Teoria de Decisiones

October 12, 2020 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Teoria de Decisiones...

Description

17

TEORÍA DE DECISIONES

capítulo

Objetivos • • • •

Aprender métodos de toma de decisiones bajo incertidumbre Usar el valor esperado y la utilidad como criterios de decisión Comprender por qué la información adicional es útil y calcular su valor Ayudar a los tomadores de decisiones a proporcionar



valores de probabilidad necesarios, aun cuando no comprendan la teoría de probabilidad Aprender a usar árboles de decisión para estructurar y analizar problemas complejos de toma de decisiones

Contenido del capítulo 17.1 El entorno de la decisión 756 17.2 Ganancia esperada en condiciones de incertidumbre: asignación de valores de probabilidad 757 17.3 Uso de distribuciones continuas: análisis marginal 765 17.4 Utilidad como criterio de decisión 773 17.5 Ayuda para que los tomadores de decisiones proporcionen las probabilidades correctas 776

17.6 Análisis de árboles de decisiones 780 • Estadística en el trabajo 790 • Del libro de texto al mundo real 791 • Términos introducidos en el capítulo 17 793 • Ecuaciones introducidas en el capítulo 17 793 • Ejercicios de repaso 794

755

a Acme Fruit and Produce Wholesalers compra jitomates para venderlos a minoristas. Actualmente, Acme paga 20 dólares por caja; las cajas vendidas el mismo día cuestan 32 dólares cada una. Por ser en extremo perecederos, los jitomates que no se venden el primer día, valen sólo 2 dólares la caja. Acme ha calculado que la media de las ventas diarias históricas es 60 cajas y que la desviación estándar de las ventas diarias es 10 cajas. Usando las técnicas introducidas en este capítulo, podremos indicar a Acme cuántas cajas ordenar diariamente para maximizar las ganancias. ■

L

¿Qué es la teoría de decisiones?

En la sección 5-3, introdujimos la idea de usar el valor esperado en la toma de decisiones. Trabajamos con un problema sencillo que involucraba la compra de fresas para su reventa. Esa clase de problemas forma parte de un conjunto de problemas que puede resolverse mediante las técnicas desarrolladas en ese capítulo. En los últimos 35 años, los administradores han utilizado técnicas estadísticas de reciente desarrollo para solucionar problemas con información incompleta, incierta o, en algunos casos, casi inexistente. Esta nueva área de la estadística tiene varios nombres: teoría estadística de decisiones, teoría de decisiones bayesiana (en honor al reverendo Thomas Bayes, quien se mencionó en el capítulo 4), o simplemente teoría de decisiones. Estos nombres se usan indistintamente. Cuando hicimos la prueba de hipótesis, tuvimos que decidir si aceptar o rechazar la hipótesis formulada. En la teoría de decisiones, debemos decidir entre varias opciones tomando en cuenta las repercusiones monetarias de nuestras acciones. Un administrador que ha de seleccionar de entre varias inversiones disponibles debe considerar la ganancia o pérdida que pudiera resultar de cada opción. La aplicación de la teoría de decisiones implica seleccionar una alternativa y tener una idea razonable de las consecuencias económicas de elegir esa acción.

17.1 El entorno de la decisión La teoría de decisiones puede aplicarse a problemas que abarcan un periodo de cinco años o un día, ya sea que involucre administración financiera o una línea de ensamble en una planta, o que se relacione con el sector público o el privado. Independientemente del entorno, la mayor parte de estos problemas tiene características comunes. Por ello, quienes toman decisiones enfocan sus soluciones de manera bastante consistente. Los elementos comunes a la mayoría de los problemas de la teoría de decisiones son los siguientes: Elementos comunes a los problemas de teoría de decisiones

