Teste 2 - 12 Português
November 15, 2022 | Author: Anonymous | Category: N/A
Short Description
Download Teste 2 - 12 Português...
Description
MO^T[MHDBYL ID DSCL@MS ELSÊ ND@CGJL^ VJDOMS (Sdid5 Dscl`m Sdcubiírjm Elsê Nd`cgjlr Vjdoms) Vjdoms )
[lrtuouås – =>.µ Mbl Yurhm M – Cursls Cjdbtèfjcl-Guhmbèstjcls Cjdbtèfjcl-Guhmbèstjcls – Mbl `dtjvl >;>=/>;>> >.µ Ydstd o`lnm`jzmbtd id mvm`jmïãl Orupls
Ilhèbjls
C`mssjfjcmïãl
Orup Orupl l J ([ ([mr mrtd tdss M, M, N d C) C) Diuc iucmïãl mïãl @jt @jtdrír drírjjm Orupl JJ (Jtdbs =. m 9.) @djturm Orupl JJ (Jtdbs 4. m ?.) Ormhítjcm Orupl JJJ Dscrjtm C`mssjfjcmïãl Fjbm`5 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
[rlf. \\\\\\\\\\\\\\\\\\\\\\\\\
M prlvm jbc`uj =; jtdbs, idvjimhdbtd jidbtjfjcmils bl dbubcjmil, cuems rdsplstms clbtrjnudh lnrjomtlrjmhdbtd pmrm m c`mssjfjcmïãl fjbm`. Ils rdstmbtds 4 jtdbs im prlvm, mpdbms clbtrjnudh pmrm m c`mssjfjcmïãl fjbm` ls 3 jtdbs cuems rdsplstms lntdbgmh hd`glr plbtumïãl.
O^T[L J Mprdsdbtd ms sums rdsplstms id flrhm ndh dstruturmim. DITCMÏÃL @JYD^Í^JM
[M^YD M @djm l tdxtl. Ml `lbod ls hlbtds tåh bdvd ml sl`, Hms ê sumvd eí l frjl cm`hl ]ud m`jsm d mouidcd Ls imrils il sl` m`tl.
4
= ;
Gled, Bddrm, bãl bls dsclbimhls, Bmim bls fm`tm, plrqud bmim slhls. Bãl dspdrmhls bmim D tdhls frjl ml sl`. Hms tm` clhl ê, olzdhls l hlhdbtl, Sl`dbds bm m`dorjm `dvdhdbtd, D moumrimbil m hlrtd Clhl qudh m clbgdcd.
=6-6-=:=9 Lids id ^jcmril ^djs. ^djs . Fdrbmbil [dsslm. @jsnlm5 Ítjcm, =:96.
=. Dxp`jcjtd l hlil clhl l suedjtl plêtjcl dbcmrm m pmjsmodh.
>. Sd`dcjlbd m lpïãl id rdsplstm midqumim pmrm clhp`dtmr m mfjrhmïãl mnmjxl mprdsdbtmim.
Bls vdrsls 4 d 6, l suedjtl plêtjcl clbvjim Bddrm \\\\\\\\\, idhlbstrmbil, mssjh, \\\\\\\\. (M) m vjvdr id flrhm sdrdbm ……… clbvjcïãl im pdrdbjimid im vjim d m sum mcdjtmïãl clh cm`hm. (N) m vjvdr id flrhm jbtdbsm ……… clbscjåbcjm im dfdhdrjimid im vjim d m sum mcdjtmïãl clh cm`hm. (C) m vjvdr id flrhm dxu`tmbtd ………. clbvjcïãl im pdrdbjimid im vjim d m sum mcdjtmïãl clh cm`hm. (I) m vjvdr id flrhm trmbquj`m ……… clbscjåbcjm im dfdhdrjimid im vjim d m sum mcdjtmïãl clh cm`hm.
3. M pmrtjr im õ`tjhm dstrlfd, rdojstd iums dxprdssôds qud clhprlvdh qud l ‐du‘ mssuhd uhm fj`lslfjm id vjim id nmsd c`íssjcm d dxp`jqud l sdbtjil id cmim uhm id`ms, eustjfjcmbil dssm milïãl.
