Testing Low Impedance

May 3, 2018 | Author: Rajesh Bodduna | Category: Electrical Impedance, Relay, Ct Scan, Electrical Engineering, Computer Engineering
Share Embed Donate


Short Description

Download Testing Low Impedance...

Description

Testing Low Impedance Bus Differential Relays International ProTesT User Group Meeting Vancouver, BC

What You’ll Learn • Ba Basi sics cs of bu bus s di diff ffer eren enti tial al pr prot otec ecti tion on • Di Diff ffer ere ent ntia iall Pro Prote tect ctio ion n Met Meth hod ods s • Guid Guidel elin ines es fo forr te test stin ing g lo low w im impe peda danc nce e bus differential relays

Basics of Differential Protection • Based on Kirchoff’s Current Law (KCL)  – The sum of cur curren rents ts ente enterin ring g and and exi exitin ting ga node must equal 0  – Th Thin ink k of of a bu bus s as as a no nod de

Sim impl ple e Bus Bus – Nor orm mal Flo Flow w I1 = 1∠0° I2 = 1∠180°

I1

I2 I1 + I2 = 0, per KCL

52

i1

52

i2

Simp Si mple le Bu Bus s – Ex Exte tern rnal al Fa Faul ultt I1 = 3∠0° I2 = 3∠180°

I1

I2 I1 + I2 = 0, per KCL

52

i1

52

i2

Simp Si mple le Bu Bus s – In Inte tern rnal al Fa Faul ultt I1 = 3∠0° I2 = 3∠0°

I1

I2 I1 + I2 = 6, >0!

52

52



i1

i2

I1 + I2 = ID, the differential current

Differential Protection • Look Looks s fo forr th the e pr pres esen ence ce of di diff ffer eren enti tial al current • Re Relliable pr protection co concept • Several di different tec techniques

Bus Fault Protection Requirements • High speed  – Bus fau faults lts are are typi typical cally ly high high-m -mag agni nitu tude de,, damaging events

• Secure  – Incorre Incorrect ct trip trippin ping g a bus can dro drop p a sig signif nifican icantt part of the system

Bus Protection Techniques • Overcurrent • High Im Impedance Di Differential • Low Impedance Differential

Overcurrent Bus Protection

I1



Uses an overcurrent element to detect ID



ID = i1 + i2 = 0, or  does it?

I2

52

52

 – CT re rep pli lica cati tion on err rror  or  i1

i2 ID 50

– CT Sa Saturation

CT Replication Error 

I1



CT performance rated ±10% (per  ANSI)

• •

I1 + I2 = 0 i1 + i2 ≠ 0

I2

52

52

i1

– As much as 20% error 

i2 ID 50

• +10% on i1 • -10% on i2



50 element must be set less sensitive!

CT Saturation

I1



Saturated CT produces no current output

• •

I1 + I2 = 0 i1 + i2 ≠ 0

I2

52

52

i1

– i2 = 0 due to saturated CT

i2 ID 50

• •

I D = i1 50 element must be extremely unsensitive

High Impedance Differential I1 52

I2 52

ID + V R 87



Actually an overvoltage relay – Relay operates on voltage across internal resistance from ID

High Impedance Differential •

Pluses – Clever so solution to to CT saturation • High impedance forces differential current through other CTs • Voltage developed is less than that of  internal fault

– Reliable



Minuses – Dedicated CT CTs – Matched performance class CTs  – Iden Identi tica call CT ra rattio ios, s, tapped at full ratio