756

1. Objetivo que el tomador de decisiones trata de lograr. Si el objetivo es minimizar el tiempo de fallas de maquinaria costosa, el administrador puede tratar de encontrar el número óptimo de motores de repuesto que debe tener reparaciones rápidas. El éxito de encontrar ese número puede medirse contando las fallas mensuales. 2. Varios cursos de acción. La decisión debe involucrar una elección entre alternativas (llamadas actos). En el ejemplo de motores de repuesto, los diversos actos posibles para el tomador de decisiones incluyen almacenar cero, uno, dos, tres, cuatro o cinco motores de repuesto. 3. Medida calculable del beneficio o valor de las diversas alternativas. En general, estos costos pueden ser negativos o positivos, y se denominan pagos. Los contadores deben determinar el costo del tiempo perdido de producción, resultante de la descompostura de un motor, cuando se tiene a mano un repuesto y cuando no. Pero algunas veces, los pagos implican consecuencias que no sólo son financieras. Imagínese intentando decidir el número óptimo de

Capítulo 17

Teoría de decisiones

generadores de repuesto que un hospital requeriría en caso de presentarse una falla de energía eléctrica. No tener suficientes podría costar vidas, además de dinero. 4. Eventos que están fuera del control del tomador de decisiones. Este tipo de hechos incontrolables a menudo se denominan resultados o estados de la naturaleza, y su existencia crea dificultades así como interés en la toma de decisiones bajo incertidumbre. Dichos eventos podrían ser el número de motores de nuestra costosa maquinaria de producción que fallarán en un mes dado. El mantenimiento preventivo reducirá estas fallas, pero seguirán ocurriendo. 5. Incertidumbre respecto a qué resultado o estado de la naturaleza ocurrirá realmente. En nuestro ejemplo, no estamos seguros respecto a cuántos motores se quemaron. Esta incertidumbre suele manejarse con probabilidades asignadas a los diversos eventos que pudieran tener lugar; digamos, una probabilidad de 0.1 de que fallen cinco motores al mes.

Ejercicios 17.1 Aplicaciones ■

17-1



17-2



17-3

La empresa Wholesale Lamps ha estado en contacto con Leerie’s, una tienda local minorista de lámparas, para surtirle una lámpara especial de pie cromado, que la tienda desea usar como atracción en sus ventas próximas. Wholesale Lamps debe ordenar la fabricación de las lámparas 2 días antes para entregarlas en la fecha de venta. El costo de las lámparas para Wholesale es $49 y las vende a Leerie’s en $54. Wholesale no está seguro de la cantidad que Leerie’s desea, pero supone que serán entre 15 y 20. Uno de los administradores ha asignado probabilidades a los distintos números de lámparas que Leerie’s podría ordenar. El gerente de Wholesale Lamps pronostica que no tendrá mercado para las lámparas que no venda a Leerie’s. Se espera que Leerie’s presente la orden mañana. ¿Debe el gerente de Wholesale Lamps usar la teoría de decisiones para ordenar las lámparas que le pedirá Leerie’s? Adventures, Inc., es una fuente de capital para empresarios que inician compañías en el campo de la ingeniería genética. Lisa Levin, socia de Adventures, ha estado estudiando varias propuestas de negocios recientes. Cada propuesta describe una nueva empresa, delinea su mercado potencial y solicita la inversión de Adventures. Lisa acaba de terminar de leer el capítulo de teoría de decisiones en el libro de estadística de su padre. Piensa que esta técnica proporciona una metodología que puede ayudarle a decidir qué empresas respaldar y a qué nivel. ¿Está Lisa en lo correcto? Si es así, ¿qué información requiere para aplicar la teoría de decisiones a su problema? Si no es así, ¿por qué? La 8th Avenue Book Store depende de Grambler News Service para el suministro de varias revistas conocidas. Cada semana, Grambler entrega un número predeterminado de Today’s Romances, entre otras, y recoge los ejemplares no vendidos durante la semana anterior. No se sabe con seguridad el número de ejemplares que venderá la librería, pero el gerente cuenta con datos históricos de las ventas. Grambler cobra $1.60 a la librería por ejemplar que se vende en $2.95. El gerente de la librería desea obtener una máxima rentabilidad de la venta de revistas y quiere determinar el número óptimo de Today’s Romances a ordenar. ¿Debe usar la teoría de decisiones para decidir el número de revistas que debe tener?