YO=\[íojbm =/4
[M^YD N
@djm l tdxtl. Sd bdcdssírjl, clbsu`td ms bltms.
4
=;
=4
>;
Fm`mbil ils pdjxds, Mrjstótd`ds ijz qud só d`ds, dbtrd tlils ls mbjhmjs, sd bãl ilhmh bdh ilhdstjcmh. Ils mbjhmjs tdrrdstrds, l cãl ê tãl ilhêstjcl, l cmvm`l tãl suedjtl, l nlj tãl sdrvjïm`, l nuojl= tãl mhjol lu tãl `jslbedjrl, d mtê ls `dôds d ls tjords clh mrtd d ndbdfècjls sd mhmbsmh. Ils mbjhmjs il mr, mflrm mqud`ms mvds qud sd crjmh d vjvdh clbblscl, l pmpmomjl bls fm`m, l rluxjbl` bls cmbtm, l mïlr bls meuim d bls rdcrdjm1 d mtê ms ormbids mvds id rmpjbm, dbcl`gdbil ms ubgms, rdclbgdcdh m hãl id qudh rdcdndh l sustdbtl. Ls pdjxds, pd`l clbtrírjl, `í sd vjvdh bls sdus hmrds d rjls, `í sd hdrou`gmh bls sdus pdols >, `í sd dsclbidh bms sums orutms, d bãl gí bdbguh tãl ormbid qud sd fjd il glhdh, bdh tãl pdqudbl qud bãl fuem id`d. Ls Mutlrds clhuhhdbtd clbidbmh dstm clbijïãl ils pdjxds, d m idjtmh ë plucm ilcj`jimid lu idhmsjmim nrutdzm1 hms du slu id huj ijfdrdbtd lpjbjãl. Bãl clbidbl, mbtds `luvl hujtl mls pdjxds dstd sdu rdtjrl, d hd pmrdcd qud, sd bãl flrm bmturdzm, drm ormbid pruiåbcjm. [djxds! ]umbtl hmjs `lbod ils glhdbs, tmbtl hd`glr1 trmtl d fmhj`jmrjimid clh d`ds, Idus vls `jvrd! Sd ls mbjhmjs im tdrrm d il mr qudrdh sdr sdus fmhj`jmrds, fmïmh-bl hujtl dhnlrm, qud clh sums pdbsôds 3 l fmzdh. Cmbtd-`gds mls glhdbs l rluxjbl`, hms bm sum omjl`m1 ijom-`gds ijtls l pmpmomjl, hms bm sum cmidjm1 ví clh d`ds ë cmïm l mïlr, hms bms sums pjlzds 91 fmïm-`gds nuflbdrjms 4 l nuojl, hms bl sdu cdpl1 clbtdbtd-sd l cãl id `gds rldr uh lssl, hms `dvmil lbid bãl qudr pd`m trd`m1 prdzd-sd l nlj id `gd cgmhmrdh fdrhlsl lu fjim`ol, hms clh l euol slnrd m cdrvjz 6, puxmbil pd`l mrmil d pd`l cmrrl1 o`lrjd-sd l cmvm`l id hmstjomr frdjls ilurmils, hms idnmjxl im vmrm d im dsplrm1 d sd ls tjords d ls `dôds `gds clhdh m rmïãl im cmrbd qud bãl cmïmrmh bls nlsquds, sdemh prdsls d dbcdrrmils clh ormids id fdrrl. D dbtrdtmbtl vós, pdjxds, `lbod ils glhdbs d flrm idssms clrtdsmbjms ?, vjvdrdjs só clbvlscl, sjh, hms clhl pdjxd bm íoum. Id cmsm d ims plrtms midbtrl tdbids l dxdhp`l id tlim dstm vdrimid, l qum` vls qudrl `dhnrmr, plrqud gí Fj`óslfls qud ijzdh qud bãl tdbids hdhórjm. [mird Mbtóbjl Vjdjrm, Sdrhãl id Smbtl Mbtóbjl (mls pdjxds) d Sdrhãl im Sdxmoêsjhm, dijïãl id Hmromrjim Vjdjrm Hdbids, @jsnlm, Sdmrm Blvm, =:?7, pp. ?3-?9.
BLYMS = nuojl – dspêcjd id hmcmcl. hmcmcl. > pdols – `lcmjs lbid ls ls rjls lu ls hmrds sãl hmjs prlfubils. prlfubils. 3 pdbsôds – lnrjomïôds1 db dbcmrols. cmrols. 9 pjlzds – clrrdbtds cl`lcmims cl`lcmims bms pmtm pmtmss id m`ouhms mvds id id cmïm. 4 nuflbdrjms – ormïl`ms1 cmrdtms. cmrdtms. 6 cdrvjz – pmrtd plstdrjlr il pdsclïl. pdsclïl. ? clrtdsmbjms – gínjtls id clrtdsãls. clrtdsãls.
9. «Ls Mutlrds clhuhhdbtd clbidbmh dstm clbijïãl ils pdjxds, d m idjtmh ë plucm ilcj`jimid lu idhmsjmim nrutdzm1 hms du slu id huj ijfdrdbtd lpjbjãl.± (`jbgms 7 d =;). Eustjfjqud m lpjbjãl id Vjdjrm rd`mtjvmhdbtd mls pdjxds, tdbil dh clbtm m clhpmrmïãl dbtrd l clhplrtmhdbtl ils pdjxds d l ils lutrls mbjhmjs (`jbgms = m =>). 4. «[djxds! ]umbtl hmjs `lbod ils glhdbs, tmbtl hd`glr1 trmtl d fmhj`jmrjimid clh d`ds, Idus vls `jvrd!± (`jbgms == d =>). Clhprlvd m pdrtjbåbcjm ils dxdhp`ls mprdsdbtmils plr Vjdjrm (`jbgms =3 m >;) pmrm fubimhdbtmr dstd clbsd`gl imil mls pdjxds. 6. Clhp`dtd ms mfjrhmïôds mnmjxl mprdsdbtmims, sd`dcjlbmbil im tmnd`m m lpïãl midqumim m cmim dspmïl. Bm fl`gm id rdsplstms, rdojstd mpdbms ms `dtrms d l bõhdrl qud clrrdsplbid ë lpïãl sd`dcjlbmim dh cmim uh ils cmsls. Th ils lnedtjvls im lrmtórjm ê id`dctmrd, lu sdem, mormimr ml muijtórjl1 pmrm l m`cmbïmr, bms `jbgms =3 m >;, dbtrd lutrls prlcdssls, prlcdssls, Vjdjrm slclrrd-s slclrrd-sd d id uhm clbstruïãl clbstruïãl bm qum` dxjstd dxjstd uhm \\\\\m)\\\\\ , qud clbtrjnuj pmrm uhm dvjidbtd \\\\\n)\\\\\ il ijscursl.
m)
n)
=. sucdssãl id gjpêrnl`ds
=. p`musjnj`jimid
>. dbuhdrmïãl id clbsd`gls mls glhdbs
>. husjcm`jimid
3. m`tdrbîbcjm dbtrd frmsds sjhp`ds d clhp`dxms
3. idsclbtjbujimid
YO=\[íojbm >/4
MO^T[MHDBYL ID DSCL@MS ELSÊ ND@CGJL^ VJDOMS (Sdid5 Dscl`m Sdcubiírjm Elsê Nd`cgjlr Vjdoms) Vjdoms )
9. dstruturm pmrm`d`èstjcm lu sjhêtrjcm
9. clhp`dxjimid
[M^YD C ?. Bl ubjvdrsl gdtdrlbèhjcl pdsslmbl, M`ndrtl Cmdjrl ê clbsjidrmil l pldtm «nucó`jcl±. Dscrdvm uhm nrdvd dxplsjïãl slnrd l nucl`jshl bm pldsjm idstd gdtdróbjhl. M sum dxplsjïãl idvd jbc`ujr5 • uhm jbtrliuïãl ml tdhm1 • uh idsdbvl`vjhdbtl bl qum` rdfjrm iums cmrmctdrèstjcms qud pdrhjtmh clbsjidrmr dstd gdtdróbjhl clhl uh pldtm «nucó`jcl±, fubimhdbtmbil ms jidjms mprdsdbtmims dh, pd`l hdbls, uh dxdhp`l sjobjfjcmtjvl id cmim uhm ims cmrmctdrèstjcms1 • uhm clbc`usãl midqumim ml idsdbvl`vjhdbtl il tdhm.
O^T[L JJ Bms rdsplstms mls jtdbs id dscl`gm hõ`tjp`m, sd`dcjlbd m lpïãl clrrdtm. Dscrdvm, bm fl`gm id rdsplstms, l bõhdrl il jtdh d m `dtrm qud jidbtjfjcm m lpïãl dscl`gjim. @DJYT^M | O^MHÍYJCM @djm l tdxtl sdoujbtd. Sd bdcdssírjl, clbsu`td ms bltms.
M fm`sm, m rdvjstm, m iêhliê , l prlvêrnjl d m vdrimid mnsl`utm
YO=\[íojbm 3/4
4
=;
=4
>;
Bãl ê prdcjsl sdr uh dstuijlsl im lnrm id Fdrbmbil [dsslm pmrm pdrcdndr qud gí cjtmïôds pdsslmbms pmrm tlils ls olstls d hlhdbtls. M lnrm id [dsslm dstí pmrm ms rdids slcjmjs clhl uh lrícu`l= id pdbsmhdbtls m pmrtj`gmr. Sdrvd id `dodbim id fltl, sdrvd pmrm mclhpmbgmr l pdrfj` il tjbidr >, pmrm plstmr clh uhm pmjsmodh id fubil, lu hdshl clhl jbijrdtm pmrm l dx. D sd dstm ê m hmbjfdstmïãl hdbls blnrd d prdstjojmbtd il oêbjl pdsslmbl, bãl idjxm id sdr m hmjs clrrjqudjrm d lhbjprdsdbtd bls qultjijmbls il sêcu`l qud molrm mtjbod m hmjlrjimid. Dbtrd Dbt rd ms cmtdolr cmtdolrjms jms id frmsds frmsds-id -id-[ds -[dsslm slm-pmr -pmrm-pm m-pmrtj rtj`gm `gmr, r, m hmjs hmjs rdclrr rdclrrdbtd dbtd ê m fm` fm`smsm-cjt cjtmïã mïãl. l. Blhdmimhdbtd mqud`m qud, bm vdrimid, bãl pdrtdbcd ml pldtm, hms hujtm odbtd pmrdcd mcrdijtmr qud sjh. Ê l cmsl il mpócrjfl 3 [dirms bl cmhjbgl< Oumril-ms tlims! Th ijm vlu clbstrujr l hdu cmstd`l. ]udh bubcm sd cruzlu clh dstd c`íssjcl bms rdids< [mrtj`gmil plr mqud`m pdsslm slfrjim qud dbfrdbtm m vjim clh dstljcjshl 9, hms bãl pdrcdnd bmim id `jtdrmturm. D bubcm, clh pdbm hjbgm, pd`m c`mssd ils bdfrl`lojstms 4. Ls õbjcls pmrm qudh dstm frmsd fmz hmjs il qud sdbtjil, eí qud ombgmh ijbgdjrl clh pdirms bls rjbs m`gdjls, bm dspdrmbïm id clhprmr uhm cmsjtm id prmjm mbtds im hdjm-jimid. Lutrm rdclrrdbtd cjtmïãl (dstm hdshl) id [dsslm, ê m il hmr sm`omil d id qumbtl il sdu sm` sãl `íorjhms id [lrtuom` . Th dxprdssjvl vdrsl, qud idscrdvd dfjcmzhdbtd m `jomïãl gjstórjcm il plvl plrtuouås ml hmr, clhl plbtl id pmrtjim, flbtd id smuimid, sdpmrmïãl d mboõstjm. D qud dbtrdtmbtl tdh vjbil m sdr ‐sunstjtuèil‘ ‐sunstjtuèil‘ bl Nrmsj` plr uhm rjhm il rmppdr Dhjcjim Dhjcjim qud, sdh smndr im dxjståbcjm idssm frmsd id [dsslm, ‐rdsplbidu-`gd‘ clh joum` dfjcícjm, mbomrjmbil m jidbtjfjcmïãl id tlim uhm odrmïãl id luvjbtds id ^mp mfrl-nrmsj`djrls. Mssjh sdbil, d plrqud hd pmrdcd hmjs vdrimidjrm d eustm dstm blvm vdrsãl, prlplbgl qud pmssdhls m cjtmr mbtds Dhjcjim, dscrdvdbil bl hurm` qud L tdhpdrl il hmr flj `íorjhm id prdtl ! Cmpjcum, jb rdvjstm VJSÃL, bµ =339, id >? id sdtdhnrl id >;=7 (clh suprdssôds).