Low Impedance Differential I1

I2

52



Mathematically sums currents



Uses restraint to maintain security



No special CT requirements

52

i1

i2

– Different ra ratios, performance class

• 87

ID= i1 + i2

Can provide waveform capture, and communications

Low Impedance Characteristic ID

Operate w/o Restraint

High Current Setting

Operate w/ Restraint

 ID = i1 + i 2

Restrain

S2

IOmin

 IR = i1 + i 2

S1

IRs

IR

Low Lo w Im Impe peda danc nce e – Lo Load ad Fl Flow ow I1

I2

52

52

i1

I1 = 1∠0°

i2

87

I2 = 1∠180°

ID= |i1 + i2| IR = |i1| + |i2|

ID

Operate w/o Restraint

High Current Setting

ID = |i1 + i2| = 0 IR = |i1| + |i2| = 2

Operate w/ Restraint

Restrain

S2

IOmin

S1

IRs

IR

Low Lo w Im Impe peda danc nce e – Ex Exte tern rnal al Fa Faul ultt I1

I2

52

52

i1

I1 = 3∠0°

i2

87

I2 = 3∠180°

ID= |i1 + i2| IR = |i1| + |i2|

ID

Operate w/o Restraint

High Current Setting

ID = |i1 + i2| = 0 IR = |i1| + |i2| = 6

Operate w/ Restraint

Restrain

S2

IOmin

S1

IRs

IR

Low Lo w Impe Impeda danc nce e – In Inte tern rnal al Fau Fault lt I1

I2

52

52

i1

I1 = 3∠0°

i2

87

I2 = 3∠0°

ID= |i1 + i2| IR = |i1| + |i2|

ID = |i1 + i2| = 6

ID High Current Setting

IR = |i1| + |i2| = 6 Operate w/ Restraint

Restrain

S2

IOmin

S1

IRs

IR

CT Error: Low Impedance ID High Current Setting External fault w/ CT Saturations

Load flow w/ CT Error 

IOmin

Operate w/ Restraint

S2

S1

Restrain

External fault w/ CT Error 

Low Impedance Relays • NxtPhase B-PRO • GE B-30 • SEL 487B • Al Alll use use si simi mila larr ope opera rati ting ng ch char arac acte teri rist stic ic • All use 6 inputs

Low Impedance Applications I1

52

I2

52

I3

52



(6) 3-phase inputs



87B function



Possible 27, 59, 81



50/51, possible 67 for each input



50BF for each input



Possible mu multiple protection zones

B-PRO  NxtPhase

52

52

I4

52

I5

I6

Testing a Low Impedance Bus Differential Relay

4 Pieces of Knowledge • How How is is th the op oper era ati ting ng ch cha ara ract cte eri rist stiic defined? – Curve equations

• Ho How w doe does s th the rel relay ay ca callcu cullat ate e ID ID an and IR? IR? • Does Does th the e ch char arac acte teri rist stic ic wo work rk in am amps ps or  per unit • Relay settings

GE B-30 • ID = |i1+i2+i3+i4+i5+i6| • IR = max (I (I1, I2 I2, I3 I3, I4 I4, I5 I5, I6 I6) • Per Per uni nit. t. Ba Base se is max maxiimum pri rim mar ary y current on an input

SEL 487B • ID = |i1+i2+i3+i4+i5+i6| • IR = |i1|+…|i6| • Per unit. Base is ma max CT CT ratio

NxtPhase B-PRO • ID = |i1+i2+i3+i4+i5+i6| • IR = (|i1|+…+|i6|)/2 • Pe Perr uni unitt bas base e on on Bus Bus MV MVA A / Bus Vol olta tag ge

Testing Issues • Do I have to test 3-phase?  – No! Dif Differ ferent ential ial pro protect tection ion is sing singlele-pha phase se element

• Do I hav have e to to tes testt all all 6 inp input uts s at at the the sa same me time?  – No! No cur curren rentt into into an inp input ut is 0 curr current ent.. Differential characteristic still performs correctly.

B-PRO Characteristic ID High Current Setting

Operate w/ Restraint Test Zone 1

Test Zone 3

(

)

 IO = S 1 * IR 100

S2

(

 IO = S 2

IOmin

(0, IOmin)

Restrain

S1

  IO min* 100   , IO min   S 1    

)

* IR + b 100 (S 1 − S 2) b=  IRs 100

IRs

IR

( IRs, (S 1100)* IRs )

     (S 1 − S 2 )    IRs    High  I  −     100   , High  I      S 2 100      

 ID = i1 + i 2 + i3 + i 4 + i5 + i 6  IR =

i1 + i 2 + i3 + i 4 + i5 + i 6 2

(

)

Test Plan • Test Ob Obvious Ex External Fault  – Ve Veri rifi fies es tha thatt test test set setup up is cor corre rect ct

• Test Ob Obvious In Internal Fault  – Ve Veri rify fy rel relay ay ope opera ratio tion, n, tes testt setu setup p

• Te Test st ch cha ara ract cter eris isti tic c pe perf rfo orm rman ance ce

Possible Test Setup Test Source 1 0o

Input 1 A Phase

Test Source 2 180o

Input 2 A Phase

Input 3 A Phase

Input 4 A Phase

Input 5 A Phase

Input 6 A Phase

Differential Relay

Possible Test Setup Test Source 1 0o

Input 1 A Phase

Input 2 A Phase

Test Source 2 180o

Input 3 A Phase

Input 4 A Phase

Input 5 A Phase

Input 6 A Phase

Differential Relay

Divide all calculated test currents by 3!