17.2 Ganancia esperada en condiciones de incertidumbre: asignación de valores de probabilidad Decisión de compra bajo incertidumbre

17.2

Comprar y vender fresas, como en el ejemplo del capítulo 5, es sólo un caso en que las decisiones deben tomarse bajo incertidumbre. Otro de ellos sería el del comerciante de periódicos que compra cada ejemplar a $0.30 cada uno y lo vende a $0.50. Los periódicos no vendidos al final del día carecen completamente de valor. El problema del comerciante es determinar el número óptimo a ordenar diariamente. En los días en los que tiene más periódicos de los que vende, sus ganancias se reGanancia esperada en condiciones de incertidumbre: asignación de valores de probabilidad

757

Cálculo de las probabilidades para los niveles de ventas

ducen por el costo de los periódicos no vendidos. En los días en que los compradores piden más ejemplares de los que tiene, pierde ventas y tiene menores ganancias de las que podría haber tenido. El comerciante ha mantenido un registro de sus ventas en los 100 días anteriores (tabla 17-l). Esta información es una distribución de las ventas pasadas del comerciante. Como el volumen de ventas puede tomar sólo un número limitado de valores, la distribución es discreta. Supondremos en este análisis, que el comerciante sólo venderá las cantidades enumeradas; no 412,525 ni 637. Más aún, no tiene una razón para pensar que el volumen de ventas tomará cualquier otro valor en el futuro. Esta información dice algo sobre el patrón histórico de ventas del comerciante. Aunque no da la cantidad que los compradores pedirán mañana, sí dice que existen 45 oportunidades en 100 de que la cantidad sea 500 periódicos. Por consiguiente, se asigna una probabilidad de 0.45 a la cifra de ventas de 500 periódicos. La columna de probabilidades de la tabla 17-1 muestra la relación entre las observaciones totales de ventas (100 días) y el número de veces que apareció cada valor posible de ventas diarias en las 100 observaciones. Así, la probabilidad de cada nivel de ventas se obtiene dividiendo el número total de veces que aparece cada valor en las 100 observaciones entre el número total de ellas, esto es, 15/100, 20/100, 45/100, 15/100 y 5/100.

Maximizar ganancias en vez de minimizar pérdidas

Un problema del capítulo 5 trabajado de otra manera

En la sección 5-3, cuando presentamos por primera vez el valor esperado en la toma de decisiones, usamos un enfoque que minimizaba pérdidas y nos conducía a un patrón de inventario óptimo para nuestro comerciante de fresas. Es igual de fácil encontrar el patrón de inventario óptimo al maximizar ganancias, y eso es justo lo que haremos aquí. Recuerde que el comerciante de frutas y verduras del capítulo 5 compraba fresas a $20 la caja y las vendía a $50. Supusimos que el producto no tenía valor si no se vendía el primer día (una restricción que pronto quitaremos). Si mañana los compradores piden más cajas de las que el comerciante tiene, las ganancias potenciales disminuyen $30 (el precio de venta menos el costo) por cada caja que no pueda vender. Por otra parte, también se tienen costos de almacenar demasiadas unidades en un día dado. Si el comerciante tiene 13 cajas pero sólo vende 10, obtiene una ganancia de $300, o $30 por caja en 10 casos. Pero esta ganancia debe reducirse $60, el costo de las tres cajas no vendidas y carentes de valor. Una observación de 100 días de ventas históricas proporciona la información de la tabla 17-2. Los valores de probabilidad se obtienen igual que en la tabla 5-6. Observe que sólo hay cuatro valores discretos para el volumen de ventas, y hasta donde sabemos, no existe un patrón discernible en la secuencia en que ocurren estos cuatro valores. Suponemos que el comerciante no tiene razones para creer que el volumen de ventas se comportará de manera distinta en el futuro.

Cálculo de las ganancias condicionales Para ilustrar este problema, podemos construir una tabla que muestre los resultados en dólares de todas las combinaciones posibles de compras y ventas. Los únicos valores de compras y ventas que tienen significado para nosotros son 10, 11, 12 y 13 cajas, porque el comerciante no tiene razones para considerar la compra de menos de 10 o más de 13 cajas.

Tabla 17-1 Distribución de la venta de periódicos

758

Capítulo 17

Teoría de decisiones

Ventas diarias 300 400 500 600 700

Número de días que se venden

Probabilidad de cada número que se vende

15 20 45 15 5 0 0  1

0.15 0.20 0.45 0.15 0.05 .0 1 0 

Tabla de ganancias condicionales

Explicación de los elementos de la tabla de ganancias condicionales

Función de la tabla de ganancias condicionales

La tabla 17-3, denominada tabla de ganancias condicionales, muestra la ganancia resultante de cualquier combinación posible de oferta y demanda. Las ganancias podrían ser positivas o negativas (aunque todas son positivas en este ejemplo) y son condicionales en cuanto a que una ganancia dada es el resultado de tomar una acción específica de inventario (ordenar 10, 11, 12 o 13 cajas) y vender un número específico de cajas (10, 11, 12 o 13 cajas). La tabla 17-3 refleja las pérdidas ocurridas cuando quedan existencias sin vender al final de un día. Observe, asimismo, que el comerciante no aprovecha las ganancias potenciales adicionales cuando los clientes demandan más cajas de las que tiene. Observe que el inventario diario de 10 cajas siempre dará una ganancia de $300. Incluso en los días en los que los compradores quieren 13 cajas, el comerciante sólo puede vender 10. Cuando almacena 11 cajas, su ganancia será $330 en los días en que los compradores solicitan 11, 12 o 13 cajas. Pero en los días que tiene 11 cajas y los compradores compran sólo 10, la ganancia baja a $280. La ganancia de $300 por las 10 cajas vendidas se reduce $20, el costo de la caja no vendida. Un inventario de 12 cajas incrementa las ganancias diarias a $360, pero sólo en los días en que los compradores deseen 12 o 13 cajas. Si los compradores sólo quieren 10 cajas, la ganancia se reduce a $260; la ganancia de $300 sobre la venta de 10 cajas se reduce $40, el costo de las dos cajas no vendidas. Almacenar 13 cajas producirá una ganancia de $390 ($30 por cada caja vendida cuando se venden todas) si existe mercado para las 13 cajas. Cuando los compradores adquieren menos de 13 cajas, esa acción de inventarios da ganancias menores que $390. Por ejemplo, con 13 cajas y una venta de sólo 11 cajas, la ganancia es $290; la ganancia de 11 cajas, $330, se reduce por el costo de dos cajas no vendidas ($40). La tabla de ganancias condicionales no muestra al comerciante cuántas cajas debe tener cada día para maximizar sus ganancias. Sólo revela el resultado de tener en inventario un número específico de cajas cuando se vende un número específico de ellas. En condiciones de incertidumbre, el comerciante no sabe de antemano el tamaño del mercado de cada día. Sin embargo, debe decidir qué número de cajas tener en existencia continua para maximizar las ganancias durante un periodo largo.