Bltms5 rdsplstm im ijvjbimid clbsu`tmim1 > il jbcdbijírjl1 3 qud bãl ê il mutlr m qudh sd mtrjnuj1
= 9
4
jbijfdrdbïm1 dspdcjm`jstms ims ildbïms ils rjbs.
=. Bm lpjbjãl im crlbjstm, m lnrm pdsslmbm (M) ê ijvu`omim bms rdids slcjmjs d plr vírjls jbtd`dctumjs. (N) ê idsvjrtumim idvjil m uhm mprlprjmïãl jbidvjim. (C) sdrvd pmrm dbvjmr hdbsmodbs jbijrdtms d idsmidqumims. (I) ê clbgdcjim pd`ls plrtuoudsds ormïms ës rdids slcjmjs. >. Id mclril clh l clbtdõil il sdoubil pmríormfl, dbclbtrmh-sd, bms rdids slcjmjs, cjtmïôds (M) pdsslmbms pmrm tlim d qum`qudr sjtumïãl. (N) id [dsslm qud plidhls pmrtj`gmr clh tlim m odbtd. (C) mtrjnuèims jbidvjimhdbtd m Fdrbmbil [dsslm. (I) qud só idvdh sdr usmims pd`ls bdfrl`lojstms. 3. Bl õ`tjhl pmríormfl, sãl cjtmils vdrsls pdsslmbls pmrm (M) imr clbtm im jbfdrjlrjimid il pldtm plrtuouås. (N) d`lojmr m sdbsjnj`jimid il pldtm fmcd ë blssm gjstórjm. (C) idhlbstrmr qud m blssm gjstórjm ê fdjtm id `íorjhms. (I) d`lojmr uhm blvm vdrsãl id uh rmppdr `usl-nrmsj`djrl. `usl-nrmsj`djrl. 9. Ml rdclrrdr ës dxprdssôds ‐clhl uh lrícu`l =‘ (``. >-3) d ‐uhm cmsjtm id prmjm‘ (`. =3), l mutlr utj`jzm (M) clhpmrmïôds, dh mhnls ls cmsls. (N) uhm clhpmrmïãl, bl prjhdjrl cmsl, d m jrlbjm, bl sdoubil cmsl. (C) m jrlbjm, bl prjhdjrl cmsl, d uhm clhpmrmïãl, bl sdoubil cmsl. (I) jrlbjm, dh mhnls ls cmsls. 4. L mspdtl ormhmtjcm` dh ‐D qud dbtrdtmbtl tdh vjbil m sdr ‐sunstjtuèil‘ bl Nrmsj`.‘ (`. =:) dxprdssm (M) uhm sjtumïãl odbêrjcm. (N) uh vm`lr jhpdrfdtjvl. (C) uh vm`lr pdrfdtjvl. (I) uhm sjtumïãl jtdrmtjvm.
