takes
o r a n g e g l o w t o t h e g l a s s t u b e s of elecA i r is a m i x t u r e of s e v e r a l g a s e s . T h e s e
t r i c a d v e r t i s i n g s i g n s . A r g o n in
these
gases do not have any What is air color, odor, or taste. Y o u made of? k n o w t h a t t h i s is t r u e b e -
g l a s s t u b e s g i v e s off a p u r p l e l i g h t , a n d
c a u s e y o u c a n n o t see or smell or taste
fill t h e e l e c t r i c l i g h t b u l b s i n y o u r h o m e .
air.
T h e argon makes the bulbs glow more
A l i t t l e m o r e t h a n o n e fifth of t h e a i r
k r y p t o n a n d x e n o n g i v e off a b l u e l i g h t . A r g o n , a l o n g w i t h n i t r o g e n , is u s e d t o
brightly a n d last longer.
is o x y g e n . T h i s g a s is v e r y i m p o r t a n t t o
T h e p r o p o r t i o n s of t h e m i x t u r e of
all l i v i n g t h i n g s . If p l a n t s o r a n i m a l s a r e
gases in t h e a t m o s p h e r e a r e n o t a l w a y s
d e p r i v e d of o x y g e n , t h e y d i e .
t h e s a m e . If y o u c o u l d t a k e a p a r t
A l i t t l e less t h a n f o u r fifths of t h e a i r
a
s a m p l e of a i r f r o m n e a r t h e g r o u n d a n d
is n i t r o g e n . T h i s g a s is a l s o i m p o r t a n t
another
t o l i v i n g t h i n g s . N i t r o g e n is a p a r t of all
a b o v e t h e e a r t h , y o u w o u l d find
living tissues. H o w e v e r ,
t h e a m o u n t s of t h e g a s e s w o u l d b e dif-
living
things
cannot use nitrogen directly from
the
one
from
a
hundred
miles that
ferent in the t w o samples. T h e sample
air, as they d o oxygen. P l a n t s get nitro-
taken near the ground would have
g e n f r o m b a c t e r i a i n t h e soil, a n d a n i -
h i g h e r p r o p o r t i o n of t h e h e a v i e r g a s e s :
m a l s g e t it b y e a t i n g p l a n t s .
carbon
Humans
obtain their nitrogen supply from
ani-
dioxide,
argon,
krypton
a
and
xenon. T h e upper sample would have
m a l s i n t h e f o r m of m e a t a n d fish a n d ,
a h i g h e r p r o p o r t i o n of h y d r o g e n ,
m o r e directly, f r o m p l a n t s in fruits a n d
lium, nitrogen, oxygen, a n d neon.
he-
vegetables. T h e t h i r d i m p o r t a n t g a s i n t h e a i r is
W e h a v e s a i d t h a t a i r is a k i n d of m a t t e r
c a r b o n dioxide. A l t h o u g h air contains
only living things t h a t c a n m a k e their
a n d t h a t m a t t e r is H o w can you s o m e t h i n g t h a t t a k e s show that air T, , . 0 u p space. It m a y seem J takes up space? r r h a r d to believe that
own food and they need carbon dioxide
air t a k e s u p space, b u t y o u c a n easily
very little c a r b o n d i o x i d e c o m p a r e d t o oxygen a n d nitrogen, the c a r b o n dioxi d e is v e r y i m p o r t a n t . P l a n t s a r e
the
s h o w t h a t t h i s is t r u e . A l l y o u n e e d is
Air takes up space. a n o r d i n a r y d r i n k i n g g l a s s a n d a p a i l of
will s e e t h a t o n l y a s m a l l a m o u n t
w a t e r . T h e g l a s s l o o k s e m p t y . If y o u
w a t e r h a s risen i n t o t h e glass. T h e rest
were to show t h e glass to a friend a n d
of t h e g l a s s is filled w i t h a i r . T h e a i r is
a s k h i m w h a t is i n t h e g l a s s , h e w o u l d
t a k i n g u p t h e s p a c e inside t h e glass, a n d
probably
t h e w a t e r c a n n o t fill it.
say,
"Nothing,"
of
or,
"It's
e m p t y . " P u t y o u r h a n d in the
glass.
N o w s l o w l y tilt t h e g l a s s t o o n e s i d e
There seems to be nothing there; the
u n t i l s o m e of t h e a i r e s c a p e s . Y o u w i l l
g l a s s c e r t a i n l y feels e m p t y . B u t w e h a v e
s e e a l a r g e b u b b l e of a i r r i s e t o t h e s u r -
s a i d t h a t a i r fills all t h e h o l l o w p l a c e s
f a c e of t h e w a t e r w i t h a p o p p i n g s o u n d .
o n t h e s u r f a c e of t h e e a r t h . S u r e l y , t h e r e
L o o k at t h e glass again. T h i s time, y o u
m u s t b e air inside t h e glass.
will see t h a t t h e w a t e r h a s risen h i g h e r
P o u r w a t e r i n t o t h e g l a s s u n t i l it is filled
i n t h e g l a s s . N o w t h a t t h e b u b b l e of a i r
t o t h e b r i m . T h e w a t e r t h a t fills
is n o l o n g e r t a k i n g u p s p a c e i n t h e g l a s s ,
t h e g l a s s h a s p u s h e d a l l t h e a i r o u t of
s o m e w a t e r c a n get in. E a c h t i m e y o u
t h e glass. B u t
tip t h e glass a n d let air escape,
suppose
the
air
were
t r a p p e d inside the glass a n d the w a t e r c o u l d n o t p u s h it o u t . If a i r r e a l l y t a k e s
more
w a t e r w i l l r i s e i n t o it. Using this s a m e equipment, you c a n
u p s p a c e , h o w c a n y o u fill t h e g l a s s w i t h
perform
water?
Bet them that you can put a handker-
P o u r a l l t h e w a t e r o u t of t h e g l a s s . N o w t u r n t h e glass upside d o w n p u s h it d o w n i n t o t h e p a i l of B e sure y o u h o l d t h e glass
and
water.
perfectly
a trick to fool y o u r
friends.
chief u n d e r w a t e r w i t h o u t g e t t i n g it w e t . C r u m p l e t h e h a n d k e r c h i e f a n d p a c k it firmly
i n t o t h e b o t t o m of t h e g l a s s . N o w
t u r n t h e glass u p s i d e d o w n a n d l o w e r it
s t r a i g h t . D o n o t tilt it t o o n e s i d e . P u s h
into t h e w a t e r as you did before.
t h e g l a s s d o w n i n t o t h e w a t e r u n t i l all of
h a n d k e r c h i e f will stay d r y as l o n g as
The
it is u n d e r w a t e r . N o w l o o k c l o s e l y . Y o u
you h o l d the glass straight.
AIR HOSE
must work under water. Perhaps
the
m e n m u s t dig holes for the f o u n d a t i o n of a b r i d g e o r a d a m , o r p e r h a p s t h e y m u s t repair a s u n k e n ship. T h e y can d o t h i s a n d still r e m a i n d r y b y w o r k i n g inside a diving bell. A diving bell looks l i k e a l a r g e i r o n b e l l . I t is l o w e r e d beneath the water — open end down — u n t i l it r e s t s o n t h e b o t t o m . B e c a u s e t h e d i v i n g b e l l is filled w i t h a i r , w a t e r d o e s n o t r i s e i n t o it, j u s t a s w a t e r d i d n o t r i s e i n t o t h e g l a s s . A i r is t a k i n g u p s p a c e inside the diving bell a n d w a t e r
cannot
take u p the same space. Y o u remember that when you pushed t h e g l a s s all t h e w a y d o w n i n t o t h e p a i l , a s m a l l a m o u n t of w a t e r d i d r i s e i n t o t h e g l a s s . If y o u h a d p u s h e d t h e g l a s s m a n y feet u n d e r w a t e r , t h e w a t e r w o u l d h a v e r i s e n i n t o it e v e n f u r t h e r . T o p r e v e n t w a t e r f r o m rising i n t o a diving bell, a i r is p u m p e d i n t o it f r o m t h e s u r f a c e .
T h e p r o b l e m of s h o w i n g t h a t a i r h a s How can we prove that air has weight? Very little water will enter the diving bell, or underwater caisson, because the air in it takes up space and prevents the water from rising. But if the men working at the bottom of the bell are to stay dry, no water at all should enter. To accomplish this compressed air is forced into the diving bell. Weighted in this way, it sinks. The workmen go in and out through airlocks which allow them gradually to get used to the high pressure.
w e i g h t is a v e r y
o n e . I t w a s first s o l v e d i n t h e s e c o n d h a l f of the sixteenth
by a young
old
Italian
century
scientist,
Galileo
It would b e nice to repeat
exactly
Galilei. w h a t Galileo did, b u t we c a n n o t cause
we
need
equipment
be-
especially
m a d e f o r t h i s e x p e r i m e n t . I n s t e a d , let u s r e a d w h a t G a l i l e o d i d , a n d w e will l e a r n t h e interesting w a y in w h i c h h e
The
experiment
»A#L » • W h a t is a diving bell?
you
just
performed
p r o v e d that air h a s weight. Galileo obtained a sturdy bottle with
with the glass a n d the ° ail of w a t e r P showed you
a narrow neck. T h e n he had a craftsman
t h a t w a t e r could not get
m a k e a leather sack both airtight and
into the glass as long as there was air
watertight,
i n s i d e it. T h i s f a c t is u s e d b y m e n w h o
T h e s a c k w a s s h a p e d p r e t t y m u c h like
8
and with
a narrow
neck.
the bottle but h a d only three quarters
s q u e e z e d i n t o a smaller space, h a d be-
as m u c h s p a c e i n s i d e .
c o m e compressed
G a l i l e o filled t h e s a c k w i t h w a t e r . H e then wet
the neck
of
the
sack
and
air.
U s i n g these facts, G a l i l e o
reasoned
t h i s w a y : a s p a c e filled w i t h c o m p r e s s e d
s l i p p e d it o v e r t h e n e c k of t h e b o t t l e .
air contains m o r e air t h a n the
T h e wet leather shrank and
s p a c e filled w i t h o r d i n a r y a i r — a i r t h a t
fitted
t i g h t l y a r o u n d t h e n e c k of t h e
so
bottle
is n o t c o m p r e s s e d . If a i r h a s
same
weight,
that n o t even air c o u l d m o v e in o r out-of
t h e n a v o l u m e of c o m p r e s s e d a i r s h o u l d
where the sack and bottle joined.
w e i g h m o r e t h a n t h e s a m e v o l u m e of
Squeezing
and
twisting
the
sack,
o r d i n a r y air.
Galileo forced water from the sack into
T o p r o v e his reasoning, G a l i l e o care-
the bottle. T h e n he w r a p p e d the twisted
fully w e i g h e d t h e b o t t l e w i t h t h e s a c k
e m p t y s a c k a r o u n d t h e n e c k of t h e b o t -
w r a p p e d a r o u n d it a n d t h e w a t e r a n d
tle a n d t i e d it i n p l a c e .
compressed
Galileo n o w h a d these facts
before
h i m : t h e b o t t o m t h r e e f o u r t h s of bottle
contained
water;
the
the
upper
f o u r t h c o n t a i n e d all t h e air t h a t
had
air
inside.
Having
made
this weighing, Galileo untied the sack a n d p u l l e d it f r o m t h e b o t t l e . T h e c o m pressed
air
expanded
causing
three
q u a r t e r s of a b o t t l e f u l t o e s c a p e . T h i s
c o m p l e t e l y filled t h e b o t t l e b e f o r e t h e
left o n l y o n e - q u a r t e r b o t t l e f u l
of
or-
water was forced
d i n a r y air in t h e bottle. K n o t t i n g
the
in. T h a t
air,
now
To prove that air has weight you can perform an experiment much like Galileo's. For the step by step description see page 10.
e m p t y s a c k a r o u n d t h e n e c k of t h e b o t -
Using the pliers, cut a n d b e n d
the
tle, G a l i l e o a g a i n w e i g h e d b o t t l e , s a c k ,
coat hanger to m a k e a wire cradle as
water, a n d air. H e c o m p a r e d the results
s h o w n in t h e illustration o n p a g e 9.
of t h e t w o w e i g h i n g s a n d f o u n d
that
T i e t h e c a r p e n t e r ' s level to t h e yardstick as shown. T h e center hairline on
t h e first w a s h e a v i e r . In b o t h weighings, nothing h a p p e n e d
t h e g l a s s t u b e of t h e l e v e l s h o u l d b e a t
to the bottle, sack, and water to m a k e
the 18-inch m a r k on the yardstick. At-
them change weight. T h e only
thing
t a c h t h e D - c l a m p t o t h e t o p of a d o o r -
t h a t c h a n g e d w a s t h e a m o u n t of a i r i n
w a y . P l a c e t h e y a r d s t i c k a n d level in
t h e bottle. T h e r e w a s m o r e air in t h e
the wire cradle and h a n g them from the
b o t t l e d u r i n g t h e first w e i g h i n g , a n d t h i s
c l a m p . B e s u r e t h a t t h e d o o r w a y is n o t
weighing was heavier. T h e extra
air
drafty, because wind blowing on your
that
e x p e r i m e n t will m a k e y o u r results c o m e
m a d e it h e a v i e r , a n d t h i s p r o v e d
out wrong.
air has weight. did
H a n g the two shopping bags on the
n o t c o m p r e s s a i r s i m p l y b y p u m p i n g it
y a r d s t i c k b y p l a c i n g t h e h a n d l e s of a
into a bottle, s o m e w h a t as w e compress
b a g i n o n e of t h e n o t c h e s .
air in a bicycle or a u t o m o b i l e tire. T h e
L e t t h e a i r o u t of t h e
Y o u m a y wonder why Galileo
basketball.
a n s w e r is t h a t t h e first a i r p u m p w a s n o t
T h e n p u m p air i n t o it just until
the
i n v e n t e d until m o r e t h a n half a c e n t u r y
creases have smoothed out. T h e
ball
after G a l i l e o p e r f o r m e d his e x p e r i m e n t
n o w s h o u l d b e soft w h e n y o u p o k e it
to show that air has weight.
w i t h y o u r finger.
Although
you
cannot
repeat
Gali-
C a r e f u l l y p u t t h e b a l l i n t o o n e of t h e
l e o ' s e x p e r i m e n t e x a c t l y a s h e d i d it, y o u
shopping
bags.
