The Effect of Fluoride on the Physiology of the Pineal Gland
June 10, 2016 | Author: Jargons Nether En | Category: N/A
Short Description
A dissertation submitted to the School of Biological Sciences, University of Surrey, in fulfillment of the requirements...
Description
THE EFFECT OF FLUORIDE PHYSIOLOGY
ON THE
OF THE PINEAL
GLAND
Jennifer Anne Luke
A dissertationsubmittedto the School of Biological Sciences, University of Surrey, in fulfilment of the requirements for the Degree of Doctor of Philosophy.
Guildford 1997
(ii)
ABSTRACT The purpose was to discover whether fluoride (F) accumulatesin the during thereby early pineal gland and affects pineal physiology development. The [F] of 11 aged human pineals and corresponding muscle were determined using the F-electrode following HN4DS/acid diffusion. The rnýan [F] of pineal was significantly higher (p < 0.001) than muscle: 296 ± 257 vs. 0.5 ± 0.4 mg/kg respectively. Secondly, a discover longituUinal to controlled experimental study was carried out during biosynthesis (MT), F the pubertal whether affects of melatonin, developmentusing the excretion rate of urinary 6-sulphatoxymelatonin, (aMT6s), as the index of pineal MT synthesis.Urine was collected at 3hourly intervals over 48 hours from two groups of gerbils, (Meriones (12 f, (IHF) 12 low-F high-F (LF) m/group): under unguiculatus), and LD: 12 12, from prepubescenceto reproductive maturity (at 9-12 weeks) to adulthood, i. e., at 7,9,11 V2and 16 weeks. The I-IF pups received 2.3 LF from days F/g BW/day birth BF 24 groups gg and whereafter until distilled food F/kg 37 7 received containing respectively and and mg The by levels Urinary water. aMT6s were measured radioimmunoassay. BF group excreted significantly less aMT6s than the LF group until the age of sexual maturation. At 11V2weeks,the circadian profile of aMT6s by the BF males was significantly diminished but, by 16 weeks, was inhibits MT F LF In to the pineal equivalent conclusion, males. synthesis in gerbils up until the time of sexual maturation. Finally, F development was associatedwith a significant acceleration of pubertal in female gerbils using body weights, age of vaginal opening and accelerateddevelopment of the ventral gland. At 16 weeks, the mean testesweight of BF males was significantly less (p < 0.002) than that of the LF males. The results suggest that F is associated with low leads levels MT to an accelerated sexual this circulating of and hypothesis in female The that the maturation gerbils. results strengthen the pineal has a role in pubertal development.
(iii)
DECLARATION 1, Jennifer Luke, hereby declare that this research paper is my own, unaided work. It is being submitted for the degree of Doctor of Philosophy in the University of Surrey, Guildford. It has not been presentedfor any degreeat any other University.
Iq
dayof
M"C"
1997
(iv)
In memory of Lynne 1943 - 1984
(v)
ACKNOWLEDGEMENTS It is a pleasure to thank everyone who helped me with this project. I husband, Dix, and help the acknowledgewith utmost appreciation of my from forbearance family: for interest, the their my encouragementand beginning, when the idea first dawned upon me, until now. Shaping the idea into the final form would certainly have been impossible without the help of colleaguesat the University of Surrey and without exception they were generousand patient in sharing their knowledge. In particular, I sincerely thank Professor Arendt for allowing the work to be carried logic. in I her laboratory impeccable for her gratefully of out sense and by Gordon Hartman, Dr the my acknowledge valuable assistancegiven been have doubt, this completed supervisor: without work would never English his Judy I to who, with patienceand without support. owe much humour, taught me the art of radioimmunoassaywork unfailing good for helped the urinary sulphatoxyand validate radioimmunoassay University Augusta, Whitford, Gary I Professor thank of melatonin. USA, for teaching me his method for fluoride analysis. I acknowledge Nicholas Porter for determining the levels of calcium in human pineal for his help Unit, in Animal Graham Moorey, the with the glands and Anatomy I the to the throughout twenty-four cycle. am grateful gerbils Department, UCL, for providing the human pineal glands. I am truly indebted to The Colt Foundation, The Heinz and Anna Kroch Foundation and The New Moorgate Trust Fund for their confidence in the work in the first place and for their generousfinancial assistance.
(vi)
LIST OF ABREVIATIONS 511T aMT6s ANOVA AUC B/Bo b.pt. BW CCT CNS CSF CSU Cv cpm DCC d-H20 F [F) GCMS h HA HF HIOMT HMDS L LD: 12 12 LF LFNM MT MW NAS NAT NSBs OH PC ppb
QCS
RIA rpm sc SCG SCGX SCN SD SEM SNK T/P ratio VS.
serotonin 6-sulphatoxymelatonin analysisof variance areaunderthe curve in RIA systems a commonresponsevariable boiling point body weight cranial computedtomogram centralnervoussystem fluid cerebrospinal. charcoalstrippedurine coefficient of variation countsper minute dextran-coatedcharcoal double-distilied water fluoride ion fluoride concentration spectrometry gaschromatography-mass hour hydroxyapatite high-fluoride group hydroxyindole-0-methyltransferase hexamethyldisiloxane Iitre 12hour light, 12hour dark cycle low-fluoride group low-fluoride non-monitoredgroup melatonin molecularweight N-acetylserotonin N-acetyltransferase non-specificbinding tubes hydroxylion pineal calcification part per billion quality control tubes radioimmunoassay revolutionsper minute subcutaneous superiorcervical ganglion superiorcervical ganglionectomy suprachiasmatic nuclei deviation standard standarderror of the mean Student-Newman-Keuls test tissuewater to plasmawater concentrationratio versus
(vii)
TABLE OF CONTENTS
M 00 Off) OV) (V) (VO (Vii) (X0 (Xvii)
Title Page Abstract Declaration Dedication Acknowledgments List qfAbbreviations Table qf Contents List qf Tables List qfFigures CHAPTER
I-
Literature
Review
I
1.1 Introduction
1
1.2 13
6
1.4 1.5 1.6 1.7 1.8 1.9 1.10
1.11 1.12 1.13 1.14
1.15 1.16
Review of the Literature Sourcesof Fluoride 1.3.1 Food 1.3.2 Drinking Water 1.3.3 Dental Products Fluoride in Plasma Fluoride in Calcified Tissues Fluoride in Soft Tissues Blood-Brain Barrier The Human Pineal Gland Pineal Physiology Factors Suggestingthat the Pineal Could Retain F 1.10 1 Pineal Calcification 1.10.2 Prevalenceof Pineal Calcification in Humans 1.10.3 Blood Supply Melatonin Synthesis Melatonin Metabolism of Melatonin Melatonin Production During Pubertal Development 1.14.1 Human Studies 1.14.2 Animal Studies 1.14.3 Sex Differences Measurementof Pineal Function Animal Model: the Mongolian Gerbil
8 10 11 12 14 17 18 19 20 23 23 28 31 31 35 35 36 37 39 40 40 43
(Viii) 1.17 Pineal Function in Gerbils 1.18 Age of SexualMaturity in Gerbils 1.18.1 Males 1.18.2 Females 1.19 Physiological Signs of SexualMaturation in Gerbils 1.19.1 Ventral Gland 1.19.2 Body Weights 1.19.3 Testes
45 46 46 46 47 47 49 49
CHAPTER
Aims and Objectives
51
Methodologies
54
2-
CHAPTER 33.1
3.2
3.3 3.4 3.5
Determination of the [F] of Pineal Gland, Bone and Muscle in Humans 3.1.1 Collection of the Samples 3.1.2 Analysis of Fluoride 3.1.2 (a) Separationof Fluoride 3.1.2 (b) Potentiometry 3.1.3 Experimental Procedurefor Analysis of F 3.1.3 (a) Apparatusand Reagents 3.1.3 (b) Methodology 3.1.3 (c) Limitations of HMDS Method 3.1.4 Modifications for Use with Various Tissues 3.1.4 (a) 3.1.4 (b) 3.1.4 (c) Determination of the [Ca] of Human Pineal Using Flame Atomic Absorption Spectrometry 3.2.1 Experimental Procedure 3.2.1 (a) Digestion of the Pineals 3.2.1 (b) Apparatus and Reagents 3.2.1 (c) Methodology Animal Maintenance Collection of Urine Samples Measurementof Urinary Sulphatoxymelatonin in Gerbils Using Radioimmunoassay 3.5.1 Principles of Radioimmunoassay 3.5.2 Materials 3.5.3 Validation of Assay for Use with Gerbil Urine 3.5.3 (a) Anti-serum dilution 3.5.3 (b) Cross-reactivity 3.5.3 (c) CSU on the standardcurve 3.5.3 (d) Parallelism 3.5.3 (e) Sensitivity 3.5.3 (f) Recoveries
54 55 57 59 63 65 66 67 68 68 69 69 69 70 71 73 75 75 76 80 81 82 83 83 84
(ix)
3.6
3.7 3.8
3.5.4 Methodology Measurementof Melatonin Content in Gerbil Pineal 3.6.1 Collection of the Gerbil Pineals 3.6.2 Analytical Procedure 3.6.3 Reagents 3.6.4 Methodology Physiological Signs of SexualMaturity in Gerbils Statistical Methods 3.8.1 The [F] of Human Tissues 3.8.2 Urinary aMT6s Levels as an Index of Pineal MT Synthesis 3.8.3 Urinary aMT6s Levels in Gerbils 3.8.4 The Circadian Rhythm of Urinary aMT6s in Gerbils at 11V2and16 Weeks 3.8.5 The Physiological Signs of Puberty 3.8.6 Description of the Experimental Groups
CHAPTER 44.1 4.2
Fluoride Contents of Human Tissues
Results Conclusions
84 87 88 89 91 92 93 93 93 94 95 96 96 97 97 99
CHAPTER 5-
Urinary Levels of aMT6s as an Index of Melatonin Synthesis in the Gerbil Pineal
104
5.1 5.2
104 108
Results Conclusions
CHAPTER 6-
Effects of Fluoride on Total
Urinary aMT6s Excretion by Gerbils 6.1 6.2 6.3
Results of the Longitudinal Study on Total aMT6s Excreted at 7,9,1 P/2and 16 Weeks Results of the Total aMT6s Excreted by All gerbils Aged 7 to 28 Weeks Conclusions
120 130
CHAPTER 7-
Effects of Fluoride on the Circadian Rhythm of Urinary aMT6s in Gerbils
7.1
Results of Circadian Profiles of Urinary aMT6s 7.1.1 At llV2Weeks 7.1.2 At 16 Weeks
135 135 135 143
(x)
7.2 7.3
7.1.3 Comparisonof Profiles at 11V2and16 Weeks Intervals When the Gerbils Did Not Urinate Conclusions
146 149 150
CHAPTER 8- Effects of Fluoride on Physiological Signs of Puberty in Gerbils
158
8.1 8.2 8.3 8.4 8.5
158 159 160 161 162
Results of Areas of the Ventral Glands Results of Body Weights Results of Age at Vaginal Opening Results of TestesWeights Conclusions
CHAPTER 99.1 9.2
Fluoride Levels in Gerbil Bone
Results Conclusions
164 164 165
CHAPTER 10 - General Discussion and Conclusions
167
APPENDICES
178
A B C D E F
178 191 196 249 256 260
Resultsof F-Analyses Resultsof RIAs for PinealMT Contents Resultsof RIAs for aMT6sLevelsin Gerbil Urine DescriptiveStatisticsfor Urinary aMT6sLevels Resultsof the PhysiologicalSignsof Puberty Validation Results
REFERENCES
265
(xi)
LIST OF TABLES Table 1.1 Table 3.1 Table 3.2
[F] of bone ash in previous animal studies Age, gender,and causesof death of the subj ects
16 54
Cross-reactivity data for antiserum 1118/23884 Serial dilution of ten urine sampleswith CSU to show parallelism of urinary aMT6s values
81
Table 3.4
Quantitative recovery of unlabelled aMT6s
84
Table 4.1
The fluoride content of human pineal gland and bone (wet ash weight) and correspondingmuscle The calcium and hydroxyapatite content of human pineal glands Melatonin contentsin gerbil pineals at 16 weeks
104
Summary of total urinary aMT6s excretedby Y2and 16 7,9,11 weeks gerbils monitored at
113
Comparisonof the urinary aMT6s levels excreted by gerbils obtained from Section 6.1 and 6.2
121
Table 3.3
Table 4.2 Table 5.1 Table 6.1 Table 6.2 Table 6.3 Table 7.1 Table 7.2 Table 7.3 Table 8.1 Table 8.2 Table 8.3 Table 8.4
83
Summaryof total urinary aMT6s excretedby 28 Y2,16 7,9,11 weeks and all gerbils at Summary of the mean 48-h profiles of aMT6s in gerbils aged II Y2weeks
97 98
123 136
Summary of the mean circadian profiles of in aMT6s gerbils aged 16 weeks
144
Intervals when the gerbils did not urinate
150
Ventral gland formation in female gerbils at II from the LF and HF groups weeks
V2
158 159
Body weights (g) of gerbils aged 7 to 28 weeks Comparison of the number of females from HF and LF showing vaginal introitus at 7 weeks
161
Testesweights of gerbils at 9,16 and 28 weeks
162
(xii) Table 9.1
Fluoride content of gerbil bone ash
164
Results of the [F] of agedhumanpineal glands Results of the [F] of human bone ash
178
Results of the [F] of human muscle Results of the [Ca] of human pineals
181
Appendices Table A. I Table A. 2 Table A. 3 Table A. 4 Table A. 5 Table A. 6 Table A. 7 Table A. 8 Table A. 9
Results of the [F] of bone ash from LF males at 10 weeks and LF femalesat 11 weeks Results of the [F] of bone ash from HF males at 10 weeks and HF femalesat 11 weeks Results of the [F] of bone ash from HF males females HF and given HF diet after weaning
Table B. 2 Table B.3 Table BA Table B. 5
Table C. I Table C.2
182 183 184 185
Results of the [F] of bone ash from LF gerbils (male and female mixed) at 16 weeks
186
Results of the [F] of bone ash from FIF male and HF female gerbils aged 16 weeks
187
Table A. 10 Results of the [F] of bone ash from LF male female LF and gerbils aged28 weeks Table A. 11 Results of the [F] of bone ash from HF male and HF female gerbils aged28 weeks Table B. I
179
188 190
Results of the intra-assayand inter-assay coefficients of variation for pineal melatonin
191
Results of RIA for pineal melatonin contents in LF gerbils at 16-weeks(LFNM group)
192
Results of RIA for pineal melatonin contents in LF gerbils at 16-weeks
193
Inter-assayvariability of RIM for aMT6s by 16BF, 16LF, and 16LF NM groups
194
Results of pineal melatonin contentsat 0400 and corresponding24-h urinary aMT6s levels
195
Results of intra-assaycoefficients of for urinary aMT6s -variation
196
The inter-assaycoefficients of variation for RIAs for aMT6s by gerbils in Section 6.1
197
(Xiii) Table C.3 Table CA Table C.5
The inter-assaycoefficients of variation for all RIAs for urinary aMT6s The inter-assaycoefficients of variation for RIAs for aMT6s by gerbils at 11V2and16 weeks The CV% betweenlevels of aMT6s in urine in day day by 7 I 2 collected gerbils at weeks and
The CV% betweenlevels of aMT6s in urine in day day by I 2 collected and gerbils at 9 weeks Table C.7 The CV% betweenlevels of aMT6s in urine in by II V2 day day 2 I weeks collected and gerbils at Table C.8 The CV% betweenthe urinary aMT6s levels in in Section 6.2 day day by 2 1 collected and gerbils Table C.9 The CV% betweenthe urinary aMT6s levels in 6.2 Section in day day by 2 I collected gerbils and Table C. 10 The CV% betweenurinary aMT6s levels day by 28 in day 2 I at weeks gerbils collected and
198 199 200
Table C.6
201 202 203 204 205
Table C. 11 Results of the longitudinal study of urinary aMT6s by female gerbils at 7,9,11 1/2and16 weeks
206
Table C. 12 Results of the longitudinal study of urinary aMT6s by male gerbils at 7,9,11 V2and16 weeks
207
Table C. 13 Laboratory results of urinary aMT6s 7 female by LF gerbils at weeks excreted
208
Table C. 14 Laboratory results of urinary aMT6s female 7 by HIF gerbils at weeks excreted
209
Table C. 15 Laboratory results of urinary aMT6s 7 by LF at weeks excreted male gerbils
210
Table C. 16 Laboratory results of urinary aMT6s 7 by BF excreted male gerbils at weeks
211
Table C. 17 Laboratory results of urinary aMT6s female by 9 LF excreted gerbils at weeks
212
Table C. 18 Laboratory results of urinary aMT6s female 9 by BF excreted gerbils at weeks
213
Table C. 19 Laboratory results of urinary aMT6s by 9 LF excreted male gerbils at weeks Table C.20 Laboratory results of urinary aMT6s excretedby HF male gerbils at 9 weeks
214 215
(Xiv) Table C.21 Laboratory results of urinary aMT6s excretedby LF female gerbils at 11V2weeks Table C.22 Laboratory results of urinary aMT6s by female HF excreted gerbils at 11V2weeks Table C.23 Laboratory results of urinary aMT6s by V2weeks LF 11 excreted male gerbils at Table C.24 Laboratory results of urinary aMT6s excretedby HF male gerbils at II Y2weeks Table C.25 Laboratory results of urinary aMT6s by female LF excreted gerbils at 16 weeks Table C.26 Laboratory results of urinary aMT6s by female HF excreted gerbils at 16 weeks Table C.27 Laboratory results of urinary aMT6s excretedby LF male gerbils at 16 weeks Table C.28 Laboratory results of urinary aMT6s excretedby HF male gerbils at 16 weeks Table C.29 Laboratory results of urinary aMT6s by female gerbils at 11Y2weeksin 2x 24-h collections Table C.30 Laboratory results of urinary aMT6s by in 24-h 2x collections pubertal male gerbils Table C.31 Laboratory results of urinary aMT6s by in 24-h 16 2x collections gerbils at weeks Table C.32 Laboratory results of urinary aMT6s by female gerbils at 28 weeks in 2x 24-h collections Table C.33 Laboratory results of urinary aMT6s by in 2x 24-h 28 collections male gerbils at weeks
216 219 222
225 228 229 230 231 232 233 234 235 236
Table C.34 Circadian excretion of urinary aMT6s (ng/3-h) by LF female gerbils aged II Y2weeks
237
Table C.35 Circadian excretion of urinary aMT6s (ng/3-h) by IF female gerbils aged II V2weeks
238
Table C.36 Circadian excretion of urinary aMT6s (ng/3-h) by LF male gerbils aged II Y2weeks Table C.37 Circadian excretion of urinary aMT6s (ng/3-h) by BF male gerbils aged 11Y2weeks, Table C.38 Circadian excretion of urinary aMT6s (pg/g BW/3-h) by LF femalesat 11Y2weeks
239 240 241
(XV) Table C.39 Circadian excretion of urinary aMT6s (pg/g BW/3-h) by I-IF femalesat 11V2weeks
242
Table C.40 Circadian excretion of urinary aMT6s (pg/g BW/3-h) by LF males at 11V2weeks
243
Table C.41 Circadian excretion of urinary aMT6s (pg/g BW/3-h) by HF males at 111/2weeks
244
Table C.42 Circadian excretion of urinary aMT6s (ng/3-h) by LF female gerbils aged 16 weeks Table C.43 Circadian excretion of urinary aMT6s (pg/g BW/3-h) by LF femalesat 16 weeks Table C.44 Circadian excretion of urinary aMT6s (ng/3-h) by IHF female gerbils at 16 weeks Table C.45 Circadian excretion of urinary aMT6s (pg/g BW/3-h) by BF femalesat 16 weeks Table C.46 Circadian excretion of urinary aMT6s (ng/3-h) by LF male gerbils aged 16 weeks Table C.47 Circadian excretion of urinary aMT6s (pg/g BW/3-h) by LF males at 16 weeks Table C.48 Circadian excretion of urinary aMT6s (ng/3-h) by HF male gerbils aged 16 weeks Table C.49 Circadian excretion of urinary aMT6s (pg/g BW/3-h) by HIFmales at 16 weeks Table D. I Table D. 2 Table D. 3 Table DA Table D. 5 Table D. 6 Table D. 7
Descriptive statistics for the daily urinary aMT6s levels excretedby gerbils aged 7 weeks Descriptive statistics for the daily urinary aMT6s levels excretedby gerbils aged9 weeks Descriptive statistics for the daily urinary aMT6s levels excretedby gerbils aged 11V2weeks, Descriptive statistics for the daily urinary aMT6s levels excretedby gerbils aged 16 weeks Descriptive statistics for the daily urinary aMT6s levels excretedby all male gerbils aged 9 weeks
245 245 246 246 247 247 248 248
249 250 251 252 253
Descriptive statistics for the daily urinary aMT6s levels excretedby all gerbils aged 11V2weeks
254
Descriptive statistics for the daily urinary aMT6s levels excreted by all gerbils aged 16 weeks
255
(Xvi) Table D. 8
Table E. I Table E.2 Table E.3 Table EA Table F. 1 Table F.2
Descriptive statistics for the daily urinary aMT6s levels excretedby gerbils at 28 weeks
256
The areasof the ventral glands in male female 10 28 and and weeks gerbils at -
257
t- tests betweenthe body weights of gerbils from the BF and LF groups at 7,9 and 111/2weeks t- tests betweenthe body weights of gerbils from the HF and LF groups at 16 and 28 weeks The combined testesweights of gerbils at 16 weeks Results of antiserumdilution curves Limit of detection of RIAs for urinary aMT6s
258 259 260 261 262
(Xvii)
LIST OF FIGURES Fig. 1.1 PlasmaF-concentrationsin subjectsliving in a 1.2 mg F/L areaand 0.25 mg F/L area Fig. 1.2 PlasmaF-concentrationsafter intake of four different oral dosesof F Fig. 1.3 Indole metabolism in the mammalianpineal gland
12 14 33
Fig. 1.4 A family of Mongolian gerbils (Meriones unguiculatus) Fig. 1.5 The superficial pineal gland of the gerbil at 12 weeks
43
Fig. 1.6 The ventral gland in the gerbil Fig. 3.1 Typical standardcurve for F ion-specific electrode
48
Fig. 3.2 Fig. 3.3 Fig. 3.4 Fig. 3.5 Fig. 5.1 Fig. 5.2 Fig. 6.1 Fig. 6.2 Fig. 6.3 Fig. 6.4 Fig. 6.5
Diagram to show main featuresof HMDS-facilitated F for isolation ionic method and acid-ionizable of Diagram of metaboleused to collect the gerbil urine Antiserum dilution curves for aMT6s The effects of CSU on the standardcurve for aMT6s Circadian profiles of aMT6s in gerbils at 16 weeks Circadian profile of MT in gerbil pineals and aMT6s excretion rates (pg/g BW/3-h) at 16 weeks Comparison of levels of aMT6s (ng/24-h) excreted by BF and LF groups at 7,9,11 V2and16 weeks Comparison of levels of aMT6s (ng/24-h) excreted by the sexesat 7,9,11 V2and16 weeks Comparison of relative levels of aMT6s excreted by IHFand LF groups at 7,9,11 V2and16 weeks Comparison of relative levels of aMT6s,excreted by the sexesat 7,9,11 V2and16 weeks Comparison of levels of aMT6s (ng/24-h) excreted V2,16 by IHFand LF groups at 7,9,11 28 and weeks
44 58 63 74 80 82 106 107 114 116 117 119 124
(Xviii) Fig. 6.6 Fig. 6.7 Fig. 6.8 Fig. 7.1 Fig. 7.2 Fig. 7.3 Fig. 7.4 Fig. 7.5 Fig. 7.6
Comparisonof levels of aMT6s (ng/24-h) excreted V2,16 by the sexesat 7,9,11 and 28 weeks Comparison of relative levels of aMT6s excreted by BF and LF groups at 7,9,111/2,16 and 28 weeks Comparison of relative levels of aMT6s excreted V2,16 by the sexesat 7,9,11 28 and weeks Comparisonof the absolute48-h profiles of aMT6s in gerbils from the BF and LF groups at 11V2weeks Comparisonof the relative 48-h profiles of aMT6s in gerbils from the HF and LF groups at 11V2weeks Comparison of the absoluteand relative 48-h profiles females V2weeks in 11 LF LF at of aMT6s males and Comparison of the absoluteand relative 48-h profiles of aMT6s in I-IF males and BF femalesat 11V2weeks, Comparison of relative 48-h profiles of aMT6s in LF males, LF females and I-IF femalesat II 1/2weeks Comparison of circadian profiles of aMT6s in interval during 3-h gerbils which urinated every
Fig. 7.7 The absolute circadian profiles of aMT6s in gerbils aged 16 weeks from the HIFand LF groups Fig. 7.8 The relative circadian profiles of aMT6s in from 16 LF HIF the at weeks gerbils and groups Fig. 7.9 Comparisonof the absolute and relative profiles of aMT6s in LF gerbils at 11V2and-16 weeks Fig. 7.10 Comparison of the absolute and relative profiles in 16 females V2and HF II weeks at of aMT6s Fig. 7.11 Comparison of the absolute and relative profiles in 16 II 1/2and HF weeks of aMT6s males at Fig. 8.1 Body weights (g) of gerbils from BF and LF from 7 to 28 weeks of age groups Fig. 8.2 Cumulative percentageof age at vaginal opening in females from HF and LF groups
126 128 130 137 139 140 141 142 143 145 146 147 148 149 160 160
I
Chapter 1- Background Information 1.1 Introduction
In this study I attempted to discover whether fluoride (F) has pathophysiological effects on the pineal gland: a feasible proposition if F accumulates in the pineal and can thereby influence its physiology. The pineal gland, or seat of the soul as it is colloquially called, is situated near the anatomical centre of the brain. It is an integral part of the central nervous system (CNS). Fluoride metabolism in the CNS has not been systematically studied. It is generally believed that F has no effect on the CNS because it is excluded from brain by the blood-brain barrier (Whitford et al, 1979). Whole brain has a low F-content like normal soft tissues elsewherein the body. It is remarkable that the pineal gland has never been analysed separatelyfor F becauseit has several featureswhich suggestthat it highest has F. It the could accumulate calcium concentration of any in in it body because tissue the normal soft calcifies physiologically the form of hydroxyapatite (HA). It has a high metabolic activity blood factors favouring two coupled with a very profuse supply: the deposition of F in mineralizing tissues. The fact that the pineal is outside the blood-brain barrier suggests that pineal HA could from F the bloodstream if it has the same strong affinity sequester for F as HA in the other mineralizing tissues.
2
The intensity of the toxic effects of most drugs dependsupon their concentration at the site of action. The mineralizing tissues (bone first high F teeth) the to and accumulate concentrationsof and are show toxic reactions to F. Hence, their reactions to F have been in If F especially well studied. accumulates the pineal gland, then this points to a gap in our knowledge about whether or not F affects pineal physiology. It was the lack of knowledge in this area that prompted my study. Children are now exposedto more F than ever before. Fluorides are the cornerstoneof all caries preventative programs.The substantial reduction in the incidence of dental caries in the western world over the past fifty years has been largely attributed to the accessto fluoridated water supplies and the increasedexposureto F in dental important is fluoridation The public products. of water supplies an health measure.It is endorsed by the WHO, the European Union directives, the Royal College of Physicians, the Royal College of General Practitioners, the BMA, and the medical and dental professions(Samuels, 1993). Despite the endorsements,the prophylactic use of F in dentistry has been a controversial subject for decades.One recent study reported an increase in osteosarcomas in male F344/N rats which had received drinking water containing 100-175 mg NaFAL (45-79 mg F/L) for two years (NTP, 1990). Following this report, three critical bodies analysedthe public health benefits and risks from chronic Fexposure by reviewing the evidence from human epidemiological studies of the relationship between cancer and water fluoridation and also carcinogenicity studies in rodents. They unanimously
3
is F that agreed safe and effective if used appropriately. The use of F is not associatedwith an increasedcancerrisk in humans.Dental fluorosis is the only adverse effect associated with the chronic ingestion of relatively low F-levels (Kaminsky et al, 1990; USPHS, 1991; NRC, 1993). Further researchis required on the effects of F on the reproductive systemin animals and humans(USPHS, 1991). Dental fluorosis (defective, hypomineralized enamel) occurs when its during F tooth the excessive amounts of reach growing developmental stages.The manifestations of fluorosis range from barely noticeable opacities to severely pitted teeth. The greater the F-exposure during tooth formation the greater is the likelihood of dental fluorosis developing and the more severe is the pathology. The F-concentration at which fluorosis becomes apparent in a body F/kg 0.1 daily intake mg population correspondsto a of about firm is (13W) 12 there to the no weight years although up age of issue. fact, high In this consensuson prevalence and severity of a dental fluorosis was reported in populations with an estimateddaily F-intake of less than 0.03 mg F/kg BW (Bwlum et al, 1987). The so-called 'optimal' concentration of F in community water is defined as the concentration of F which gives maximum caries fluorosis, i. between 0.7 dental e., reduction and causes minimum depending At 1.2 the temperature. the and mg/L on mean ambient time of Dean's original studies, there was a 10-12 percent prevalence of mild dental fluorosis in children in the I mg F/L (Dean for in 1941,1942). 'accepted' This the areas et al, return was benefits in caries reduction: a classic public health trade-off. In the 1930sand 1940s,virtually the only source of F was in the drinking
4
is F Today, in water. ubiquitous the environment which meansthat daily F-intake from besides tap water. man's comes severalsources Systemic F-exposure to children has increased (Leverett, 1991). Mild dental fluorosis is now more common than one would predict basis in findings in late Dearf 1940s: 1930s the the on of s and early fluoridated and non-fluoridated communities (Leverett, 1986; Pendrys and Stamm, 1990; USPHS, 1991). Several recent studies report prevalencerates in the 20 and 80 percent range in areaswith fluoridated water (Levy, 1994). The prevalence of 0.9 percent (recorded in the pre-fluoride days) in areascontaining less than 0.4 in (USPHS, has increased 1991). FAI, 6.6 to the mg water percent The prevalenceof moderateto severedental fluorosis has increased (Williams and Zwemer, 1990; USPHS, 1991; Lalumandier and Rozier, 1995). The increased prevalence of dental fluorosis is it is because the an causing concern within scientific community early sign of F-toxicity and evidence that some children are now issue has is fo The F the potential to them. than getting more good r becomea signiflcant dental health problem. Of all the tissues, the developing enamel organ is assumedto be F. It to the toxic of contains significantly most sensitive effects higher concentrations of F and calcium than other soft tissues. The higher F9-day-old enamel organs of rats contained significantly levels than corresponding soft tissue (0.14 vs. 0.015 mg/kg). Following oral administration of F to the rat pups (0.5 mg/kg BW), the [F] of the enamel organ reachedpeak values (0.19 mg/kg) in 30 increased The be to minutes. enamel organ may relatively sensitive F-intake because 1992). it (Bawden F systemic et al, accumulates
5
Although the exact mechanismresponsible for enamel fluorosis is known, have F may not specific effects on the normal activity of in developing ameloblasts, enamel matrix and proteolytic, activity the maturing enamel (DenBesten. and Thariani, 1992). The transition/early-maturation stage of
is amelogenesis
most
F-concentration. increased to the susceptible effects of an plasma The aesthetically important maxillary central incisors are most Stamm, 1991). (Evans F 22-26 to vulnerable at months and Alongside the calcification in the developing enamel organ, is in It is the a normal child's pineal. calcification also occurring A complex series of enzymatic reactions physiological process. the pinealocytes converts the essential amino acid, tryptophan, to a whole family of indoles. The main pineal hormone
within
is melatonin (MT). For some reason, young children have the highest levels of plasma MT. They also have higher plasma Flevels (recommendedfrom a dental perspective) than they did 50 from increasing An mild number of children suffer years ago. dental fluorosis: evidence that they received too much F during the first few years of life. If F accumulatesin the pineal gland during indole In it metabolism. much early childhood, could affect pineal the same way that high local concentrations of F in enamel organ bone and affect the metabolism of ameloblastsand osteoblasts.
If F influences the high pineal MT output during early development, then the functions of the pineal may also be compromised(given that MT is the main mediator of pineal function). One putative function of the pineal is its involvementin the onsetof puberty.If F compromisespineal function by altering
6
the high rate of synthesis of MT during childhood, does this mani est as an alteration in the timing of puberty? Although the extrapolation of results from animal studies to the human situation is difficult, this project may identify a potential health risk to humans. Therefore, the results will either affirm the safety of the extensive use of F in dentistry or suggestthat harmful effects on human health have already occurred: either way, this investigation is worthwhile. 1.2 Review of the Literature To the best of my knowledge, the Newburgh-Kingston study is the only reference on the effect of F on the timing of puberty in humans. It is the largest, most ambitious paediatric survey carried out to demonstratethe safety of water fluoridation. The New York StateDepartment of Health initiated the study in 1944 becausethey realized that there would ultimately be a need for a long-term evaluation of any possible systemic effects as well as the dental changesfrom drinking fluoridated water over a long period of time.
Similar groupsof childrenwere selectedfor long-termobservation from Newburgh (fluoridated to 1.0 to 1.2 mg4L in 1945) and Kingston (essentially F-free for the duration of the study). Newburgh and Kingston were chosen becausethey were wellmatched:both were situatedon the HudsonRiver about 35 miles apart with similar upland reservoir water supplies; both had populations of about 30,000 with similar demographic characteristics,social and economic conditions, levels of dental
7
birth from Newburgh, (aged In 817 to nine care,etc. children out of in 1954in 1945,500 years) who were selected were examined 1955; in Kingston, out of 711 children who were selectedin 1945, 405 were examined in 1954-1955. The medical and dental examinations began in 1944, and were An 1955. repeated periodically until assessmentof any possible fluoridated from the water systemic effects arising consumption of was made by comparing the growth, development and the prevalence of specific conditions in the two groups of children as disclosed by their medical histories, physical examinations, and laboratory and radiological evidence. The age of onset of index in of the rate of sexual menstruation girls was used as an maturation.
At the end of ten years, the investigatorsreported no adverse because fluoridated from drinking no water systemic effects from found differences between the two the results significant were first The groups. averageageof menarchewas earlier amonggirls in Newburghthan those in Kingston: 12 yearsvs. 12 yearsand 5 1956). Although (Schlesinger this months respectively et al, difference was not considered important, it does suggest an drinking fluoridated between the water and an use of association had The Newburgh in girls earlier onsetof sexualmaturation girls. first For fluoridated had lifelong the two years water. use of not a or so, they received unfluoridatedwater. Furthermore,their only from drinking F the sourceof was water.
8
1.3 Sources of Fluoride 1.3.1 Food
The normal daily F-intake is negligible (less than 0.01 mg) during the first few months of human life, because human breast milk contains merely a trace of F (6 to 12 ng/ml): regardlessof the F-intake to the nursing mother. Ekstrand and co-workers (1981) analysedplasma and milk samplesfrom five nursing mothers after they had taken an oral dose of 1.5 mg F. There was an immediate ten-fold increasein the [F] of plasma (70-86 ng/ml) within 30 minutes of dosing but the [F] of breast day (2-8 throughout the milk remained constant ng/ml). The mean F-concentrations of human breast milk were 8.9 and 5.0 from living in 1.7 and 0.2 mg FALareas ng/ml nursing mothers respectively (Esala et al, 1982); 6.8 ± 0.4 and 5.3 ± 0.4 ng/ml (± SEM) from nursing mothers living in 1.0 and 0.2 mg F/L areasrespectively (Spak et al, 1983). The reason for the limited transfer of F from plasma to breast milk is unknown. It has been suggestedthat the physiological barrier from the the newborn plasma-milk actively protects toxic effects of F (Ekstrand et al, 1981). Cow's milk, like human milk, contains low levels of F (0.017 mg/L) even when F is added to the cow's food or drinking water (McClure, 1949). Breast-fed infants (or infants bottle-fed with cow's milk) in are negative F-balance: more F is excreted in the urine than is ingested in the diet. During the period of breast feeding, F (deposited in foetal bone during pregnancy) is mobilized and
9
into fluids the and subsequentlyexcreted released extracellular into urine. Therefore, early human development has always in high-F in F-free the areas:a milieu even occurred a virtually lasts until the age of weaning and the phenomenon which introduction of solid foods. In contrast, the F-intake to bottle-fed infants living
in
fluoridated areasdependsupon the [F] of: a) the water used to itself formula-feed feed; b) the the reconstitute powdered Bottle-fed infants in fluoridated areas can receive 1.1 mg F from day 1: 150-200 times more F per day than breast-fed infants, i. e., 1100 vs. 5-10 gg/day (Ekstrand, 1989). The normal is during infancy Bottle-fed F reversed. pharmacokinetics of infants in fluoridated areas retain more than 50% of the ingested F-dose in the mineralizing tissues (Ekstrand et al, 1984; 1994).
Man's daily intake of F from food is low. Fresh, unprepared fruits, vegetables, pulses, roots, nuts, etc., rarely contain more than 0.2 to 0.3 mg F/kg (WHO, 1984). Most plant specieshave Ffrom limited F the to soil even when absorb a capacity flesh (Davison, The fertilisers 1984). of containing are applied bone), low levels from fish, (free of contains meat, poultry and F becausevirtually all F in animals occurs in their bones arid teeth. The skin and bones of tinned salmon and sardines fish because F/kg 8 500 the are contain and mg respectively in (1.2-1.4 high F levels to seamg/L) exposed relatively of (Jenkins, 1990). water
10
Nevertheless, most of man's daily intake of F is derived from food unless he drinks fluoridated water (or water containing naturally high levels of F) or is exposed to F from industrial contamination (Underwood, 1977). Studies have shown that adults living in non-fluoridated areas receive low levels of F from food alone: 0.16 mg F/day (Machle et al, 1942); 0.2 to 0.3 mg F/day (McClure, 1949); 15- to 19-year-old American males 0.27 ± 0.03 mg F/day (Singer et al, 1985). Six-monthreceive old infants and two-year-old children receive less than 0.2 mg F/day from food (Ophaug et al, 1980a; 1980b). The dispersion of F into food was an unplanned consequence of water fluoridation. Processedfood and beverages contain significant amounts of F if they are manufactured in towns be fluoridated foodstuffs Such supplied with water. can distributed and consumed in non-fluoridated communities. Their consumption produces an averageF-intake of 1.0 to 2.0 mg/day (Marier and Rose, 1966). 1.3.2 Drinking Water
Man has evolved over the millenia drinking water with low Flevels, e.g., surface waters, collected rain or melted snow. Today, most large communitiesobtain their drinking water from suppliesof fresh surfacewaters which contain between 0.01 to 0.3 mg F/L (WHO, 1984).In the 1940s,95.7% of the populationof USA receivedwater containinglessthan 0.5 mg FAL(Hill et al, 1949);in the 1980ý,most water suppliesin the USA contained less than 0.3 mg FAL unless they had been
II
artificially fluoridated (Centers for Disease Control, 1985); in Norway, 96% of the population consumed water containing less than 0.25 mg F/L (L6kken and Birkeland, 1978). In someparts of the world, particularly rural areas,populations use water from deep wells or bores. Underground water has a greater opportunity to contact fluoriferous material. Groundwaters contain varying amounts of F: less than 0.1 mg/L to more than 25 mg/L (USPHS, 1991). Bottled spring waters (still) contain less than 0.1 mg FAL. The drinking water from wells in districts with endemic fluorosis in USA contained 2.0 to 16.8 mg FAL(McKay, 1933).
1.3.3 Dental Products
Since 1945,therehasbeena steadyincreasein the useof F in forms for dental the various and concentrations preventionof caries.The self-appliedtopical fluorides include: fluoridatedtoothpaste(1000-1500mg F/kg) which typically provides0.51.5 mg F per brushing when 0.5-1.5 g toothpaste(1000 mg F/kg) is dispensed;cosmeticmouth-washsold over the counter (230 mg FAL)provides 1.1-3.4mg F when 5-15 ml is used; high-F mouth-rinsesby prescription(900 mg FAL)(Shulmanet 1995). The al, professionally-appliedtopical fluorides include: F-gels (12,300 mg F/kg); F-varnishes. The F-preparations intendedfor systemicuseincludeF-tabletsandF-drops. Young children swallow substantial amounts of toothpaste or mouth-rinse because they have poor control over the
12
is in The F toothpaste swallowing reflex. and mouth-rinse bioavailable 1980) (Ekstrand Ehmebo, and readily and is in ingested F the virtually all absorbed the gastrointestinal five60% A two-year-old tract. and a child swallows about year-old about 34% of the F in toothpastes(Simard et al, 1989, 1991). In real terms, 2-5-year-old children ingest 0.5 to 0.75 ingest 0.4 F (Murray, 1986); 7-13-year-old children mg per use to 1.2 mg F per use (Bell et al, 1985). Therefore, some children from daily F-allowance their toothpaste alone. exceed optimal Consequently,there is an increasein plasma F-levels.
1.4 Fluoride in Plasma
In low-F areas,the mean [F] in plasma from fasting, middle-aged 0.5 is from 0.004 0.02 0.01 to mg/L or adults about mg/L ranging F-levels fluoridated (Murray 1991). In the areas, plasma gM et al, (Ekstrand 1988). from I 0.02 0.04 to et al, range mg/L, about gM
60
40
20
0
8a. m.
8 p.m.
8 a.m.
8P.m.
Fig 1.1 Plasma F-concentrations in five subjects living in a 1.2 mg F/L area since birth (A ) and the mean plasma F-concentration from five subjects living in a 0.25 mg FAL area since birth (o Reproducedfrom Ekstrand, 1978, with permission.
13
Figure 1.1 presentsthe plasma [F] curves from five subjects from areaswith 1.2 and 0.25 mg F/L in the water supply. To simplify the from from five [F] 0.25 the the the graph, mg mean plasma subjects FAL area is presented because their plasma [F] were similar throughout the 24-h period (9.4 ± 2.2 ng/ml, ± SD). The plasma [F] in subjects from the fluoridated area were higher than those in the low-F subjects throughout the day and two subjects in the high-F diurnal (Ekstrand, 1978). areashowedsigns of a variation Less is known about the [F] in plasma from infants and young is in [F] The the children. plasma suckling rat very low: about 0.002 mg/L (Bawden et al, 1986; 1992) which is probably due to the low [F] of rat milk (less than 0.01 mg/L) (Drinkard et al, 1985). Presumably the plasma [F] in infants are also very low: only increasingwhen F is administered.Fluoride is rapidly cleared from the bloodstream in infants and young children by sequestrationby the rapidly mineralizing tissues. Figure 1.2 presents the 24-h plasma [F] in a male subject in four four in he different single separateexperiments which was given be is doses (Ekstrand F F It 1977). that of can seen oral et al, Ffrom The the tract. rapidly and readily absorbed gastrointestinal levels in plasma start to rise within a few minutes after F-intake and take 30 minutes to reach the peak values and severalhours to return to basal levels.
Plasma F-levels are not homeostatically regulated in the classical Peak ingested F the to sense. values are proportional and amount of I
body 1988). (Ekstrand to proportional et al, inversely weight
14 Plasma fluoride, pM 251 10
5.0 2.5 1.0 0.5 0.25 12 Hours
Fig. 1.2 Plasma F-concentrations in a healthy male aged 23 years intake four different after an of oral doses of F. Reproduced from Ekstrand et al, 1977, with permission. Young children regularly receive repeated doses of F from swallowing fluoridated toothpaste. When 3- to 4-year-old children ingested 0.6 g toothpaste(1000 mg F/kg), the mean peak plasma F(4 concentration [M) was almost the same as when they received 0.5 mg NaF tablet (Ekstrand et al, 1983). One hour after the routine application of topical F-gels to the teeth, children had peak plasma F-levels ranging from 16 to 76 pM. The highest value (76 pM F) in The F-levels 5-year-old high occurred a child. plasma remained for two hours (Ekstrand et al, 1981).
1.5 Fluoride in Calcified Tissues
Approximately 99% of all the F in the human body is found is because F tissues associatedwith calcified avidly attractedto hydroxyapatite(HA). The rapid uptake of F by the mineralized tissuesis one reasonfor the low levels of F in plasma(Jenkins,
15
1990). The rate of clearance of F from plasma exceeds that for calcium (Costeas et al, 1971). Whole enamel contains about 100 F/kg mg although the outer 2 gm of surface enamel from permanent teeth contains high levels of F- 1000-3000 mg/kg dependingupon the [F] of the drinking water (Murray et al, 1991). Dentine and cementurn contain about 300 and 1000 mg F/kg respectively (Newbrun, 1986). Bone is the main store of F and its [F] is a good indicator of previous F-exposure. Bone F-content directly correlates with Fintake (Turner et al, 1992); with age of the subject, and the duration of exposure (Kuo and Stamm, 1974; Parkins et al, 1974; Charen et al, 1979). Fluoride is not evenly distributed throughout bone. The [F] of trabecular bone is higher than cortical bone. The [F] of endostealand periosteal surfacesare higher than the central bone. deposition The of parts of F also dependsupon the stage of development, rate of growth and the vascularity of the bone; the surface area and size of the crystallites. Therefore, when bone samples are taken for F-analysis, the sites must be standardized (Jenkins, 1990).
Under normal circumstances,young or middle-agedadults retain half aboutone of the absorbedF in the calcified tissuesand excrete the otherhalf in the urine. Infantsandyoung childrenretain moreF than adults because they have a greater proportion of their skeletonsavailableto the circulation and are actively laying down bonemineral (Whitford, 1996).Infants and young children excrete lessof the daily F-intakein the urine.
16
Several studies have determined the [F] of human bone. The mean [F] of bone ash from elderly subjects was: 2085 ± 1113 mg/kg (Charen et al, 1979); 1834 mg/kg and the highest value was in a 79-year-old subject: 3708 mg F/kg (Ebie et al, 1992). Jenkins (1990) reported F-levels as high as 6000 mg/kg in bone ash from elderly subjects living
in Hartlepool where water supplies
contained 2 mg FALfor most of the past 100 years. Table 1.1 presentsthe F-concentrations of ashedbone in previous laboratory studies in which the animals were given different daily dosesof F in either the drinking water or the food. Table 1.1 Fluoride content of bone ash in previous animal studies bone[F] food water Reference Species Duration mg F/L
rat rat rat rat rat rat rat mouse rat mouse rat
15 15 50 50 -30 75 45 tap tap tap tap
mg F/kg
12w 24 w 12w 24 w 6w 6w 103 w -8 4 mg NaF/kg BW/d 95 w 4 mg NaF/kg BW/d 95 w 10 mg NaF/kg BW/d 95 w 10 mg NaF/kg BW/d 95 w 20 000 > 20 000
5-methoxyindole aceticacid
> 20 000
> 0.11
5-hydroxyindole acetic acid N-Acetyltryptamine N-Acetylserotonin N- Acetyltryptophan 5-hydroxytryptophan N-methyltryptamine 5-methoxytryptamine 5-methoxytryptophan 5-hydroxytryptarnine 5-methoxytryptaphol 5-hydroxytryptaphol Tryptophan
> 20 000 > 20 000 > 20 000 > 20 000 > 20 000 > 20 000 > 20 000 > 20 000 > 20 000 > 20 000 > 20 000 >2 000 000
> 0.11 > 0.11 > 0.11 > 0.11 > 0.11 > 0.11 > 0.11 > 0.11 > 0.11 > 0.11 > 0.11 > 1.1 x 10-1
of
aMT6s 5-sulphatoxy-N-acetylserotonin 5-glucuronide-N-acetylserotonin 6-glucuronide melatonin 6-hydroxymelatonin
T3 -
from (1988) Aldous Arendt and Reproduced
100.0 2.0 1.4 0.5 > 0.11 > 0.11
82
The specificity of the anti-aMT6s antiserum, (Batch No 1118/23884), was assessedby comparing the ability of several indoles and indole metabolites to displace 50% of maximum 125I-aMT6s antibody-bound under the conditions routinely employed in the assay. Table 3.2 shows that the percentagecross-reactivity with all the tested compounds was negligible and so they would not compete with aMT6s in the assay. Only 5-sulphatoxy-Nacetylserotonin,
5-glucuronide-N-acetylserotonin and
6-
glucuronide melatonin had low cross-reactivities but as they are present in such small amounts in urine, the antiserum was considered to be sufficiently specific for clinical application without pre-assaytreatment.
3.5.3 (c) Effect of CSU on the standard curve
100-
+1-2gl CSU CSU ýtl -v-5 CSU 10 111 -c-CSU, ul -*-25
so604020 0--
0.1
1
10
100
massaMT6s (ng/ml)
Fig. 3.5 The effects of increasing amounts of gerbil charcoal stripped urine on the standardcurve for urinary aMT6s
83
The addition of increasing volumes of gerbil CSU (2-25 pl) had no effect on the standardcurve for aMT6s.
3.5.3 (d) Parallelism
To determine whether the assay was parallel, ten samples of in CSU 4 diluted 1: 2 1: and gerbil and gerbil urine were diluted (Table The 3.3) that the samples show assayed. results parallel. Table 3.3 Serial dilution of ten urine samples with CSU to show parallelism of urinary aMT6s values (ng/ml) urinary aMT6s Sample
initial
1: 2 CSU
1: 4 CSU
30.6 27.3 17.1 10.3 8.2 20.6 5.5 12.5 15.3 15.8
16.2 13.1 8.6 6.1 4.1 11.5 2.7 5.2 7.6 9.2
concentration 1 2 3 4 5 6 7 8 9 10
55.4 50.6 32.5 21.5 15.4 42.8 11.5 22.6 32.7 37.6
3.5.3 (e) Sensitivity
The sensitivity of the assay, defined as the least amount distinguishablefrom zero at the 95% confidencelevel, was 0.2 in Appendix. See Tables F. 2(i)-F. 2(iii) ng aMT6s/tube.
84
3.5.3 (f) Recoveries
Table 3.4 showsthat the analyticalrecoveryof aMT6s at three different concentrationswasbetween98.3and 102.8%(n = 10). Table 3.4 Quantitative recovery of unlabelled aMT6s sample 0 0.5 1
15 ng/ml aMT6s 30 ng/ml aMT6s 5 ng/ml aMT6s added added added -FO/o FI/o total recovered total recovered total % recovered 5.8 6.5 6.2
106 114 94
7.2
112 93 97 95
31.6 32.8 30.5
104 107 97
96
17.3 14.8 16.0 16.7
32.4
100
2 3 4
0.8 1.5 2.4
5
0.4
5.9
110
15.4
100
29.3
96
6
1.7
6.5
96
16.5
99
31.5
99
7 8
4.6 3.7
9.3
94
18.3
91
33.9
98
102
9
1.2
8.8 6.5
106
17.6 16.7
93 103
33.0 31.9
98 102
10
1 7.2 1
12.7
110
22.2
100
34.6
91
mean recovery SD
102.8 7.4
98.3 6.1
99.2 4.3
Sections 3.5.3 (c), (d) and (f) were kindly performed by Judy English.
3.5.4 Methodology
The assayprocedurewasbasedon that previouslydescribedby Aldous and Arendt (1988) with the following modifications. 200 ýLlof antiserumwas used at a dilution of 1:40 000 in buffer. Gerbil CSUwasusedinsteadof humanCSU. Dilution of the samplesand QCs: The urine samples(which had been diluted with d-H20 following rinsing of the metaboles) were further diluted with tricine buffer using an automatic diluter. The degree of dilution depended upon the
original dilution of the urine collected from the metaboles.
85
Urine samplescollected at 3-h and 24-h intervals were diluted 1:25 and 1:50 respectively. QCs were diluted 1:25. The levels of urinary aMT6s excreted by the 7- and 9-week-old gerbils were assayedon a 24-h basis becausethere was not enough time to completethe assayson a 3-hourly basis.Before pooling for 3-h 24-h to eight urine samples give one sample eachof the 7- and 9- week-old gerbils, 200 pl from each3-h urine sample was pipetted into Eppendorf tubes and stored at -20*C. The pooled 24-h urine sampleswere diluted 1:10 with buffer. Procedure
The assaysize was limited to about 160 tubes to avoid assay drift. The volumesrequiredin the assaywere: Sample/standard Antiserum. Label Dextran-coatedcharcoal Total volume
500 PI 200 pI 100 PI 100 PI 900 PI
The aMT6s standards were made up in 1:25 CSU and 500 pl (See dispensed form the to page 78). standard curve. were Unknown samples, NSBs, and standards were pipetted into LP3 tubes (Luckhams, Burgess Hill, Sussex,UK) in duplicates using Gilson pipettes or repeating Eppendorf microlitre dispensers; zero tubes were prepared in quadruplicate. 200 pl of antiserum.at a final dilution of 1: 40 000 was added to all the assay tubes except the total and NSB, tubes. The total tubes only contained 100 pl label so that the total radioactivity of the label could be counted. The NSB tubes received 200 pI tricine
86
buffer instead of 200 gl antiserumto discover whether or not other compounds bind with the antigen. The tubes were vortexed for ten seconds and left to incubate at room temperaturefor 30 minutes. After adding 100 pl 1251-aMT6s(10 000 cpm), the tubes were for incubate left ten to vortexed seconds and overnight at 4'C. The bound- and free-aMT6s were separatedfrom each other by the addition of 100 pl DCC, (stirring at 4"C), to all tubes for After the totals. ten seconds, the tubes except vortexing left incubate for 15 minutes at 4"C and then centrifuged to were at 2500 rpm for 15 minutes at 4"C. Immediately after centrifugation, the supernatantswere discarded. The radioactivity in the charcoal pellets, (the free 1251-aNff6s antigen), was counted for 100 seconds in a 12 channel gamma UK). Surrey, (Multigamma, Selsdon, LKB Ltd, counter Standard curves were plotted on B/BO% (y)/Iog(x) coordinates. The aNff6s concentration was determined from the doseresponsecurve using a'RIAcalc' program.
The 'RIAcalc' program determines the percentage of total counts (bound or free) and then plots them as a function of the known concentrations of the standards. A curve is fitted through the standard points using a smoothing spline calculation method. This fits a continuous curve to each pair of standard points using the least squaresmethod and it calculates the best fitting curve with a minimum number of turning
87
points. The concentrationsof urinary aMT6s in the unknown sampleswere determinedfrom the standardcurve. All samplesfrom individual gerbils at any particular age were analysed in the same assay. All analyses were done in duplicate. When the results did not agree within 10%, the sample was repeatedand the outlier was discarded. Samples which had aMT6s concentrationsgreaterthan 26 ng aMT6s/ml were repeatedusing a higher dilution. The excretion rate of aMT6s was calculatedby multiplying the concentration(ng/ml) with the correspondingurine volume. 3.6 Measurement of Melatonin Content in Gerbil Pineal Using Radioirnmunoassay
3.6.1 Collection of the Gerbil Pineals The subjects were 71 gerbils aged 16 weeks from: the HF females, (n (n 12 LF 12 the group group = males), = 12 females, 12 males) and an additional low-F group (LFNM) (n females, had been 12 II which = used as a pilot study males). Groups LF and HF consisted of gerbils whose urinary levels of aMT6s had been monitored at 7,9,11
Y2 and 16
weeks; group LFNM consisted of gerbils whose urinary levels of aMT6s had only been determined at 16 weeks of age. The 16-week-old gerbils from the LFNM, HF and LF groups were sacrificed in July, October and November, 1992,
88
in hours 48 day had the the they completed respectively, after metabolesfor the collection of urine. Six gerbils, (3 males and 3 females), from each group were intervals 24-h 6-h by dislocation over a sacrificed cervical at light); (3-h 2200 (during 1000 1600 the after the period: at and darkness). darkness) (9-h 0400 the onset of onset of after and The superficial pineal glandswere removedwith a minimum of delay, placed in 5 ml Eppendorf tubes containing a drop of dH20 and frozen rapidly on solid C02. During the dark phaseof the LD cycle, the sacrifice of the gerbils and the collection of dim from illumination the a pinealswere performedwith aid of light. The pinealswere storedat -20'C. red 3.6.2 Analytical Procedure
Melatonin concentrationsin the gerbil pineals were estimated by means of a sensitive and direct RIA that had been for (Fraser 1983; other species et al, previously validated Webley et al, 1985).Pinealswere homogenizedin I ml tricine buffer on ice using a glass pestle and mortar, (Glass Unit, University of Surrey). The homogenateswere transferred to LP3 tubes and centrifugedat 3500 rpm for 15 minutes at 4'C. The supernatantswere aspiratedand frozen at -20'C until time of assay. Estimation of the required volume ofpineal extractfor RIA The required volume of pineal supernatant for the RIA was estimated to ensure that the MT concentration lay within the
89
5-250 for MT: typically the pg/0.5 ml. range of standardcurve This was important becauseof the limited amount of available i. 500 for The RIA NIT e., ýLl sample. required one ml of sample in each duplicate. Assuming that the gerbil pineal produces about 50 pg MT/day, 200 pl of pineal supernatantcontains in buffer). homogenized I (each 10 MT ml about pg pineal was Assuming that the gerbil pineals contain higher MT levels during the night than the day, the following volumes of pineal supernatantswere used:-
night-time daytime
pineal supernatant 200 pI 300 pl
tricine buffer 300 pI 200 pl
3.6.3 Reagents
Water: All water was freshly double-distilledin glass. Tricine buffer.- Seepage77 Dextran-coatedcharcoal (DCQ: Seepage78 3H from Amersham, (Prod No. TRK-798, Label.. -melatonin International, Buckinghamshire, UK) was obtained in 0.25 mCi 3H-melatonin intermediate An was solution of quantities. label 2 by diluting 20 to of stock ml with absolute [LI prepared by diluting freshly The prepared ethanol. working solution was the intermediate solution with tricine buffer to give about 4000 in cpm 100 pl. Antiserum:
Sheep anti-melatonin
(Prod No. antiserum,
G/S/704-8483, from Stockgrand, Guildford, Surrey, UK). The antisera
were
raised
in
sheep
against
N-acetyl-5-
methoxytryptophan conjugated through the side-chain to
90
bovine thyroglobulin. It was supplied freeze-dried and was dilution intermediate d-H20 (an two of reconstitutedwith ml 1:10) and aliquoted into 50 pl portions and stored at -20"C. One 50 pl aliquot was diluted with 20 ml tricine buffer to give the working solution (initial dilution of 1:4000). Melatonin standards: Standardmelatonin (Prod No. M-5250, from Sigma Ltd). A stock melatonin standard was prepared in 0.5 by dissolving 10 three ml every mg melatonin months absoluteethanol and making up to 10 ml with d-1120to give a freshly I The concentrationof mg/ml. working standardwas for from this stock solution eachassay. prepared 100 pl of I mg/mI standard MT to 100 ml in d-H20 to give I pg/ml Nff. 0.5 ml of I pg/ml MT solution to 50 ml in d-H20 to give 10 pg, pI MT. 125 pl of 10 pg/pl Nff solution to 2.5 ml in tricine buffer to 0.5 give pg/pl MT. Further dilution of 0.5 pg/pI MT with tricine buffer provided the standard curve - 0,2.5,5,12.5,25,50,100 MT/0.5 ml as follows: Melatonin 0.5 pg/pl gl 0 5 10 25 50 100 200 500
Tricine buffer
250 and pg
Melatonin pg/0.5 ml
gl 500 495 490 475 450 400 300 0
0 2.5 5 12.5 25 50 100 250
91 f
Scinfillantfluid: The toluene-basedscintillant was preparedby 0.15 (Fisons) (PPO) 2.5 2,5-diphenyloxazole and g adding g 1,4-bis-(4-methyl-5-phenyl-2-oxazolyl) benzene (dimethyl POPOP, from Fisons) to 0.5 L toluene (low-sulphur grade, from Fisons).
3.6.4 Methodology
Except for the zero binding tubes, which were set up in NSBs totals were set quadruplicate, all standards, samples, and
in duplicate following the volumesof reagents:up with Samples/standards Antiserurn Label Dextran-coatedcharcoal Total volume
500 PI 200 pI 100 PI 500 pI 1300pI
500 pI sample(200 pI pineal supernatantand 300 pl buffer, or 300 pl pineal supernatantand 200 pI buffer, dependingupon dayduring taken the the night-time or whether sample was time respectively), MT standard or QC were added to each duplicate assaytube. 200 pI antiserum.was addedto all tubes for The 10 NSBs. tubes the totals vortexed were except and for incubate 30 minutes at room left to seconds and 3H-melatonin After 100 temperature. vortexing, pl was added. the tubes were incubatedfor 18 hours (overnight) at 4'C. 500 from MT DCC 4'C to pl at was added separateantibody-bound free MT. The tubeswere vortexed,incubatedfor 15 minutesat 4"C, and centrifugedat 1500rpm for 15 minutesat 4*C. 700 pl
92
aliquots of the supernatants(containing the antibody-bound fraction) were pipetted into vials containing 4 ml scintillant fluid. The vials were thoroughly shakenfor one hour at room 3H-melatonin into the in temperature order to extract all the for is This organic phase. system a more efficient medium radioactivity detection than a detergent-basedsystem and is lesssensitiveto quenching. The B-radioactivity in the tubes was counted for 5 minutes using
an
automatic
B-scintillation
counter
(Rackbeta,
Pharmacia). The counting efficiency of the samples was 25%. The sample concentrations were calculated using a 'RIAcalc' program.
3.7 Physiological Signs of Sexual Maturity in Gerbils
The areas of the ventral glands: At 10,16 and 28 weeks of age, the widths and lengths of the ventral glandswere measuredto the nearest 0.5 mm using callipers. The areas of the glands were length for by formula (1/4pi the estimated x x width). To an ellipse facilitate measurementof the ventral gland,the abdominalhair was dampenedwith a small amountof water. The age at vaginal opening: Each female was examineddaily for vaginal opening. The age at which vaginal oestrousoccurredwas recorded. Body weights of gerbils were recorded(to the nearestgram). Right and left testes were removed and weighed at time of in data Combined the testes sacrifice. used were weights of analysis.
93
3.8 Statistical Methods
3.8.1 The Fluoride Contents of Human Tissues The [F] of pineal (wet), muscle (wet) and bone (ash) and [Ca] (wet) SD. The amount of + of pineal were expressedas mean hydroxyapatite (HA), CaO(PO4)6(OH)2, in the pineal was determined as follows:- MW of HA = 1004, therefore HA = total calcium x 1004/400,HA = total calcium x 2.5. The [F] of HA was expressedas mean± SD. The degreeof calcification was determinedby expressingthe weight of pineal HA as a percentageof the original weight of pineal. Statistical differences between the mean [F] in pineal and Student's (wet determined muscle using unpaired weight) were Mest (two tailed). PearsoWscorrelation coefficients were used to test correlationsbetween:i) pineal [F] and pineal [Ca]; bone degree iii) [F] [F]; of ash pineal weight and and pineal calcification. Levels of significancewere set at p
11
r1)
CD.
'jý
lie
rn
ri
rý CA
6
-i
CD
i
rn
CD
r-
7
rn
oý
ýc
00 0
? m --43 m4
ri
r-
Ilý
--:
00
Jc
CD
ri
09
Z
00
cý
jý r, )
rý
r-ý r1
ýý rý
C, 1
e
cý
cý
rn
oý
-:
CA
rn
F-
le
r-
r-ý
--:
vý
cý
V)
r-
rl
rn
all
-
CD
od
oý
00
CD
r)
ýo
CD
00
r1)
r-
0,
r-
CA
CD
00
r, 1
r--
Z
CD 00 \O
rn
ý Z
r-
' CD
73
0
cý CO
--:
cý C,4
cý
c"i
rn
rn
rn
cq
e
r
CD cý 00
vi 0
Z
mi
Z
00 r--:
rn
00 KA
rn
00 cý
00
rn
all
--:
cý
kn
r-:
CD 41)
00
CD
00
C> fM 0 Z
«s> 4. 0u
c9
-
od
CD
c,
>
111:
CD
-
c--ý
ýlo
ýo
vi
r-ý
c5 CA
r,-:
110
fl) r-ý
ri
krý
6
c5
-
rq
o
CD aoo
en W) clý 1.0 en 00 tn I-T It en "T (D ýo :;
5-9 "
tn
ýo wl ýo '": W! (7ý t": N 10 :; r-: C4 4 en Go lqr ItT
c) c)
.
rn .
0
C) 0 .1
0 c
rcý
tý -
41
rl c > 00
cý
c>
m V)
wý
3 .
m
0 *0
c3
r-
-1 Ilý 111: -1: -i li 0 0 o 0 .
cý ri 1: ý
(D 2 2 ý r.: Z 2 cK ö 6 2 2 2 2 :t Z,.
Z
u
cý
:
Z:
(>O 0
%0 i
"
c06c; cý
m (b e
kn e
2 rc> e " vi Wý 00 rm (D CD M -e er C2N 00 00 te) vi 00 00 00 %0 V) m le n r'
1-
e . -i cý cýcý
r- 00 08
-,ý Icý li 0
(D
ei Ilý Icý 9
c> (D 0
-:
CD CD (D
E Z Z 0 Gn
"0
00
F.. u ll
c3:1 P-l
P-9
2
r-: cý ce '4ý 0 e4 0
0
ei &&0
(:
s
m -CD e o
r_
0
CO
t"ý r-
-1: 1 -
rq
ýt CD 0
m
%0 \O
00 -e t-
%0 (D 0 m
00 Vi ri ýe CD `I: e 0 0 - . eý %ei LD i
ce 9
. z5 c4.
0
CA
ý ti m 1::
q: cs
et
e
r": c:ý e c> rv
vli
rq
r4 «e
ON
"
e m (w) C: ) Q
rn
ýN
-e c> cý
(7, ýo
r4 m
00 -
V) r4
CD
2E
CD (:ý r- r4 -
.:: cDý0-, m CD ýo -
(-i tr; oý ýd 10
-
vi c4
V-1roi ri
r4 ffl CD %0 e er t%0 Uü CD 0 (= CD M CD CD vm -m r4 " -9 ýo "0 w« ho F- ým
1 0 1
.-
0
c4
c4 4.0
6
218
rn
-
r-
e
le
(D
CD N
-
oo 0
ýi -2 i e ý> l<
U
.
(D
(D
CD (D
(D
.2
2
E 2
ý> 2
m 11:
"j
,
c2
00 c> CY%vi vl
%0
-
r-
00 rq CD rn
9 N r,: -i -': -! 83 CD CD (D (=) CD tz «
9
CD
V'l r-
0%
(>
0% trb C% M
r-ý --: -d CD 0
m
-cý d-
E n
rn "0
4
F-- u Xm
9
00
CDm rq CD cl
09 vi
4)
CD Q
Co cý
0
l<
d
4-1 vb
0% C>
m
ý ý
c% m
b 7,00" r-o cz Vb
V. ý cý,
09 Cý ri - i C:! - ! 9 -: -ý -ý . CD CD CD (D (0 CD 0 CD CD C> CD
co
CD cy,
oo
ei
liý f i
ri
CD CD CD cz
rn
E i 20 .
el 0
1>
r4
M
tz
vi N cz 0
Vi 00 Cý Wi 9 2 2 r, :: 2ýo
1
CD CD CD CD CD CD CD CD Q CD = w
"I: ! --
ýC) Ch f4 -
ell rCD CD
CD CD C: ) CD CD C: )
CD en ýo
CD 0 CD CD CDN (4 M
CD CD CD CD c= CD CD CD CD CD c>
C:) C: m) (Z CD CD r4 ) c> Me) CD -9 f4
CD CD
CD CD
00
wi
ce
'IM
94
U) en ý,0 0 ýQ %,
=
CD
c4 m ce cl 1; »Z CC
219
vi
rn CDe4
rq %o
%00 rq 0 -e c>
t, vi r4 c4 rq
-0 u
Z
ý-
-9
00
ýo
ri
vb rq
rm
c>
-
m
ý,0v -) rý (D (Y,
ri fi( l i 111 : 111 : 111 : Cli
.
E
!2
e-
A _to
i
ri
Vi Ci N
u
c4
lit
-
r-
ýt
09 --: vý liý cy, %0 -ý ri
ri
vý 00
N
CD rn
'lý
v, > vi
00
CD -
a',
rq
c>
":
2Z
E
LT.
%G1 00 F(4 -ob
ZE
u
Cbo
-
r4
%0 't rýo rC>
tz
Co
ci ri
r.
u
c> CD et 0, ý m r%0 (>
rq VI %0 ý
't (>
CD
(D 0
ýo
0
(D
0
CD 00
0
00
-
It- 00 t CD V) ro) CN C> Wg 00 M M Ilt VI CD e it C,1 e c ; c ý c ; -- ;
i-
2
i
-
c> Co vb
vý
CD e
e4 cý
os, 06 e: oý I:
C: )
--: .
od rz -,ý cyzcK q:
r-
rq
00 m rý
0
vi
V-b
V'b %0 00 ri M
CD gt %Z 00 "
CD 0
CD 0
oo
M
CD C>o
r-
%0 ýt
t N ýt CD M ý 00 c> c> ýo - rn c ý d cz;
kn rr4 nt cý
fi
V-b In
-!
(> rý
0
(Y,
ý
rý
ý ; 5C, 64 ci -i -i ci rzrz; ; ,i Z i ; 6 j i b-
r,
vý 2 c2" c4 "0 m 00 ','t
00 -
00 119 -:
(>
m oo m 1,0 fq
c; c; c; c;
cý ýo %0 9
vl
2
NA %D M C> -
->
ma', C,
f i c:?9 -1
2,9 jý "0 %0 ri
>
U .L 10
C: ) ýt r') m r;;
cý c=;
E " -i M
*2 42
't (> c>
9 -1 9 rý: ,e -
ti
5
r,:
(7,
m
t':
t'ý
e
ý
;
rý
rý
CD
em
,0
%0 vi CD d 0; r.: oý 4 C, mm 1.0
ýr oo ýe 00 ýe m 4t -1 f4 V' bý 4:r tý V ,0 ( 14 (D r, 4 vi r m ;; "mm CD C-4 v-, cý cý d (D _ Z ci cý
00 cý oý M
v-, m
r, 4 -,0
c:ý
00
2 .0ce si
4
CD l= CD C:) CD CD CZ) C:) %0 0% r4 "n 94 CD
eq f4
rq
u
2 .i z
cl
d fol
;Z
CD CD le CD
Cb C:) CD l= CD = CD CD CD CD CD t- CD n ýo 0% (4 e4 CD
CD C:) CD ID CD = CD CD C:) CD -! P r- CD en 1 P-4 0 CD pe
9-9
>I e1 ec % 3 :e
:,
"4
CD (D CD CD CD g= CD CD c=> = CD 0 c> (D CD vi = ch CD CD CD ch C:) C: ) CD CD CD CD CD CD CD CD CD ch (4 t%0 6, ýe CD er) CD CD C r4 CD rZ 44 (Z-0 -e 9(= = Po -4 pw p« ri fflg
u)
Iß
92 ýwr.