Test Procedure • Collect B-PRO settings • Ca Callculate re relay ba base cu currrent • Dete Determ rmin ine e tes testt poi point nts s fro from m di diff ffer eren enti tial al characteristic • Ca Callculate se seco con ndary cu currents • Test

Base Current • Base Base Cu Curr rre ent is de defi fine ned d by by Bus Bus MV MVA, A, Bus Voltage

 Base MVA = 796

Voltage = 230 kV   I  Base =  I  Base =

 Base MVA × 1000 3 × kV  796 × 1000 3 × 230

= 2000  A pri

Tes estt Poi oin nt – Lo Load ad Flo low w i1 = 1∠0  per  unit  o

i 2 = 1∠180 o  per  unit   ID = i1 + i 2 = i1 − i 2 = 0  per  unit   IR =

i1 + i 2 2

=

1+1 2

= 1  per  unit 

Tes estt Poi oin nt – Lo Load ad Flo low w  I  Base = 2000  A pri 1 per  unit × I  Base = 1 × 2000 = 2000  A pri  Input 1 CTR = 2000 : 5  Input  2 CTR = 3000 : 5 Test  Source 1 Current  =

2000  A pri

Test  Source 2 Current  =

2000  A pri

(2000 5 )

= 5  Asec @ 0o

(3000 5 )

= 3.33  Asec @ 180o

Operating Quantity Display

Bus Differential Differentia l (87B) -----------------------------Operating Current, IO (PU) Restraint Current, IR (PU) Note: 1 PU =

796.0 MVA for 87B

A Phase ---------0.0 1.0

B Phase ---------0.0 0.0

C Phase ---------0.0 0.0

Test Te st Po Poin intt – In Inte tern rnal al Fa Faul ultt i1 = 1∠0o  per  unit  i 2 = 1∠0  per  unit  o

 ID = i1 + i 2 = i1 + i 2 = 2  per  unit   IR =

i1 + i 2 2

=

1+1 2

= 1  per  unit 

Test Te st Po Poin intt – In Inte tern rnal al Fa Faul ultt  I  Base = 2000  A pri 1 per  unit × I  Base = 1× 2000 = 2000  A pri  Input 1 CTR = 2000 : 5  Input  2 CTR = 3000 : 5 Test  Source 1 Current  =

2000  A pri

Test  Source 2 Current  =

2000  A pri

(2000 5 )

= 5  Asec @ 0o

(3000 5 )

= 3.33  Asec @ 0o

Operating Quantity Display

Bus Differential (87B) -----------------------------Operating Current, IO (PU) Restraint Current, IR (PU) Note: 1 PU =

796.0 MVA for 87B

A Phase ---------2.0 1.0

B Phase ---------0.0 0.0

C Phase ---------0.0 0.0

Testing the characteristic • Why Why can can’’t yo you sta start rt wi with th an ext exte ern rna al fault, and vary 1 current until the relay operates? • Answer…

You can… Possible Trip Points



ID and IR vary with changing current



You must calculate to determine that i1 and i2 from test source match characteristic



Must verify this is on characteristic!

IOmin

IRs Initial test point

A better way (IR, IO)

IOmin

IRs Initial test point



Determine ID and IR for a specific test point



Calculate i1 and i2



Test, varying slightly around this region

Calculations Continuing  example... Test  at  ( IR,  ID ) = (1.00, 0.25)  per  unit   IO =  IBin −  IBout   IR =

 IBin +  IBout  2

 IO =  IBin −  IBout  2 × IR =  IBin +  IBout   IO + 2 × IR = 2 × IBin  IBin =

 IO + 2 × IR 2

 IBout  =  IBin −  IO

 IBin =

0.25 + 2 × 1.00

= 1.125  per  unit  2  IBout  =  IBin −  IO = 1.125 − 0.25 = 0.875  per  unit 

Calculations  IBin = 1.125  per  unit  = i1  IBout  = 0.875  per  unit  = i 2 1.125  per  unit × 2000  A pri = 2250  A pri

i1 =

2250  Apri

(2000 5 ) CTR

= 5.625  Asec @ 0o

0.875  per  unit × 2000  A pri = 1750  A pri

i1 =

1750  Apri

(3000 5 ) CTR

= 2.92  Asec @ 180 o

Operating Quantity Display

Bus Differential (87B) -----------------------------Operating Current, IO (PU) Restraint Current, IR (PU) Note: 1 PU =

796.0 MVA for 87B

A Phase ---------0.3 1.0

B Phase ---------0.0 0.0

C Phase ---------0.0 0.0

Summary • Low Low im impe peda danc nce e bus bus di diff ffer eren enti tial al is ea easy sy to apply • Testing – 1 phase okay – 2 in inputs only ok okay  – Mus Mustt und unders erstan tand d ope operat rating ing cha charac racter teristi istic c  – Ha Have ve to rem remem embe berr per per unit unit calc calcul ulat atio ions ns!!

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF