Teoría ondulatoria de la luz
Short Description
Download Teoría ondulatoria de la luz...
Description
1.2.1 Teoría ondulatoria de la luz Propugnada por Christian Huygens en el año 1678, describe y explica lo que hoy se considera como leyes de reflexión y refracción. Define a la luz como un movimiento ondulatorio semejante al que se produce con el sonido. Ahora, como los físicos de la época consideraban que todas las ondas requerían de algún medio que las transportaran en el vacío, para las ondas lumínicas se postula como medio a una materia insustancial e invisible a la cual se le llamó éter (cuestión que es tratada con mayores detalles en la separata 4.03 de este mismo capítulo). Justamente la presencia del éter fue el principal medio cuestionador de la teoría ondulatoria. En ello, es necesario equiparar las vibraciones luminosas con las elásticas transversales de los sólidos sin que se transmitan, por lo tanto, vibraciones longitudinales. Aquí es donde se presenta la mayor contradicción en cuanto a la presencia del éter como medio de transporte de ondas, ya que se requeriría que éste reuniera alguna característica sólida pero que a su vez no opusiera resistencia al libre tránsito de los cuerpos sólidos. (Las ondas transversales sólo se propagan a través de medios sólidos.) En aquella época, la teoría de Huygens no fue muy considerada, fundamentalmente por el prestigio que alcanzó Newton. Pasó más de un siglo para que fuera tomada en cuenta la Teoría Ondulatoria de la luz. Los experimentos del médico inglés Thomas Young sobre los fenómenos de interferencias luminosas, y los del físico francés Auguste Jean Fresnel sobre la difracción fueron decisivos para que ello ocurriera y se colocara en la tabla de estudios de los físicos sobre la luz, la propuesta realizada en el siglo XVII por Huygens. Young demostró experimentalmente el hecho paradójico que se daba en la teoría corpuscular de que la suma de dos fuentes luminosas pueden producir menos luminosidad que por separado. En una pantalla negra practica dos minúsculos agujeros muy próximos entre sí: al acercar la pantalla al ojo, la luz de un pequeño y distante foco aparece en forma de anillos alternativamente brillantes y oscuros. ¿Cómo explicar el efecto de ambos agujeros que por separado darían un campo iluminado, y combinados producen sombra en ciertas zonas? Young logra explicar que la alternancia de las franjas por la imagen de las ondas acuáticas. Si las ondas suman sus crestas hallándose en concordancia de fase, la vibración resultante será intensa. Por el contrario, si la cresta de una onda coincide con el valle de la otra, la vibración resultante será nula. Deducción simple imputada a una interferencia y se embriona la idea de la luz como estado vibratorio de una materia insustancial e invisible, el éter, al cual se le resucita.
Ahora bien, la colaboración de Auguste Fresnel para el rescate de la teoría ondulatoria de la luz estuvo dada por el aporte matemático que le dio rigor a las ideas propuestas por Young y la explicación que presentó sobre el fenómeno de la polarización al transformar el movimiento ondulatorio longitudinal, supuesto por Huygens y ratificado por Young, quien creía que las vibraciones luminosas se efectuaban en dirección paralela a la propagación de la onda luminosa, en transversales. Pero aquí, y pese a las sagaces explicaciones que incluso rayan en las adivinanzas dadas por Fresnel, inmediatamente queda presentada una gran contradicción a esta doctrina, ya que no es posible que se pueda propagar en el éter la luz por medio de ondas transversales, debido a que éstas sólo se propagan en medios sólidos. En su trabajo, Fresnel explica una multiplicidad de fenómenos manifestados por la luz polarizada. Observa que dos rayos polarizados ubicados en un mismo plano se interfieren, pero no lo hacen si están polarizados entre sí cuando se encuentran perpendicularmente. Este descubrimiento lo invita a pensar que en un rayo polarizado debe ocurrir algo perpendicularmente en dirección a la propagación y establece que ese algo no puede ser más que la propia vibración luminosa. La conclusión se impone: las vibraciones en la luz no pueden ser longitudinales, como Young lo propusiera, sino perpendiculares a la dirección de propagación, transversales. Las distintas investigaciones y estudios que se realizaron sobre la naturaleza de la luz, en la época en que nos encontramos de lo que va transcurrido del relato, engendraron aspiraciones de mayores conocimientos sobre la luz. Entre ellas, se encuentra la de lograr medir la velocidad de la luz con mayor exactitud que la permitida por las observaciones astronómicas. Hippolyte Fizeau (1819- 1896) concretó el proyecto en 1849 con un clásico experimento. Al hacer pasar la luz reflejada por dos espejos entre los intersticios de una rueda girando rápidamente, determinó la velocidad que podría tener la luz en su trayectoria, que estimó aproximadamente en 300.000 km./s. Después de Fizeau, lo siguió León Foucault (1819 – 1868) al medir la velocidad de propagación de la luz a través del agua. Ello fue de gran interés, ya que iba a servir de criterio entre la teoría corpuscular y la ondulatoria. La primera, como señalamos, requería que la velocidad fuese mayor en el agua que en el aire; lo contrario exigía, pues, la segunda. En sus experimentos, Foucault logró comprobar, en 1851, que la velocidad de la luz cuando transcurre por el agua es inferior a la que desarrolla cuando transita por el aire. Con ello, la teoría ondulatoria adquiere cierta preeminencia sobre la corpuscular, y pavimenta el camino hacia la gran síntesis realizada por Maxwell.
Físico y astrónomo holandés cuyos grandes aportes los realizó en el campo de la dinámica y la óptica. Inventó el reloj de péndulo y realizó la primera exposición de la teoría ondulatoria de la luz. Fue descubridor de los anillos de Saturno y de Titán su satélite mayor. Nació en 1629 en La Haya, hijo de Constantin Huygens, una de las más importantes figuras del renacimiento en Holanda. Educado en la universidad de Leyden, Christian fue un amigo cercano de René Descartes, un invitado frecuente al hogar del científico holandés. Su reputación en los trabajos sobre óptica y dinámica se difundió por toda Europa y en 1663 fue elegido socio fundador de la Royal Society. Por invitación de Luis XIV vivió en Francia desde 1666, y mientras permaneció en esa nación, Huygens fue uno de los fundadores de la Academia de Ciencias de Francia. En 1655 encontró un nuevo método para pulir las lentes, con lo que obtuvo una imagen más nítida que le permitió descubrir el mayor satélite de Saturno, Titán, y dar la primera descripción precisa de los anillos de este planeta. También estudió las estrellas de la nebulosa de Orión y las características de la superficie de Marte que lo llevaron a concluir la rotación de este planeta sobre su eje. En 1656 inventó un ocular de telescopio que lleva su nombre. En 1673, en París, publicó la obra "Horologium Oscillatorium", donde describió una solución al problema del péndulo compuesto, para el cual calculó la longitud del péndulo simple equivalente. En la misma publicación obtuvo también una fórmula para calcular el periodo de oscilación de un péndulo simple y explicó sus leyes de la fuerza centrífuga para movimiento uniforme en un círculo. De regreso en Holanda en 1681, construyó algunas lentes de grandes longitudes focales e inventó el ocular acromático para telescopios. Poco después de regresar de una visita a Inglaterra, donde se encontró con Newton, publicó su tratado sobre la teoría ondulatoria de la luz. Para él, la luz era un movimiento vibratorio en el éter, que se difundía y producía la sensación de luz al tropezar con el ojo. Con base en su teoría, pudo deducir las leyes de la reflexión y la refracción, y explicar el fenómeno de la doble refracción. Después de Newton se encuentra entre los más grandes científicos de la segunda mitad del siglo XVII, fue el primero en avanzar en el campo de la dinámica más allá del punto al que llegaron Galileo y Descartes. Fue Huygens quien resolvió en esencia el problema de la fuerza centrífuga. Hombre solitario, no atrajo estudiantes o discípulos y tardó mucho en publicar sus descubrimientos. Después de una larga enfermedad murió en 1695. Fue idea del físico holandés C. Huygens. La luz se propaga mediante ondas mecánicas emitidas por un foco luminoso. La luz para propagarse necesitaba un medio material de gran elasticidad, impalpable que todo lo llena, incluyendo el vacío, puesto que la luz también se propaga en él. A este medio se le llamó éter.
La energía luminosa no está concentrada en cada partícula, como en la teoría corpuscular sino que está repartida por todo el frente de onda. El frente de onda es perpendicular a las direcciones de propagación. La teoría ondulatoria explica perfectamente los fenómenos luminosos mediante una construcción geométrica llamada principio de Huygens. además según esta teoría, la luz se propaga con mayor velocidad en los medios menos densos. a pesar de esto, la teoría de Huygens fue olvidada durante un siglo debido a la gran autoridad de Newton.
En 1801 el inglés T. Young dio un gran impulso a la teoría ondulatoria explicando el fenómeno de las interferencias y midiendo las longitudes de onda correspondientes a los distintos colores del espectro.
1.2.2CUERPO NEGRO Y TEORÍA DE PLANCK El físico alemán Max Karl Ernst Ludwig Planck en 1900, dice que la interacción entre la materia y la radiación, no se verifica de manera continua, sino por pequeñas pulsadas llamados cuantos (radiaciones electromagnéticas emitidas en unidades discretas de energía), como resultado de los estudios de la radiación del cuerpo negro (cuerpo o superficie ideal, que absorbe toda la energía radiante sin reflejar ninguna). Planck diseño una fórmula matemática que describiera las curvas reales con exactitud, para demostrar que no todas las formas de radiación electromagnética estaban constituidas por ondas, después, dedujo una hipótesis física que pudiera explicar la fórmula. Su hipótesis fue que la energía sólo es radiada en cuantos cuya energía es hð, donde ð es la frecuencia de la radiación y h es el `cuanto de acción', ahora conocido como constante de Planck. Según Planck, la energía de un “cuanto de luz” (fotón), es igual a la frecuencia de la luz multiplicada por una constante. La primera medida fiable de la constante de Planck (1916) se debió al físico estadounidense Robert Millikan. El valor actualmente aceptado es h =
6,626 × 10-34 julios·segundo.
1.2.3 Efecto fotoeléctrico El efecto fotoeléctrico consiste en la emisión de electrones por un material cuando se hace incidir sobre él radiación electromagnética (luz visible o ultravioleta, en general). A veces se incluyen en el término otros tipos de interacción entre la luz y la materia: • •
Fotoconductividad: es el aumento de la conductividad eléctrica de la materia o en diodos provocada por la luz. Descubierta por Willoughby Smith en el selenio hacia la mitad del siglo XIX. Efecto fotovoltaico: transformación parcial de la energía luminosa en energía eléctrica. La primera célula solar fue fabricada por Charles Fritts en 1884. Estaba formada por selenio recubierto de una fina capa de oro.
El efecto fotoeléctrico fue descubierto y descrito por Heinrich Hertz en 1887, al observar que el arco que salta entre dos electrodos conectados a alta tensión alcanza distancias mayores cuando se ilumina con luz ultravioleta que cuando se deja en la oscuridad. La
explicación teórica fue hecha por Albert Einstein, quien publicó en 1905 el revolucionario artículo “Heurística de la generación y conversión de la luz”, basando su formulación de la fotoelectricidad en una extensión del trabajo sobre los cuantos de Max Planck. Más tarde Robert Andrews Millikan pasó diez años experimentando para demostrar que la teoría de Einstein no era correcta, para finalmente concluir que sí lo era. Eso permitió que Einstein y Millikan fueran condecorados con premios Nobel en 1921 y 1923, respectivamente.
2.1.4. ESPECTROS DE EMISION Y SERIES ESPECTRALES
ESPECTROS Cuando hacemos pasar la luz a través de un prisma óptico se produce el efecto llamado dispersión que consiste en la separación de las distintas longitudes de onda que forman el rayo incidente.
La luz blanca produce al descomponerla lo que llamamos un espectro continuo, que contiene el conjunto de colores que corresponde a la gama de longitudes de onda que la integran.
Sin embargo, los elementos químicos en estado gaseoso y sometido a temperaturas elevadas producen espectros discontinuos en los que se aprecia un conjunto de líneas que corresponden a emisiones de sólo algunas longitudes de onda. El siguiente gráfico muestra el espectro de emisión del sodio:
El conjunto de líneas espectrales que se obtiene para un elemento concreto es siempre el mismo, incluso si el elemento forma parte de un compuesto complejo y cada elemento produce su propio espectro diferente al de cualquier otro elemento. Esto significa que cada elemento tiene su propia firma espectral. Si hacemos pasar la luz blanca por una sustancia antes de atravesar el prisma sólo pasarán aquellas longitudes de onda que no hayan sido absorbidas por dicha sustancia y obtendremos el espectro de absorción de dicha sustancia. El gráfico siguiente muestra el espectro de absorción del sodio:
Observa que el sodio absorbe las mismas longitudes de onda que es capaz de emitir. La regularidad encontrada en los espectros discontinuos supone un apoyo muy importante para comprender la estructura de los átomos. Las técnicas espectroscópicas se empezaron a utilizar en el siglo XIX y no tardaron en dar sus primeros frutos. Así en 1868 el astrónomo francés P.J.C. Janssen se trasladó a la India con el objeto de observar un eclipse de sol y utilizar el espectroscopio, desarrollado ocho años antes, para hacer un estudio de la cromosfera solar. Como resultado de sus observaciones anunció que había detectado una nueva línea espectroscópica, de tono amarillo, que no pertenecía a ninguno de los elementos conocidos hasta ese momento. En el mismo año, el químico Frankland y el astrónomo Lockyer dedujeron que la citada línea correspondía a un nuevo elemento al que llamaron Helio (del griego helios que significa Sol) por encontrarse en el espectro solar.
Durante más de veinticinco años se pensó que el helio sólo existía en el Sol, hasta que, en 1895 W. Ramsay lo descubriera en nuestro planeta. Espectros de Absorción Así como muchos importantes descubrimientos científicos, las observaciones de Fraunhofer sobre las líneas espectrales del sol fue completamente accidental. Fraunhofer no estaba observando nada de ese tipo; simplemente estaba probando algunos modernos prismas que el había hecho. Cuando la luz del sol pasó por una pequeña hendidura y luego a través del prisma, formó un espectro con los colores del arco iris, tal como Fraunhofer esperaba, pero para su sorpresa, el espectro contenía una serie de líneas oscuras.
¿Líneas oscuras? Eso es lo opuesto de todo lo que hemos venido hablando. Usted me ha dicho que los diferentes elementos crean una serie de líneas brillantes a determinadas longitudes de onda. Eso es lo que ocurre cuando un elemento es calentado. En términos del modelo de Bohr, el calentar los átomos les dá una cierta energía extra, así que algunos electrones pueden saltar a niveles superiores de energía. Entonces, cuando uno de estos electrones vuelve al nivel inferior, emite un fotón--en una de las frecuencias especiales de ese elemento, por supuesto. Y esos fotones crean las líneas brillantes en el espectro que usted me mostró.
Exactamente--eso es lo que se llama espectro de emisión. Pero hay otra forma en que un elemento puede producir un espectro. Suponga que en lugar de una muestra calentada de un elemento, usted tiene ese mismo elemento en la forma de un gas relativamente frío.
Ahora, digamos que una fuente de luz blanca--conteniendo todas las longitudes de onda visibles--es dirigida al gas. Cuando los fotones de la luz blanca pasan a través del gas, algunos de ellos pueden interactuar con los átomos--siempre que tengan la frecuencia apropiada para empujar un electrón de ese elemento hasta un nivel superior de energía. Los fotones en esas frecuencias particulares son absorbidos por el gas. Sin embargo, como usted lo anotó antes, los átomos son "transparentes" a los fotones de otras frecuencias. Entonces todas las otras frecuencias saldrían intactas del gas. Así, el espectro de la luz que ha pasado a través del gas tendría algunos "agujeros" en las frecuencias que fueron absorbidas.
Es correcto. El espectro con estas frecuencias faltantes se llama espectro de absorción. (Note que las líneas oscuras en un espectro de absorción aparecen en las mismas exactas frecuencias de las líneas brillantes en el correspondiente espectro de emisión.) ¿Y eso fué lo que vio Fraunhofer? Si. Bajo un cuidadoso examen, el espectro "continuo" del sol resultó ser un espectro de absorción. Para llegar a la tierra, la luz del sol necesita pasar a través de la atmósfera del sol, que está mucho más fría que la parte del sol en que la luz es emitida. Los gases en la atmósfera del sol absorben ciertas frecuencias, creando las cerca de 600 líneas oscuras que Fraunhofer observó. (Se llaman líneas de Fraunhofer, en su honor.) Sin embargo, Fraunhofer nunca supo de todo esto. Nadie pudo ofrecer una explicación de las líneas espectrales hasta algunas décadas más tarde. Espectroscopio Es un instrumento adecuado para descomponer la luz en su espectro, por medio de un retículo de difracción o de un prisma. Antes el análisis con el espectroscopio, esto se hacía a simple vista, pero con la invención de la fotografía los espectros se captan sobre una emulsión fotográfica. La dispersión se puede realizar por refracción (espectroscopio de prisma) o por difracción (espectroscopio de red).
El espectroscopio de prisma está formado por una rendija por la que penetra la luz, un conjunto de lentes, un prisma y una lente ocular. La luz que va a ser analizada pasa primero por una lente colimadora, que produce un haz de luz estrecho y paralelo, y después por el prisma, que separa este haz en las distintas radiaciones monocromáticas (colores) que lo componen. Con la lente ocular se enfoca la imagen de la rendija. Las líneas espectrales que constituyen el espectro no son en realidad sino una serie de imágenes de la rendija. El espectroscopio de red dispersa la luz utilizando una red de difracción en lugar de un prisma. Una red de difracción es una superficie especular de metal o vidrio sobre la que se han dibujado con un diamante muchas líneas paralelas muy finas. Tiene mayor poder de dispersión que un prisma, por lo que permite una observación más detallada de los espectros. Espectroscopía En astronomía, la espectroscopía es el estudio de los espectros emitidos por los cuerpos celestes. Cuando por medio del espectroscopio se descompone la luz proveniente de un cuerpo celeste, se obtienen tres tipos fundamentales de espectros: 1.- El espectro continuo, típico de los sólidos, los líquidos y los gases llevados a la incandescencia y a altas temperaturas y presiones. Está caracterizado por una emisión continua en todas las longitudes de onda y no presenta líneas. 2.- El espectro de emisión, típico de los gases luminosos a baja presión y temperatura. Está constituido por líneas de longitud de onda definida, característica de cada especie atómica y molecular. 3.- El espectro de absorción, que es una combinación de los dos primeros tipos. Se obtiene cuando se hace pasar a través de un gas la luz de un cuerpo llevado a la incandescencia y está caracterizado por líneas negras, llamadas líneas de absorción, que acompañan al espectro en la misma posición en la que el propio gas habría producido las líneas de emisión. El Sol y las estrellas presentan espectros de absorción y por la posición de las líneas se pueden establecer cuáles son los elementos presentes en el astro. Por ejemplo el Sol, en la parte amarilla del espectro, presenta dos líneas que ocupan la misma posición de las que aparecerían en el espectro producido por vapores de sodio llevados a la incandescencia. De esta manera se puede establecer que el sodio es uno de los elementos presentes en nuestra estrella.
Los planetas y los cuerpos opacos en general, no emiten luz propia sino que reflejan la del Sol, presentando un espectro de absorción idéntico al solar, que no nos da informaciones particulares sobre la naturaleza del planeta. Sin embargo, en los planetas con envolturas gaseosas consistentes, el análisis espectroscópico puede proporcionar informaciones acerca de su composición química
View more...
Comments