Put
weights
such
as
c a n p e r f o r m a n e x p e r i m e n t t h a t is m u c h
pebbles, nails, or s a n d into the
like the o n e h e devised.
b a g u n t i l t h e b u b b l e i n t h e level s h o w s
other
F o r G a l i l e o ' s b o t t l e , y o u will u s e a
t h e y a r d s t i c k t o b e h a n g i n g level. T h i s
basketball, for t h e leather sack, substi-
s h o w s t h a t t h e t w o b a g s a r e in b a l a n c e ,
t u t e t h e k i n d of p u m p u s e d t o i n f l a t e
that they weigh the same. R e m o v e the ball from the bag, being
basketballs or footballs. Y o u have to m a k e a weighing appa-
careful
that
the
bag
containing
the
r a t u s . F o r this y o u will n e e d a y a r d s t i c k ,
weights does n o t lower so fast a n d h a r d
s e v e r a l f e e t of t h i n , y e t s t r o n g , s t r i n g
as to t h r o w y o u r w h o l e weighing appa-
( f i s h i n g l i n e is g o o d ) , a c o a t h a n g e r , a
r a t u s o u t of k i l t e r .
c a r p e n t e r ' s level, a D - c l a m p , a n d
two
N o w p u m p a i r i n t o t h e b a l l u n t i l it is a s h a r d a s w h e n it is r e a d y t o b e u s e d
shopping bags. T h e tools y o u will n e e d a r e a penk n i f e , a s m a l l s a w , a n d a p a i r of p l i e r s .
in a b a s k e t b a l l g a m e . P u m p i n g the additional air into the ball
compresses
one
all t h e air in t h e ball. M o r e air t a k e s u p
i n c h f r o m a n e n d of t h e y a r d s t i c k . E a c h
t h e s a m e s p a c e as t h e air t h a t w a s in
notch
t h e b a l l w h e n y o u w e i g h e d it.
C u t two square notches, each
wide.
10
should be about
half
an
inch
Gently put the ball back into
the
shopping bag and examine the bubble
the same instant. W h y ? Something must
in t h e level. Y o u will see t h a t t h e b u b -
h a v e s l o w e d t h e f a l l of t h e p a p e r s t r i p
ble
on
t h e first t i m e w e m a d e it fall; a n d w h a t -
hanging.
e v e r s l o w e d t h e p a p e r t h e first t i m e d i d
has
which
moved
the
toward
weighted
the
bag
side
is
This means that the ball n o w more
than
weights) ball
the
that
before
pebbles
weighs
(or
additional
c h a n g e w e m a d e in t h e glass t u b e a n d
the
its c o n t e n t s w a s t o r e m o v e t h e a i r . S o ,
was
it m u s t h a v e b e e n t h e a i r i n t h e t u b e
air
p u m p e d in. T h e additional weight m u s t
t h a t s l o w e d t h e fall of t h e p a p e r . A i r is a k i n d of m a t t e r a n d t h e r e f o r e
h a v e c o m e from the a d d e d air.
takes u p H o l d a p e n n y in one h a n d a n d a small s t r i p of p a p e r i n Why does a penny fall faster than a _ piece of paper?
Q t h e r
tance above the
floor.
h a n d
, lt , , , H o l d both hands
TT
the
only
other
h a d just balanced the
n o t d o so the second time. T h e
same
filled
space. W h e n
with
air,
the
the tube
penny,
was
which
is
h e a v i e r t h a n t h e s m a l l s t r i p of p a p e r , c o u l d m o r e e a s i l y p u s h its w a y
down
t h r o u g h t h e air.
dis-
L e t g o of
the
W e have demonstrated that air
u p space; air also has
penny and the paper at the same instant. W h i c h s t r i k e s t h e f l o o r first? T h e p e n n y d o e s . N o w let u s s e e w h y . L e t us suppose that we h a v e a wide
takes
0
" ^ . T . / " weight. These are charshow that air a c t e r i s t i c s of a l l m a t is elastic? ter. A i r h a s a n o t h e r
g l a s s t u b e t h a t is five f e e t l o n g . W e p l a c e
c h a r a c t e r i s t i c t h a t is s h a r e d b y all g a s e s :
a p e n n y a n d a s m a l l s t r i p of p a p e r in-
I t is elastic.
side t h e t u b e , c o v e r b o t h e n d s tightly,
s p r i n g y . I t w i l l s p r i n g b a c k t o its o r i g -
and hold the tube upright. T h e penny
inal v o l u m e after being compressed or
and the p a p e r are n o w resting at the bot-
squeezed.
tom
of t h e t u b e .
We
turn
the
tube
This means
that
air
is
Y o u c a n p r o v e t h a t a i r is e l a s t i c b y
a r o u n d , s o t h a t t h e b o t t o m is n o w t h e
m e a n s of a b i c y c l e p u m p o r a
top. W e do this so quickly t h a t
the
u s e d t o inflate footballs o r b a s k e t b a l l s .
p e n n y a n d t h e p i e c e of p a p e r b e g i n t o
T o d o t h i s , p u l l t h e p u m p h a n d l e all t h e
fall f r o m t h e t o p a t t h e s a m e i n s t a n t .
w a y o u t so t h a t air will e n t e r t h e p u m p .
T h e p e n n y falls r a p i d l y t o t h e b o t t o m ,
Now
w h i l e t h e s t r i p of p a p e r g l i d e s s l o w l y
n o z z l e of t h e p u m p a n d p u s h t h e h a n d l e
downward.
into t h e p u m p as far as y o u can. Sud-
L e t us n o w connect the glass t u b e to a n e x h a u s t p u m p t h a t p u m p s a l m o s t all
hold
a
finger
tightly
pump
over
the
d e n l y l e t g o of t h e h a n d l e . I t w i l l s p r i n g outward.
t h e a i r o u t of t h e t u b e . ( W e w o u l d l i k e
W h e n y o u p u s h e d t h e h a n d l e in, y o u
t o t a k e a l l t h e a i r o u t of t h e t u b e , b u t
c o m p r e s s e d the air in the p u m p . W h e n
t h e r e is n o p u m p t h a t c a n d o
this.)
y o u l e t g o of t h e h a n d l e , it s p r a n g o u t -
Again we quickly turn the tube around.
w a r d b e c a u s e t h e a i r b e h i n d it i n t h e
T h i s t i m e t h e s t r i p of p a p e r falls a s f a s t
pump
as t h e p e n n y a n d s t r i k e s t h e b o t t o m a t
springiness proves that the air inside the
was
springing
outward.
This
11
p u m p is e l a s t i c . S i n c e t h e a i r i n s i d e t h e
hydrogen
p u m p w a s d r a w n in f r o m t h e o u t s i d e ,
f o r m e d c o n t a i n s t w o v o l u m e s of h y d r o -
it w a s n o t d i f f e r e n t f r o m t h e a i r o u t s i d e .
g e n f o r e v e r y o n e v o l u m e of o x y g e n . I n
T h u s , the outside air m u s t be springy,
f a c t , all w a t e r e v e r y w h e r e c o n t a i n s t w o
o r e l a s t i c , t o o . A l l a i r is e l a s t i c . T h i s is
v o l u m e s of h y d r o g e n f o r e v e r y o n e vol-
the reason water rose a short way into
u m e of o x y g e n . S a m p l e s of w a t e r t a k e n
t h e g l a s s w h e n y o u d i d t h e first e x p e r i -
from a raindrop, from a faucet, or from
m e n t in this b o o k . T h e air w a s
t h e b o t t o m of t h e o c e a n will all h a v e t h e
com-
p r e s s e d b y t h e w a t e r p r e s s i n g a g a i n s t it.
or
oxygen
left.
The
water
s a m e a m o u n t s of t h e s e t w o g a s e s . B e c a u s e w a t e r is a l w a y s t h e s a m e , scient i s t s c a n w r i t e a forWhat is the m u l a f o r it T o t h e scientific s c i e n t i s t , w a t e r is name for water? H . O . This simply m e a n s t h a t w a t e r h a s t w o v o l u m e s of
You can easily prove that air is elastic — springy — by compressing it within a bicycletire-pump.
h y d r o g e n ( H ) f o r e v e r y o n e of o x y g e n ( O ) . T h e n e x t t i m e y o u r f r i e n d s visit y o u , offer t h e m a g l a s s of H 2 0 t o d r i n k . They'll probably be surprised when you c o m e b a c k from the kitchen with a glass of p l a i n w a t e r .
W e t h i n k of w a t e r a s a l i q u i d , b u t w a t e r W a t e r is m a d e of h y d r o g e n a n d o x y g e n , What is water?
t w o of t h e g a s e s t h a t , , ° , a r e f o u n d in t h e air.
I t is a w o n d e r f u l f a c t of n a t u r e t h a t t w o gases can c o m b i n e to m a k e a
liquid,
a n d t h i s is w h a t h a p p e n s w h e n o x y g e n and
hydrogen
are
combined
in
the
proper way. T o combine hydrogen and oxygen, a scientist p u t s t w o v o l u m e s ( a v o l u m e of a g a s , l i q u i d , o r s o l i d is t h e a m o u n t of s p a c e it t a k e s u p ) of h y d r o g e n a n d o n e v o l u m e of o x y g e n i n t o a s t u r d y c o n t a i n e r , p e r h a p s a flask of v e r y t h i c k g l a s s . T h e n h e s e t s off a n e l e c t r i c spark within the container to produce an explosion. After the explosion, drops of w a t e r will a p p e a r o n t h e i n s i d e of t h e c o n t a i n e r a n d t h e r e will b e n o 12
more
c a n a l s o b e a solid o r When is water a gas. Solid, liquid, not wet? and gas are the three states
of matter.
W a t e r in t h e solid state
is c a l l e d ice. I c e is n o t w e t . T h i s m a y s u r p r i s e y o u , b u t t h e r e a s o n ice feels wet
when
is t h a t
the
melts the
ice,
c h a n g i n g s o m e of it t o w a t e r . I n
the
warmth gaseous
you
touch
it
of y o u r h a n d state
water
is
called
water
v a p o r . Y o u c a n n o t see w a t e r v a p o r bec a u s e it is a n i n v i s i b l e g a s , b u t
when
w a t e r v a p o r cools y o u c a n see a c l o u d of s t e a m . S t e a m is m a d e of t i n y d r o p l e t s of w a t e r i n t h e a i r . Y o u c a n easily c h a n g e ice to water, water to water vapor, and water vapor t o s t e a m . T a k e f o u r o r five i c e c u b e s
a n d p u t t h e m i n t h e b o t t o m of a t e a kettle. N o w p u t the tea kettle on the s t o v e . L e a v e t h e c o v e r of t h e t e a k e t t l e off s o y o u c a n s e e w h a t h a p p e n s . S o o n all t h e i c e h a s m e l t e d a n d t u r n e d i n t o water. N o w p u t the cover on the tea
When you melt ice, it turns into water.
k e t t l e . I n a s h o r t t i m e t h e w a t e r will begin t o boil a n d t h e r e will b e a c l o u d of s t e a m
near the
spout.
Now
look
c l o s e l y a t t h e e n d of t h e s p o u t . B e t w e e n t h e c l o u d of s t e a m a n d t h e s p o u t is a small space that seems to b e e m p t y . B u t it is n o t e m p t y . I t is filled w i t h
water
vapor. Y o u c a n p r o v e t h a t this invisible
When you boil water, it turns into water vapor and steam.
s u b s t a n c e is a f o r m of w a t e r b y t u r n i n g s o m e of it b a c k i n t o a l i q u i d . W r a p a towel or pot holder a r o u n d the handle of a m e t a l s p o o n a n d h o l d t h e b o w l of the s p o o n in front
of t h e t e a
kettle
s p o u t . D r o p s of w a t e r w i l l f o r m o n t h e s p o o n . Y o u c a n c h a n g e t h e d r o p s of water b a c k into ice b y p u t t i n g the s p o o n
When you cool water vapor, you can turn it back into water.
in t h e f r e e z e r of a r e f r i g e r a t o r . L a t e r w e will s e e t h a t a p r o c e s s v e r y m u c h l i k e this is g o i n g o n a l l t h e t i m e i n n a t u r e .
the ice y o u w o u l d b e w r o n g . A b u c k e t of i c e is l i g h t e r t h a n a b u c k e t of w a t e r .
If s o m e o n e w e r e t o a s k y o u w h i c h is h e a v i e r , a b u c k e t of i c e W h y is ice Q r fl ^uc]^Qt Q f w a t e r > y o u lighter than . , ^ „ , , m i g h t very well c h o o s e t h e b u c k e t of i c e b e c a u s e y o u p r o b a b l y t h i n k of s o l i d s a s b e i n g h e a v i e r t h a n l i q u i d s . B u t if y o u c h o s e
Water
is
different
from
most
other
l i q u i d s b e c a u s e w h e n it f r e e z e s a n d b e comes
s o l i d , it b e c o m e s
lighter
than
w h e n it is a l i q u i d . Y o u c a n d e m o n s t r a t e this very easily. T a k e t w o m e t a l m e a s u r i n g cups like the ones your m o t h e r uses to m e a s u r e
flour.
A cup of ice, when melted, does not make a cup of water.
The water reaches the "1 cup" mark.
Water expands when it freezes.
13
Fill t h e m with water to the m a r k that
mals—fish,
s a y s " o n e c u p . " N o w p u t o n e c u p of
snakes,
w a t e r i n t h e f r e e z e r of y o u r r e f r i g e r a t o r
living t h e r e w o u l d freeze a n d die. F u r -
a n d l e a v e it t h e r e u n t i l t h e w a t e r h a s
t h e r m o r e , in t h e spring, t h e w a r m sun-
t u r n e d t o s o l i d ice. W h e n a l l t h e w a t e r
light w o u l d n o t b e a b l e t o m e l t all t h e
h a s frozen, y o u will see t h a t t h e
i c e a s i t c a n b e c a u s e t h e i c e is o n l y a t
sticks u p a b o v e the " o n e c u p " T h i s is b e c a u s e w a t e r
expands
ice
mark. as
the "one cup" mark. N o w you have one c u p of i c e . L e t it s t a n d u n t i l a l l t h e i c e When
t h e ice h a s
salamanders,
others—and
water
the
plants
the surface.
it
f r e e z e s . N o w c h i p a w a y all t h e i c e a b o v e
has melted.
and
frogs,
com-
Y o u k n o w t h a t s t e e l is m u c h
t h a n water, yet you can How can you float a piece of steel?
p l e t e l y m e l t e d , l o o k a t t h e l e v e l of t h e water. It n o longer reaches to the "one c u p " m a r k . A p a r t l y filled c u p of w a t e r w e i g h s less t h a n a full c u p . T h e r e f o r e a c u p of i c e m u s t w e i g h l e s s t h a n a c u p of w a t e r . If y o u h a v e a s c a l e y o u c a n
heavier
float
water!
iece of s t e d
o n
It
im-
sounds
p o s s i b l e , y e t it is r e a l l y
very easy t o m a k e a steel needle
float.
A l l y o u n e e d is a g l a s s of w a t e r , a f o r k , a n d a needle from your mother's sewing basket. W a s h the fork and needle with soap. B e s u r e t o r i n s e off all t h e s o a p . P l a c e
m e a s u r e the difference.
the needle on the fork and lower the it
f o r k s l o w l y i n t o t h e g l a s s of w a t e r . T h e
When you put
n e e d l e w i l l float. W h y d o e s t h i s h a p p e n ?
Why aren't fish ice cubes in a glass frozen into the of w a t e r , t h e i c e b o b s ice of lakes u p a n d d o w n for a and rivers? second or two, and
W a t e r is m a d e u p of v e r y s m a l l p a r -
B e c a u s e i c e is l i g h t e r t h a n floats.
water,
t h e n floats a t t h e t o p of t h e w a t e r . I c e o n f r o z e n l a k e s a n d r i v e r s a l s o floats a t t h e t o p of w a t e r . T h i s f a c t is v e r y i m p o r t a n t t o p l a n t s a n d a n i m a l s t h a t live i n t h e w a t e r . B e l o w t h e ice, t h e l i v i n g t h i n g s c a n c o n t i n u e t o live. T h e i c e a c t s as a shield, protecting t h e w a t e r
be-
n e a t h it f r o m t h e c o l d a i r a b o v e . If t h e ice w e r e heavier t h a n w a t e r , t h e b o t t o m of t h e l a k e w o u l d fill w i t h i c e . E v e n t u ally, t h e w h o l e l a k e w o u l d b e
frozen
from b o t t o m t o surface a n d all t h e ani-
As ice is lighter than water, it floats. This permits life to go on in frozen lakes and rivers. 14
ticles called molecules. E a c h m o l e c u l e is m a d e u p of t w o a t o m s of h y d r o g e n a n d o n e a t o m of o x y g e n . A m o l e c u l e of w a t e r is s o s m a l l t h a t it is i m p o s s i b l e t o
Surface tension allows the steel needle to float (illustrations at left). Dropping a few grains of soap powder into the glass lessens the surface tension and the needle sinks (illustration below).
see it e v e n
with
the
most
powerful
microscope. M o l e c u l e s cling
together.
T h o s e o n t h e surface cling t o g e t h e r so t i g h t l y t h a t t h e y f o r m a film, o r s k i n . I m a g i n e a l a r g e g r o u p of c h i l d r e n i n a schoolyard. E a c h child h a s his a r m s a b o u t t h e w a i s t s of t h e c h i l d r e n n e x t t o h i m . T h e c h i l d r e n o n t h e o u t s i d e of t h e group form an unbroken chain. These c h i l d r e n a r e a l s o h e l d b y s o m e of t h e c h i l d r e n n e x t t o t h e m o n t h e i n s i d e of the g r o u p . A s a result, t h e children o n t h e o u t s i d e will f o r m a s t r o n g r i n g a b o u t t h e o t h e r s . If s o m e o n e t r i e d t o w a l k i n t o the g r o u p , h e w o u l d h a v e a h a r d t i m e p u s h i n g t h r o u g h t h e r i n g of c h i l d r e n o n the outside. T h e y w o u l d p r o b a b l y
be
able to hold h i m out. T h e m o l e c u l e s a t t h e s u r f a c e of t h e water a r e like t h e c h i l d r e n in t h e ring
If t h e s u r f a c e film is b r o k e n , t h e n e e d l e
a r o u n d t h e r e s t of t h e g r o u p . T h e s u r -
w i l l i m m e d i a t e l y s i n k t o t h e b o t t o m of
face m o l e c u l e s c l i n g t o g e t h e r s o t i g h t l y
the
that
t h r o u g h t h e s u r f a c e of t h e w a t e r , a n d i t
they
can
hold
the
steel
needle
afloat. S c i e n t i s t s h a v e a n a m e f o r s t r o n g c l i n g i n g t o g e t h e r of t h e
the
mole-
glass.
Push
the
floating
needle
will s i n k t o t h e b o t t o m . If y o u l e s s e n t h e s u r f a c e t e n s i o n , y o u
cules a t t h e s u r f a c e of a l i q u i d , s u c h a s
will n o t b e a b l e t o
w a t e r . T h e y c a l l it surface
w a t e r . L e t us try a n e x p e r i m e n t t h a t will
tension.
If y o u l o o k c l o s e l y a t t h e needle, y o u will see t h e surface
floating film
b e n d i n g u n d e r t h e w e i g h t of t h e n e e d l e .
float
a needle
on
p r o v e t h i s . T a k e t h e n e e d l e o u t of t h e w a t e r a n d d r y it. U s e t h e f o r k t o
float
the needle
few
again.
Now,
drop
a
15
g r a i n s of s o a p p o w d e r i n t o t h e g l a s s . T h e needle sinks. W h a t h a p p e n e d ? T h e s o a p l e s s e n e d t h e s u r f a c e t e n s i o n so t h a t the molecules at the surface no longer clung together strongly enough to hold t h e n e e d l e a f l o a t . T h i n k of t h e c h i l d r e n in t h e
schoolyard.
Suppose
someone
t o l d m o s t of t h e c h i l d r e n m a k i n g u p t h e outside ring to remove their arms from t h e w a i s t s of t h e c h i l d r e n n e x t t o t h e m . T h e outside ring would no longer
be
strong, a n d a n y o n e wishing to walk into t h e g r o u p c o u l d e a s i l y d o so. A l t h o u g h molecules
have
no
arms,
you
might
t h i n k of t h e a c t i o n of t h e s o a p a s o n e t h a t c a u s e d e a c h m o l e c u l e at t h e surface t o r e m o v e its " a r m s " f r o m t h e m o l e c u l e n e x t t o it. W h e n your mother puts soap into the w a s h i n g m a c h i n e , s h e is r e d u c i n g
the
s u r f a c e t e n s i o n of t h e w a t e r so t h a t t h e water can soak into the clothes and
float
a w a y dirt m o r e easily.
Air
and in
The
W a t e r
Nature
earth's ocean
of a i r , t h e
atmos-
sphere, extends W h a t a r e the layers of the , _ atmosphere?
6QQ
mile§
about
a b o y e
t h e
. , , . r e a r t h s s u r f a c e a n d is divided into layers. Let
us p r e t e n d that we are a b o a r d a rocket t h a t is r i s i n g f r o m t h e e a r t h ' s
surface
a n d p a s s i n g t h r o u g h all t h e l a y e r s of the atmosphere. W e begin our journey i n t h e l o w e s t l a y e r of a i r . T h i s l a y e r , The earth's ocean of air is divided into layers.
16
c a l l e d t h e troposphere
(trop'-uh-sfeer),
is a b o u t s e v e n m i l e s t h i c k . N o t e v e n t h e
highest m o u n t a i n s rise a b o v e the tropo-
O b t a i n a toy balloon at least ten inches
sphere. W h e n we leave the troposphere, we enter the layer called the
in d i a m e t e r w h e n H o w can you s h o w that cool air takes . ,. u p less s p a c e t h a n w « r m «,r-> w a r m airr
stratosphere
(strat'-uh-sfeer). This layer extends to about 53 miles above the earth.
Here
t h e a i r is v e r y t h i n , c l e a r , a n d c o l d . O u r
b ] o w n
. the
u p
B J o w
, ,, balloon
up , rub-
a n d tie t h e
ber at the mouth-
rocket leaves t h e s t r a t o s p h e r e a n d ent e r s t h e n e x t l a y e r , t h e ionosphere
(eye-
p i e c e of t h e b a l l o o n i n t o a double
knot.
on'-uh-sfeer). This layer extends
from
T h i s is t o m a k e s u r e t h a t n o a i r e s c a p e s .
60 miles to 2 5 0 miles above the earth's
Simply tying the balloon closed
s u r f a c e . I t is c a l l e d t h e i o n o s p h e r e b e -
s t r i n g will n o t s e a l it t i g h t l y e n o u g h . Place a ruler or yardstick on a table
cause here the sun's rays break u p the a t o m s of a i r i n t o e l e c t r i c a l l y particles called
charged
ions. H e r e the air
t h i n n e r t h a n in t h e
stratosphere.
is
The
a n d p u t t h e b a l l o o n u p o n it, m e a s u r i n g t h e d i a m e t e r of t h e b a l l o o n . W r i t e d o w n the measurement. T h e n , place the balloon into a freezer
u p p e r m o s t l a y e r of t h e a t m o s p h e r e is c a l l e d t h e exosphere
(eks'-o-sfeer).The
o r i n t o t h e f r e e z i n g c o m p a r t m e n t of a
air c o n t i n u e s t o b e c o m e t h i n n e r until,
refrigerator.
at a b o u t 6 0 0 miles a b o v e the
overnight.
earth's
there
through
l o o n f r o m t h e f r e e z e r , m e a s u r e it a g a i n .
space.
Y o u w i l l find t h a t it is s m a l l e r . ( A s s o o n
the e x o s p h e r e , w e a r e in o u t e r T h e entire atmosphere
Leave the balloon
I m m e d i a t e l y u p o n r e m o v i n g the bal-
surface, there are n o m o r e air particles. When our rocket has passed
with
has been
left
a s y o u h a v e m e a s u r e d it, p u t t h e b a l l o o n back into the freezer.)
behind us.
T h e air in t h e b a l l o o n c o n t r a c t e d , o r
M o r e t h a n 9 9 p e r c e n t of t h e a i r is i n
shrank. W h e n you blew up the balloon,
the lowest 2 0 miles.
t h e a i r in it w a s a t t h e t e m p e r a t u r e of your lungs, from where the air came. W e learned that the sun's rays break u p the _ the a u r o r a s ?
air
in
the
iono-
This 98
temperature F.
After
you
is took
approximately it f r o m
the
s p h e r e i n t o e l e c t r i c a l lJy \ charged particles
f r e e z e r , t h e a i r in t h e b a l l o o n w a s s o m e -
c a l l e d e l e c t r o n s a n d i o n s . If y o u live i n
l o o n is s m a l l e r , t h e a i r filling t h e c o o l
the far n o r t h e r n or far s o u t h e r n
parts
b a l l o o n t a k e s u p less s p a c e t h a n
of t h e e a r t h y o u h a v e p r o b a b l y
seen
s a m e air w h e n w a r m . Therefore, w h e n
g r e a t c u r t a i n s a n d s t r e a m e r s of
light
a n y a i r is c o o l , it t a k e s u p less s p a c e
moving
across
the
night
shifting
lights a r e m a d e
sky. of
These
w h e r e n e a r 0° F . S i n c e t h e c o o l e r b a l the
than when warm.
electrons
a n d ions m o v i n g in t h e i o n o s p h e r e . W e call t h e s e t h e N o r t h e r n L i g h t s a n d t h e Southern
Lights,
but
n a m e s f o r t h e m a r e aurora aurora
the
scientific
borealis
and
australis. 17
«$*•
These are the six great wind belts of the world. Within each belt, local winds may temporarily blow backward or forward in any direction.
i it is a s s m a l l a s t h e c o o l b a l l o o n . S i n c e s o m e a i r w a s l e t o u t of t h e w a r m b a l l o o n , it n o w c o n t a i n s less a i r t h a n t h e cool balloon. T h i n k a g a i n . If y o u w e i g h b o t h b a l loons, w h i c h will w e i g h less? T h e w a r m b a l l o o n , of c o u r s e , s i n c e y o u let
out
s o m e of its a i r . B u t b o t h b a l l o o n s a r e n o w t h e s a m e size ( e v e n t h o u g h o n e h a s m o r e air in i t ) , therefore, t h e h e a v i e r balloon must contain heavier air—the cool air. O b t a i n a n o t h e r b a l l o o n t h e s a m e size
W e h a v e l e a r n e d t h a t w i n d is m o v i n g
as t h e o n e y o u H o w can you p r o v e j u s t u s e d B l o w that cool air is heavier l f . , ,. . o this balloon 4. than w a r m air? up to the same
a i r . N o w l e t u s find What makes the o u t w h a t m a k e s air wind blow? m o v e in l a r g e
s i z e a s t h e o n e w h o s e size y o u
a m o u n t s a c r o s s t h e s u r f a c e of t h e e a r t h . In the experiment you just performed
wrote
y o u s h o w e d t h a t w a r m a i r is l i g h t e r t h a n
down. Twist a n d hold the r u b b e r at the
c o o l a i r . W h e n a i r is c o o l , it is h e a v y .
m o u t h p i e c e so t h a t n o air c a n escape,
H e a v y air sinks to earth, a n d
b u t d o n o t k n o t it t h i s t i m e .
w a r m light air u p w a r d . F o r short, we
pushes
T h e balloon y o u just blew u p con-
say t h a t w a r m air rises, b u t w e m u s t
tains as m u c h w a r m air as did the w a r m
k e e p in m i n d t h a t t h e w a r m air rises
b a l l o o n in the p r e v i o u s experiment.
o n l y b e c a u s e it is p u s h e d u p b y t h e s i n k -
Again remove the cool balloon from the freezer. N o w were to weigh
think. Suppose
both
balloons,
would weigh more? Neither,
you
which because
y o u b l e w t h e s a m e a m o u n t of a i r i n t o both. L e t a i r o u t of t h e w a r m b a l l o o n u n t i l 18
i n g of h e a v y c o o l a i r . Because the region around the earth's e q u a t o r is t h e w a r m e s t p a r t of t h e e a r t h , t h e a i r a b o v e it is w a r m e r t h a n t h e a i r o v e r o t h e r r e g i o n s . T h i s w a r m a i r is pushed u p w a r d by the cooler, heavier
air t h a t flows in n o r t h a n d s o u t h of t h e
O n sunny days land surfaces such
as
be-
beaches and W h y is t h e s e a s h o r e c. , , , ' ,. - fields become cool in the s u m m e r ? warmer than
Eventually,
nearby water surfaces such as lakes a n d
t h i s c o o l e d a i r s i n k s , t a k i n g t h e p l a c e of
o c e a n s . T h e air in c o n t a c t w i t h t h e l a n d
the air
in t o w a r d t h e e q u a t o r .
is h e a t e d , e x p a n d s , a n d b e c o m e s l i g h t e r .
T h e s e b r o a d m o v e m e n t s of a i r a l o n g
Cooler, heavier air from over the w a t e r
e q u a t o r . A s t h i s c o o l a i r w a r m s , it, i n t u r n , is p u s h e d u p w a r d b y c o o l a i r m o v ing in. T h e rising air a b o v e t h e e q u a t o r flows
northward
and
southward,
c o m i n g c o o l a s it m o v e s . flowing
t h e s u r f a c e of t h e o c e a n t o w a r d
the
flows
toward the land and pushes the
winds.
lighter air u p w a r d . T h e rising w a r m air
T h e s e w i n d s d o n o t a c t u a l l y b l o w di-
flows t o w a r d t h e w a t e r t a k i n g t h e p l a c e
rectly n o r t h or south, b e c a u s e t h e e a r t h
of t h e c o o l a i r . T h e w a r m a i r t h a t r i s e s
is t u r n i n g f r o m e a s t t o w e s t f a s t e r t h a n
and moves out over the water becomes
the
equator
are
called
the
trade
its s u r f a c e .
As
cooled and therefore heavier. This cool
a result, the e a r t h turns b e n e a t h
the
a i r s i n k s d o w n t o t h e s u r f a c e of
air m o v i n g
over
the
southward-moving winds, causing them
w a t e r w h e r e it is f u r t h e r c o o l e d . T h e n
to move from northeast to
it flows t o w a r d t h e l a n d t o p u s h u p w a r d
southwest
and the winds are k n o w n as the north-
the air t h a t
east t r a d e winds. I n t h e e a r t h ' s S o u t h -
a n d has since b e c o m e w a r m e d by con-
ern H e m i s p h e r e , t h e directions a r e re-
tact
versed; the t r a d e winds b l o w from the
which air moves from water to land a n d
southeast to the northwest.
b a c k t o w a t e r a g a i n is c a l l e d t h e
And
the
with
flowed
the
land.
in f r o m t h e w a t e r This process,
winds are k n o w n as the southeast trade
cycle.
winds.
itself o v e r a n d o v e r a g a i n .
in wind
A c y c l e is a p r o c e s s t h a t r e p e a t s
A t n i g h t , d i r e c t i o n s of t h e w i n d c y c l e Wind blows toward land during the day and toward water at night.
19
are reversed. T h e l a n d surfaces such as
S o o n e r o r l a t e r , s o m e of t h e c h i l d r e n
s a n d , soil, a n d r o c k , w h i c h a r e q u i c k l y
o n t h e i n s i d e of t h e g r o u p w o u l d b u m p
w a r m e d by the sun also cool
into those forming the ring a r o u n d the
quickly
w h e n the sun n o longer shines on them.
whole
W a t e r surfaces are w a r m e d slowly a n d
b u m p e d hard enough, they would cause
cool slowly. A f t e r sunset, t h e l a n d sur-
o n e of t h e c h i l d r e n f o r m i n g t h e o u t s i d e
faces
the
ring t o loosen his g r a s p o n his neigh-
n e a r b y w a t e r surfaces. T h e air over the
b o r s ' w a i s t s ; a n d t h e f o r c e of t h e b u m p
w a t e r is w a r m e d b y c o n t a c t w i t h
the
w o u l d k n o c k h i m r i g h t o u t of t h e g r o u p .
flows
A n o t h e r child w o u l d t a k e his place, b u t
over the water, pushing the w a r m , light
sooner or later this second child would
air u p w a r d . T h i s w a r m air
b e b u m p e d o u t of t h e g r o u p , t o o . A s
soon
become
cooler
than
water, a n d cool air from the land flows
over
group.
If
those on
the
t h e l a n d w h e r e it b e c o m e s c o o l e d , s i n k s ,
this w e n t on, the g r o u p w o u l d
a n d flows b a c k o v e r t h e w a t e r a g a i n .
smaller a n d smaller.
The
air that
A s m o l e c u l e s c o n t i n u e t o fly off t h e
f r o m t h e w a t e r d u r i n g t h e d a y is c a l l e d
s u r f a c e of w a t e r , t h e a m o u n t of w a t e r
a
left b e h i n d b e c o m e s l e s s a n d less. T h i s
breeze
or
lake
flows
grow
landward
sea
cool
inside
breeze.
It
is
this breeze t h a t m a k e s seashores
and
lakeshores so comfortable
hot
during
weather.
W e l e a r n e d t h a t w a t e r is m a d e of v e r y small particles called How does water molecules. Moleget into the air? cules are constantly moving about and bumping into
each
o t h e r . S o m e of t h e m o l e c u l e s a t t h e s u r f a c e of t h e w a t e r a r e b u m p e d s o h a r d t h a t t h e y b r e a k a w a y a n d fly off i n t o t h e a i r . M o s t of t h e s e m o l e c u l e s f a l l b a c k , b u t s o m e a r e b u m p e d s o h a r d a n d fly so fast t h a t t h e y a r e c a u g h t a m o n g t h e m o l e c u l e s of w h i c h a i r is m a d e . T h e s e water
molecules
are
bumped
along
a m o n g the air molecules and d o
not
return to the water from which
they
came. L e t u s i m a g i n e a g a i n t h e g r o u p of children in t h e schoolyard.
Remember
that they h a d their arms a r o u n d each o t h e r s ' waists. N o w s u p p o s e t h a t all t h e children began to j u m p back and forth.
20
If you put a saucer with water in the sunlight and the same size saucer with water in the shade, you will find that water evaporates faster in a warm place (above). If you put the same amount of water in a spoon and in a saucer and put them next to each other, you will find by checking the time that water evaporates faster from a larger surface than a smaller one (below).
process in w h i c h a l i q u i d loses molec u l e s t o t h e a i r is c a l l e d
evaporation.
Y o u h a v e p r o b a b l y s e e n a p u d d l e of w a t e r o n t h e s i d e w a l k o r o n a flat r o o f "dry up." This drying was really evapor a t i o n in w h i c h all t h e m o l e c u l e s
of
w a t e r i n t h e p u d d l e flew off i n t o t h e a i r . Ordinarily, evaporation takes
place
so s l o w l y t h a t y o u d o n o t n o t i c e it. If
Water vapor in the air condenses and forms beads of water on the side of the container filled with ice.
y o u fill a s a u c e r w i t h w a t e r a n d l e a v e it u n c o v e r e d in a r o o m at o r d i n a r y
tem-
p e r a t u r e , several d a y s will p a s s b e f o r e all t h e w a t e r h a s e v a p o r a t e d . If y o u p u t
m a y b e c o m e so dry that indoor plants d i e u n l e s s t h e h u m i d i t y is i n c r e a s e d . You
may
have
heard
a
weather
the saucer into a w a r m place, such as in
r e p o r t in w h i c h
bright sunlight, the water m a y evapo-
" T h e r e l a t i v e h u m i d i t y is 7 0 p e r c e n t . "
r a t e i n a f e w h o u r s . If t h e w a t e r w e r e
This m e a n s that the air contains 7 0 per-
poured into a saucepan and heated on
cent, or seven tenths, as m u c h water as
a stove, t h e w a t e r w o u l d e v a p o r a t e in
it c a n h o l d . W h e n a i r c o n t a i n s a l l t h e
a f e w m i n u t e s . B o i l i n g is a k i n d of v e r y
w a t e r it c a n h o l d , w e s a y t h a t it is
fast e v a p o r a t i o n . F r o m t h e s e facts, y o u
saturated.
c a n see t h a t h e a t m a k e s
evaporation
take place faster. W h y does this h a p p e n ? B e c a u s e w h e n a l i q u i d is h e a t e d , its m o l e c u l e s m o v e a r o u n d f a s t e r
and
m o r e of t h e m a r e s e n t flying off i n t o t h e air.
the announcer
said,
W a r m air c a n h o l d m o r e w a t e r t h a n c o l d a i r . W h e n w a r m , m o i s t a i r is c o o l e d it g i v e s u p s o m e of i t s w a t e r . Y o u c a n see this in t h e s u m m e r t i m e w h e n
the
dew forms o n the grass after s u n d o w n . T h e g r a s s c o o l s off a f t e r t h e s u n g o e s d o w n . T h e air c o m e s in c o n t a c t with t h e
O n a hot, muggy summer day, people often say, "It's n o t W h a t is h u m i d i t y ? , . , ' . . the heat, i t s the humidity." W h a t do they mean?
Hu-
c o o l g r a s s , a n d it, t o o , is c o o l e d .
The
c o o l a i r c a n n o l o n g e r h o l d all t h e m o i s t u r e , a n d s o m e of t h e w a t e r l e a v e s t h e a i r . W e c a n s e e it a s b e a d s of
water
o n t h e b l a d e s of g r a s s . S c i e n t i s t s
say
a m o u n t of w a t e r v a p o r i n t h e a i r . W h e n
that
has
t h e r e is a l o t of w a t e r i n t h e a i r w e s a y
condensed.
t h e h u m i d i t y is h i g h . W h e n t h e a i r is
t h e w a t e r v a p o r i n t h e a i r if y o u fill a
v e r y d r y w e s a y t h e h u m i d i t y is l o w . W e
d r i n k i n g glass o r tin c a n w i t h ice a n d
feel u n c o m f o r t a b l e if t h e h u m i d i t y is
p l a c e it i n t h e k i t c h e n , o r a f a i r l y w a r m
too high. T h e perspiration on o u r bodies
r o o m . S o o n b e a d s of w a t e r w i l l f o r m
does n o t e v a p o r a t e easily b e c a u s e there
o n t h e s i d e s of t h e c o n t a i n e r . W h e n t h e
midity
is a w o r d
that
describes
the
the water vapor
in t h e
air
Y o u c a n c o n d e n s e s o m e of
is a l o t of w a t e r i n t h e a i r . B u t t o o l o w
air c o m e s into c o n t a c t with t h e ice-cold
h u m i d i t y is n o t g o o d e i t h e r . I n t h e w i n -
c o n t a i n e r , t h e a i r is c o o l e d a n d h a s t o
ter w h e n o u r houses are h e a t e d , t h e air
g i v e u p s o m e of its m o i s t u r e .
21
Obtain
two household
thermometers.
is n o t a v a i l a b l e , f a n t h e t h e r m o m e t e r s
C u t a strip one How can you i n c h w i d e a n d five measure humidity? inches long from
v i g o r o u s l y w i t h a s h e e t of c a r d b o a r d . ) After t h e fan has been blowing air on t h e t h e r m o m e t e r s f o r five m i n u t e s , n o t e
an old towel or other absorbent cloth.
t h e r e a d i n g of e a c h t h e r m o m e t e r
W r a p o n e e n d of t h e s t r i p a r o u n d t h e
w r i t e it d o w n .
b u l b of o n e of t h e t h e r m o m e t e r s
and
and
Y o u can use the table on this p a g e
t i e t h e c l o t h i n p l a c e w i t h a p i e c e of s t r i n g . T h i s is y o u r wet-bulb eter,
t h e o t h e r is y o u r dry-bulb
mometer.
thermom-
^
ther-
Hang both thermometers
at m-
t h e s a m e l e v e l . P l a c e a g l a s s of w a t e r
f: 30706050 w i t h . ^ , . . °Ut b e m g P u m P e d T r y the following
easy experiment. Put a drinking straw in a
g l a s s of
water.
A
little i n k
or
f o o d coloring will m a k e the w a t e r easier t o w a t c h . T h e w a t e r rises in t h e s t r a w a b o v e t h e l e v e l of t h e w a t e r i n t h e g l a s s . S c i e n t i s t s c a l l t h i s r i s i n g of w a t e r i n a s t r a w o r a n y n a r r o w t u b e capillary tion.
ac-
C a p i l l a r y a c t i o n is a v e r y i m p o r -
t a n t f e a t u r e of w a t e r . I t is w h a t m a k e s w a t e r r i s e t o t h e t o p of t a l l t r e e s . H o w d o e s t h i s w o r k ? W h e n t h e s t r a w is first p l a c e d i n t h e w a t e r , t h e m o l e c u l e s of w a t e r a r e a t t r a c t e d b y t h e m o l e c u l e s of the
straw
directly
above
them.
The
attraction between the water molecules a n d t h e s t r a w is g r e a t e r t h a n t h e a t t r a c tion between the water molecules them-
selves. T h e r e f o r e , t h e w a t e r m o l e c u l e s are pulled
upward.
Since
the
water
m o l e c u l e s c l i n g t o g e t h e r , w h e n s o m e of them are pulled u p w a r d they pull others with t h e m . T h u s , t h e w a t e r in t h e straw rises u p w a r d . I t c o n t i n u e s t o r i s e u n t i l t h e w e i g h t of t h e w a t e r i n t h e s t r a w is e q u a l t o t h e f o r c e of t h e u p w a r d p u l l . I n t h e s t e m s of p l a n t s a n d t h e t r u n k s of t r e e s t h e r e a r e t h o u s a n d s of t i n y t u b e s . W a t e r i n t h e soil r i s e s t h r o u g h
these
tubes by capillary action.
F o r this e x p e r i m e n t y o u will n e e d a stalk of c e l e r y , a g l a s s of How can you demonstrate capillary action in plants?
water, and some red i n k o r r e d f o o d coloring.
Put
several
d r o p s of t h e i n k o r f o o d c o l o r i n g i n t h e g l a s s of w a t e r . C u t t h e b o t t o m e n d of t h e c e l e r y s t a l k s o t h a t t h e c u t is f r e s h w h e n y o u p u t i t i n the water. N o w leave the celery in the g l a s s f o r t w o o r t h r e e h o u r s . T a k e it o u t a n d e x a m i n e it c a r e f u l l y . Y o u c a n
Capillary action causes the water to rise in the straw above the water level in the glass, and makes the colored water rise through the stalk of celery.
see b y t h e r e d c o l o r h o w h i g h in t h e stalk the w a t e r rose. C u t
across
the
stalk n e a r the b o t t o m a n d look at the
between the
slice. Y o u w i l l s e e l i t t l e d o t s of
red.
W h e n a b l o t t e r is p l a c e d o n a w e t s u r -
T h e s e a r e t h e e n d s of t i n y t u b e s t h a t g o
face t h e liquid rises in t h e tiny spaces
f r o m t h e b o t t o m of t h e c e l e r y t o
of t h e b l o t t e r b y c a p i l l a r y a c t i o n .
the
fibers
act like tiny tubes.
t o p . If y o u c u t t h e s t a l k l e n g t h w i s e y o u will see t h e s e little t u b e s w i t h r e d w a t e r i n s i d e . F l o r i s t s m a k e u s e of
capillary
B e c a u s e a i r h a s w e i g h t , p r e s s u r e is ex-
finally
erted on everything What is within the atmosphere. atmospheric A t sea level t h e prespressure? s u r e is n e a r l y 1 5 p o u n d s
reaches the petals, turning t h e m green.
o n e v e r y s q u a r e i n c h of t h e e a r t h ' s s u r -
action to color white
flowers
green for
St. P a t r i c k ' s D a y . T h e g r e e n rises
through
Capillary
the
and
a
f a c e . S u p p o s e y o u c o u l d w e i g h a col-
b l o t t e r w o r k . A b l o t t e r is a m a t m a d e
u m n of a i r t h a t c o v e r s o n e s q u a r e i n c h
of
of t h e e a r t h ' s s u r f a c e a t s e a l e v e l a n d
fibers
action
stems
coloring
is w h a t
makes
pressed together. T h e
spaces
27
I r e a c h e s t o t h e t o p of t h e e x o s p h e r e 6 0 0 miles a b o v e sea level. Y o u w o u l d t h a t t h e c o l u m n of a i r w e i g h s
find
nearly
15 p o u n d s . S i n c e t h e p r e s s u r e of t h e a i r is d u e t o its weight, y o u c a n see t h a t t h e h i g h e r y o u g o i n t h e a t m o s p h e r e , t h e less t h e air p r e s s u r e will be. A s y o u g o higher, less a i r w i l l b e a b o v e y o u t o w e i g h d o w n u p o n y o u . Six miles a b o v e t h e e a r t h ' s s u r f a c e , t h e p r e s s u r e of t h e a i r is o n l y four p o u n d s on every square inch. A t
Perform this experiment over the kitchen sink. If your glass is not small enough, the weight of the water may be greater than the air pressure, and the water might spill out of the glass.
t e n m i l e s , t h e c o l u m n of a i r a b o v e e v e r y square inch weighs only two
pounds;
b e c a u s e a i r p r e s s u r e is p u s h i n g u p w a r d
a t 1 0 0 m i l e s , o n l y t w o b i l l i o n t h s of a
on the c a r d b o a r d , a n d the air pressure
pound.
is g r e a t e r t h a n t h e w e i g h t of t h e w a t e r .
T h e air not only presses d o w n w a r d , b u t presses e q u a l l y in all directions. T h e
I n 1654, a G e r m a n scientist, O t t o v o n
t o t a l a i r p r e s s u r e o n t h e w h o l e b o d y of a h u m a n b e i n g is e q u a l t o s e v e r a l t o n s . W h y doesn't so m u c h air p r e s s u r e c r u s h our
bodies?
Because
the
process
of
Guericke, What was von Guericke's experiment?
amazed
everyone
by
ing h o w
strong
mospheric
showat-
pressure
breathing creates an air pressure inside
is. H e u s e d t w o h e m i s p h e r e s , e a c h of
t h e b o d y t h a t b a l a n c e s t h a t o u t s i d e it.
w h i c h w a s a b o u t twenty-two inches in
A s a result, w e feel n o p r e s s u r e at all.
diameter. smooth
Their
and
rims
covered
were with
ground
grease,
so
Fill a small drinking glass to the b r i m
t h a t t h e y w o u l d fit t o g e t h e r t i g h t l y a n d
with water. D o this H o w can you § l o w l y & n d carefully? show that air .. _ so t h a t y o u c a n see exerts pressure? •; t h e s u r f a c e of t h e
allow n o air to pass between them. V o n
w a t e r b u l g e s l i g h t l y o v e r t h e t o p of t h e g l a s s . P r e s s a flat p i e c e of
cardboard
o n t o p of t h e g l a s s . P r e s s t h e p a l m of y o u r h a n d o n t o p of t h e c a r d b o a r d a n d
Guericke put the rims together
and,
w i t h a n a i r p u m p h e h a d i n v e n t e d , rem o v e d the air inside the hollow sphere. So great was the air pressure on
the
outside (more than thirteen tons) that it t o o k sixteen horses, eight o n
each
side, t o pull t h e h e m i s p h e r e s a p a r t .
hand.
Y o u c a n p e r f o r m a n e x p e r i m e n t like
T u r n the glass upside d o w n quickly so
t h a t of v o n G u e r i c k e . Y o u w i l l n e e d
t h a t n o w a t e r spills. R e m o v e y o u r h a n d
t w o p l u n g e r s of t h e k i n d t h a t a r e u s e d
from beneath the cardboard. T h e card-
t o f o r c e w a t e r t h r o u g h d r a i n s . Y o u will
b o a r d will r e m a i n in p l a c e , h o l d i n g t h e
also need a friend to help you. Thor-
w a t e r i n t h e g l a s s . T h e w e i g h t of
oughly wet both plungers. Ask
grasp t h e glass with the o t h e r
the
water cannot push the cardboard down 28
f r i e n d t o sit i n a c h a i r a n d h o l d
your the
plunger handle b e t w e e n his knees, the
a 6 0 0 - m i l e c o l u m n of a i r c a n b e u s e d
r u b b e r c u p u p w a r d . P l a c e t h e c u p of
to measure atmospheric pressure.
your plunger u p o n the other one, and slowly a n d carefully p u s h d o w n
If y o u w e r e t o fill a g l a s s t u b e m o r e
until
than 30 inches long with mercury and
m o s t of t h e a i r h a s b e e n e x p e l l e d f r o m
p l a c e it u p s i d e d o w n i n a d i s h of m e r -
the plunger cups. N o w ,
c u r y , s o m e of t h e m e r c u r y i n t h e t u b e
e a c h of
you
g r a s p a h a n d l e , a n d s e e h o w difficult it is t o p u l l t h e p l u n g e r s a p a r t . If y o u h a v e o n l y o n e p l u n g e r , p l a c e it o n a s m o o t h w e t s u r f a c e a n d
push
d o w n h a r d . Y o u w i l l s e e h o w h a r d it is t o p u l l it free. A l l t h e f o r c e h o l d i n g t h e p l u n g e r t o t h e s u r f a c e is d u e t o a t m o s pheric pressure. W e l e a r n e d t h a t a c o l u m n of a i r o n e inch square How do we measure a n d 6 0 0 miles atmospheric pressure? h i g h weighs 15 p o u n d s . S u p p o s e w e c o u l d p u t t h i s colu m n of a i r o n o n e s i d e of a s c a l e a n d a c o l u m n of m e r c u r y o n e i n c h s q u a r e o n t h e o t h e r s i d e of t h e s c a l e . T o b a l a n c e
You can perform an experiment similar to von Guericke's. For the spheres substitute two plungers and for the sixteen horses, yourself and a friend.
t h e air, t h e m e r c u r y w o u l d h a v e t o b e 30 inches high. T h e fact that a 30-inch c o l u m n of m e r c u r y w e i g h s a s m u c h a s
Sixteen horses could not pull von Guericke's steel spheres apart.
w o u l d r u n o u t u n t i l t h e w e i g h t of t h e m e r c u r y left i n t h e t u b e is b a l a n c e d b y t h e w e i g h t of t h e a i r p r e s s i n g o n
the
m e r c u r y in t h e dish. N o air w o u l d b e pressing on the m e r c u r y in the
tube
because
com-
pletely
the
space
empty.
above
This
i t is
arrangement
g l a s s t u b e a n d m e r c u r y is c a l l e d a cury
of mer-
barometer.
Let us suppose that we are carrying a mercury
barometer
from
sea
level
u p a m o u n t a i n . W h e n w e b e g i n o u r ascent, the mercury column measures 30 inches. W h e n w e h a v e c l i m b e d 9 4 0 feet, t h e m e r c u r y c o l u m n is o n l y 2 9 i n c h e s high. W h e n we have climbed to 8,360 feet — a little m o r e t h a n o n e a n d a half m i l e s a b o v e s e a l e v e l — w e find t h a t t h e c o l u m n of m e r c u r y is o n l y 2 2
inches
high. W h y d o e s t h e c o l u m n of m e r c u r y b e c o m e shorter as we carry the b a r o m e t e r h i g h e r ? B e c a u s e t h e c o l u m n of a i r t h a t balances the mercury becomes
shorter
a n d lighter as w e go higher. W e k n o w
aneroid
that
means "without liquid." This barometer
at
sea level t h e
column
of
air
barometer. T h e word "aneroid"
w e i g h s n e a r l y 15 p o u n d s . A t 8 , 3 6 0 f e e t
does
a b o v e s e a l e v e l t h e c o l u m n of a i r w e i g h s
m a i n p a r t of a n a n e r o i d b a r o m e t e r is
a l m o s t 1 1 p o u n d s a n d is b a l a n c e d b y a
a n airtight c a n from w h i c h as m u c h air
2 2 - i n c h c o l u m n of m e r c u r y t h a t
also
as possible has been p u m p e d . A spring
Thus, when we measure the height
c a n f r o m c o l l a p s i n g u n d e r p r e s s u r e of
of a c o l u m n of m e r c u r y i n a g l a s s t u b e ,
t h e o u t s i d e a i r . A p o i n t e r is a t t a c h e d
w e a r e a l s o m e a s u r i n g t h e p r e s s u r e of
b y l e v e r s a n d a c h a i n t o t h e t o p of t h e
t h e c o l u m n of a i r a b o v e t h e m e r c u r y .
c a n , a n d is a r r a n g e d s o t h a t i t p o i n t s t o
W e usually express the pressure in units
a scale divided into inches.
w e i g h s a l m o s t 11 p o u n d s .
not
contain
any
mercury.
The
a t t a c h e d t o t h e t o p of t h e c a n k e e p s t h e
of h e i g h t of t h e m e r c u r y c o l u m n .
We
W h e n t h e a i r p r e s s u r e i n c r e a s e s , it
say, for example, t h a t t h e a t m o s p h e r i c
p u s h e s t h e t o p of t h e c a n d o w n a lit-
p r e s s u r e a t t h e t o p of t h e E m p i r e S t a t e
tle, a n d t h e p o i n t e r m o v e s t o w a r d t h e
B u i l d i n g is " 2 9 i n c h e s of m e r c u r y , " o r
higher n u m b e r s o n t h e scale. W h e n the
simply, " 2 9 inches." Another
30
k i n d of b a r o m e t e r
air pressure decreases, the spring pushes is
the
t h e t o p of t h e c a n u p , a n d t h i s m o v e -
_13L In the middle of the seventeenth century Italian mathematician and physicist Evangelista Torricelli discovered the principle of the barometer, and thereby discovered the force of atmospheric pressure. He calculated that in order to support a column of mercury about thirty inches high, the atmosphere had to press downward with a weight of nearly fifteen pounds per square inch. About the same time Otto von Guericke of Magdeburg began investigating air pressure. Out of his work came the water barometer. A brass tube that was over thirty-four feet long, with a closed glass section at one end, was filled with water. Von Guericke then inverted the tube, placing the open end in a tub of water. As the pressure of the atmosphere changed the water in the tube rose and fell.
5
T
ANEROID BAROMETER
a MERCURY BAROMETER m e n t , t o o , is m e a s u r e d o n t h e s c a l e b y the pointer, which moves toward
the
lower numbers. W e learned that a barometer at 8,360 f e e t w i l l m e a s u r e 2 2 i n c h e s of m e r c u r y . T h e r e f o r e , if w e h a v e a b a r o m e t e r t h a t measures 2 2 inches, we k n o w w e
are
8 , 3 6 0 feet a b o v e sea level. T h u s w e c a n use a b a r o m e t e r to m e a s u r e
altitude.
h o w w e b r e a t h e . L e t u s see h o w
very i m p o r t a n t activity takes place. Stretching across t h e entire b o d y cav-
M a n y airplanes use special barometers,
ity b e n e a t h
called altimeters, to m e a s u r e the plane's
m u s c l e c a l l e d t h e diaphragm
altitude.
fram).
When
breath,
the
You
know
that
human
H o w d o e s air g e t , , into our l u n g s ?
beings
must
b r e a t h e in order ,. T-» ^i t o live. B r e a t h i n g is s o
natural
that hardly anyone stops to ask
just
this
t h e l u n g s is a l a r g e you
inhale,
diaphragm
flat
(dy'-uhor
take
moves
a
down-
w a r d a n d the ribs m o v e u p w a r d
and
o u t w a r d . T h i s i n c r e a s e s t h e size of t h e b o d y c a v i t y . A s a r e s u l t t h e r e is l e s s a i r pressure within the b o d y cavity
than
outside the body. Atmospheric pressure
31
LUNGS
TRACHEA
outside the b o d y pushes air through the nose or m o u t h a n d d o w n into the lungs. W h e n you exhale, or blow out breath, the diaphragm moves
your
upward
a n d t h e r i b s m o v e d o w n w a r d a n d inward.
This
results
in
more
pressure
within the body cavity than outside the b o d y . T h i s p r e s s u r e p u s h e s a i r o u t of the lungs t h r o u g h the nose or m o u t h . BRONCHIAL TUBES DIAPI RAGM The diagram at left shows you how we breathe.
Air
a n d
W a t e r
P e r h a p s you have seen y o u r m o t h e r use an egg timer w h e n How did ancient she boils a n egg. man use water T h e s a n d in o n e to measure time? e n d of t h e t u b e runs t h r o u g h a tiny opening into
at
W o r k
h a d to e n d his speech w h e n the jar w a s empty. T h e r e w e r e s e v e r a l o t h e r k i n d s of water clocks. O n e was very similar to the one we just described except that
the
t h e j a r w a s m a d e of g l a s s a n d t h e r e w e r e
l o w e r e n d of t h e t u b e i n e x a c t l y t h r e e
m a r k i n g s o n t h e s i d e of it. T h e m a r k s
m i n u t e s . W h e n a l l t h e s a n d is i n
the
w e r e a r r a n g e d so t h a t e a c h o n e stood
mother
for a n h o u r . A s the water dripped out
k n o w s that the egg h a s boiled for three
of t h e j a r , t h e w a t e r l e v e l b e c a m e l o w e r ,
m i n u t e s . A n e g g t i m e r is v e r y m u c h l i k e
m a r k i n g the hours as they passed. Some
a device the ancient G r e e k s used
water clocks h a d a
lower end
of t h e t u b e , y o u r
measure time. T h e
Greeks
let
to
water
drip slowly from a jar with a tiny hole i n it. W h e n a l l t h e w a t e r h a d d r o p p e d out the Greeks
knew
that
a
certain
floating
figure
of a
w o m a n whose arm pointed to the hour m a r k e d o n t h e s i d e of t h e j a r . I n a n o t h e r k i n d of w a t e r c l o c k , t h e water from the container dripped into
a m o u n t of t i m e h a d g o n e b y . T h e y u s e d
a cylinder. In the cylinder was a
this " w a t e r clock," called a
clepsydra
i n g p i s t o n w i t h a l o n g s h a f t o n t o p of
( k l e p ' - s i - d r a ) , t o m e a s u r e t h e l e n g t h of
it. C u t i n t o t h e s h a f t w e r e g e a r t e e t h .
speeches in t h e law courts. A
T h e s e t e e t h fitted i n t o a c i r c u l a r g e a r .
32
speaker
float-
A s the piston
floated
upward, the teeth
on the shaft m o v e d t h e circular gear. A pointer attached
to the circular
gear
m o v e d slowly a r o u n d in a circle, pointing t o n u m b e r s o n a dial o u t s i d e
the
gear. W h e n the piston w a s at the bott o m of t h e c y l i n d e r , t h e p o i n t e r p o i n t e d to 24, w h i c h indicated midnight. water filled floated
dripped it
little
into by
the little,
cylinder the
slowly u p w a r d . A s the
As and
cylinder piston
m o v e d u p w a r d , its g e a r t e e t h t u r n e d t h e circular gear, and the pointer pointed to the h o u r s as they passed, b e g i n n i n g with the numeral one. In 24 hours the
Water is supplied continuously from pipe A into reservoir B, from where it slowly drips into tank C. An overflow tube G keeps the level in the reservoir constant. As the level of water in tank C rises, rack E is pushed up by float D. The rack turns geared wheel F, and the hand of the clock moves the dial to indicate the hour.
c y l i n d e r h a d filled, a n d t h e p o i n t e r h a d t u r n e d once a r o u n d the dial. A t the e n d of 2 4 h o u r s , t h e w a t e r c l o c k h a d t o b e
E v e r since ancient times m a n has used
set b y e m p t y i n g t h e c y l i n d e r . How do windmills work?
t h e f o r c e of m o v i n g
air
and
for
water
to
work
h i m . W i n d is m a d e t o d o w o r k b y t u r n i n g t h e sails
of w i n d m i l l s . T h e f a m o u s w i n d m i l l s of the Netherlands and Belgium had huge
In the Greek clepsydra, the water dopped out of the vessel.
c l o t h sails, s o m e of w h i c h w e r e
two
stories high. E a c h windmill h a d
four
s a i l s set i n t h e s h a p e of a c r o s s
and
a t t a c h e d t o a s h a f t . T h e sails d i d n o t face the wind directly, but were t u r n e d at a slight angle to the direction
from
which the wind was blowing. W h e n the
In the Chinese and Indian waterclocks a small brass bowl with its bottom pierced was floated on a basin of water. The floating bowl gradually filled with water, and, after a measured interval of time, sank. An attendant then struck a gong and set the bowl afloat again.