14
ý 5ý>-x ci c4
c4 cc
0
Z
2 1. ..
U
CL
40 ic
0, %0
im ce
220
1 f-
ýo
"0
00
-
C> 00
(2 CD
00
CD
CD CD CD CD -
m E
9
rf4 (D
e
140
00
00
tr;
CZ
0., -t
cli d
es
vli tý
C> m
00 IZ tz
wl %M
Q ýo
Q vi
ri -i cý Co -i
(D (D CD CD CD CD CD r-
vi
t-
le le CD
cý aN
(b -
CD c
r4
Ilý '": N 11 '. ' r,0 (D le o vi . rn (N "
wl r-
vli
(1q
Uw
C N 9 C ý ý l CD CD CD cc CD -
Nz
CD CD CD
4 CY, r, (Y, m cl CD e: -i c> vý ri r! -ý -: CD c> CD CD (D CD CD
V,
C)o
Cý 'Icýcyý09 1:ý 159ce In Cý r,ý rý
Z cdý
14 jU
0 4)
roi
--<
a
C>
(6-4 0
.
vi
(D (Y, m
r 9 ! v i : : ! : 0 CD CD = CD CD c
ei e
m m CD 0
c%
CD- cý C.: 1 rý --: --: -ý d ei -; r,; ei
Z
CD co rm " CD %0 N
F-
i
00
;4
ýr em 9 -
%e C:) C> 4
er
tý
9
r! N
CD CD 0
%0
i CD . 0
%0
tleb CN "0 (Z
vi
rm
ýt
c> 00
CD
Co 00
"
oo r_
f4
e: -;
-Z
f4 CN
W
CD =
ýQ c%
wl
vi
ý
CD l= M ýo ffl "0
kn 00
ri 9 ý N c:: f! in -i -ý -: (D CD CD CD CD CD CD CD CD CD C:) -: 0
4 >ý :. cq 0 %
e
Z
CD .
CD CD C:) (= CD CD CD CD CD CD CD CD CD CD
7 7 2 H = CD=
%m e
0% m
Co oo Co CD CD CD CD 00
CD CD CD CD CD CD CD C:) C:) CD CD C:) CD CD CD CD
c06 cm ; .2CD
CD
CD %0 "
2 ll
1--,
1-
CD . cz
0,
ON vi
rý,
(z«
: MM
-c; (S - 0--: 0IN
ýý- ý::
m
ý Vi 1::
10
(A
5
e4 (2, CD (D :;;
't
cý
cz
CD ) CD CD CD CD c> CD CD CD =) c:, C: CD C:) = c:, c> c:, CD = CD = CD CD C: = ) ýrA o
C:) cIt (4 -N f4
wm le 9CD C:) 0
CD en ý« " 0
%0 0% e4 " m W-4 fq
9)
w
%0 a %0 %0 CD F-0 F"q ýe r[-., u ho CD CD CD wg -> e4
-
(D ew
0 4
CD ZE
ic
JD
No
-ü
m. u)
cc
221
4 INZ,
Z
10
f4
cu
v.
v.
u
Vi Co c; rý -ý
w
2
r-
e
gt f4
rq "I:
M c;
0
t
rf)
nt c>
-ý r-
14ý vý %iý t- CY%t- rn ý,0 m -
CYN vi
jý
Vi
00
0
el
VI M
.
(>
00 mt ýo (4
r-
0 -e V') %,
m
00 (7, e
tý
CD -t
ri
CD e
rq
-!
9
0
m e
i
e: e Z
l<
>
kn
r! e i N -1 -n: 09 r, rý -! 09 -1 rý w ýý N ýc t:K V'l cý CD m rq t': le Z ý ý e4 d fq od
0
su Ch
(>
-
00 0 *, vh tý ol ý (N 00
m
%Arq CD 00 tý %0 CD N ý -: 1:: -: -: -i -ý -! -! -: -i -: : C:) CD - CD- CD- CD CD 0 0 0 (D CD 0 (D CD (D CD
rý vi N 'lý o ti ri od cý" cýZ rq CN
cý --: CD = m ý m oý
r-
'-, CD =
CD CD CD CD CD C:) Q " rc>
e e4 ffl PM -W e4 CD CD C:) CD CD M %0 im 1-4
CD c> c:, c> f4 v-m e fq CD CD
c5 c5 CD c5
=
en e
CD c:, rCD
CD = e
r4 m
c=
c: b c> CD = p" C:)
e
CD
CD
ý
r, CD en CD
CD 0 C:) lý CD CD CD = CD C:) CD c> rq .0 't Zi m CD CD
m CD CD rCD
%
r.
C:) 49 vi m c= No ýc CD H \o F-0 E-d .w
c4 clcqcq
222
cý
rn
cý
W-.)
rn
CD
rr)
C4 00 r ) C) rA (s -; C)
E rn ý: 00
CD
c>
I-, oll r)
c)
C)
C) C)
(= 6
r, 4 C'4
ý-
0
=
6
2 ý1I
-ot ,
a
E
E =
Ln
00 cz (1) $.. S. u Cd
,
6
rn
C, 00 C:) r -4 (:::ý C)
00
kt-ý
00
ý= (::,
fl)
110 rn C) c) C: ) c)
CN
C>
r-
rn
C)
(=> "D C) 'IT
rn
It -t
C)
kf)
't
" C)
00 C)
00 6
rn
6
CD
0 .
0 kr) ('',c
\D
C) C: 0 C) (c) (= rC) CF c) oa - ý7q 7 ) SO = re) C) r-
ýc o -6 ýE 6 4 (6
r1i
r-
:2
ri
00 C) C7, C)
C) C) c)
C)
00 c) 6
C) C-,) -5- C-4 ;ý C> ('I C,
'1)
C7,
"
kr)
q
C) ýo C) C) CD -
17'
r-
r,
(:: ) 00
ýc 6
'r,
cn 6
00
M ONýc ýc 00 1'- 1- Wýrf) W')W)rq t'- (14en (D 00
c
rl)
r-;
kr*l
kfý
6
C-;
rý
Vý
-ý
kr;
Cd
W) a, m rn 0
=3 to-
(,- 0
V
-
E =
I
-
C)
C)
0
r) .I: "T 0 -
C)
0
C)
6
CD C)
C)
C>
r - r - "o 6
C)
r) 00 00 C'- C) ýo 00 '0 a',
W)
ý, 06 2 ý, = 00 ý*.!? :1
0, cr, - S-21ý 0,
;01
0 R
C)
c) W) m "T 00 ýt
4)
>
-z;
o
C) C7, C) rm tT r- "o "t c, m (a' 00 r- rt- 01, W) 00 C-4 "o rl ) Cý C) tn
I r- -
r) V) (7, W-)
\Z) kr)
Cý \C
r- 01, 00 It
00
r V cn
C+- U
6T. _;
C) Cq
ý- ,w CD c) "'t CD o
un
It ýo
00 I--
m "o
00 (14
rq 00
W)
C)
00 CD
Zr- \ýc W) qS W) ,:r r4 "T cD -W-ý CD ri C-4 c)
" C)
C)
0
-
C)
C)
C5
C)
CD C)
00 r)
110 00
rf) C>
o ýCý o -ýC-1
-r4
CD -
6
C)
CA
E
C, :2 r- S2Lý! :2 R n n
o r03 C) -0 #W)
ýj
C14 1ý
r
CD-0CDC) '-t
w
,C
*ý
" "
;-"
(=
4=
(=
=
t(Z
CD (Z
C=
=
Cqg -V t--
0 04=0 V 'a Os CA (= t=it = = fn= '414T "o =Q PO) (= (= r. -a -6bu (= (=
=
(=
== cl
(Z G
(=
=
(=
\10 10
"o
Fý
w
ot
a
223
eu ý M m
%jý ýe wi
vi
vý
1:2ý Co cý
r- r4 (D - r4 M 12 :: ri ri rý ri rý 2 od
cý
Ilý
r-i
(, i
'lý
cý
1,0 e"M 00 9t Irt
11 lit
%0 (D rrý
vi
v; 19 -
4«
u
ý:
h<
NZ
Co
rn
rq
-
M 00 ý In 1::
'2
le
-
r-1 10 %c
% ,0
e
ý
CDv% 22 et 00 (Y, " m ;Z rý c> g vl r4 ,r, V-1-m 0 r-i CD %
tý-
Cý,rlý. ci -i .
ri cli
- -..
09 fi .
.
10 r! vi c:ý 1: 1,9 vi rý ID rn
ce
az
iz
tu
2c
;& 04
E
ý: e.
0
Kt
Eb
NZ
fi-- *ý d 116c; 2 vi cý 06 cli cli ý! cý rz i --
00 r- 't VI ýo cq nt vi 1,0 00 cý el No CD c> m m4 co C> F) 00 rZ rm C> v-, C> r4 v-) CN CD ON r-) rn rý -
%J5 te; 0"
m Co e 00 r4 m Vlb %0
wä m v%
tu c
r-
e; .
24
r-ý C> cý CD ai CD --1 vý - ý C) : 0cý CD -ý F --: (D - ý.(D -q: c> CD 0 (Dý -n (D - i ic)n
nt c4 rA ,ýo
00
%D
C>
2
e-
;4
4
&
ý
CD -e cz; -;
M-Mr4 (4
rc:i
ýo
c, d
cý ';
v-) CD tý c; rJ ci
o
%D rr-
C> e
00 en
fq 00
cý c;
vý c;
r4 r-
e rq
v-. 00
cý rf;
09 CD
m ý
er c>
vý l'R cý CD r- rq
N c\ Co c71 (Z) %0
cý, c> 0% ýo
(D 0 't %0 C> rý 00 0 et gt rn Co Co ý -e CD CD (Z m "t M CD e4 CD CD CD N 00 -0 c; cs cý cý c; cý d cý d c; cý cý c=; cý d
rý cs
Z: c2,1wl
"0
0,1IM
Cý rý Cý tý c> wi V) mm
r4
rA
ci 0
0
4.-4 0
c:! vi r-:
s ý. -:
en ci m
r-
mmm
%A
;j (n
&
04
0
N0 vl
le rý %0 r4
ON V) V) (D r- le vl V) ýo %D tn CY% Ch -
ON rq
C>
%0 c> -e
r- g00
V) M rm
Me rm
cl
ý-4
(Z
t'ý
=
====== CD =
c C:) CD 0c = CD = CD= CD CD %0 ch r4 9-4 " rCD m) Q ri c00 C= =
CD ==
le
c>
CD
t-
ýc
CD CD
=
c% e4
M
V)
:& m= r- CD en r
CD- CD o= CD ==
-4
e
CD C
r-
%A
>I >I 0 (A
%ft %0
c
10 10 10 b-, E-4 u cz =
-OD
CD "m x
r. >,
ce cs
2.
-
»---
.-
1
1
-2
S0
41
224
wi
140
ý-
u
CD en vi
-
r, 4 "!
-e
-e
,0
CIO r4 e: Q
0 -1 (D
1.0 t! 0
2 r- cý r-; --: rý fý -
Q 9
CD le
0
98
CD 110 C> C>
.2
CO cý cý N 0 0
cxe n
rn
r4 ri 0
CN kn I: ri 0 0
V) "C! (D
%C! ýo (> 00
e
N N 11CD -i 0 0 CD E in
l»4
00
rn
9
(D
r-
V
-
00 t
(Z
fn
v)
rq
" r -4
I i IZ n ( e f 0 C> 0 (Z
c> rq
-
i(Z c
ei 0--1 r(Di (Z : (D -ý
CD
(D
(D
-
00
c9 Ci t"ý 00 c:ý (4 0 Z: cý 2 -e e4 c2ý%0m CD-
-
(7,
v-. e c2ý
"C! t'ý r! r- 00 V) In 00 -e m e
>
el
tý 09 cý 9 ze cý tri ýn i e m ý m 0 q: r,:, rn
eg
le
ýo E ho -ib
Wi
e-. X. m
rn CD mt r4
wi V %
c,
:;:
m CD m o'
r-
(D
CD (>
kn
rq
00 CD tý
vi
0
10
9 -: 0N CD ci 0 . 0il 0-1 -1 ci ri 9n ri CD i CD -1 0 0 CD -i CD CD 0 0 vi
(D CD(4 N rq WäN
(:ý ri r, ý '": CDrýv) vi -e e'i t, %0 (> r00 0,2 ý,0 (,fi Vi vý (, cý e
fiCD
Q
v la rq
c4
%0
wi
V) 1
-
w%
c:, (7, r ,
C>
vi
-
>
CD (Z
t-
M
F,0
t-
rm
mt
CD
ý
o',
0
Q
0
C> (D
m
-
ýo
vi
CD CD CD
t-ý 1: 9 r': Vi vý '4ý 11 (1 ri In ", -! -ý 9 N e V) M M Int m
Z -i 13
.0
(7,
r 1q
ri
it
C:) CD CD
F-9
N
CD 0
E Z Z >
rA
N
v% r4
ý4 0
i
c> q. M 00 f4
Q
ýQ
n
C>
e
t-
M)
I I CD cD c5
C= cý CD cý CD (Z CD CD CD CD = CD = (= cý cýcý = cý cý " t- c> en ýa cý cý m cý ýw e =
-m
' C 1 0 1 0 ýw u CD = Ir- CD ti
X
c4
r. >, F-
c ;; lý eg-0 1
1
1-
1
1
1 '42-
16.
ýw
ID
225
u; 0
12 ý.. U
Wä tn
2Z
cm;c=; .i
le
V)
d -:
ON 0 (N
00
r-
M-
iz
Ila d
u
wý
00
-; -: c=; rý -;
(D M
CD rm
CD c:, c> c> cz
to
00
M-
ON M
c=; 0
't
VI
d Ci rý
.:.;
CD m r4
le rq
M)
10 (D (> 2 i ID co ý "- :9 CD CD c> CD 0
ý r4 " C, -;
.:: 0
r-
m
00
0
00 4t rq
rm
00
r-4
ýo
%D 00 ri Cl i (D 000
ri -: -I: ri "I: (> Qý r- Z CD Vi 119ýo r' 9 ýe r- 00 r- e 0 ýd M oý oý cý !aE! 06 cz 2 ý!
2Z
c; cq -; cý rý _-: r-; -: cs -i -: d rý
s ý
r-
rý
0m
-Z
-:
t'-
m
m
r,
.A ýE E
h.
i
C=) (>
0, % -
CD r-
V'b ýt
m
C>
"
"
00
CD (>
CD r-
-
CA r-
c>
ýt
e c> r" (7, 'm 3 c> e (D 4-'-. rn 'ü g 9 N 99 (li "i CD- In: 12 In co ei -i -i -i -i Q CD CD CD CD (D CD CD . CD. CD CD C:) Q CD CD
E-d ti vý c-?ri 9 rý le Vi cý Ci " CDt"ý 't '4ý vi 10 CD
le
In ri Cý kn e - r- CDc> N m CDrq - r- r-4 m r4 ri rm r4 09 - C., (4 in rý "
Su
't h« -ü 0
6ý
c%
ýo 0 lit %0
M
e9
CD 0
rm
%0 0
CD 0
0
m
rq
M
%0 m
(>
kn rq
00 0
Ilt \O C:) (>
CD CD CD 0
r-
(>
00 In
(>
V)
CD CD ý
00 "0
CY% m-
r,
CD CD CD
ý
CD
00
0 r. 0
vi
2 vi rz .i
v-) vi
le
ri
0
le
ý,0
d
00 d d
\o
00
oý
s
X CD M CD CD %0 (D ýo it cz; c-; fý ei ri c; 6 ei
d
rý
e0 ri cz;
r-
cu fi
;4
0 rn
2 1 5
i
19 m
b
0
Ch r4 lýle 0 (> (D ý; cý 0 . CD
00
r4
m ri (D
VI cý e4 CD 111: 9 CD Q
m
coo rn
rCD rlý CD
Q
rvi fi C:) CD
Cwo cý
C>
-
rý
(: %D 10 vb t- %0 rrq (D V) CD (D rq N 9 Cý cý c:ý cý CD CD CD CD CD
jý 11 K
L'! '2 -Z: re 00 e (DN c m (7, C: m ýd ýd
.0cu
c
CD CD CD CD CD CD CD c = 0 CD 0 cz C:) C:) CD CD CD = CD CD = CD CD CN rq r- C:) n e C>%r4 r4 CD CD CD e4 CD CD 8 8 8 811t 1
C2N 06
c; fol
"m
CD CD CD CD r- CD en CD
J
cn
CDC:) CDCDCDC:) c> CDCDC:) CDc> CDCDc> CD CD
CDCD (: CD 25 CD CD 25 rm CD == CD c 4 C> t' "m CD le rer ) 1 el CD (Z l e CD ýa c:, -, r14 C: ) C: ) CD
M
m
c
C:) CD CD 1-9
j!ce 2 i! .ec ce
rA w
226
10
Q)
CD
U.
1:
-
ý- -üE 7
tü
aF
tü
-
rq
't
-
t
cý
"t
-
-
r-
kr)
e rn
(DO Cý
e ki
ýt 't
\Z cq
CD 00 C> e
00 01
r, 1 rý ýo
(Z
r-)
rn
e
rn
v)
llt ell
(r) e
(lý
c
o
kr)
r-4
rn
rn CD
f, ) CD CD
CD
C>
CD
cý
00
CD
CD CD CD CD CD CD CD CD CD CD CD, CD -
C-1cý 2
0
0
-
CD C,
CD rn c>
rq
-
r12
-ci
cý
'4-ý
-e
1: C, 0, Z n
cD
L, C, 0
r1
e ýýJ,a, n
2
-
E
10
4D .cý
c5
e CD rn
ll ri
Cý Ig CD r-1
cý -cý cý CD
ým
CQI)"
E CA m
f- e, hýZ
u
cý CD
Lo
rn CD rn " c> CD CD c> cý CD (Z cD
0 -
) CD 00« L'
') 2
1,4 2
-
v) a,
re 0 00* rn * -
-
CD
CD
rn
00
r-
ýo
0
CD Z:
r-
-e rn (Z
CD CD CD -
oo CD
rrn
Z
r, 1 j CD CD CD 0
Ild E
&u >
e CD
Q) k.
-ä
-a
r-
',ýt 2
'ýý n
c7, 0,
Wý
IZ
CD
00
t-Z
9-
c> ýt
CD Z le
Gn
73
2
E
ce
CA
ý c
r-1 ýc ri mi 2 1.-9 U.
e
r.
CD r)
CD -
00
-r-
00 r-
CD kr)
oý
(Z
CD CD CD CD CD
r-
r-
n
cq rn e
CD rq
-
v)
cý
-
rrcý rn rrCD e CD CD CD CD CD
r-
cý cý
rn ", CD r-
CA
CD ým " r-
ýo 0,
CD (Z
CD CD ýD
r-
vi
CD
CD r
.2
u
-0
cý
r-
00
ý,0
2
V-ý V)
c,
'z
::
c> kr, e CD00 r,1 ýe e ý, 0 Z -
Z
crD1
r- A ke)
du
00
Z
4-
-0
"
rq (ý rn CD CD C>
l<
r-
C'l
CD CD 10 't CD CD
V)
rn
e rq CD (Z
cý
cq
"0
si
rn
00 "ý CD ýD
r', CD CD
la ýA
C= CD C= CD =
Q
rA
rq
=
r4
clý
c:;
P
(=
=
=
(=
CD CD (=
g Z = = = CD = = CD CD = c CD CD = (= c=
CD CD CD CD "
-
0
CD = CD CD = CD = CD =
r- CD r,4 3 =" (= CD r4 "m 3 g CD r-n -0 c2, -
'e, , >, c ce Co.2 m ",3 't .2
-
2 7- 2 .2 CC
:s
cc .ý
-
-
E
' c,i ý, 2
-n ge
227
14ý
C)
U c
C)
00
\ýc
'IT
CD
r-
7
Z)
00
r-
'T
C,
rl)
(D
0
00
r-
C)
-
kl I
ýo
00
C,
r-
(1)
C5
-10 v
m 00 CN
CD
CIA fn
-4
r',
r-
0
.-.
C)
Cli
r,, -
C) C)
Ill-
tr) r-
CN Cl
It
V-ý ON ýo
00 C)
C,
1=
1=1 Cli
= (::) c, (::, CDC:) 6 CDC) 6 C14-
V
W)
00
kl")
-,
kl')
W)
r-
rl) r-
rl) I'll
rn rlý
r-I
00
r-
1.0
00
kr) (-I
o o c) C5 C)
r-ý .
'IT
7:3
rn
Ir!
CY',
r-
C, I
rrl
E
0
5-
Ln cz
00
m
't
ý
'ýo
;.T.
-
rA
ýo
r-
C,
Cl
C: l rýc
C,
C)
rn ýo
Cl kn
rr-
It M CD
-
kr)
rrn
t-"T r-
'IT ;;
't r, 4
" CD
ý;
rr
"T
I c 6 6 0 6 6 c) 6 c, 6 6 6 6 6 (6 c) (:::.
(u
> ca 0-
E
0E 3
V) >, "o cl ý- -0
m
4-
ý-
rý krý
0
-
\ýo 00 C-) W-1ýo V) 'It CD 00 00 I- - 'T - 'D = ý:: a ý! .
C.
tr)
0
C)
c,
"
"4
c,
"
C)
r-
C)
0
C>
kf)
(::,
'o
Cý
"
C>
-
c,
C: )
C)
4.
"* E
Cq C)
00
ON
'IT
c) rq, W) Cl Cý C:) :; C) C) a, C'4 c) \0 (0 00 rn C, C) c) C, 4
Cý
7,
c ý
'4ý
C: )
rl)
f!
CD rn4
o
c)
00
C-4 v
>
1.
14 u
W) CD r-
0
(D CDCf)
CN "o
r-
-:r
-tt C> r-
C'A
ON 0 ýo C) C) CD (::,
o
(5
r, 4
W) tr) ýo "
00 .1- 6 C)
00 'T
Lo ý2
r-4 6 Cý
C,4
CL kt)
00
W
0 00 0 a, C) W) C) C'4 M r4) rn CD a, - (5 CD - - ('A 0
('s) v
-It
-tt
(1)
It
t'-
C>
r,
W)
a, rq ") C, -
o c) o (::: ) c, 6 c) 6 6 6 (=) 0 6 c) C:, C:, -
"a
,2u 1. cz
w
CD
a :2
-E
=
ff)
I
-
00
m
N
"
r- Cý R ON:2 00 cr, 00 t-- 00 R = = n M :t
-6
ý : (n 0
cn
0 c) 6 CDo
2 . r_
C:,
cl
a
V
CD ta, ýe m
=
(=
=
r,
(Z
C:, V) clý It
r- ýc -
=
7 eý . . . . . ýoW)ýoV) ýo = 0 0 0 0 = 0 0 (= = 0 = 0 0
to = n
=
(Z
=
rfý CD tj) (Zý
M ý
I -
m ý
2 2
m ý (5
ým
U
I (W ý-
'o 0 .0
-a
:; cc
228
Table C.25 Laboratory resultsof circadian excretion of urinary aMT6s over 24-h from low-F female gerbils aged 16 weekson 8.11.92. QCs: 3.5,14.3,19.5 TIME
16WLF F1
16WLF R
16WLFF3
16WLF F2
volume &MT6s aMT6s volume aMT6s aMT6s volume aMT6s aMT6s volume aMT6s &MT6s ng/ml us ml ng/ml Rg ml OgIml a& ag/ml ng ml rat
1800-2100
14.6
1.315
1.9
8.2
6.875
5.6
10.8
0.760
0.8
12.9
1.249
1.6
2100-2400
7.5
6.036
4.5
7.9
6.819
5.4
8.5
2.259
1.9
13.4
1.965
2.6
2400-0300
13.9
0.315
0.4
11.3
0.316
0.4
9.5
2.581
2.5
9.3
0.285
0.3
0300-0600
9.6
9.972^
19.1
9.6
12.891
12.4
12.7
3.084
3.9
13.0
0.314
0.4
0600-0900
6.9
0.314
0.2
9.8
10.088
8.9
15.3
1.157
1.8
16.9
12.708 21.5
0900-1200
8.9
5.663
5.0
8.2
3.912
3.2
6.1
0.355
0.2
6.8
0.295
0.2
1200-1500
11.1
0.285
0.3
11.3
0.428
0.5
9.2
3.841
3.5
12.0
3.708
4.4
1500-1800
9.4
S.135
4.9
8.2
4.764
3.9
6.3
0.352
0.2
14.4
2.359
3.4
36.4
40.2
14.9
34.4
body weight g
68
61
63
77
aMT6s pgIg BW/24-h
537
657
236
447
total aMT6s ng/24-h
QCs: 3.5,14.3,19.5 TIME
16WLF F5 volume aMT6s UgImI ml
16WLF F6
&MT6s volume &MT6s &MT6s volume Offlis at
ml
16WLF FS
16WLF F7
ag/ml
at
ml
aNff6a
ng/ml
at
volume SNIT62 aMT6s ml
ag/ml
at
1900-2100
12.6
1.136
1.4
13.4
2.552
3.4
14.4
1.369
2.0
10.9
0.333
0.4
2100-2400
8.7
1.739
1.5
10.2
2.022
2.1
9.5
2.692
2.6
7.3
2.922
2.1
2400-0300
9.5
4.071
3.9
10.2
5.312
5.4
10.4
7.798
8.1
13.2
7.173
9.5
0300-0600
10.5
13.506
14.2
10.1
6.382
7.1
9.6
15.910 15.3
12.4
3.989
4.9
0600-0900
9.6
3.370
3.2
11.3
2.219
2.5
11.4
2.861
3.3
6.3
0,599
0.4
0900-1200
9.3
4.325
4.0
8.3
3.812
3.2
9.9
2.209
2.2
12.9
1.800
2.3
1200-1500
13.0
1.472
1.9
9.8
1.053
1.0
14.5
1.123
1.6
16.2
2.312
3.7
1500-1800
7.9
6.146
4.9
11.1
3.513
3.9
8.6
3.016
2.6
5.4
0.375
0.2
35.0
28.6
37.6
23.6
body weight g
75
69
68
75
aNff6s pgIg BW/24-b
469
412
554
315
total aNff6s ngI24-h
QCs: 3.8,14.9,25.4 TIME
16WLF F9
16WLF FI I
16WLF FIO
16WLF F12
volume aNff6s &MT6s volume aMT69 &Nff6s volume &Nff6s aMT6a volume aNff6s aMT6s MI DgIml ng MI as ml ag/ml at us ng/ml MI ngIml
1800-2100
19.1
0.664
1.2
9.8
3.470
3.4
13.5
1.566
2.1
13.0
3.350
4.4
2100-2400
6.7
1.734
1.2
7.9
1.849
1.5
9.7
0.259
0.3
5.8
1.521
0.9
2400-0300
17.1
4.556
7.8
11.4
3.359
3.9
11.4
4.318
4.9
19.4
0.727
1.4
0300-0600
6.5
13.000
8.5
3.6
0.294
0.1
12.3
12.811
15.8
10.5
2.992
3.0
0600-0900
2.7
0.221
0.1
8.3
14.798
12.3
2.5
0.583
0.1
12.9
1.380
1.8
0900-1200
12.9
3.764
4.9
12.6
4.088
5.2
20.0
2.604
5.2
14.6
0.741
1.1
1200-1500
11.6
2.354
2.7
12.6
0.316
0.4
6.8
0,320
0.2
6.3
3.733
2.4
1500-1800
14.7
1.701
2.5
17.4
2.241
3.9
11.9
2.698
3.2
9.5
0.782
0.7
28.8
30.5
31.8
15.6
body weight g
63
64
62
66
aMT6s pgtg BW/24-h
457
481
513
239
total aMT6s ng/24-h
229
Table C.26 Laboratory results of circadian excretion of urinary aMT6s over 24-h from high-F female gerbils aged 16 weeks on 1.10.92. QCs:3.6.13.2,23.1 TIME 1600- INK) 1900-2200
16WHF F1
16WHF F2
16WHF F3
16WHF R
volume&MT6saMT6svolumeaMT6saMT6svolume&MT6saMT6svolumeaMT6saMT6s ml ng/ml ng ml ng/ml ng ml ng/ml ng ml ng/ml ng 6.6 0.347 2.3 10.0 0.254 2.5 9.8 0.288 2.8 12.5 0.022 0.3 6.8
0.295 2.0
11.5 0.022 0.3
10.0 0.261 2.6
9.1
2200-0100
11.9 0.037 0.4
14.5 0.182 2.6
13.7 0.140 1.9
16.7 0.024 0.4
0100-0400
9.2
1.133 10.4 11.5 0.021 0.2
10.8 0.676 7.3
16.5 0.357 5.9
0400-0700
14.4 0.759 10.9 11.3 0.948 10.7 19.7 0.664 13.1 14.2 0.845 12.0
0700-1000
8.4
0.036 0.3
11.8 0.317 3.7
11.7 0.037 0.4
8.2
1000-1300
10.1 0.453 4.6
12.5 0.028 0.3
10.6 0.332 3.5
10.5 0.383 4.0
1300-1600
7.9
7.9
11.6 0.143 1.7
7.6
0.024 0.2
0.488 3.9
0.413 3.8
0.026 0.2 0.025 0.2
totalaMT6sng/24-h bodyweightg
31.1
24.3
33.3
26.8
69
66
69
70
aMT6spg/gBW/24-h
449
371
481
380
QCs:3.8,13.7,22.5 TIME 1600-1900
16WHF FS
16WHF F6
16WHF F7
16WHF FS
volume&MT6saNlUs volumeaMT6s&MT6svolumeaNlT6zaMT6svolumeaMT6sWTU ml Ug/ml ng ml ng/ml ng ml ng/ml us ml ng1ml ng 11.2 0.133 1.5 8.5 0.037 0.3 7.8 0.316 2.5 13.8 0.090 1.2
19W- 2200 2200-0100
10.5 0.070 0.7
12.2 0.052 0.6
10.5 0.009 0.1
11.5 0.128 1.5
16.4 0.017 0.3
8.2
0100-0400
12.8 0.072 0.9
16.6 0.071 1.2
12.1 0.103 1.2
11.9 7.448^ 17.7
0400-0700
16.1 0.372 6.0
18.9 0.088 1.7
9.5
11.8 0.014 0.2
0700-1000
10.9 0.118 1.3
9.8
10.2 7.908^ 16.1
9.2
1000-1300
4.5
0.430 1.9
13.2 0.056 0.7
8.3
0.727 6.0
17.5 0,013 0.2
1300-1600
9.4
0.130 1.2
8.8
5.2
0.017 0.1
6.0
0.140 1.4
0.140 1.2
12.2 0.138 1.7
1.215 10.0 14.5 0.011 0.2 0.010 0.1
8.46^ 15.6 0.573 3.4
totalaMT6sng/24-h bodyweightg
15.0
7.4
36.1
40.2
58
49
91
70
&MT6spg/gBW/24-h
258
153
398
572
QCs:3.6,12.6,22.1 TIME 1600-1900
16WHF F9
16WHF FlO
16WHF Fl.I
16WHF F12
volumeaNtUs aMT6svolumeaMT6saMT6svolumeaMT6saMT6svolumeaMT6s&MT6s ml ng/ml ng ml ngtml ng ml ng/ml ng ml ng/ml ng 11.8 0.030 0.4 12.1 0.101 1.2 11.8 0.079 0.9 9.8 0.004 0.0
1900-2200
10.8 0.046 0.5
21.0 0.041 0.9
14.2 0.060 0.9
20.5 0.033 0.7
22(W- 0100 0100- 04(W
12.1 0.029 0.4
10.0 0.579 5.8
14.5 0.162 2.4
12.4 0.007 0.1
13.7 0.034 0.5
10.5 1.259 13.2 19.1 0.333 6.4
17.3 0.200 3.5
0400-0700
18.3 0.080 1.5
9.2
0.986 9.1
10.1 0.478 4.8
7.8
0700-1000
11.5 0.157 1.8
7.3
0.399 2.9
5.3
17.5 0.392 6.9
1000-1300
8.4
0.025 0.2
8.1
0.004 0.0
17.7 0.149 2.6
9.6
0.225 2.2
1300-1600
8.4
0.239 2.0
9.2
0.331 3.0
6.7
4.4
0.004 0.0
0.221 1.2
0,014 0.1
0.004 0.0
totalaMT6sng/24-h bodyweightg
7.2
36.2
19.2
13.3
62
71
74
66
aMT6spg/gBW/24-h
115
511
262
202
230
Table C.27 Laboratoryresultsof circadianexcretionof urinary aMT6s over 24-h from low-F male gerbils aged 16weekson 8.11.92. QCs: 3.9,15.3,25.5 TIME
16WLF MI
16WLF M2
16WLF M4
16WLF M3
volume &MT6s aMT6s volume jkMT6s &MT6s volume aMT6s &MT6s volume aMT6s &MT6s ml Dg/ml ug ml ug/ml ng ml ng ml ngtml ng Dg/ml
1800-2100
9.4
0.311
0.3
12.5
2.025
2.5
13.2
1.096
1.4
12.5
0.351
0.4
2100-2400
12.7
2.296
2.9
13.8
3.126
4.3
9.3
4.430
4.1
12.2
9.739
11.9
2400-0300
17.8
4.780
8.5
10.1
0.408
0.4
13.6
11.574
15.7
11.5
0.348
0.4
0300-0600
8.7
11.669
10.2
12.6
11.076
14.0
8.0
7.831
6.3
11.8
14.970
17.7
0600-0900
6.8
4.354
3.0
8.4
3.165
2.7
8.5
4.202
3.6
10.5
12.452
13.1
0900-1200
10.0
0.449
0.4
9.4
2.877
2.7
5.3
0.392
0.2
12.1
0.816
1.0
1200-1500
7.0
5.788
4.1
136
1.716
2.3
9.8
5.283
5.2
12.7
2.770
3.5
1500-1800
12.4
2.950
3.7
12.1
1.987
2.4
15.8
1.613
2.5
9.6
5.616
5.4
33.0
31.3
39.1
53.4
body weight g
88
82
88
82
aMT6s pg/g BW/24-h
377
384
446
652
total *MT6s ng/24-h
QCs: 4.0,14.1,23.2 TIME
16WLF MS
16WLF M6
16WLF M7
16WLF NIS
volume aMT6s &MT6s volume aMT6s &MT6s volume aMT6s aMT6s volume aMT6s aMT6s ml ag/ml ag ml ug/ml ng ml Dg1ml ag ml ug/ml ug
1800-2100
19.3 0.285
0.6
15.0 0.878
1.3
15.3
1.913
2.9
13.7
1.706
2.3
2100-2400
11.4 4.113
4.7
10.5
1.021
1.1
11.2
4.285
4.8
11.3
3.594
4.1
2400-0300
9.2
8.125
7.5
11.2
1,980
2.2
11.7
9.256
10.8
13.0
9.944
12.9
0300-0600
9.7
14.075 13.7
5.9
4.586
2.7
7.9
22.447 17.7
10.6 22.010 23.3
0600-0900
7.6
5.065
3.8
11.5
1.474
1.7
10.4
5.607
5.8
8.1
4.443
3.6
0900-1200
11.0
1.425
1.6
12.4
1.001
1.2
12.9
0.530
0.7
12.7
2.110
2.7
1200-1500
9.9
2.602
2.6
13.6
1.467
2.0
11.2
4.889
5.5
10.5 2.548
2.7
1500-1800
11.0 2.964
3.3
11.2
1.065
1.2
8.3
7.074
5.9
16.6
4.8
2.884
37.6
13.4
54.2
56.4
body weight g
81
74
108
91
aMT6s pg1gBW/24-h
464
181
502
617
total &MT6sng/24-h
QCs: 3.7,14.1,26.5 TIME
16WLFM9
16WLFMIO
16WLFMII
16WLFM12
volume aMT6s &MT6s volume &MT6s aMT6s volume aMT6s aMT6s volume aMT6s aMT6s ml ng1ml ng ml ngtml ng ml ug/ml ng ml ng/ml ng
1800-2100
15.2
2.252
3.4
18.2
1.435
2.6
10.1
3.272
3.3
16.6
1.984
3.3
2100-2400
10.5 0.337
0.4
15.7
1.541
2.4
14.5
1.597
2.3
14.2 0.308
0.4
2400-0300
14.7 0.315
0.5
12.6
3.448
4.3
11.2
1.317
1.5
12.4
6.327
7.8
0300-0600
10.3
6.886
7.1
12.8
3.893
5.0
9.6
4.209
4.0
11.4
0.293
0.3
0600-0900
10.2
3.465
3.5
10.4 2.191
2.3
8.9
2.918
2.6
9.8
7.935
7.8
0900-1200
10.8
2.073
2.2
11.2 0.244
0.3
13.8
1.279
1.8
9.1
0.574
0.5
1200-1500
18.0 0.963
1.7
10.0 2.723
2.7
12.2
2.571
3.1
15.3
3.110
4.8
1500-1800
15.1
2.8
11.5
1.8
11.4
0.973
1.1
13.6
2.168
2.9
total aMT6s ng/24-h
1.830
1.606
21.6
21.5
19.7
27.9
body weight g
81
91
76
73
*MT6s pg1gBW/24-h
266
237
260
380
231
Table C.28 Laboratory resultsof circadianexcretion of urinary aMT6s over 24-h from high-F male gerbils aged 16 weekson 1.10.92. QCs: 3.8,14.9,25.4 TIME
16WHF M1
16WHF M4
16W]IF M3
16WHF M2
volume aNff6s aMT6s volume &MT6s aNIT6s volume aMT6s aMT6s volume aNff6s &MT6s Dg1ml ng ng ml ng ml lig/ml og1ml ng ml ng/ml ml
1600-1900
10.6
0.260
0.3
9.8
2.450
2.4
6.4
2.500
1.6
11.0
1.481
1.6
1900-2200
9.7
4.566
4.4
7.6
5.320
4.0
16.8
0.755
1.3
11.6
1.461
1.7
2200-0100
11.4
0.308
0.4
9.0
0.708
0.6
9.6
2.123
2.0
13.4
1.465
2.0
0100-0400
12.1
0.284
0.3
14.5
14.708 21.3
12.5
3.078
3.8
8.5
3.710
3.2
0400-0700
14.1
13.379
18.9
6.7
5.183
3.5
10.9
4.361
4.8
15.1
6.679
10.1
0700-1000
8.4
0.368
0.3
13.1
14.009
18.4
8.6
2.894
2.5
18.5
1.154
2.1
1000-1300
8.4
0.382
0.3
10.2
0.512
0.5
9.9
2.629
2.6
10.0
1.808
1.8
1300-1600
10.2
6.819
7.0
11.3
6.248
7.1
11.0
1.915
2.1
8.8
2.110
1.9
total &MT6s ng/24-h
31.8
57.8
20.7
24.3
78
86
75
69
407
671
278
351
body weight g &MT6s pg/g BW124-h QC's: 3.7,14.5,25.3 TIME
16WHF MS
16WHF M6
16WHF M7
16WHF MS
volume aNff6s aMT6s volume aNff6s aMT6s volume aNff6s aNff6s volume &MT6s aMT6s ml ug/ml ng Og ml ng/ml ng ml ug1ml ag ml og/ml
1600-1900
11.7
2.374
2.8
14.7
2.187
3.2
16.3
1.502
2.4
8.4
3.068
2.6
1900-2200
12.0
3.339
4.0
12.3
0.354
0.4
13.8
0.288
0.4
13.4
2.883
3.9
2200-0100
11.7
0.237
0.3
10.7
4.283
4.6
13.0
2.492
3.2
9.6
0.348
0.3
0100-0400
12.2
4.276
5.2
11.1
0.319
0.4
8.9
12.402
11.0
10.2
9.910
10.1
0400-0700
10.8
12.419
13.4
15.4
3.546
5.5
8.7
6.649
5.8
9.9
15.102
15.0
0700-1000
9.9
2.406
2.4
10.4
2.601
2.7
13.8
0.519
0.7
9.3
3.648
6.1
1000-1300
10.6
3.520
3.7
15.8
1.378
2.2
13.6
2.200
3.0
9.4
0.459
0.4
1300-1600
8.9
0.371
0.3
6.3
0.510
0.3
8.9
3.031
2.7
8.3
6.027
5.0
32.1
19.3
29.3
43.3
body weight g
78
68
76
86
&MT6s pg1g BW/24-h
413
284
388
506
total aMT6s ng/24-h
QCs: 3.9,14.9,21.1 TIME
16WHF M9
16WHF M11
16WHF MIO
16WHF M12
volume aNff6s &MT6s volume &MT6s aMT6s volume aMT6s *MT6s volume aMT6s &Nff6s ml ng/ml og ng ml ngtml ug ml ng/ml ml ng/ml ng
1600-1900
13.5
0.379
0.5
12.5
4.215
5.3
11.0
0.059
0.1
17.6
0.751
1.3
1900-2200
15.0
2.732
4.1
12.0
3.146
3.8
12.4
2.678
3.3
14.6
0.048
0.1
2200-0100
8.8
0.390
0.3
9.1
0.040
0.0
12.9
2.003
2.6
13.6
4.751
6.5
0100-0400
10.0
4.397
4.4
14.8
9.121
13.5
9.6
0.041
0.0
10.1
0.051
0.1
0400-0700
12.4
9.834
12.2
12.2
0.050
0.1
13.4
8.706
11.7
14.5
14.047 20.4
0700-1000
7.6
0.551
0.4
13.2
4.994
6.6
12.4
1.276
1.6
10.6
9.058
9.6
1000-1300
11.6
2.962
3.4
6.1
0.042
0.0
4.8
0.065
0.0
8.8
0.111
0.1
1300-1600
9.9
0.409
0.4
8.9
4.972
4.3
12.1
3.099
3.7
9.6
0.047
0.0
25.8
33.6
23.0
38.0
body weight g
80
87
76
80
aMT6s pg/g BW/24-h
323
388
302
475
total aMT6s ng/24-h
1
232
Table C. 29 Laboratory results of urinary levels of aMT6s in female gerbils aged 1P/2 weeks over 48 hours in 2x 24-hour intervals. Shaded cells indicate where day I levels of aMT6s were used in statistical analyses. II '/2week high-fluoride female gerbils DAN'
QCs:
3.3,
13.0,24.3 I P/2W HF H P/2W
aMT6s ng/ml
I
DA N2
volume
aMT6s
ml
ng/day
aMT6s I
volume
ng/ml
aMT6s
MI
ng/day
aMT6s 2
ng/48-h
11.303
12.6
28.5
10.521 14.1
29.7
58.2
mean
body
aMT6s
wt
9
ng/24-h
aMT6s pg/g BW/24-h
29.1 )3.5 18.9
76 63
384 375
67
281
IIF
F2
9.617
12.0
23.1
7.974
15.0
23.9
47.0
IIF
F3
9.551
9.9
18.9
6.491
8.4
10.9
29.8
11 1/2W FIF F4
5.332
15.0
16.0
5.619
14.7
16.5
32.5
16.3
71
228
11 1/2W HF F5
5.492
17.5
19.2
11.828
11.9
7.771 7.334 7.386 6.403 6.595 5.616 5.922 4.494
16.5 10.5 18.5 24.3 18.9 14.8 16.5 17.7
25.6 15.4 27.3 31.1 24.9 16.6 19.5 15.9 1
4.553 6.204 7.355 7.755 9.746 5.549 5.385 6.89
28.2 22.9 20.3 30.9 32.9 34.5 20.4 18.7 18.9
47.4 48.5 35.8 58.2 64.0 59.4 37.0 38.3 34.8
23.7 24.3 17.9 29.1 32.0 29.7 18.5 19.1 17.4
70 68 61 58 55 63 51 48 57
337 355 295 498 580 475 362 397 303
1 P/2W I
1/2W FIF F6
11 HF 11 1/2W HF 11 I/zW HF 11 HF 11 '/, W FIF 11 P/2W HF 1 P/zW HF 1 1/2W
1/2W
F7 F8 F9 FIO F 11 F12 F13
25.1 16.4 21.0 21.2 17.7 16.7* 17.4 13.7
11V2week low-fluoride female gerbils DAY QCs:
3.8,12.9, 25.3
I
DAY I
aMT6s ng/ml
volume ml
2
I aMT6s ng/day
aMT6s I
Volume
ng/ml
aMT6s ng/day
aMT6s 2
ng/48-h
mean a
body
aMT6s
wt
9 -
II 1/2WLF F1 1/2WLF F2
11 1/2WLF 11 I/iWLF II V2WLF 11 11 1/ýWLF '/ýWLF
11 '/, WLF 11 '/ýWLF 11 1/2WLF 11 1/2WLF 11 1/2WLF 11 1/2WLF 11 1/2WLF 11 1/2WLF 11 1/2WLF 11 1/2WLF 11 1/2WLF 11
F3 F4 F5 F6 F7 F8 F9 FIO F 11 F12 F 13 F 14 F 15 F 16 F 17 F 18
11.582 14.4 8.188 20.7 5.788 18.5 4.156 18.4 4.966 22.0 8.091 19.8 9.958 12.5 8.343 16.0 5.397 14.2 8.651 12.5 8.615 14.9 12.402 10.8 7.946 16.4 7.526 16.7 10.407 10.1* 6.879 20.0 17.706 11.5 4.276 15.1
33.4 33.9 21.4 15.3 21.9 32.0 24.9 26.7 15.3 21.6 25.7 26.8 26.1 25.1 231 40.7 12.9
11.716 6.255 5.845 4.749 6.069 11.884 10.514 10.485 8.234 5.043 8.693 12.469 5.781 7.858 7.088 4.953 10.657 3.066
16.2 21.7 15.5 19.4 18.7 13.0 15.0 13.4 17.2 21.7 14.4 9.6 21.8 15.5 16.4 21.6 17.3 18.6
38.0 27.1 18.1 18.4 22.7 30.9 31.5 28.1 28.3 21.9 25.0 23.9 25.2 24.4 23.2 21.4 36.9 11.4
71.3 61.0 39.5 33.7 44.5
62.9 56.4 54.8 43.7
43.5 50.7 50.7 51.3 49.5 46.3 48.9 77.6 24.3
',5,7 33,9 21.4 16.9
22.3 31.5 28.2 27.4 21.8 21.8 25.4 25.4 25.6 24.7 23.2 27.5 38.8 12.2
56 56 57 60
56 54 55 65 61 58 66
63 65 59 58 65 54 59
aMT6s pg/g W/24
-h
633 607 373 281 400
578 509 423 356 376 383 406 394 417 397 426 725 205
233
Table C. 30 Laboratory results of urinary excretion of aMT6s in pubertal inale gerbils over 48 hours in 2x 24-hour intervals. Shaded cells indicate where day I levels ofaMT6s were used in statistical analyses. PUBERTAL IQCs: 3.8, 12.9,25.3 9 week hi g h-F males 9W HF MI 9W HF M2 9W HF M3 9W HF M4 9W HF M5 9W HF M6 9W HF M7 9W HF M8 11'A.week high-F males II 1/2WHFMI 1/2WHFM2 11 1P/2WHFM3 1P/2WHF M4 111/2WHFM5 111/2WHFM6 111/2WHFM7 111/2WHFM8 II 1/2WHF M9 1
aNIT6s ng/ml 7,198 4,309 7 108 17.001 7278 6073 6 782 5.188 aMT6s ng/ml 3,83 5 24 6499 8615 4361 4283 7401 10.412 9,192
HIGH-FLUORIDE
DAY I
DA N'2
%olume aNlT6s ml ng/day I
mean aMI'6s volume aNIT6s aNI'1'6s MT6s bodv Wt /g a pg ml ng/day 2 ng/48-h 9 BW/24-h ng/24-h
95 230 146 93 174 202 180 230
137 11)8 2o S 2-53 24 5 24.4 219
volume aMT6s ml ng/day I 20.5 187 137 100 17 1 165 160 17.0 18.1
15,7 196 178 172 149 i41 23.7 35.4 333
PUBERTAL QCs: 3.8,12.9, 25.3 9 week l ow- F males 9W LF MI 9W 11 M2 9W LF M3 9W LF M4 9W LF M5 9W LF M6 19WIT M7
aMT6s ng/ml 6.449 3 391 3997 2,966 3 546 1511 3.87
MALES
aNIT6s ng/ml 5.126 7.913 3.936 5 367 7 319 8402 6,275 9.432 aMT6s ng/ml 2.764 6 187 4929 3 594 3 851 4751 6 344 7 258 1)185
175 15.7 23,2 230 21,6 14,0 19.5 12.8
179 24.8 18.3 24,7 31.6 23.5 24.5 24.1
31 6 447 390 563 569 48 ) 489 48.0
15.8 22 3 195 31.6 28 5 240 24.4 240
62 65 53 64 55 56 68 70
255 346 371 491 521 426 360 345
mean aMT6s body wt volume aMT6s aMT6s MT6 S : pg/g ml ng/day 2 ng/48-h 9 BW/24-h g/24-h 25.7 179 170 22,9 250 14A 12.6 130 145
LOW-FLUORIDE
14.2 22,1 168 165 193 13.7 16.0 18.9 26.6 1
29,9 41 7 346 33 7 342 27 9 397 543 59.9
150 209 17 3 168 17 1 11C) 23.7 35.4 33.3
62 68 62 59 62 68 67 69 71
242 306 279 284 275 204 352 515 1 467
MALES
DAY I
DAY 2
volume aMT6s mi ng/day I
mean body aMT6s volume aMT6s aMT6s wt MT6 /g : s pg ml ng/day 2 ng/48-h 9 BW/24-h g/24-h
120 21A 21 8 16.8 21 5 22 3 MO
155 145 174 Mo 152 112 155
aMT6s ng/ml 4447 4,062 4.621 3,841 4687 3,683 3 517
156 16 5 23 1 24 5 IT2 205 22 1
139 147 21 3 188 16 1 15 1 15 5
294 29 3 38 8 28 8 31 4 26 3 31 0
147 146 194 144 157 13 1 15,5
67 62 63 61 59 54 67
219 237 309 238 271 244 230
234
Table C. 31 Laboratory results of urinary levels of aMT6s excreted by 16-week-old gerbils over 48-hours in 2x 24-hour intervals. Shaded cells indicate where the day I levels of aMT6s were used in statistical analyses. 16 week low-F females DAY2
DAN' I aNIT6s ng/ml
volume ml
aMT6s ng/day I
aMT6s ng/ml
volume ml
16W LF FI
3.756
17.8
13.4
3.789
18.0
13.6
27.0
mean aMT6s ng/24-h 13.5
16W LF F2
2.072
30.3
12.6
3.089
22.6
14.0
26.5
16W LF F3
5.528
16.2
17.9
4.290
20.2
17.3
16NV LF F4
6.534
1ý. g
20.6
16W LF F5
4.501
16,7
15.0
-1.299 2.271
28.5
16W LF F6
4.661
17.2
16.0
2.723
QCs: 3.8,13.1, 24.7
aNIT6s aMT6s ng/day 2 ng/48-h
aNI'1*6s body wt pg/g 9 BW/24-h 71
199
13.1
60
221
35.2
170
67
265
13.1
33.8
20.6
68
305
15.0
6.8
21 8
15.0
SI
286
24.5
13.3
29A
16.0
61
263
16 week high-fluoride females DAY QCs: 3.8,13.1, 24.7
I
DAY2
aMT6s ng/ml
volume ml
aMT6s ng/day I
aMT6s ng/ml
volume ml
16W FIF F1
7.674
12.7
19.5
4.571
18.4
16.8
16W HF F2
4.862
24.8
24 1
5.555
19.4
21.6
-, 45.7
16W HF F3
3.368
20.8
3.043
19.5
11.9
16W FIF F4
6.317
22
9.498
17.2
32.7
1
2- 8
aMT6s aMT6s ng/day 2 ng/48-h 36.