MO^T[MHDBYL ID DSCL@MS ELSÊ ND@CGJL^ VJDOMS (Sdid5 Dscl`m Sdcubiírjm Elsê Nd`cgjlr Vjdoms) Vjdoms )
6. M utj`jzmïãl id ‐Mssjh sdbil‘ (`. >;) clbtrjnuj pmrm m cldsãl (M) jbtdrfrísjcm. (N) frísjcm. (C) tdhplrm`. (I) `dxjcm`. ?. Ylims ms dxprdssôds mnmjxl trmbscrjtms idsdhpdbgmh m fubïãl sjbtítjcm id clhp`dhdbtl ijrdtl, dxcdtl m dxprdssãl pdsslmbms‘ (M) (N) ‐cjtmïôds ‐m hmjs rdclrrdbtd‘ (`. (``. ?). =->). (C) ‐m `jomïãl gjstórjcm‘ (`. =6). (I) ‐qud pmssdhls m cjtmr‘ (`. >=).
O^T[L JJJ DSC^JYM Sdoubil l sdbsl clhuh, m rmzãl ê clbtrírjm ë dhlïãl. Ml `lbol im blssm vjim, luvjhls hujtms vdzds dxprdssôds clhl ‐tdh euèzl‘ lu ‐pdbsm clh m rmzãl d hdbls clh l clrmïãl‘. ^dijem uh tdxtl id lpjbjãl ndh dstruturmil, clh uh hèbjhl id >;; d uh híxjhl id 34; pm`mvrms, dh qud idfdbim l sdu plbtl id vjstm slnrd m jidjm dxplstm.
Bl sdu tdxtl5 – dxp`jcjtd, id i d flrhm c`mrm d pdrtjbdbtd, l sdu plbtl id vjstm, fubimhdbtmbil-l dh iljs mrouhdbtls, m rouhdbtls,
cmim uh id`ds j`ustrmil clh uh dxdhp`l sjobjfjcmtjvl1
– utj`jzd uh ijscursl vm`lrmtjvl (euèzl id vm`lr dxp`ècjtl lu jhp`ècjtl).
Lnsdrvmïôds5 =. [mrm dfdjtls id clbtmodh, clbsjidrm-sd uhm pm`mvrm qum`qudr sdquåbcjm id`jhjtmim plr dspmïls dh nrmbcl, hdshl qumbil dstm jbtdord d`dhdbtls `jomils plr gèfdb (dx.5 /ijr-sd-jm/). ]um`qudr bõhdrl clbtm clhl uhm õbjcm pm`mvrm, jbidpdbidbtdhdbtd ils m`omrjshls m`omrjs hls qud l clbstjtumh (dx.5 />;>=/).
YO=\[íojbm 9/4
>. ^d`mtjvmhdbtd ml idsvjl ils `jhjtds id dxtdbsãl jbijcmils – uh hèbjhl id iuzdbtms d uh híxjhl id trdzdbtms d cjbqudbtm pm`mvrms –, gí qud mtdbidr ml sdoujbtd5
uh idsvjl ils `jhjtds id dxtdbsãl jbijcmils jhp`jcm uhm idsvm`lrjzmïãl pmrcjm` (mtê 4 plbtls) il tdxtl prliuzjil1 uh tdxtl clh dxtdbsãl jbfdrjlr m ljtdbtm pm`mvrms ê c`mssjfjcmil clh zdrl plbtls.
FJH CLYMÏÔDS Ms plbtumïôds lntjims bms rdsplstms m dstds =; jtdbs clbtrjnudh
Orupl
lnrjomtlr lnrjom tlrjmh jmhdbt dbtd d pmr pmrm m m c`m c`mssj ssjfjc fjcmïã mïãl l =. 3. fjbm`. Cltmïãl (dh plbtls) =3 =3 Idst Id stds ds 4 jt jtdb dbs, s, cl clbt btrj rjnu nudh dh pm pmrm rm m J c`mssjf c`m ssjfjcm jcmïãl ïãl fjbm` im prl prlvm vm ls 3 jtd jtdbs bs cuem cu emss rd rdsp spls lstm tmss ln lntd tdbg bgmh mh hd` d`gl glr r >. 4. plbtumïãl. Cltmïãl (dh plbtls) Yltm`
JJ
J
JJJ
9.
6.
?.
=.
>.
3.
4.
=3
=3
=3
=3
=3
=3
=3
99
Suntltm` =6=
JJ Suntltm` 9.
6.
?. 3 x =3 plbtls
3: >;;
YO=\[íojbm 4/4
View more...
Comments