33
wind struck
t h e sail, t h e m o v i n g
s l i p p e d p a s t it. B e c a u s e t h e s a i l
air was
the w i n d w a s blowing. A s a result, the sail t u r n e d
the shaft.
The
shaft
was
t u r n e d s l i g h t l y s i d e w i s e , it w a s p u s h e d
attached to grindstones or to a pump.
in a direction crosswise t o t h a t in which
W h e n a stiff w i n d b l e w a g a i n s t t h e sails, the windmill ground grain or p u m p e d water. A l m o s t all t h e o l d w i n d m i l l s
have
been replaced by modern ones that have s t e e l b l a d e s i n s t e a d of c l o t h sails. T w o t o s i x t e e n of t h e s e b l a d e s a r e set o n a shaft at scientifically m e a s u r e d
angles,
so t h a t t h e b l a d e s spin r a p i d l y even in a slow wind. B e c a u s e these blades w o r k so m u c h better, they need not be l a r g e a s t h e o l d c l o t h sails. V e r y m o d e r n windmills have blades
as few
longer
t h a n a m a n is t a l l . Steel
windmills
are
used
in
many
p a r t s of t h e w o r l d , a n d t h e i r m a i n u s e s are to p r o d u c e electricity a n d to p u m p water for irrigating crops. T o p r o d u c e e l e c t r i c i t y , t h e s h a f t of t h e w i n d m i l l is a t t a c h e d t o a d y n a m o . P e o p l e w h o live far
from
a
large
electric
generating
Left, windmill with canvas sails, below, cutaway of a windmill used to pump water out of the fields.
plant m a y have their own windmills on
T h e water pushed against the paddle,
a tall steel t o w e r . T h e w i n d m i l l
m o v i n g it i n t h e d i r e c t i o n t h e
pro-
stream
duces electricity for lighting h o m e s a n d
was
running household appliances. T o p u m p
t u r n a little. A s o n e p a d d l e t u r n e d u p
water for irrigation, the electricity m a y
a n d o u t of t h e w a t e r , t h e n e x t p a d d l e
r u n t h e m o t o r of a w a t e r p u m p . O r , t h e
dipped
windmill m a y be connected directly to
pushed forward by the stream. T h u s the
t h e s h a f t of t h e p u m p .
wheel kept turning. T h e turning
flowing,
and caused the wheel to
beneath
the
water
and
was shaft
w a s m a d e t o d o w o r k , p e r h a p s b y atT o m a k e w a t e r d o w o r k for him, m a n invented the water How do water w h e e l . O n e of t h e wheels work? e a r l i e s t t y p e s of w a t e r
t a c h i n g it t o a g r i n d s t o n e t o g r i n d c o r n or wheat. A v e r y c l e v e r k i n d of w a t e r was
called
Archimedes' Greek
screw,
after
w h e e l s c o n s i s t e d of t w o d i s c s of w o o d
Archimedes,
set a f o o t o r t w o a p a r t a t o n e e n d of a
a n d s c i e n t i s t , w h o l i v e d i n t h e c i t y of
r o u n d shaft. I n the space b e t w e e n t h e
S y r a c u s e o n t h e i s l a n d of Sicily a b o u t
d i s c s w e r e s e v e r a l flat p i e c e s of w o o d ,
2,300 years ago. Archimedes' screw h a d
called p a d d l e s . T h e s e p a d d l e s w e r e at-
t w o m a i n parts: a large, hollow, w o o d e n
tached to b o t h the shaft a n d the discs
cylinder, a n d a water wheel. T h e wheel
a n d were long e n o u g h to stick out past
was built a r o u n d the w o o d e n
cylinder
t h e r i m s of t h e d i s c s .
close to o n e end. Inside the
cylinder
T h e wheel was placed on a wooden
a
wheel
mathematician
was a w o o d e n spiral that r a n the whole
the
l e n g t h of t h e c y l i n d e r , l i k e t h e g r o o v e s
height to allow the lowermost paddle to
o n a s c r e w . T h e e n d of t h e c y l i n d e r ,
r e a c h b e n e a t h t h e s u r f a c e of t h e w a t e r .
with the water wheel attached, rested
framework
over a stream at just
Left, a water wheel is said to be undershot when water turns the wheel by striking its blades from the bottom. It is called an overshot water wheel, at right, when it is turned by water falling upon the paddles from above.
35 J
Water mill driven by undershot wheel.
u n t i l it r a n o u t of t h e u p p e r e n d of t h e cylinder. This was the way water was transported to irrigate crops. Obtain
a
straight
H o w can you m a k e . IO a water wheel?
knitting
needle.
P u s h the needle . , ., t h r o u g h t h e cen° t e r of a c o r k .
P u s h half a d o z e n steel p e n p o i n t s into t h e c o r k a t e v e n l y s p a c e d i n t e r v a l s circling a r o u n d the cork. B e n d a heavy p i e c e of w i r e
( a wire clothes
hanger
will d o ) i n t o t h e s h a p e s h o w n in t h e Cutaway view of Archimedes' screw.
illustration. Rest the knitting needle on the wire frame you have just made.
o n a s u p p o r t s e t o n t h e b o t t o m of t h e
U s i n g a p e n c i l p o k e a h o l e in t h e cen-
river. T h e other e n d r e a c h e d t o t h e river
t e r of o n e s i d e of a m i l k c a r t o n . P l a c e
b a n k . T h e cylinder was tilted
the carton in a sink so that water from
upward
the
a f a u c e t will r u n i n t o t h e h o l e in the
the
t o p of t h e c a r t o n . W h e n a s t r e a m of
l o w e r e n d of t h e s p i r a l s c o o p e d u p w a t e r
w a t e r b e g i n s t o p o u r o u t of t h e h o l e in
a n d m o v e d it u p w a r d a l o n g t h e s p i r a l
t h e s i d e of t h e c a r t o n , p l a c e t h e w i r e
stream
36
toward
slightly
turned
the shore. W h e n the
water
wheel,
frame strikes
b e n e a t h it, s o t h a t t h e the
penpoints.
stream
Your
water
wheel will spin r a p i d l y . M o d e r n w a t e r w h e e l s a r e m a d e of m e t a l and are called How does water water turbines. produce electricity? T h e m a i n u s e of w a t e r t u r b i n e s is t o p r o d u c e
electric-
ity. I n m o u n t a i n o u s c o u n t r y ,
streams
r u n d o w n t h e s i d e s of m o u n t a i n s v e r y swiftly. S o m e of t h e w a t e r f r o m
these
s t r e a m s is s e n t t h r o u g h p i p e s . A t
the
e n d of t h e p i p e s a r e t u r b i n e s t h a t t u r n v e r y r a p i d l y w h e n t h e swiftly
moving
w a t e r strikes t h e m . I n flat c o u n t r y , w a t e r m a y b e g i v e n the force needed to turn turbines rapidly
WIRE SUPPORT
by storing the water behind high dams. A b o u t h a l f w a y d o w n f r o m t h e t o p of
How to make your own water wheel.
the d a m are openings that lead to long, wide pipes. T h e s e pipes, called stocks, dam.
pen-
r u n d o w n t o t h e b o t t o m of t h e Water
plunging
down
through
each penstock strikes a turbine. spinning shaft
of e a c h t u r b i n e is
tached to a machine called a o r electric electricity.
generator,
which
The at-
dynamo, produces
Water is put to work to help create electricity.
BLOW 1
CENTER
SPOOL
Xi / X
II
CARD
T a k e a small card, push a pin through its c e n t e r , a n d p u t t h e p i n W
^
a t
ls
. . . . Principle? n
w h e n t h e s p e e d is l o w , t h e p r e s s u r e is high.
Remember
that
a i r is a
fluid.
i n t o t h e h o l e of a s p o o l .
W h e n y o u blew t h r o u g h the hole in the
H o l d t h e s pr o o l s o t h a t t h e
s p o o l , y o u r b r e a t h — w h i c h is a i r —
h o l e t h r o u g h it is v e r t i c a l
m o v e d swiftly a c r o s s t h e u p p e r surface
and hold the card against the
spool.
of t h e c a r d a n d r e d u c e d t h e a t m o s p h e r i c
N o w b l o w t h r o u g h the hole in t h e spool,
pressure on that surface. T h e
atmos-
at the same time releasing your hold on
pheric pressure on the lower
surface
the card. Y o u might expect the card to
remained
be blown a w a y from the spool.
How-
sure pushing u p w a r d on the card was
e v e r , y o u w i l l find t h a t a s l o n g a s y o u
greater than the pressure pushing down-
b l o w t h r o u g h t h e s p o o l t h e c a r d will
ward,
remain n e a r the spool. A s soon as you
y o u r b r e a t h m o v i n g swiftly a c r o s s t h e
s t o p b l o w i n g , t h e c a r d w i l l fall.
What
s h e e t of p a p e r l o w e r e d t h e p r e s s u r e o n
h o l d s t h e c a r d u p w h e n y o u r b r e a t h is
its u p p e r surface, a n d t h e g r e a t e r pres-
passing t h r o u g h the hole in t h e spool?
sure on the lower surface pushed
Some force stronger than gravity must
paper up.
unchanged.
the card
Since the
stayed
up.
pres-
Likewise,
the
H a v e you ever noticed h o w a shower
be holding the card up. L e t us see this s a m e force a t w o r k
c u r t a i n m o v e s i n t o w a r d t h e s p r a y of
a g a i n . C u r l o n e e n d of a s h e e t of p a p e r
water?
The
a r o u n d a pencil. H o l d the pencil near
from
y o u r lips a n d b l o w y o u r b r e a t h a c r o s s
a l o n g w i t h it. T h e s w i f t l y m o v i n g a i r de-
t h e p a p e r . T h e p a p e r will rise, a n d will
c r e a s e s t h e p r e s s u r e o n t h e i n s i d e of t h e
r e m a i n e x t e n d e d in the air as long as
s h o w e r c u r t a i n a n d t h e p r e s s u r e of t h e
you continue to blow.
outside air pushes t h e curtain
the
water
shower's
squirting nozzle
outward
moves
air
inward.
B o t h of t h e s e e x p e r i m e n t s i l l u s t r a t e a scientific p r i n c i p l e t h a t w a s ered
by
a
Swiss
discov-
mathematician
physicist, D a n i e l Bernoulli, w h o
A n a i r p l a n e w i n g is flat o n t h e b o t t o m
and
W h a t holds an airplane up?
lived
m o r e t h a n 2 0 0 y e a r s a g o . B e r n o u l l i disc o v e r e d t h a t w h e n t h e s p e e d of a
fluid
is h i g h , t h e p r e s s u r e of t h e fluid is l o w ;
38
air
flowing
and curved on
top.
A s the plane moves t h r o u g h t h e air, the
o v e r t h e t o p of t h e
moves faster t h a n the air
flowing
wing along
LESS AIR PRESSURE
•
be straight. T h e p a p e r has the general s h a p e of a s e c t i o n c u t f r o m a n a i r p l a n e w i n g . T h e r o u n d e d e n d is t h e f o r w a r d end. S u s p e n d t h e p a p e r b y t h r e e p i e c e s of string, t w o passed t h r o u g h the forward e n d a n d o n e t h r o u g h t h e r e a r p a r t of
: : : r r t " 4 " 4 - - " ^ : f :
the folded paper. A t t a c h the strings to sticks, as s h o w n in t h e illustration, o r
GREATER AIR PRESSURE
t h e b o t t o m . T h e a i r t h a t flows o v e r t h e t o p of t h e w i n g m u s t p a s s o v e r
SHEET OF PAPER
the
c u r v e i n t h e s a m e l e n g t h of t i m e a s a i r beneath
the
wing
passes
straight undersurface.
along
Since a
the
curved
l i n e is l o n g e r t h a n a s t r a i g h t l i n e b e tween
the
same
two
points,
the
air
SHEET OF CARDBOARD
moving the longer distance must move faster t h a n the air m o v i n g the shorter distance. Therefore,
air moves
o v e r t h e u p p e r s u r f a c e of a n
faster
airplane
wing than over the lower surface. According
to
Bernoulli's
Principle,
the
p r e s s u r e o n t h e u p p e r s i d e of t h e w i n g is l e s s t h a n t h e p r e s s u r e o n t h e u n d e r s i d e of t h e w i n g . T h u s , t h e h i g h e r p r e s s u r e of t h e a i r b e n e a t h a n
airplane's
w i n g s h o l d s :t u p .
F o r this e x p e r i m e n t y o u will n e e d a p i e c e of H o w can you s h o w why its wings will ..,/ . . , lift an airplane?
m d
cardboard &
§ h e e t
o f
, paper the same r \ „ width. C u t the
c a r d b o a r d s o t h a t i t is a b o u t h a l f
Experiment that shows why its wing lifts an airplane.
as
u s e f o u r p i l e s of b o o k s t o h o l d t h e e n d s
long as t h e p a p e r . N o w staple o r glue
of t h e s t r i n g s . P l a c e a n e l e c t r i c f a n i n
t h e c a r d b o a r d t o t h e s h e e t of p a p e r a s
f r o n t of t h e " a i r p l a n e w i n g " a n d t u r n
s h o w n in t h e illustration. B e n d t h e pa-
t h e fan o n . T h e w i n g will rise slightly
per back over the cardboard and staple
as the m o v i n g air lowers the pressure o n
it a b o u t o n e i n c h f r o m t h e e n d of t h e
its u p p e r s u r f a c e a n d t h e air
c a r d b o a r d . T h e u p p e r surface of
p r o v i d e s lift.
the
beneath
p a p e r will b e c u r v e d , t h e l o w e r o n e will 39
This is the grip for a curve ball. As the ball is delivered, the hand is twisted inward from the wrist at the same time as the wrist snaps. The ball rolls off the outside of the first finger, thus developing the spin that makes it change direction on its way to the plate.
A pitcher c a n t h r o w a baseball so that
t h a t w h e n a i r m o v e s r a p i d l y , its p r e s -
it w i l l c u r v e u p Qr d o w n . , , ward, or to the
s u r e is l o w e r e d . T h u s , t h e r a p i d l y m o v -
How does a baseball pitcher throw a . 1IO curve b a l l ?
w a r d
i n g a i r o n t o p of t h e b a s e b a l l h a s lower pressure t h a n the air
a
beneath.
T h e b a l l , t h e n , is p u s h e d u p w a r d i n a r i g h t o r left. H e
d o e s this t o m a k e it h a r d for t h e b a t t e r
curved path. By spinning the ball from b o t t o m to
to hit the ball. H o w does he m a k e the
t o p , left t o r i g h t , o r r i g h t t o left,
ball curve? T h e pitcher wraps his
fin-
p i t c h e r c a n m a k e it c u r v e i n w h a t e v e r
gers a r o u n d the ball in a m a n n e r
that
a
direction he wishes.
m a k e s t h e b a l l s p i n w h e n it l e a v e s h i s hand. T h e spinning ball carries
along
A s i p h o n is a t u b e s h a p e d
t h e a i r c l o s e t o it, s o t h a t t h e a i r s p i n s , too. Suppose the ball spins in the s a m e d i r e c t i o n a s it is m o v i n g . T h e a i r o n t o p
like t h e letter ™ . make a siphon?
i n g . T h e a i r b e n e a t h t h e b a l l is c a r r i e d in the direction opposite the b a l l . T h e r e f o r e , it m o v e s m o r e
moving slowly
t h a n the air on top. W e h a v e learned 40
"J"
u pr s i d e d o w n . W i t h it
w i l l m o v e b o t h a s f a s t a s t h e b a l l is s p i n n i n g a n d a s f a s t a s t h e b a l l is m o v -
something
you
can
make
w a t e r flow u p o v e r t h e w a l l of a c o n tainer,
without
lifting
the
water
by
p u m p i n g . F o r this e x p e r i m e n t y o u will need a rubber
or plastic tube
about
t h r e e f e e t l o n g , a p a i l of w a t e r , a n d a n
e m p t y p a i l . P l a c e t h e p a i l of w a t e r o n
e m p t i e d the pail. Y o u m a y w o n d e r w h y
a table and put the empty pail on the
atmospheric
floor
tube
w a t e r f r o m flowing o u t of t h e l o w e r e n d
completely with water. Y o u c a n d o this
of t h e t u b e . I t is b e c a u s e t h e w e i g h t of
b y d r o p p i n g it i n t o t h e p a i l of w a t e r o r
t h e c o l u m n of w a t e r i n t h e t u b e c a u s e d
b y filling i t w i t h w a t e r f r o m t h e f a u c e t .
a d o w n w a r d force greater than the up-
N o w p i n c h b o t h e n d s of t h e t u b e s o t h a t
w a r d f o r c e of t h e a t m o s p h e r i c p r e s s u r e .
next to the table. Fill the
pressure
did
not
keep
no water can escape, and quickly place o n e e n d of t h e t u b e i n t h e p a i l of w a t e r
Archimedes
the
Greek
well b e l o w t h e w a t e r ' s surface. L e t t h e other end hang down into the
empty
p a i l . L e t g o of b o t h e n d s of t h e t u b e a t the same
time.
The
water
will
flow
t h r o u g h t h e t u b e , u p o v e r t h e s i d e of the pail on the table, a n d d o w n into the l o w e r p a i l . If y o u k e e p t h e u p p e r
end
of t h e t u b e c l o s e t o t h e b o t t o m of t h e p a i l o n t h e t a b l e , all t h e w a t e r w i l l s o o n b e in t h e pail o n t h e
floor.
H o w did A r c h i m e d e s solve the problem of King Hiero's crown?
scientist lived , 300
2
who
about years
ago, w a s a kinsman
of
King
H i e r o , t h e r u l e r of S y r a c u s e . A c c o r d i n g t o legend, o n e d a y in t h e y e a r 2 5 0 B . C . , t h e k i n g b o u g h t a c r o w n t h a t h e susp e c t e d w a s m a d e of g o l d m i x e d
with
s i l v e r . G o l d is m o r e e x p e n s i v e t h a n silv e r , s o if K i n g H i e r o h a d p a i d f o r a
A s i p h o n is v e r y u s e f u l f o r e m p t y i n g an
aquarium
water from
or even for
taking
the
a wash bowl that has
a
stopped-up drain. Chemists use siphons in l a b o r a t o r i e s t o t r a n s f e r liquids f r o m o n e bottle to a n o t h e r . L e t us see h o w this
simple,
but
very
useful,
device
works. When you removed your How does a . . ._ siphon w o r k ?
finger
the lower end , tube, some flowed
from of
the . _ water
. out, leaving an
e m p t y s p a c e b e h i n d it. Y o u
remember
t h a t t h e a t m o s p h e r e is p r e s s i n g o n a l l t h i n g s o n t h e s u r f a c e of t h e e a r t h . T h e a t m o s p h e r i c p r e s s u r e o n t h e s u r f a c e of the w a t e r in the pail p u s h e d w a t e r u p t h e t u b e t o fill t h e e m p t y s p a c e t h e r e . M o r e w a t e r flowed o u t , a n d w a s a g a i n replaced, due to atmospheric pressure. This water
process flowed
continued through
until the
all
tube
the
How to make your own siphon.
and 41
Both crowns weighed the same, but since more water spilled from the bowl in which the new crown was immersed, Archimedes concluded that the new crown was larger and, therefore, could not be pure gold. pure gold crown, he h a d been cheated.
While
Archimedes
was
thinking
T h e k i n g a s k e d A r c h i m e d e s t o find a
a b o u t this p r o b l e m , h e w e n t to the pub-
w a y t o tell w h e t h e r t h e c r o w n really did
l i c b a t h s of S y r a c u s e . A s h e s a t d o w n
h a v e s i l v e r i n it. A r c h i m e d e s k n e w t h a t
i n h i s b a t h , h e w a t c h e d t h e w a t e r spill
s i l v e r w e i g h s less t h a n g o l d , s o it s h o u l d
o v e r t h e s i d e s of t h e t u b . T h i s
h a v e b e e n easy t o tell w h e t h e r t h e n e w
gave h i m the idea h e n e e d e d to solve
crown had
the king's problem.
silver m i x e d in t h e
gold.
sight
Archimedes
Archimedes h a d only to weigh the new
supposedly
c r o w n a n d a n o t h e r c r o w n t h e s a m e size
a n s w e r t h a t h e j u m p e d o u t of t h e b a t h
m a d e of p u r e g o l d . If t h e n e w
a n d r a n n a k e d t h r o u g h t h e streets shout-
crown
so excited
was
w e r e m a d e of g o l d m i x e d w i t h s i l v e r , i t
ing,
would
G r e e k for, " I h a v e f o u n d
weigh
less t h a n
a
pure
gold
c r o w n of t h e s a m e size. B u t t h e k i n g ' s problem
was not
this easy to
"Heureka!
at finding
Heureka!"
the
which it! I
is
have
found it!"
solve.
Archimedes went to King Hiero and
Archimedes found that the new crown
t o l d h i m h e c o u l d s o l v e t h e p r o b l e m of
weighed t h e s a m e as a p u r e gold c r o w n
the new crown. H e asked the king to
t h a t a p p e a r e d t o b e t h e s a m e size. B u t
send for t h e c r o w n s a n d for t w o bowls
he couldn't be sure the crowns
were
of e q u a l size a n d l a r g e e n o u g h t o c o n -
really t h e s a m e size b e c a u s e t h e y w e r e
tain t h e c r o w n s . H e also a s k e d for t w o
b o t h e l a b o r a t e l y c a r v e d a n d it w a s n o t
larger bowls in which he placed
possible to measure t h e m
smaller bowls. H e then
accurately.
filled
the
the two
H e w o u l d h a v e t o find a w a y t o m e a s u r e
small bowls to the brim with water, a n d
t h e c r o w n s . If t h e n e w c r o w n h a d s i l v e r
placed a crown in each bowl.
i n it, it w o u l d h a v e t o b e l a r g e r
s p i l l e d o v e r t h e s i d e s of b o t h b o w l s i n t o
than
t h e c r o w n of p u r e g o l d , s i n c e t h e y b o t h
the larger bowls. Archimedes
weighed the same.
measured
42
the
amount
of
Water
carefully
water
that
spilled f r o m e a c h bowl. H e f o u n d t h a t
j e c t , t h e o b j e c t w e i g h s less. B e c a u s e of
m o r e w a t e r spilled f r o m
A r c h i m e d e s ' P r i n c i p l e , w e c a n tell h o w
the bowl in
which he had put the new crown. This
m u c h less t h e object weighs. W e
meant that the new crown was larger
say A r c h i m e d e s ' Principle in
t h a n t h e c r o w n of p u r e g o l d . S i n c e t h e
w a y : the loss of weight
crowns weighed the same, Archimedes
a liquid
is equal
k n e w that the new crown, being larger,
liquid
displaced.
m u s t b e m a d e of a l i g h t e r m e t a l
than
gold. T h e k i n g w a s right; as h e
sus-
pected, the new crown was not
pure
To
test
weight
will
W h e n A r c h i m e d e s w a s sitting in bath, W h a t
is
his
he
no-
in
of
Principle,
How can you prove Archimedes' Principle?
gold.
another
of an object
to the
Archimedes'
can
the
you
need ,
a a
large pan,
a
b u c k e t
,
spring scale, a brick, a large bottle, a funnel, a n d s o m e string.
ticed Al .
some,
thing
else:
the bucket to the brim with water. D o
his b o d y w a s lighter t h a n it w o u l d h a v e
n o t spill a n y i n t o t h e p a n . If y o u a c c i -
been h a d there been n o water in
d e n t a l l y spill s o m e w a t e r , m o p i t
Archimedes Principle?
bathtub.
You probably
have
the
noticed
P l a c e t h e b u c k e t i n t o t h e p a n a n d fill
with a cloth. Tie the string
up
securely
the s a m e thing w h e n sitting in a bath-
a r o u n d the brick so that you can h o o k
tub. Archimedes
it o n t o t h e s p r i n g scale. H o l d t h e scale
understood
that
he
w e i g h e d less w h e n i n t h e w a t e r b e c a u s e
high e n o u g h so that the brick
hangs
s o m e of t h e w a t e r w a s p u s h i n g u p w a r d
f r e e . N o t e t h e w e i g h t of t h e b r i c k a n d
on his body. T h i s upward-pushing force
m a r k it d o w n o n paper.
force. A r c h i m e d e s ,
Slowly lower the brick into the water
being a mathematician, wanted to k n o w
i n t h e b u c k e t . W h e n t h e w h o l e b r i c k is
is c a l l e d a buoyant
h o w strong the buoyant force was. H e f o u n d t h a t t h e s t r e n g t h of t h e b u o y a n t force o n his b o d y w a s equal
to
the
w e i g h t of t h e w a t e r t h a t s p i l l e d
over
t h e sides of t h e t u b . T h i s w a t e r spilled because
Archimedes'
body
took
up
V
space in the t u b that h a d b e e n t a k e n u p by water before h e h a d climbed
into
the tub. W h e n an object takes u p space in a liquid in this m a n n e r , w e say t h a t t h e o b j e c t displaces
the liquid. Archi-
m e d e s ' r u l e — o r p r i n c i p l e — is t h a t an object force
in a liquid that
is equal
is buoyed to the weight
up
by of
a the
displaced liquid. W h e n a b u o y a n t force acts o n a n ob-
The experiment proves Archimedes' Principle. Instead of a spring scale you can use a kitchen scale, as illustrated. Slip the strings holding the brick over the platform of the scale.
43
beneath water, but not touching
the
r e m e m b e r , s a y s t h a t t h e l o s s of w e i g h t
b o t t o m of t h e b u c k e t , a g a i n n o t e
the
of a n o b j e c t i n a l i q u i d is e q u a l t o t h e
w e i g h t of t h e b r i c k o n t h e s c a l e . T h e brick
will
weigh
less.
Subtract
w e i g h t of t h e b r i c k i n t h e w a t e r
the from
t h e w e i g h t of t h e b r i c k i n a i r . T h e diff e r e n c e w i l l e q u a l t h e a m o u n t of w e i g h t the brick lost w h e n in water. water.
T a k e t h e b u c k e t o u t of t h e p a n , b e i n g c a r e f u l n o t t o spill a n y m o r e w a t e r f r o m the bucket into the pan. Weigh the botusing the funnel,
carefully
pour the water from the p a n into the bottle. W e i g h t h e bottle a n d the water t o g e t h e r . S u b t r a c t t h e w e i g h t of t h e b o t t l e f r o m t h e w e i g h t of t h e b o t t l e
and
w a t e r t o g e t h e r . T h i s will give t h e w e i g h t of t h e w a t e r d i s p l a c e d b y t h e b r i c k . If y o u h a v e b e e n careful, this w e i g h t will e q u a l t h e a m o u n t of w e i g h t t h e b r i c k lost w h e n p l a c e d in water. T h i s proves Archimedes'
Principle which,
A b a t t l e s h i p is m a d e of s t e e l a n d is extremely heavy. T h e Why do Tj s s N e w Jersey battleships float? . , __ n f v A weighs 57,000 tons
R e m o v e the brick from the
tle, t h e n ,
w e i g h t of t h e d i s p l a c e d l i q u i d .
as
you
w h e n it is fully l o a d e d a n d t h e a i r c r a f t c a r r i e r U . S . S . Enterprise
weighs 85,000
t o n s . W h e n w e t h i n k of t h e f a c t t h a t t h e s t e e l of w h i c h t h e y a r e c o n s t r u c t e d is s o m u c h h e a v i e r t h a n w a t e r , it d o e s n o t seem reasonable that objects as heavy as ships should steel ships
Why, then,
do
P r i n c i p l e will give
us
float?
Archimedes' the answer.
float.
You
remember
that
the
b u o y a n t f o r c e o n a n o b j e c t i n w a t e r is e q u a l t o t h e w e i g h t of t h e w a t e r
dis-
p l a c e d . If t h e w e i g h t of t h e w a t e r disp l a c e d is m o r e t h a n t h e w e i g h t of t h e object, t h e b u o y a n t force will b e g r e a t e r
A steel ship floats because the part of the ship below the surface displaces a volume of water that weighs as much as the whole ship. The ship is buoyed up with a force equal to the weight of this displaced water.
t h a n t h e w e i g h t of t h e o b j e c t , a n d t h e
t h e b u o y a n t f o r c e is g r e a t e n o u g h
object
k e e p t h e fish a f l o a t n e a r t h e
will
float.
The
Enterprise
is
to
surface,
n e a r l y one-fifth of a m i l e l o n g , a s w i d e
h o w c a n t h e fish o v e r c o m e t h e b u o y a n t
a s a c i t y b l o c k , a n d is n i n e s t o r i e s h i g h .
force a n d remain near the b o t t o m ? W h y
T h e w e i g h t of t h e w a t e r d i s p l a c e d b y
doesn't the b u o y a n t force always push
t h e v o l u m e of t h i s h u g e s h i p is m o r e
t h e fish u p n e a r t h e s u r f a c e
than 85,000 tons; therefore, the buoy-
t h e fish s w i m s d e e p e r ? T h e a n s w e r t o
a n t f o r c e a c t i n g o n t h e s h i p is
t h e s e q u e s t i o n s is t h a t t h e fish h a s a n
more
whenever
than 85,000 tons. A s a result, the great
o r g a n c a l l e d a swim
m a s s of s t e e l floats. If s o m e g i a n t h a n d
of w h i c h t h e fish c a n c h a n g e i t s size.
w e r e t o c r u s h t h e Enterprise
T h e s w i m b l a d d e r is a s a c of
into a solid
bladder
by means elastic
l u m p of s t e e l , it w o u l d d i s p l a c e a m u c h
tissue b e t w e e n
s m a l l e r v o l u m e of w a t e r . T h e w a t e r dis-
b a c k b o n e . T h e b l a d d e r is filled w i t h a i r
p l a c e d b y t h e s o l i d l u m p of s t e e l w o u l d
and can be m a d e larger and
w e i g h less t h a n 8 5 , 0 0 0 t o n s ,
therefore
W h e n t h e s w i m b l a d d e r is l a r g e s t , t h e
t h e b u o y a n t f o r c e w o u l d b e less t h a n
size of t h e fish is i n c r e a s e d ; t h i s m e a n s
85,000 tons and would not be enough
t h a t t h e fish d i s p l a c e s t h e m o s t
t o h o l d t h e steel u p in t h e w a t e r .
t h a t it c a n , a n d t h e b u o y a n t f o r c e
on
t h e fish is g r e a t e s t ; a s a r e s u l t , t h e
fish
your m o t h e r uses in the kitchen. F r o m
floats
the
fish
t h e foil, m a k e a b o a t a b o u t five i n c h e s
m a k e s its s w i m b l a d d e r s m a l l , t h e
fish
l o n g a n d t w o i n c h e s w i d e . If t h e b o a t
d i s p l a c e s less w a t e r , a n d t h e
d o e s n o t l e a k , it w i l l float i n w a t e r . T h e
f o r c e u p o n it is l e s s ; a s a r e s u l t , t h e fish
O b t a i n a s h e e t of m e t a l foil s u c h a s
water
the
boat
displaces
weighs
the
s a m e as t h e m e t a l foil; t h e r e f o r e ,
the
b u o y a n t f o r c e is e q u a l t o t h e w e i g h t of
at
the
the
stomach
surface.