mean aNIT6s ng/24-h 19.5
aMT6s body wt Pwg 9 BW/24-h 76
256
22 8
59
387
25.9
14.0
65
216
60.5
3 ().2
71
426
16 week low-fluoride males DAY QCs: 3.4,14.2, 24.2
I
DAY 2 mean aMT6s ng/24-h
aMT6s body wt PWg 9 BW/24-h
aMT6s nWml
volume ml
aMT6s ng/day I
aMT6s ng/ml
volume ml
16W LF MI
4.172
10.3
8.6
6.905
16.8
23.2
31.8
15.9
74
215
16W LF M2
7.771
13.7
2 1.3,
6.255
17.7
22.1
43.4
21 11
79
278
8.3
3.769
17.6
13.3
31.5
18.3
79
231
14.5
7.412
17.7
26.2
40.7
20-1
71
287
20.2
3.851
22.8
17.6
37.9
18.9
81
233
28.2
7.760
10.3
16.0
44.2
28.2
77
367
77
287
70
207
16W LF M3
7.198
12.7
16W LF M4
5.171
14.0
16W LF M5
5.619
18.0
-
F1 r_
aMT6s aMT6s ng/day 2 ng/48-h
16W LF M6
7.847
18.0
16W LF M7
3.792
lost
6.723
16.4
22.1
16W LF M8
4.644
15.6
2.531
21.7
11.0
25.5
16W LF M9
6.516
16.0
5.823
18.0
21.0
41.8
20.9
-1 1
67
1
312
16 week high-fluoride males DAY
I
DAY 2 I
aMT6s nWmI
volume mi
aMT6s ng/day I
aMT6s ng/ml
volume ml
16W HF MI
5.703
15.0
17.1
7.579
16.5
25.0
42.1
mean a NIT6s ng/24-h 21.1
16W FIF M2
7.946
20.6
5.807
20.8
24.2
56.9
16W HIF M3
6.200
19.1
23.7
5.769
25.0
28.8
16W HIF M4
7.228
18.5
26.7
9.288
19.2
16W HF M5
8.211
20.5
33,7
7.722
16W HF M6
7.489
20.0
30.0
16W FIF M7
5.807
21.0
116W HF M8
1 5.619
25.1
QCs: 3.4,14.2, 24.2
aNIT6s aMT6s ng/day 2 ng/48-h
aMT6s body wt PWg 9 BW/24-h 80
263
32.7
79
414
52.5
26.3
96
305
35,7
62.4
31.2
71
440
22.5
34.7
68.4
34.2
77
444
6,763
15.5
21.0
50.9
30.0
71
423
24.4
1912
23.7
18.5
42.9
24.4
65
375
28.2
4.697
22.6
21.2
1 49.4
28.2
70
403
235
Table C. 32 Laboratory results of urinary levels of aMT6s in female gerbils aged 28 weeks over 48hours in 2x 24-hour intervals. Shadedcells indicate where the day I levels of aM,F6s were used in statistical analyses. 28 week high-fluoride females DAN' I
QCs: 3.6,13.1,21.3
a,NIT6s nWml
DAY2
volume mI
aNlT6s ng/day I
aNIT6s ng/ml
volume mI
aNIT6s ng/day 2
aMT6s ng/48-h
mean
a NIT6s ng/24-h
aM T6s
body wt pWg 9 BW/24-h
28W HFF1
6275
13 5
169
6023
160
19 3
362
18 1
73
247
28W HF F2
6275
19,0
23.8
6.344
21.7
27 5
51.4
25 7
o4
401
28W HF F3
4.656
17.5
163
8.976
9,9
17 8
34.1
170
79
219
28W HF F4
6.033
14A
174
3 736
21.6
16 1
33 5
16 8
78
215
28W HF F5
5.292
2&9
22 1
6.849
146
200
42.1
21 1
74
286
28W HF F6
7.123
149
21,2
6.33
20.5
260
47.2
23.6
68
345
28W HF F7
4.389
15,2
13 3
3,794
230
175
30.8
154
72
213
28W HF F8
4,551
14.3
13 0
7 831
15.4
24.1
37.1
186
81
228
28W HF F9
5,489
16.6
18 2
5607
17,1
192
374
18 7
76
248
11.235 M751 4ý902 9275
F, 7, jj, 14.0 ý 156 335 155 Is 2 135F 25.0
8 543 8ý567 4328 6,782
15,0 18.9 22.7 14,0
256 32.4 196 190
571 _31.5, 330 65,9 348 174 25.0 440
78 73 78 89
405 450 223 280
28WHFFIO 28WHFF11 28WHFF12 28WHFF13
28 week low-fluoride females DAY
aMT6s ng/ml
volume ml
28W LF F1
6.036
28W LF F2
DAY 2
I
aMT6s ng/day 2
aMT6s ng/48-h
mean aMT6s ng/24-h
19.5
292
47,9
23 9
68
353
4 511
20.8
M8
36 5
19 3
67
272
Ii. 9
2,890
21 5
12,4
27 3
14.9
62
239
1-19
3 970
2L2
168
29 7
141)
64
231
14.1
2 382
17.8
&5
22
14.1
73
194
212
4.707
21.0
19.8
421)
23.2
73
319
aMT6s ng/day I
aMT6s ng/ml
15ý5
18 7
7479
3 83
23.2
17 8
28W LF F3
193
254
28W LF F4
3.978
16.2
QCs: 3.6,13.1,21.3
volume ml
aMT6s
body wt pg/g 9 BW/24-h
28W LF F5
3.398
207
r
28W LF F6
6.099
190
1
28W LF F7
4.87
15,2
14 8
4206
18 3
15 4
302
1ý 1
71
214
28W LF F8
4934
14 5
143
T360
14 3
21 0
35 4
17 7
72
244
28W LF F9
2 217
16.5
73
3.325
166
11 0
184
92
68
135
28W LF FIO
2 762
19,0
10 5
1663
18 2
13 3
23 8
11 9
70
171
28W LF F11
4.306
18A
15 8
4,591
20.5
18 8
34.7
17 3
69
253
28W LF F12
4.613
21 0
194
6.845
14.4
197
39 1
19 5
72
272
28W LF F13
7,083
15.5
3,274
19.0
12 4
34 4
22.0
79
277
4445
21A
23,4
25 2
22 1
75
294
28W IT F14
190
15
379
1
44 2
F
236
Table C. 33 Laboratory results of urinary levels of aMT6s in male gerbils aged 28 weeks over 48-hours in 2 x 24-hour urine collections. Shaded cells indicate where the day I levels of aMT6s were used in statistical analyses. 28 week high-fluoride male gerbils DAV
I
DAV2
aMT6s ng/day 2
aMT6s ng/48-h
mean a M '1'6s ng/24-h
13.9
32.7
72 3
39.6
93
427
126
30,2
546
27 1
95
286
25 4
11 ý981 12 128
15 2
369
62,3
31 1
97
358
17.0
28 1
8,834
15,0
265
54.6
273
83
329
3936
15 7
124
4.174
18 5
154
27.8
13 9
86
162
28W HF M6
5974
173
20,7
9.172
140
25.7
46.4
23 2
97
240
28W HF M7
9314
15.3
28,5
5 220
24.6
25,7
54.2
27.1
103
263
28W HF M8
6.570
20.6
2TI
8.927
21 4
A2
65 31
32.6
aMT6s ng/ml
volume ml
2MI I6s -F/day I
28W HF MI
10,150
195
39.6
11,764
28W HF M2
9903
12 3
24 4
28W HF M3
8,472
15,0
28W HF M4
8274
28W HF M5
QCs: 4.1,14.6,21.7
aMT6s ng/ml
1
volume mi
aMT6s body wt pg/g 9 BW[24-h
1
85
1
384
28 week low-fluoride male gerbils DAY
I
DAV 2 mean
aMT6 S ng/day 2
ng/48-h
aMT6s ng/24-h
15.5
IT9
406
22.7
113
202
4646
197
183
37 1
19 5
108
172
ITO
7 897
16.6
26.2
43 2
21 6
106
204
15,0
13,6
5.403
22.5
243
379
189
114
166
6 173
20.8
25 7
6.099
236
28.8
54ý5
27 2
73
373
28W LF M6
7.396
200
296
9373
18,2
34,1
63.7
31 9
84
379
28W LF M7
7760
17,4
T422
13 4
19.9
469
27.0
77
350
8,449
14.0
23 7
444
22 2
109
203
6248
22 8
2&5
59 5
29 8
72
413
aMT6s ng/ml
volume ml
ng/day I
aMT6s ng/ml
volume ml
28W LF MI
6.606
172
22.1
5 775
28W LF M2
4,689
20.0
18 8
28W LF M3
4.880
17.4
28W LF M4
4,526
28W LF M5
QCs: 4.1,14.6,21.7
aMT6s
28W LF M8
7,739
13 4
07 _T7ý 20ý7
28W LF M9
7 218
21 5
31 0
aMT6s
aMT6s body wt Wit 9 BWt24-h
-
237 4ý 0 r.
2 w cn
Ici
*ö
m
rq
m
v-,
t
ý,0
-
(7,
%0 ON 00 d _-:
00 r;
0 ei
rq rli
0 c";
m ,6
ON 00 %jý fIli
co
cD
oo
c,
rn
m
v-,
C> CD all c; rli rli
all d
0 rý
e rý
-
m
v-,
\O
0
m
-
CD 0
rý
(4 rZ
(b C> clý c; vi %d %.
d c; cý cý --: _-: d d cý cý cý cý _-: cý cý c; .+ (-i r4 rý --i r4
>
w in
zg
cu
>, M
CD ON r--: cý c;
r-
m
%0 00 : -1 _-;
r-
-
e
(4 r-z
V) c-;
r-
e
cD
ý4 r« ý ý ý d i ; , c ( c ;Z0 -,: r,
10
e ýr ý:
u .0 10
zg -0
ri
ý
-
--
:
( ,i
N
le
(4
cli
c> CD (D Q C> (D (D (D rcz m mD c> cq -t
CD 0 0 CD (D 0 e rý
(D 140 O\
CD f9
C) Z;
CD f4
N
;
CD (D C) 0 0 0 p (D 0 0 (D = :ä r. r. -. -bZL -
(N
C> le
(D
CD r-
(D C>
O
C> rn
-
-
C> %0
CD clý
rq
CD Z;
CD ýt
c)
rA ýQ
v) 0
Gn 4ý u) %0 - a %0 F..
fA 10
[-.
m cu ,2
2
2
E äz E.
238
16
64
cý 0, rý 0 V-ý rq rn n oo -t n V-ý rq 0, a, n CD ei ýt cý c ý cý cý - ý cý cý cý cý cý c; cý " -ý cý c; v-ý' cg, rn' rn' -
"a
r-i
-t
>
M
u 00
Jc
Z <
r13 CY,
r-
CIA
fl)
CD
Ir
00
CD
rn
C>
OC
00
oý
Z,
Co
ce
00
? -A
r-
00
r--
t
00
W)
e
rn
n
ll r4
C,
41-1
ýý =
12
'ý
cl
-
-
"-
"
cD 'Z
ýr)
ýe
-e
z,
z
0
oo
cý
-
t--
tý
r-A
-7 rl 0
N -i- ýo e -
cý
lzý W,
4-ý 0 r-n
"
-ý ri
r, 4
oo f i
f
cli
M
-2
r i
.!r
oc
ý ; ý -» -ý
ac
'zý
v)
0
--;
rýi
e
n
ý
_ý
0ý
OC c2, -ý
rý
rý
(N ý
__;
rl ci
CD
ri
Cý
t-ý
oo
;;
fi , CD ýc
CD
JF CD rn
r-
ý2
ý:
,
cý aý
vi
00
CD
00
00
kr)
-
CD
r,
r-
-
00
r4
v-, ,
Im m
,1 e r- r- r- ZE 12
gi 0 =
CD
x
(U . -
Z: m
r-
12z
(ýI
t-
"cý -J cý ý i -ý --: --: -ý - - , =2 eN
Nz
cý
9 CD C,
c-,4
'JD
-
r, 4 "I:
-ý
-ý
C,
rn
10 ýt
cý C'4 rn
W)
--j
vi kf) Co
r_
t-Z
2 .
-
-
o\
ýg -5
::
,r)
2
00 -
00 c> 0
m
oo
d cý --; e cý ýi ýý o
(V
-
ý1
V*>
:Zu
-
e r, 00 6 4-1 'r,
ý 00
.ý 00
-,e rn - ý
oo
ý
o
u-,
-
eN
ý 0 Ch 'z rn Z
12
vý
n
j >
ýt 0 Z CD
2
-
.
V (Z CD CD (= Z CD CD CD CD CD CD CD CD CD CD CD CD CD CD fA Z; " tCD rn 0 0, r4 C (14 CD r .,1 (=
.
.
.
.
.
.
CD CD CD Z v c> CD CD CD C:D o CD CD CD CD CD CD CD t CD
CD CD r-CD
CD (Z CD ý c> CD > CD CD CD
ZD (14
IP
CD CD lý CD
e si
M CU (, A -0 M -, -8b s b a 0 , r-
*g ü> E
wi
u ob
9 -a
239
2
m rn rn r- w-ýoo c, m rn rn rn t m -i- wi rn c c, oc oý cý
C,,
C14
Cý 00
CD
72
-
v
r-I
-
00
j
ýi
C7,
Oý llý Oý I-q rlý llq llý Oý 00 C, OCr-I t00 -,T C-4 C,4 rj
rn
r-
rA fli
r)
kfý
fl)
rl)
'
--r
-T
rý rý
00 rA
00 (14
00 (14
C-I
cz >
:3 =
C)
Ic
Cý
('4
'
ý71 '
C'A
=
CI
-
-
'
,
-
kf)
"
oc
Ic
It
C7,
rl)
r1l
=
C,
kr),
'1ý
'1ý
rlý
-
'0 m "I
u
"t Ic
Sz rl)
P
rn
C
-7 tr)
00
C14
r)
00
-4
rn f"i
ob
r-oc
CIA cl
to
:ý - -
=0
-ý4
-
-
-
--; z
4 --; rý m m cq ,
'i
oc
00
m
C4 U
W cl -,ý
It ý: ý. ý7
r--
ýc m
00 -
Oý r,-:
Wý
C,
(7,
0ý m
"
-
Cý c)
C, m
ldý
ýq
Vý w Cý
CD
CD
-T Tt
Wlt
Vu V) "a :3C, 3
It
W-1'3: ýc 11,
W)00 00
00
:3
00 C7, r4
03
UA-a
V
W.
"a c
eq
E &.
U
Wý
kf)
,
c
r, ý " r- --t
00 C)
'o 00 r- 00 ýc C,
I'D oo
C'i
6b 01)
ý 'i
V
R ý: , .j
',Eý "I ý r CWý r-ý C, r-m ') 00 r: ý Z: -4 r) Cj -ý -; '.6 -- -
cn rn 6 111; (:7ý C,
r!
IC Cý Iq " . 0ý 7) -) ý r't V jz ,b -ý cn "I cn
rn o
C;
00
x
-v
ý2 vV)0 a
wl W')
m
-0 N
r--:
00
00
00 c., Cýý r. )
C14
00 C.6
C,4
r-I ":,
7 'n
Cý
r, 4
0ý 06 r. )
"6
Iýq
Iýq
--t
rý "
00 m,
t-
vi
cN
W)
(7N cli
oý
r!
rý
p r-
ýc fn
"t cn
C-4
op
r-
rrn
cl t-
t
"r) 'IT
m
:3
u
_0
cz
.0
cz 0 ýQ
0)
C, (= IC
2 P
1= (= ON c"I
0 -
C "T
0 r-
C) C) 0 o z ON en
o
C-4 -
cr(:: ) "T
o
(=
(::: ) en =
CIA _r_
-
C, 4 ý, ý 'ý (ý 7 - 7 -, ý, 1ý ý ý -a --0 -@) -a 0- c- CD 0 = = o o. c) 0 c) C) o c) o. C> 't . 6ýb 03b r 1= 0 0 Cý 1= 0 c o o C: rS= (:: ) C3
rl rq
0
C:)
o -
rn -
Fl rA
(=
F, (=
-
Ln
Ln
ss
cl
m
-a
7t- -c;
"C
-C C)
ý:
-a a
Cc
co
Ln
-C 4
to
to a
-,Q-,z -a as .
,c
C13 ctj v
E
LZ
' E
240
C5
6
C5
C5
6
_6
C: *)
0
c)
C: )
C)
c)
o
cn
>
c
Irl
r-ý Cý C-4
-
-
Cl! r-:
fl)
-
'-T
kr;
r-
Oý
kr)
r-)
7) C:
En
C4
21 4
r-
-7
C-4 I- r-ý rn r-) -
r!
rA e-I
r)
-! T
-'r)
CIA
C'l
rý
c
kn V-, 6
-
p t-
Cl!
r!
"4
-
IV-ý 'n (11 CIA
cli
Q
u
-. ý
-Ec
ý: -,
ll!ý
W')
00
ol
en
-Rt
-ýr
00
oc
r-
06
00
Oý
00
r- 00 00 17'
C,3
(=
-
0
(7,
ac
oc
06
ý) -10
--t M
-t r-i
--r ri
00
C)
C)
--ý
c
-
-)
-
-
46
6
-;
e-i
ýd
r, 4
r1 ri
%n
ý
==
-1-
\X) ri
toi
00
.;
7 ý'
-C
06 4q C7,
t-
.4
:3 U 3 C,
C:, 00
,t
-ý
9r
C, ro,)
a,
C, 10
r4
ýL.
.2 CO V)
E (u
&-
"a
"o 0 ; -ý r ý
,u-ý
ý:
I
a, i 6 ' -
C,
V)
co
.E
-
(::ý 6
w-,
r-
ýc
00
--ý 6
-2
r- Cl
-7 -
=E
C)
"
5- ý 1ý7 . zY
-7
r-ý r-
-
0
4
IC?
(, I
-
00
r-
c
-ý ,ý --; -.; -ý --;
Cý Wý -4 'n rn r)
a
r. -
kr)
'n
r-
-ý llý Cý rý . 12' r, '-It " en r- "I -7
14ý
wl
cq
C14
00 Cý
S'!
V. )
ýo
cli
CO A
rq
CA
-ý
C'i
_-;
--:
r-ý oý 0ý cq c, r-: c) cn ý
r-
rn
cn
r- :
.
"ý (0ý V, C) tr) r") "
-
-
(=
(=
-
cý
cn
en
--:
r-
m
m
0,
(2,
c"
r, 4 'n
'o
r-
C-)
--ý rý --ý --ý --: rý
Wý cn en c) rn C.)
6
6
-.
6 Cý -C-i ý-, ;,":
=
C.)
>
'10 u-
r--
tr)
C-4 W)
-,t
C'4
"
9
-
-0 -0 (7,
-
u
Cc
00
-
"
:2 "a
ca p w
2
2:
CD
rn
C-4 7:,
c 0 ýc 0,
--t
r-
c 7
fn
c 7
C,
C-4 Z;
-'T
C) -C) 0 C) c) C r.0) "o C) 0, C) cq C) 0 rq -'T r-
r-
cý
'n
ý
\.c
9
;,
-6b -ýb r_ r_ CD C) (= I. r(::, "o
cw
73
01) ýo
ý-
29
j-
v
.
.0 II
m
cl
co U
ý
00 00 m
-
0
'-ýz g ý20
00
cn
.4 4
W-ý
-,T
-
r-
"
(3, .,t -:
CD -
=2
fn (i
U
v
-0 =
_ I-73
_0
0 0 e .P -2
v
E
z
241
x w Ln
I",
Q
V'b ýo
e4
w 2
%0 rr4 M
oo cý r, 4 le
! -Z --
00
(Y,
Ir
en
rq
00
aý
10
-
r-
vi r-
n- 00
r-
mr
m)
cý
CY, 0, 00 4D 4 " V lb fn r.
r-
00
fn
No
0mG CD
CD
0 5
LM
cy, cy, wý r-4
-e o' mm
r, ;; r-%
--r, 2=
"0
cý
"
V'b 00 Ild" le
V'b
r-
r4
%0 "
vý
%Q
öo
Cb ,A
V. ý2 M-
2ýZ
f', '
%0 "
vl u
x u
eý ýk Z
ce c:
ý> CD c> 0 ýo r- v, c> Co m rn V.,oo W, C,4 m ON ýo ýo ýQ C,
M- -
0
0
-
9
r4 oo (> C-4
t r-
('4
tr)
"t
00
r-
t--
-t
C7,
"t
00
r-
c)
(=)
rc)
C)
C>
(D
,o
M C)
ý: ;
C)
-
,,
r14 kr)
00 CIA
rkf)
't CA
CN tn o ll C14
L4
llý I
C) rq
ýc V)
00 00
00
v)
r-
rn
-0 =
r-
03
.
m C> r-
r)
1" )
('4
(u
ý')
,*
cl)
kf)
C'A
"
M
:!
C,4
(, I
M
00
C: )
rl
f)
m
-
C) 00
kr
('4 rj 00 CN
C
cq
tf)
a,,
ID C) p t-ý , , tý, kn .
(11 J) >
00
u
kr)
C7,
Cý
't
00
"
Q)
..
0
E
V
rq
Lr)
-
k,()
-
'T
ýo
kr) "o
C) "o
-
cl )
cl)
It
"
t
00
c)
7
kti
)
ttIP-
C-)
r-
C'4
o" It
00 Cl )
=
4.
-0
0U to m
tlo
-ý4 U ý:
ý, I
U
4) ý: "o
LL.
If)
r-
-
Cq
4. -
cz
co
M
"
r-
r-
cf)
't
14D "t
-
"C
IT
r-
Cl)
0
c)
C'4
Cýý
tr)
r-
00
00
00
C)
00
"
kn
-
"
m
C-4
-
\-c
110
't
"
00
00 "
fl)
"
"
-
kf)
kf)
7, -
00 kl'l
"o
r)
00
"
CD
00
6,
a,
ý,o
C)
CA
m
r -4
,ýý -
V-) ý(j ýu cl, (= 4 00 E V)
03
-
r- -0 C-4 == .2 ý C,
"a
(f)
r-
(71
kn
kn
r-
Cl)
L4
kf)
N
")
2 2
tf)
kf)
't
'IT
r-
IT
Cq
-t
r)
(: )"
kf)
C,4
C,4
Cl)
2
(,2
')
ý74
rr-
r-* 00 -,t C')
fl)
Cý c)
"t
kf)
C) IC
CD C) 0 Cl C) C)
C:) 0
CD 0 C) C)
C) (= CD C) "C
CD 0 CD C) (7, N
0 C:) c) C:) CD CD CD C> rC) "t -
1=1CI 0 0
C)
C)
0
c)
C) C) o C)
cz:)
C: 0 )
(=) 0
E I-
C::> kn C7, tr)
"
-a
ca
0 0 0 0 0 ON C'4
>, cz
1,0 In
:3
V%
-
0 t-
(=) CD C,) C)
0 C>
00 Ca t -0 ý: ý-, -0 ý -, ý' ý: ý M
0.
-
m m 0.
V)
cn 1.0
tA ý.c
M
M
m
0
0
0
C13 "o
*
rm u t-
CL
tn ý,o
-C
M tb
ý,c "
E
'o ,,
q) u
'0 a
a co
CD C)
4)
tt
U z V u X-
en
U Lu
A Q) M,
ON
C, 4 C-4"o m 00 7 CN CN
cz
1 ýZ 14Z
M Q
V
>,
ct
V -0
-0
ýu
00
ýE
03
u
a)
243
rl
00 Lo
r, 4
ýc
r, 4
C
cli
C, 4
rA
"o
r, 4
V)
z
rl
X
ýE
r-
CI A
ý'
-
*0
"')
c"
00
r,
rn
ýo rn
00 rn
qT rn
00 c)
rn
00
CD
m
m
(-, 1
W)
kt%
C,
kr)
M
rq
cc
'rT C-) C-4 -I-
03 c
Irl 'T
0
ý
q
rn
.0
ý7,
IT r-
'10
rA
7
rq
-
q
ýC
-,t
00
T
::
kf)
'T
ý= rn
C, (N
ýc cl)
cr, -
C, rn
(7, (I
rr, 4
"T ,T
"C
(14 rl
00 rn
Lr)
rn
.C m
(:: )
00
.0
t--
00
r-
.0
0
rl V)
m
m
00
'n
-
kf)
r-
00
r, 4
") :r
,,
-.71-
cn
00
a.,
00
"C
V)
m
' 4-
V)
"o
tr)
M
C)
"T
"
00
M
V)
'It
"o
fn
rn
rn
V
"T r-
M C7,
00
r00
V) =
; ,
W)
"
00
a,
M c"I rl ) :T r) C'4 z: m rq :2 00
m -
r-
C , ,)
vu
-
ej
rq
-0
V)
75 kl-ý
r-
0
Q)
ý:
-00 00 -,T (7, r- r- r)T r-
rl
r-
2
00 "
r-
C)
C)
00 rq
C)
IC
rW)
110
\0
C) C) C) m rý (= r-ý: c' ýý 0 2 - - :2 ý- 00 8, m 4
-ýn ýE $-
vto
ý:
rW-)
n
rl
-
C ', tri
>ý 00 ;00 00 Mra, " ) (11 "a
'ýz
"' ý ý
-0
7z =c
rq
ýý -
r ,4
-
c)
-
Irl
n
-
= ' :> " r4 N
ýR
N
"
r)
-
4
rA
1 4- N
"a ýo "0 "D ,T m ') .E !:2 cd
Cý
M
"
2ý :t
r-
"
n
C> C) W-) r00 r0 I.. W) tr) W)
C)
F=
>ý
ý. 0 m , - -0
ýu . ý:
"
421
; 16
vs
0
"t
A
> (N r ,4 -m
, C) 0 C) c) C) (=) 0 CD c) C, C) 0 0 c) C) C) 5 c) o 0 0 0 C14
ý;
't C)
r-
C)
(5 rn -
0ý cq " C) -.0 -
t-C:I.) C)
C) C) 5 "" m m m to
. . . 0. 0. . . . . . C:,. o. c). 0. C,. o. C) C> C) 0 CD 0 c) "1 7, :
-'T
:5
5 rq ý-
C)
5 rC)
(5 ::,
C)h
Eý) -6b
C! C! 110
V) ýo
v) ýo
Ll
0 CU C)
E
.0 ('3 Q
244
4)
rn 00
oc
't
rl)
ýc
X
r-)
00 r-j
r1i
OC
fl)
00
r-
It
00
Cý
2
r-
r-
-
00
C)
C)
,1-
"t
oc
4
IC
'45
00
ýc
00
'-1
ON
CA
CIA
'IT
Cl)
(:::)
11,
Itt
W)
W)
C: ý
r--
r-
r) kf)
r14
rA
(14
C,
t.-)
r-
P-
r --, C)
(N 00
oc -
C) C)
rl
Cl)
rn
rA
oc 1,1 "o C> t00 C7, "o ON = "o , 00I C) V-1 qtl00 Ittýo cp, Itt "00 Q* ON C, "" C7, IV te) =5 ý: L, CIA rc) cl) 0,
0 C: o ' -
r-
-=7
r-
'r,
CIA "
V
-
CA
"
\C
110 1.0
E
::
In
t,
eq
'..
f-4 f-4 z
(4
"
=
ýd .z V-4 '"
C: )
ýo oll c)
:3 as
u U -0 a
kr)
kf)
V-)
")
rl rl (-1 "a2rI ;ý, 9m
(, A
C) C14
tf)
(14 It
ON 00
rIt
't clq
cl)
C7ý
r, 4
r)
-0 kr) W-)
rl) C, I
M
0
00
00
r')
r-)
r-
rq
eq
Nr
cN 00
tIT
r-
c)
11C Ol ýo
-At eq
17, ýo
17, ý10 4)
ý:
-
; 36.
\4
a,,
ýE =ý
cz
N
C) -)
M -
M -
r00
00
C) 00
r(14
'IT (14
IT It
rq It
01ý 110
C*l Nt,
Cý ý:t
r-
-
cu
\,c -
ýo "
00 -
00 -
11' C-4
fl) C-4
kn \C
IT M
t "
"o M
kn "o
rL7c r\0 -
(=) ttr) c)" cl)
C') \0
kn -
-
00 m
r-
m
C'4 'It
00 "t
a, c) m 0c) 00
ZT c)
cz
E
ý:ý=,; ý, "?
LL.
-
>ý
'ýz =ý
00
00
FN
C)
00
-
C,4
kr)
kf)
-5=7 -
ca
-
(40
Cý
-
-
m
(-) "
(-I -
CIO
ýo
m
r"
oc -
r-
00 -
r-
V) -
It
m
kn
110 110 %%c -
Cl)
W)
"
W)
C14 "
"
00
r- tt
'It C',
F--
c) W-)
kn
0" C'\ C', 00 00 -
00
(71
(7,
00
t
00
Cf)
r1l
00
00
00
-
$u
-
" r, 4
ý: rco C)
A > Cd,
-> u
2-
4)
cl ,
00
ýc
It
', c C14
Cý r)
(") -T
"t c)
cl) :r
kf) t
1.0
(14
Itt
rr-
00 r-
!T 'T
'tt "tt
00
"
*
Cf)
"C
M
M
>, m
kil)
00 o"
C: C:
(14
=$ a
-
7) co
00
LIJ
; 7-
CD 0 O ý0 1
0 N
01 4 C
C>
C) CD
0
-
ql l
r-
Cý
0
0
I
I
C) 0 0
-
I
0 0
C) 0
fl)
ý10
-
-
-
I
0 C: ) ON
"
0 C>
I
I
0 0 It
-
(14 Cý
-
I
Cý 0
I
Cý
I
0 0
C: ) 0
0 0
1-
0
rn
C)
M
M
CL
m to -6b Cl CL
m
I
0 CD C) (::) 0 (= CD 0 CD c) g 0 C:) CD C:) 0 ý= C) 0 C) 0 "C CS rn rq C) C) fn I'D Cý CIA C> - 0"t r"t
0 o r- 0
1E
-9
-a cq
C
kr)
1
(U
'IT
-0 Q.) -0
I", "o "o 14)
ci a)
X
m
C. 'A
m
C13 m
C-4
(A
r-
g
L'a cz
r-
.'a
u
-
CA -0
=
245
Table C.42 Circadianexcretion of urinary aMT6s by low-F femalegerbils aged 16 weeks; correctedfor non-urinations;data expressedas ng/3-h. I
WINTERTIME
16W LF F1
16W LF F2
16W LF F3
16W LF F4
16W LF FS
16W LF F6
16W LF F7
16W LF F8
16W LF F9
16W LF FtO
16W LF F11
16W LF F12
1800-2100
1.9
5.6
0.8
1.6
1.4
3.4
2.0
1.2
1.2
3.4
2.4
2.2
2.3
1.3
0.4
2100-2400
4.9
5.8
1.9
3.3
1.5
2.1
2.6
1.3
1.2
1.5
2.5
0.9
2.5
1.5
0.4
2400-0300
9.6
6.2
2.5
7.2
3.9
5.4
8.1
9.5
7.8
3.9
2.4
1.4
5.7
2.8
0.8
0300-0600
9.7
6.2
3.9
7.2
14.2 7.1
15.3 5.3
8.6
6.2
15.9 3.0
8.6
4.4
1.3
0600-0900
2.6
8.9
2.0
7.3
3.2
2.5
3.3
1.2
2.5
6.1
2.7
1.8
3.7
2.4
0.7
0900-1200
2.7
3.7
1.8
2.2
4.0
3.2
2.2
1.1
2.4
5.6
2.7
1.1
2.7
1.3
0.4
1200-1500
2.4
1.9
1.9
2.2
1.9
1.0
1.6
3.9
2.7
1.9
1.6
2.4
2.1
0.7
0.2
1500-1800
2.4
2.0
1.3
3.4
4.9
3.9
2.6
1.2
2.5
2.0
1.6
1.4
2.4
1.1
0.3
8.1
2.3
5.5
1.6
totalaMT6sng/24-h
MEAN STDEV
36.2 40.3 16.1 34.4 35.0 28.6 37.7 24.7 28.9 30.6 31.8 14.2 29.9
Wy weight g
68
61
63
aMT6spg1gBW/24-h
532 661 256
77
75
447 467
63
69
68
75
64
414
554
329 459 478
62
66
68
SEM
513 215 444 126 36 1 1 1
Table C.43 Circadianexcretionof urinary aMT6s by low-F femalegerbils aged 16 weeks; correctedfor non-urinations;data expressedas pg/g BW/3-h. I
I
I
WINTER TIME
16W LF Ft
16W LF F2
16W LF F3
16W LF R
16W LF FS
16W LF F6
16W LF F7
16W LF F&
16W LF F9
16W LF FIO
16W LF Fit
16W LF F12
1800-2100
28
92
13
21
19
50
29
16
19
53
39
33
34
22
6
2100-2400
72
95
30
43
20
30
38
17
18
23
40
13
37
24
7
2400-0300
141 102
39
94
52
79
119 126
124
61
39
21
83
40
12
0300-0600
143 102
62
94
189 103 225
71
124
97
256
46
126
66
19
0600-0900
38
146
32
95
43
36
48
16
40
95
44
27
55
37
11
0900-1200
40
61
29
29
54
46
32
15
38
88
44
16
41
20
6
1200-1500
35
31
30
29
26
15
24
52
43
30
26
36
31
10
3
1500-1800
35
33
21
44
65
57
38
16
40
31
26
21 1 36 1 5 Hý6 4
415
552 329 446 477
513
237
i totalaMT6spg/gBW/24-h 533 661
256 447 467
MEAN STDEV
444
123
SEM
246
Table C.44 Circadian excretion of urinary aMT6s by high-F female gerbils at 16 weeks; corrected for non-urinations; data expressedas aMT6s ng/3-h. I
TIME
16W HF FI
16W HIF F2
16W HF F3
16W HF F4
16W HF F5
16W HF F6
16W HF F7
16W HIF F8
16W HF F9
16W HF FIO
16W UF I'll
1600-1900
2.3
2.8
2.8
2.1
1.1
0.3
2.6
1.2
0.4
1.2
0.9
0.4
1.5
1.0
0.3
1900-2200
2.4
1.4
2.6
2.1
2.2
0.6
5.0
1.9
0.5
0.9
0.9
0.4
1.7
1.3
0.4
2200-0100
5.2
1.4
1.9
3.0
2.2
0.3
5.0
9.0
0.4
5.8
2.4
1.8
3.2
2.6
0.7
0100-0400
5.2
5.3
7.3
2.9
3.0
1.2
1.3
8.9
0.5
13.2
6.4
1.7
4.7
3.8
1.1
0400-0700
11.2
5.4
13.5
12.2
3.0
1.7
8.0
7.9
1.5
9.1
4.8
3.5
6.8
4.1
1.2
0700-1000
2.3
4.0
1.7
2.0
1.3
1.4
8.1
7.9
2.0
2.9
1.2
3.4
3.2
2.4
0.7
1000-1300
2.5
2.0
1.8
2.2
1.9
0.7
6.1
1.7
1.0
1.5
2.7
2.2
2.2
1.4
0.4
1300-1600
2.0
1.9
1.7
1.4
1.2
1.2
2.5
1.7
1.0
1.5
1.5
0.9
1.5
0.4
0.1
16W HF MEA?s SD F12
SEM
38.6
40.2
7.1 36.1 20.7
14.3
24.9
11.8
3.4
48.6
90.8
70.3
62.1
70.7
73.5
65.9
68
9.9
2.9
153
425
572
115
510
282
216
356
147
43
total aMT6s ng/24-h
33.1 24.2 33.3
27.9
15.9
7.4
body weight g
69.4
65.6
69.4
70.4
58.3
aMT6s pg/g BW124-h 477
369
480
396
273
Table C.45 Circadian excretion of urinary aMT6s by high-F female gerbils at 16 weeks; corrected for non-urinations; data expressedas pg/g BW/3-h. I
I
16W HF F9
16W HF FIO
16W HF F11
18
6
17
13
6
55
27
8
12
12
6
55
129
6
82
52
24
14
127
7
174
52
34
88
113
25
29
22
28
89
30
26
31
33
15
29
29
24
20
21
480
367
483
399
259
TIME
16W HF F1
16W BF F2
16W HF F3
16W HF R
16W HF F5
16W HF F6
16W HF F7
16W HF F8
1600-1900
33
42
41
30
19
6
29
1900-2200
35
21
38
30
38
13
2200-0100
75
21
28
43
38
0100-0400
75
80
106
41
0400-0700
162
82
196
0700-1000
33
61
1000-1300
36
1300-1600 aMT6s pgtg BW/24-h
16W HF MEAls F12
SD
SEM
22
13
4
6
25
15
4
32
27
45
35
10
186
86
26
69
53
15
24
128
65
53
98
57
16
113
32
41
16
52
45
29
8
67
24
16
21
36
33
31
13
4
25
27
24
16
21
20
14
23
5
1
152
424
575
115
508
280 216 355
149
43
247
Table C.46 Circadianexcretionof urinary aMT6s by low-F male gerbils at 16 weeks;corrected for non-urinations;data expressedas aMT6s ng/3-h. I
WINTER TIME
16W 16W 16W 16W 16W 16W 16W 16W 16W 16W 16W 16W LF LF LF LF LF LF LF LF MEA11, SD LF LF LF LF M9 MIO Mll MI M2 M4 M5 M6 M7 M8 M12 M3
SEM
1800-2100
1.6
2.5
1.4
5.9
2.3
1.3
2.9
2.3
3.4
2.6
3.3
3.7
2.8
1.3
0.4
2100-2400
1.6
4.7
4.1
6.4
2.4
1.1
48
4.1
0.9
2.4
2.3
4.0
3.2
1.7
0.5
2400-0300
8.5
7.0
15.7 8.8
7.5
2.2
10.8 12.9 3.6
4.3
1.5
4.1
7.2
4.4
1.3
0300-0600
10.2 7.0
6.3
8.9
13.7 2.7
17.7 23.3 3.5
5.0
4.0
4.2
8.9
6.4
1.8
0600-0900
3.4
2.7
3.8
14.1 3.8
1.7
6.5
3.6
3.5
2.6
2.6
4.1
4.4
3.3
0.9
0900-1200
2.1
2.7
2.6
1.8
1.6
1.2
2.8
2.7
2.2
1.4
1.8
2.4
2.1
0.5
0.2
1200-1500
2.0
2.3
2.6
1.7
2.6
2.0
2.7
2.7
1.7
1.3
3.1
2.4
2.3
0.5
0.2
1500-1800
3.7
2.4
2.5
5.4
3.3
1.2
5.9
4.8
2.8
1.8
1.1
2.9
3.2
1.6
0.4
totalaMT6sngt24-h
33.0 31.3 39.1 53.4 37.6 13.4 54.2 56.4 21.6 21.5 19.7 27.9 34.1 14.5 4.2
bodyweightg
88
82
98
aMT6spg1gBW124-h
375 382 444 651 464
82
81
74
108
91
181 502 620
81
91
267 236
76
73
85
259
382 397
9.6
2.8
148
43
Table C.47 Circadianexcretionof urinary aMT6s by low-F male gerbils at 16 weeks;corrected for non-urinations;data expressedas pg/g BW/3-h. I
WINTERTIME
I
I 16WI 16WI 16WI 16WI 16WI 16W 16W 16W 16W 16W 16W 16W LF LF MEAls SD SEM LF LF LF LF LF LF LF LF LF LF MI
M2
M3
M4
M5
M6
M7
M8
M9
MIO
MI I
M12
1800-2100
Is
30
16
72
28
19
27
25
42
29
43
51
33
16.3
4.7
2100-2400
Is
57
47
78
30
15
44
45
11
26
30
55 , 38
19.9
5.7
2400-0300
97
85
179
107
93
30
100
142
44
47
20
56
83
46.9
13.5
0300-0600
116
85
72
109
169
36
164
256
43
55
53
58
101
66.0
19.0
0600-0900
39
33
43
172
47
23
60
40
43
29
34
56
52
39.4
11.4
0900-1200
i4
33
30
22
20
16
26
30
27
15
24
33
25
5.9
1.7
1200-1500
23
28
30
21
32
27
25
30
21
14
41
33
27
6.9
2.0
42
29
28
66
41
16
55
53
35
20
14
40
37
16.0
4.6
1500-1800 raUý6s 7pg/g BW124-h
375
382
444
651
464
181
502
620
267
236
259
382
397
1
148
1
42.8
248
Table C.48 Circadian excretion of urinary aMT6s by high-F male gerbils at 16 weeks; correctedfor non-urinations; data expressedas aMT6s ng/3-h. I
TIME
I
16W 16W 16W 16W 16W 16W 16W 16W 16W 16W 16W 16W HF HF HF HF HF HF HF HF HF HF HF HF MEAN SD M2 M3 M4 M5 M6 M7 M8 M9 MIO Mll M12 MI
1600-1900
2.2
2.4
1.6
1.6 2.8
1.6 2.8
1900-2200
2.2
4.6
1.3
1.7 4.3
2200-0100
6.5 12.3 2.0
2.0
0100-0400
6.5 12.3 3.8
3.2
0400-0700
6.5
9.2
4.8 10.1 13.4 2.7
0700-1000
2.3
9.7
2.5
2.1
2.4
1000-1300
2.3
3.6
2.6
1300-1600
2.3
3.5
78
86
SEM
2.6
2.0
2.7
1.6
1.4
2.1
0.5
0.2
2.3
1.6 4.2
2.1
3.8
1.7 3.2
2.7
1.2
0.3
2.6
2.7
1.6 5.0
2.2
6.8
2.6
4.1
3.1
0.9
2.6
2.8 11.0 5.1
2.2
6.8
5.9 10.2 6.0
3.5
1.0
6.5 15.0 12.6 3.3
5.8 10.2 8.3
4.0
1.2
2.7
1.5 6.4
1.7 3.3
1.6 9.7
3.8
3.0
0.9
1.8 3.7
2.2
1.5 2.5
1.7 2.2
1.9 2.0
2.3
0.7
0.2
2.1
1.9 2.3
1.5 2.7
2.5
1.5 2.1
1.8 2.0
2.2
75
69
68
86
80
76
78
3.3
0.6 1 0.2 totalaMT6sng/24-h 30.8 57.6 20.7 24.3 34.1 18.5 29.2 43.3 26.0 31.0 22.9 42.0 31.7 11.2 3.2 78
76
87
6.1
1.8
aMT6spgIgBW/24-h1 395 670 276 353 437 272 384 503 325 356 301 5251 400 1 118
34
bodyweightg
80
Table C.49 Circadianexcretionof urinaryaMT6sby high-Fmalegerbilsat 16weeks; for data expressed non-urinations; aspg/gBW/3-h. corrected TIME
I I I I I I I I I 16W 16W 16W 16W 16W 16W 16W 16W 16W 16W 16W 16W HF RF HF HF HF HF HF HF RIF HF HF HF MEA.Is SD SEM MI
M2
M3
M4
NIS
M6
M7
M8
M9
1600-1900
28
28
21
24
36
24
37
30
25
31
21
18
27
6
2
1900-2200
28
53
17
25
55
34
21
49
26
44
22
40
35
13
4
2200-0100
83
143 27
28
33
40
21
58
28
78
34
41
51
35
10
0100-0400
83
143 51
46
33
41
145 59
28
78
78
128
76
42
12
0400-0700
83
107 63
146 172 40
86
174 158 38
76
128 106
49
14
0700-1000
29
113 33
31
31
40
20
74
21
38
21
121
48
35
10
1000-1300
29
42
35
26
47
32
20
29
21
25
25
25
30
8
2
1300-1600
1 29
41
29
27
29
22
36
29
19
24
24
25
28
6
2
MIO M11 M12
aMT6spgIgBW/24-h 395 670 276 353 437 272 384 503 325 356 301 525 1 400 ý 118
34
249
Table D. 1 Descriptive statistics for urinary aMT6s levels by gerbils at 7 weeks.
Femilles
Mean StandardError Median Mode StandardDeviation Variance Kurtosis Skewness Range Minimum Maximum Sum Count Milles;
body weight
aMT6s pg/g BW/24-h
aMT6s ng/24-h
9
7W LF FEMALES
7W HF FEMALES
7W LF FEMALES
7W HF FEMALES
7W LF FEMALES
7W HF FEMALES
26.8 2.0 26.3 37.0 6.8 46.7
18.1 1.6 15.3 #N/A 5.5 30.1
602 49 545 NN/A 168 28361
360 32 292 #N/A 109 11901
-1.1 0.5 19.3 17.7 37.0 321 12
-0.4 1.1 15.4 12.2 27.6 217 12
-1.1 0.6 490 386 876 7221 12
-1.5 0.6 280 259 539 4314 12
45 0.9 45 42 3.0 9.2 4.6 1.9 11 42 53 538 12
51 1.6 53 53 5.6 31 0.3 -1.1 18 40 58 609 12
7W LF MAM
7W HF MALES
7W LF MALES
7W HF MALES
7W LF MALES
7W HF MALES
16.4 1.2 15.3 #N/A 4.2 18 7.0 2.4 16.5 12.0 28.5 197 12
566 42 576 #N/A 147 21533
308 22 306 #N/A 76 5753 3.2 1.1 311 185 496 3699 12
54 0.9 54 so 3.0 9
54 1.7 55 56.6 5.8 34
-1.1 0.1 9 50 59 649 12
-0.4 0.1 20 45 65 648 12
30.7 Mean 2.3 StandardError 30.8 Median #N/A Mode 7.9 StandardDeviation 62 Variance Kurtosis -1.8 0.0 Skewness 21.5 Range 20.0 Minimum 41.5 Maximum 368 Sum 12 1Count 1
-1.1 0.3 455 381 836 6792 12
1
250
Table D. 2 Descriptive statistics for urinary aMT6s levels by gerbils at 9 weeks; including 2 gerbils whose day I levels of aMT6s were used in analyses. aMT6s ng/24-h Females
Mean Standard Error Median Mode Standard Deviation Variance Kurtosis Skewness Range Minimum Maximum Sum Count Males
Mean Standard Error Median Mode Standard Deviation Variance Kurtosis Skewness Range Minimum Maximum Sum lCount
aMT6s pglg BW/24-h
9w LF FEMALES
9W HF FEMALES
25.7 1.8 25.1 #N/A 6.4 41.0 0.3 -0.5 22.2 12.3 34.4 309 12 9W LF MALES
27.9 2.2 25.8 #N/A 7.7 58.8 -0.6 0.6 24.4 18.4 42.8 335 1 12 1
9W LF FEMALES
9W HF FEMALES
20.2 1.8 18.5 #N/A 6.2 38.3 -1.1 0.5 17.9 12.0 29.9 242 12
476 31 459 #N/A 109 11853 1.2 -0.7 411 233 644 5708 12
365 31 340 #N/A 106 11214 -1.0 0.6 310 242 552 4381 12
9W HF MALES
9W LF MALES
9W HF MALES
19.6 1.4 19.3 15.7 4.7 22.4 1.4 1.1 17.3 13.3 30.6 235 12 1
425 32.6 410 #N/A 113 12785 -0.7 0.4 376 252 628 5099 12 1
body weight 9 9W LF FEMALES
9w HF FEMALES
54 1.0 53 52 3.4 11.6 -0.8 0.6 10 so 60 648 12
55 1.1 55 54 4.0 16 -0.3 -0.1 13 48 61 662 12
9W LF MALES
9W HF MALES
320 66 21.5 1.4 299 65 #N/A 63.8 75 4.9 5568 24.1 0.3 -0.4 0.8 0.7 263 15 213 60 476 75 3841 790 12 1 12
61 1.0 61 60 3.5 12.4 -0.6 -0.1 12 55 67 736 1 12
251
TableD.3 Descriptive statistics for the urinary aMT6s levels excreted in 24-h by gerbils aged II Y2weeks(including 5 gerbils whose day 1 levels of aMT6s were used).
W
111/2 Females
Mean Standard Error Median Mode Standard Deviation Variance Kurtosis Skewness Range Minimum Maximum Sum Count
Mean Standard Error Median Mode Standard Deviation Variance Kurtosis Skewness Range Minimum Maximum Sum Count .
IIIAW
11 1/2 W
111/2
W
111/2
W
111/2W
LF FEMALES
HF FEMALES
LF FEMALES
HF FEMALES
LF FEMALES
HF FEMALES
27.7 2.0 26.3 #N/A 7.1 49.8 0.8 0.4 26.5 15.3 41.7 333 12
26.1 2.9 27.8 #N/A 9.5 90.2
467 29 478 #N/A 102 10340 0.2
407 40 413 #N/A 133 17612
59 1.7 57 64 5.9 35.1
-1.3 0.2 387 218 605 4473 11
-0.7 0.6 18 53 71 711 12
63 1.9 65 66 6.3 40 0.3
2W Males
body weight 9
aMT6s pgIg BW/24-h
aMT6s ng/24-h
-1.6 -0.1 26.3 13.1 39.4 287 11 ,/
2W
-0.2 369 272 642 5605 12 ,/
2W
P/2
W
I/
2W
-0.1 22 53 75 696 11 1 P/2
W
LF MALES
HF MALES
LF MALES
HF MALES
LF MALES
HF MALES
33.0 2.8 30.3 #N/A 9.8 95.4 1.3 1.1 35.2 20.2 55.4 396 12
21.9 1.6 22.9 #N/A 5.7 32.2
449 32 440 #N/A 112 12434
299 21 309 #N/A 74 5402
-0.5 -0.5 18.2 11.4 29.6 263 12
-0.7 0.2 356 288 644 5389 12
-0.8 -0.4 223 173 396 3584 12
73 2.0 71 71 6.9 47.2 0.1 0.6 24 62 86 878 12
73 1.1 72 71 3.8 14.4 0.1 0.2 14 66 80 876 12
252
Table DA Descriptivestatisticsfor the urinary aMT6s levels excretedin 24h by gerbils aged 16 weeks. aMT6s pgIg BW/24-h
aMT6s ng/24-h Females
16W LF FEMALES
16W HF FEMALES
16W LF FEMALES
16W HF FEMALES
16W LF FEMALES
16W HF FEMALES
29.7 2.4 31.2 #N/A 8.2 66.7
24.2 3.3 25.5 #N/A 11.6 134.4
442 36 458 #N/A 126 15981
346 42 375 #N/A 147 21604
67 1.6 67 4NIA 5.5 30.4
-0.2 -0.8 25.4 14.9 40.2 357 12
-1.4 -0.2 33.1 7.2 40.2 290 12
-0.2 -0.4 421 236 657 5305 12
-1.1 -0.1 457 115 572 4151 12
-1.0 0.6 16 61 77 810 12
68 2.9 69 69 9.9 99 2.8 0.4 42 49 91 815 12
Mean StandardError Median Mode StandardDeviation Variance Kurtosis Skewness Range Minimum Maximum Sum Count
16W LF MALES 34.1 4.2 32.2 #N/A 14.5 209.4
Males Mean StandardError Median Mode StandardDeviation Variance Kurtosis Skewness Range Minimum Maximum Sum lCount
body weight 9
1
-1.1 0.4 43.0 13.4 56.4 409 12
16W 16W 16W 16W 16W HF LF LF HF HF MALES MALES MALES MALES MALES 399 31.6 397 85 78 3.1 32.3 2.7 42.7 1.7 30.6 388 82 382 78 #N/A #N/A #N/A 81.1 #N/A 112 10.9 9.5 6.1 148 12487 89.4 118.8 21877 36.6 2.2 2.0 2.4 -0.7 -0.5 1.3 1.3 0.3 1.3 -0.2 394 38.6 34 472 19 278 19.3 181 73 68 671 57.8 108 652 87 4786 1014 379 4766 938 12 12 12 12 12 1 1 1 1 1
253
Table D. 5 Descriptive statisticsfor the urinary aMT6s levels excretedin 24-h by male gerbils aged9 weeks.It includesdata from: i) the longitudinal study; ii) additional gerbils on 2x 24-h urine collections. aMT6s ng/24-h MALES Mean Standard Error Median Mode Standard Deviation Variance Kurtosis Skewness Range Minimum Maximum Sum Count .
9W LF MALES
9W HF MALES
aMT6s pg/gBW/24-h 9W LF MALES
9W HF MALES
body weight 9 9W LF MALES
9W HF MALES
27.9 2.2 25.8 #N/A 7.7 58.7
21.3 1.1 20.2 15.7 5.1 26.2
425 33 410 #N/A 113 12778
348 19 346 #N/A 85 7163
66 1.4 65 62 4.9 23.8
61 1.0 62 64 4.6 22
-0.6 0.6 24.4 18.4 42.8 335 12
-0.4 0.5 18.3 13.3 31.6 426 20
-0.7 0.4 376 252 628 5099 12
-0.4 0.5 308 213 521 6955 20
-0.5 0.7 15 60 75 790 12
-0.7 -0.2 17 53 70 1227 20
254
Table D.6 Descriptivestatisticsfor the meantotal urinary aMT6slevelsexcreted by all gerbilsat II Y2weeks.It includesdatafrom: i) the longitudinalstudy;ii) additionalgerbilson 2x 24-h urine collections. aMT6s pg/g BW/24-h
aMT6s ng/24-h 11V2W
11Y2W
11Y2W
11 Y2W
body weight 9 11Y2W
11Y2W
FEMALES
LF FEMALES
HF FEMALES
LF FEMALES
HF FEMALES
LF FEMALES
HF FEMALES
Mean StandardError Median Mode StandardDeviation Variance Kurtosis Skewness Range Minimum Maximum Sum Count
26.6 1.2 26.2 26.3 6.7 44.5 0.4 0.3 29.5 12.2 41.7 797 30
24.4 1.5 24.0 #N/A 7.6 57.2
450 21 424 #N/A 117 13701 0.1 0.4 520 205 725 13505 30
389 23 369 #N/A 113 12781
59 0.9 58 64 4.7 22.5
63 1.5 63 66 7.2 52
-0.7 0.5 387 218 605 9344 24
-0.5 0.5 18 53 71 1779 30
-0.5 -0.2 28 48 76 1505 24
11Y2W
11Y2W
11Y2W
-1.0 0.3 26.3 13.1 39.4 587 24 11Y2W
11Y2W
11V2W
MALES
LF MALES
BF MALES
LF MALES
HF MALES
LF MALES
HIF MALES
Mean StandardError Median Mode StandardDeviation Variance Kurtosis Skewness Range Minimum Maximum Sum Count .
33.0 2.8 30.3 #N/A 9.8 95.4 1.3 1.1 35.2 20.2 55.4 396 12
21.7 1.4 20.9 #N/A 6.5 42.6
449 32 440 #N/A 112 12434 -0.7 0.2 356 288 644 5389 12
73 2.0 71 71 6.9 47.2 0.1 0.6 24 62 86 878 12
70 1.2 71 71 5.4 30
-0.4 0.5 24.0008 11.4 35.4008 456 21
310 19 291 #N/A 86 7404 0.5 0.7 342 173 515 6508 21
-0.3 -0.2 21 59 80 1465 21
255
Table D.7 Descriptivestatisticsfor urinary aMT6s levelsexcretedby gerbils aged16weeks.It includesdatafrom: i) longitudinal study; ii) additional gerbilson 2x 24-hoururine collections. aMT6s ngt24-h Females
Mean Error Standard Median Mode Deviation Standard Variance Kurtosis Skewness Range Minimum Maximum Sum Count Males
Mean StandardError Median Mode StandardDeviation Variance Kurtosis Skewness Range Minimum Maximum Sum Count
aMT6s pg/g BW/24-h
16W LF FEMALES
16W HF FEMALES
16W LF FEMALES
25.2 2.2 26.1 #NIA 9.5 89.8 -1.6 0.1 26.9 13.3 40.2 454 18
23.5 2.6 23.6 #N/A 10.4 109.1 -1.1 -0.1 33.0 7.2 40.2 377 16
380 33 364 #N/A 139 19228 -1.1 0.3 468 189 657 6846 18
16W LF
16W HF
MALES
16W HF FEMALES
body weight 9 16W LF FEMALES
16W HF FEMALES
340 34 376 #N/A 134 18016 -1.0 0.0 457 115 572 5437 16
66 1.4 66 68 6.1 37.3 0.2 -0.1 24 53 77 1190 18
68 2.3 69 69 9.1 83 2.5 0.5 42 49 91 1086 16
16W LF
16W HF
16W LF
16W HF
MALES
MALES
MALES
MALES
MALES
28.1 2.9 21.7 #N/A 13.1 172 0.3 1.2 43.0 13.4 56.4
30.4 2.0 29.7 #N/A 8.8 78 4.0 1.6 38.5 19.3 57.8
342 29 287 #N/A 132 17347 0.5 1.1 471 181 652
393 21 395 388 94 8900 2.9 1.2 409 263
80 2.0 79 81 9.0 82 3.1 1.4 41 67
7 1.4 77 71 6.4 41 -0.8 -0.1 22 65
590 21
607 20
7184 21
672 7854 20
108 1688 21
87 1537 20
256
Table D. 8 Descriptive statistics for mean urinary aMT6s levels excreted by includes in intervals. The 24-hour 48-hours 2x 28 table gerbils aged weeks; over 9 instanceswhen the levels of aMT6s in day 1 are used. aMT6s pg/gBW/24-h
aMT6s ng/24-h Females
bodyweight 9
28W 28W 28W 28W 28W 28W LF HF LF FIF HF LF FEMALES FEMALES FEMALES FEMALES FEMALES FEMALES
Mean
17.4
21.7
248
289
70
76
Standard Error
1.2
1.6
15
23
1.2
1.7
Median
17.5
18.7
249
248
70
76
#N/A
#N/A
#N/A
#N/A
67.9
#N/A
Standard Deviation
4.4
5.7
58
83
4.4
6.2
Variance
19.4
32.5
3332
6909
18.9
38
-0.1 1.0
0.1
-0.6 0.9
0.5
1.6
0.2
0.4
238
17
25
Mode
Kurtosis
-0.7
Skewness
17.6
-0.2 217
9.2
15.4
135
213
62
64
Maximum
23.9
33.0
353
450
79
89
Sum
244
282
3469
3759
983
983
14
13
14
13
14
13
28W
28W
28W
28W
28W
28W
LF MALES
HF MALES
LF MALES
HF MALES
LF MALES
HF MALES
24.4
27.8
273
306
95
91
1.6
2.6
34
30
6.0
2.5
Median
22.7
27.3
204
307
106
90
Mode
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
Standard Deviation
4.7
7.5
102
86
18.1
6.9
Variance
22.4
55.6
10407
7326
327.9
48
-2.2
13.3
247
-0.3 265
-0.3 42
-0.8 0.6
Range
-0.4 25.7
-2.2 0.3
-0.4
Skewness
-1.3 0.3
1.5
Minimum
18.5
13.9
166
162
72
83
Maximum
31.9
39.6
413
427
114
103
Sum
220
222
2461
2448
857
729
9
8
9
8
9
8
Range
-0.2 14.8
Minimum
Count Males
Mean Standard Error
Kurtosis
Count
20
257
Table E. I. Resultsof areasof ventral glands in gerbils 9 week low-F males I length breadth
area
sample
CIN
9WLFMI 9W LF M2 9W LF M3 9W LF M4 9W LF M5 9W LF M6 9W LF M7
2.45 2.3 2.0 2.0 1.8 1.8 2.55
cla
cm,
0.60 0.55 0.70 0.50 0.55 0.50 0.55
1.16 0.99 1.10 0.79 0.78 0.71 1.10 0.95 02
I mean SD
body weighi
(r)
67 62 63 61 58 54 67 61.7 47
9 week high-F males length I breadth
sample
CIO
9WHFMI 9W HF M2 9W 14FM3 9W HF M4 9W HF MS 9W RIFM6 9W HF M7 9W HF M8
2.4 2.6 2.3 2.55 2.15 2.3 2.4 1 2.5
28 week low-F males 28W LF MI 28W LF M2 28W LF M3 28W LF M4 28W LF M5 28W LF M6 28W LF M7 28W LF M8
2.6 2.7 2.3 2.4 2.2 2.2 2.5 1 1.9
0.8 0.7 0.7 0.6 0.6 0.6 0.6 0.5
28WHFMI 28W HF M2 28W HF M3 28W HF M4 28W HF M5 28W HF M6 28W HF M7 28W HF M8
sample
breadth
I
r.. .
COS
IIY: W LFFI 11Y2WLFF2 11YzWLFF3 11Y2WLFF4 11Y2WLFF5 11Y2WLFF6 11Y2WLFF7 11Y2WLFFS 11Y2WLFF9 11Y2WLFFIO 11YaWLFFI I II YW LFF12 11Y2WLFF13 llY2WLFF14 llY3WLFF15 11Y2WLFF16 IIY, WLFF17 llY3WLFF18 llY3WLFF19 11Y2WLFF20 11V2WLFF21 11Y2WLFF22 11Y2WLFF23 11 V2W LFF24
11YW LFF25
area
body weight
(2) 0.5 0.55 1.4 66 0.6 1.2 0.57 63 indistinguishable 65 indistinguishable 59 indistinguishable 55 indistinguishable 65 indistinguishable 61 indistinguishable 58 indistinguishable 56 indistinguishable 54 indistinguishable 53 indistinguishable 50 indistinguishable 50 indistinguishable 54 indistinguishable 51 indistinguishable 56 indistinguishable 56 indistinguishable 57 indistinguishable 60 indistinguishable 56 indistinguishable 54 indistinguishable 58 0.3 0.32 1.35 65 indistinguishable 54 0.9 0.3 0.21 1 59
1.6 1.6 1.5 1.3 1.5 1.9 1.55 1 1.5
0.45 0.45 0.5 0.45 0.5 0.45 0.6 0.45 MEAN STDEV
0.75 1.02 0.90 1.00 0.98 0.99 1.32 1.28 1.03 0.2
62 65 53 64 55 56 68 22 6 1 6"
0.6 0.5 0.6 0.7 0.55 0.8 0.7 0.75
1.13 83 0.82 86 1.25 97 1.37 103 0.99 85 1.76 93 1.46 95 1.47 1 87 1.28 91 0.3 70
11% week high-F females
28 week low-F females 28W LF Fl 28W LF F2 28W LF F3 28W LF F4 28W LF F5 28W LF F6 28W LF F7 28W LF F8
2.4 2.1 2.65 2.5 2.3 2.8 2.65 1 2.5
Imean SD
11% week low-F females length
0.4 0.5 0.5 0.5 0.6 0.55 0.7 065 I mean SD
weight
28 week high-F males
1.63 113 1.48 108 1.26 106 1.13 114 1.04 84 1.04 77 1.18 109 0.75 1 72 1.19 98 0.3 17.2
mean SD
CUB
body
0.57 73 0.57 71 0.59 72 0.46 70 0.59 69 0.67 72 0.73 79 0.53 1 75 0.59 1 72 .6 0.08 32
length
1 breadth 1
area cla Call cm, 1 indistinguishable indistinguishable 1.15 0.45 0.41 1.6 0.5 0.63 1.2 0.35 0.33 1.3 0.45 0.46 1.3 0.5 0.51 1.25 0.35 0.34 1.45 0.4 0.46 indistinguishable
sample
1 11Y2WHFFl 11YzWHFF2 11Y2WHFF3 11Y2XWIFP 11V2WHFF5 11Y2WHFF6 11V2WHFF7 11YsWHFF8 11Y2WHFF9 IIY2WHFFIO
body weight
fir) 58 55 63 76 63 67 71 70 68 61
28 weekhigh-F females 28W HF Fl 28W HF F2 28W HF F3 29W HF F4 28W HF F5 28W HF F6 28W HF F7 28W HF F8 28W HF F9 28W HF FIO 28W HF Ft 1 28WHFF12
1.60 0.90 1.70 1.60 1.75 1.70 1.60 1.6 1.5 1.5 1.6 1 1.6
0.50 0.40 0.50 0.40 0.55 0.40 0.50 0.5 0.45 0.5 0.5 0.45 J MEAN STDEV
0.63 73 0.28 64 0.67 78 0.50 78 0.76 74 0.53 68 0.63 72 0.63 73 0.53 78 0.59 73 0.63 78 0.57 1 89 0.58 1 74.8 0.12 6.2
258
Table E.2 Resultsof the t -testsassumingunequalvariancesbetweenthe body weights of gerbils at 7,9 and II Y2weeks I 7 weeks of age Mean Variance Observations MeanDifference Hypothesized df t Stat P(T
View more...
Comments