When
s q u e e z e t h e b a l l flat, a n d d r o p it i n t o w a t e r . I t will sink, b e c a u s e n o w t h e b a l l t h e foil, a n d a s a r e s u l t t h e
than
buoyant
f o r c e is t o o s m a l l t o h o l d t h e foil u p i n the water. You
h a v e seen
fish
in
an and
/'SWIM BLADDER INFLATED
aquarium
swimming How does a fish move up and down in the water?
down
up in
the water
and
floating
at
w h a t e v e r level they choose. H o w c a n a fish float i n w a t e r n e a r t h e s u r f a c e a n d a l s o n e a r t h e b o t t o m of t h e w a t e r ? If
the
smaller.
water
buoyant
When the swim bladder is inflated the fish displaces more water. This causes it to rise to the surface.
t h e foil. R o l l t h e foil i n t o a t i g h t b a l l ,
displaces w a t e r t h a t w e i g h s less
and
SWIM BLADDER DEFLATED
Schematic drawing that shows how the diving tanks in a submarine function. By filling or emptying the tanks, the submarine can submerge or surface..
m a r i n e c o m m a n d e r c a n c h o o s e t h e level
sinks t o l o w e r levels. B y c h a n g i n g t h e
Once a boy took a heavy earthenware
size of its s w i m b l a d d e r , a fish c a n
What is Pascal's Principle?
A s u b m a r i n e c a n n o t c h a n g e i t s size a s a
fish ^
b m
marine
can, §ub.
can
float.
j u g t o a well.
float
a t w h a t e v e r l e v e l it c h o o s e s .
How does a submarine move up and down , .. in the water?
at w h i c h t h e s u b m a r i n e will
filled
He
the jug until
it o v e r f l o w e d . T h e n
h e p u t t h e s t o p p e r i n t o t h e m o u t h of the jug and, to m a k e
sure that
the
s t o p p e r w o u l d n o t fall o u t , h e s t r u c k it s h a r p l y w i t h t h e p a l m of h i s h a n d . H e was astonished when the whole bottom
m a k e u s e of
fell o u t of t h e j u g ! W h y d i d t h e
jug
Archimedes' Principle in another way,
b r e a k w h e n its s t o p p e r w a s s t r u c k
s o a s t o c h a n g e t h e l e v e l a t w h i c h it
blow
floats.
are
s t r o n g e n o u g h t o b r e a k a j u g m a d e of
large t a n k s into w h i c h sea w a t e r c a n b e
heavy earthenware? In order to under-
pumped. W h e n the tanks are
empty,
s t a n d w h a t h a p p e n e d , w e will h a v e t o
a t t h e s u r f a c e of
learn something concerning liquids that
t h e s e a . T h i s m e a n s , of c o u r s e , t h a t t h e
was discovered by a y o u n g F r e n c h phys-
weight
icist, m a t h e m a t i c i a n ,
Inside a submarine,
the submarine of
floats
water
the
there
submarine
dis-
that
would
not
ordinarily
and
n a m e d Blaise Pascal, w h o lived
submarine, and therefore the buoyant
3 0 0 years ago.
to the submarine's weight. When
a submarine
be
philosopher
p l a c e s is t h e s a m e a s t h e w e i g h t of t h e f o r c e a c t i n g o n t h e s u b m a r i n e is e q u a l
a
some
W h a t P a s c a l l e a r n e d w a s t h i s : if y o u a p p l y p r e s s u r e a n y w h e r e t o a fluid h e l d
commander
in a c o n t a i n e r , t h e p r e s s u r e will p a s s
wishes t o t a k e his craft b e n e a t h t h e sur-
through
f a c e of t h e s e a , h e p u m p s w a t e r i n t o t h e
w i t h o u t a n y l o s s of s t r e n g t h . T h i s dis-
tanks within
c o v e r y is k n o w n a s P a s c a l ' s P r i n c i p l e .
the
submarine.
As
the
the
fluid
in
every
direction
t a n k s fill, t h e w e i g h t of t h e s u b m a r i n e
Suppose w e h a v e a big iron t a n k in
b e c o m e s g r e a t e r t h a n t h e w e i g h t of t h e
t h e s h a p e of a c y l i n d e r . I t is l y i n g o n i t s
w a t e r it displaces; t h e b u o y a n t
side a n d is six feet h i g h a n d t e n
force
feet
a c t i n g o n t h e s u b m a r i n e b e c o m e s less,
l o n g . T h e t a n k is filled w i t h w a t e r .
and
s m a l l p i s t o n is f i t t e d i n t o o n e e n d of t h e
the
craft
sinks.
By
varying
the
a m o u n t of w a t e r i n t h e t a n k s , t h e s u b 46
A
tank a n d a large piston into the other
t o m , t h e n 1 , 6 0 0 p o u n d s of f o r c e s u d -
end. T h e pistons are square, and
denly pushed on the bottom. N o won-
the
small one has a surface just one inch
der the jug broke!
across, while the large o n e has a surface t e n i n c h e s a c r o s s . A s q u a r e t h a t is o n e
H a v e y o u e v e r s e e n a m a n fix a flat t i r e o n t h e w h e e l of
i n c h a c r o s s h a s a n a r e a of o n e s q u a r e i n c h ; a s q u a r e t h a t is t e n i n c h e s a c r o s s h a s a s u r f a c e a r e a of 1 0 0 s q u a r e i n c h e s .
How does a hydraulic jack work?
of a b i g or
truck
trailer?
the
F i r s t , h e h a d t o lift t h e w h e e l off t h e
small piston. H o w m a n y m e n will b e
g r o u n d . T o d o this h e used a tool called
needed to push against the big piston
a j a c k . H e p l a c e d t h e u p r i g h t p a r t of
i n o r d e r t o k e e p it f r o m b e i n g p u s h e d
t h e j a c k u n d e r a p a r t of t h e
o u t w a r d a t i t s e n d of t h e t a n k ? A h u n -
frame; then he p u m p e d a handle up and
dred men! T h e water transmits to each
d o w n ; a s a r e s u l t , t h e u p r i g h t p a r t of
of t h e 1 0 0 s q u a r e i n c h e s o n t h e s u r f a c e
t h e jack m o v e d slowly u p w a r d , pushing
of t h e b i g p i s t o n t h e s a m e a m o u n t of
t h e t r u c k ' s h e a v y f r a m e w i t h it.
pressure that was applied to the
j a c k t h a t is n e e d e d t o lift a n o b j e c t a s
N o w suppose a m a n pushes on
one
truck's
The
s q u a r e i n c h of t h e s m a l l p i s t o n . If t h e
h e a v y a s a t r u c k is a hydraulic
m a n p u s h e d o n t h e o n e - i n c h - s q u a r e pis-
"Hydraulic" means "operated by
t o n w i t h a p r e s s u r e of 6 0 p o u n d s , t h a t
t e r . " I n s i d e t h e j a c k is a t h i c k i r o n cy-
60
have
l i n d e r filled w i t h w a t e r . E v e r y t i m e t h e
passed through the water to every other
m a n pushed the handle down, a small
s q u a r e i n c h i n t h e t a n k . T h e l a r g e pis-
piston p u s h e d against the w a t e r in t h e
ton h a d 100 square inches, so 6 0 p o u n d s
cylinder, a n d the p u s h passed t h r o u g h
of p r e s s u r e p a s s e d t h r o u g h t h e
water
the water to a large piston, where the
t o e a c h o n e of t h e 1 0 0 s q u a r e i n c h e s of
s t r e n g t h of t h e p u s h w a s s o g r e a t l y i n -
the large piston. O n e h u n d r e d times 60
creased that the heavy truck could be
is 6 , 0 0 0 , s o 6 , 0 0 0 p o u n d s of p r e s s u r e
lifted u p w a r d .
pounds
of
pressure
would
was pushing against the large
piston.
Many
machines
have
jack.
been
wa-
con-
N o w o n d e r it w o u l d t a k e 1 0 0 m e n t o
s t r u c t e d t o m u l t i p l y f o r c e b y m e a n s of
hold the large piston against the pres-
P a s c a l ' s P r i n c i p l e . O n e of t h e s e is t h e
sure exerted by one m a n .
h y d r a u l i c p r e s s t h a t is u s e d t o b a l e c o t why
the
t o n . Y o u k n o w t h a t c o t t o n is v e r y l i g h t
Suppose
the
a n d fluffy. I t w o u l d b e v e r y a w k w a r d t o
s t o p p e r h a d a b o t t o m s u r f a c e of
one
s h i p l a r g e a m o u n t s of c o t t o n j u s t a s it
N o w you can understand earthenware
jug
broke.
square inch. L e t us say that the b o t t o m
comes from the cotton plant; the
of t h e j u g h a d a n a r e a of 8 0
cotton would take u p so m u c h
room.
S o , c o t t o n is p l a c e d i n l a r g e
burlap
square
inches. A l s o , let us say t h a t t h e h i t t h e s t o p p e r w i t h a p r e s s u r e of pounds.
If a p r e s s u r e
of
20
boy 20
pounds
sacks a n d compressed by a
fluffy
hydraulic
press. W h e n the baler pushes a small
passed through the water to every one
p i s t o n , a l a r g e o n e is m o v e d
upward,
of t h e 8 0 s q u a r e i n c h e s of t h e j u g ' s b o t -
s q u e e z i n g a i r o u t of t h e c o t t o n b y p u s h 47
The way in which the jack works to hoist automobiles in a service station, is based on Pascal's Law. Today oil is used instead of water in many hydraulic appliances.
ing the sack against a
flat
of
fing o u t a g a i n . T h e h y d r a u l i c lift t h a t
around
the
raises cars a b o v e t h e g r o u n d in service
c o m p r e s s e d c o t t o n t o k e e p it f r o m
fluf-
stations also uses Pascal's Principle.
iron. Wires are w r a p p e d
square
Air,
W a t e r ,
Y o u h a v e l e a r n e d t h a t air a n d w a t e r a r e very important How can you help s u b s t a n c e s > W i t h . keep air and ., ., . out them, there water clean? w o u l d b e n o lite at all. S o m e t i m e s a i r a n d w a t e r polluted,
become
t h a t is, t h e y . b e c o m e d i r t y a n d
even d a n g e r o u s to use. W h e n this happ e n s , m a n h a s t o find a w a y of m a k i n g t h e m clean a n d safe again. P e r h a p s y o u have seen a polluted p o n d or
stream
f r o m w h i c h n o o n e is a l l o w e d t o d r i n k w a t e r o r s w i m in b e c a u s e h e w o u l d get s i c k if h e d i d . I n s o m e c i t i e s t h e a i r , t o o , b e c o m e s v e r y d i r t y . S o m e t i m e s it gets so dirty that people
cough
and
A s t h e p o p u l a t i o n of o u r c o u n t r y increases, m o r e a n d m o r e waste materials
48
lakes
Y o u and
rivers.
Many
people
are
needed to w o r k at keeping our air a n d water clean. W e need engineers to build d a m s a n d sewage systems. Chemists are n e e d e d t o t e s t w a t e r a n d a i r t o s e e if t h e y a r e safe, a n d r e s e a r c h e r s a r e n e e d e d to discover new ways to m a k e clean.
People
are
needed
to
them advise
farmers on the best way to plant crops so t h a t soil e r o s i o n will b e p r e v e n t e d . W e n e e d o t h e r p e o p l e t o p l a n cities a n d t o w n s so t h e factories a n d d u m p s that might pollute the air a n d w a t e r are not built near homes. T h e s e t a s k s offer
much
interesting
work that can be a rewarding
lifelong
career. P e r h a p s y o u will o n e d a y enter
c h o k e a n d their eyes w a t e r .
will b e e m p t i e d i n t o t h e a i r a n d
a n d
into
one
of
these
useful
and
challenging
fields w o r k i n g t o k e e p o u r a i r a n d w a t e r c l e a n a n d safe.
HOW AND WHY WONDER
BOOKS
Produced and approved by noted authorities, these books answer the questions most often asked about science, nature and history. They are presented in a clear, readable style, and contain many colorful and instructive illustrations. Readers will want to explore each of these fascinating subjects and collect these volumes as an authentic, ready-reference, basic library. 5001 5002 5003 5004 5005 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034
DINOSAURS WEATHER ELECTRICITY ROCKS AND MINERALS ROCKETS AND MISSILES INSECTS REPTILES AND AMPHIBIANS BIRDS OUR EARTH BEGINNING SCIENCE MACHINES THE HUMAN BODY SEA SHELLS ATOMIC ENERGY THE MICROSCOPE THE CIVIL WAR MATHEMATICS BALLET CHEMISTRY HORSES EXPLORATIONS AND DISCOVERIES PRIMITIVE MAN NORTH AMERICA PLANETS AND INTERPLANETARY TRAVEL WILD ANIMALS SOUND LOST CITIES ANTS AND BEES WILD FLOWERS DOGS PREHISTORIC MAMMALS SCIENCE EXPERIMENTS
5035 5036 5037 5039 5040 5041 5042 5043 5045 5046 5047 5049 5050 5051 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069
WORLD WAR II FLORENCE NIGHTINGALE BUTTERFLIES AND MOTHS ROBOTS AND ELECTRONIC BRAINS LIGHT AND COLOR WINNING OF THE WEST THE AMERICAN REVOLUTION CAVES TO SKYSCRAPERS TIME MAGNETS AND MAGNETISM GUNS FAMOUS SCIENTISTS OLD TESTAMENT BUILDING TREES OCEANOGRAPHY NORTH AMERICAN INDIANS MUSHROOMS, FERNS AND MOSSES THE POLAR REGIONS COINS AND CURRENCY BASIC INVENTIONS THE FIRST WORLD WAR ELECTRONICS DESERTS AIR AND WATER STARS AIRPLANES AND THE STORY OF FLIGHT FISH BOATS AND SHIPS THE MOON TRAINS AND RAILROADS
WONDER BOOKS A Division of Grosset & Dunlap, Inc. New York, N. Y. 10010
View more...
Comments