Cálculo de las ganancias esperadas El siguiente paso para determinar el mejor número de cajas que debe tener es asignar probabilidades a los resultados o ganancias posibles. En la tabla 17-2 vimos que las probabilidades de los valores posibles para las ventas del comerciante son las siguientes: Cajas Probabilidad

Tabla 17-2 Cajas vendidas en 100 días

Ventas diarias 10 11 12 13

10 0.15

11 0.20

12 0.40

13 0.25

Número de días que se venden

Probabilidad de cada número que se vende

15 20 40 25 0 0  1

0.15 0.20 0.40 0.25 .0 1 0 

Tabla 17-3 Tabla de ganancias condicionales

17.2

Posible acción de inventario

Demanda posible (ventas) en cajas

10 cajas

11 cajas

12 cajas

13 cajas

10 11 12 13

$300 $300 $300 $300

$280 $330 $330 $330

$260 $310 $360 $360

$240 $290 $340 $390

Ganancia esperada en condiciones de incertidumbre: asignación de valores de probabilidad

759

Cálculo de la ganancia esperada

Para 10 unidades

Para 11 unidades

Para 12 y 13 unidades

Usando estas probabilidades y la información contenida en la tabla 17-3, podemos calcular la ganancia esperada de cada posible acción de inventario. En el capítulo 5 establecimos que podemos calcular el valor esperado de una variable aleatoria ponderando cada valor posible de la variable con la probabilidad de que tome ese valor. Usando este procedimiento, podemos calcular la ganancia diaria esperada de tener en existencia 10 cajas al día. Vea la tabla 17-4. Las cifras de la columna 4 de esa tabla se obtienen multiplicando la ganancia condicional de cada volumen de ventas posible (columna 2) por la probabilidad de que ocurra esa ganancia condicional (columna 3). La suma de la última columna es la ganancia esperada diaria al tener en inventario 10 cajas al día. No es sorprendente que esta ganancia esperada sea $300, puesto que vimos en la tabla 17-3 que almacenar 10 cajas al día siempre dará una ganancia de $300 por día, sin importar si los compradores quisieran 10, 11, 12 o 13 cajas. Se puede hacer el mismo cálculo para un inventario de 11 unidades, como se ve en la tabla 17-5. Esto nos dice que si el comerciante tiene en existencia 11 cajas cada día, su ganancia diaria esperada con el tiempo será $322.50. El 85% del tiempo, la ganancia diaria será $330; en estos días, los compradores piden 11, 12 o 13 cajas. Sin embargo, la columna 3 nos dice que el 15% del tiempo el mercado tomará sólo 10 cajas, produciendo una ganancia de sólo $280. Esto reduce la ganancia diaria esperada a $322.50. Para 12 y 13 unidades, la ganancia diaria esperada se calcula según se muestra en las tablas 17-6 y 17-7, respectivamente. Calculamos la ganancia esperada para cada una de las acciones de inventario abiertas al comerciante. Estas ganancias esperadas son: • • • •

Solución optima

Significado de la solución

Si se almacenan 10 cajas cada día, la ganancia diaria esperada es $300.00. Si se almacenan 11 cajas cada día, la ganancia diaria esperada es $322.50. Si se almacenan 12 cajas cada día, la ganancia diaria esperada es $335.00. Si se almacenan 13 cajas cada día, la ganancia diaria esperada es $327.50.

La acción de inventario óptima es la que proporciona la mayor ganancia esperada, es decir, las mayores ganancias promedio diarias y, por tanto, las ganancias totales máximas en un periodo dado. En esta ilustración, el número adecuado en inventario es 12 cajas, porque esta cantidad rendirá las ganancias diarias promedio más altas posibles. No disminuimos la incertidumbre en el problema que enfrenta el comerciante. Más bien, usamos su experiencia pasada para determinar su mejor acción de inventario. Continúa ignorando cuántas cajas le pedirán en un día determinado. No hay garantía de que mañana obtendrá una ganancia de Tabla 17-4 Ganancia esperada al tener 10 cajas en inventario

Tabla 17-5 Ganancia esperada al tener 11 cajas en inventario

760

Capítulo 17

Teoría de decisiones

Tamaño del mercado en cajas (1)

Ganancia condicional (2)

10 11 12 13

$300 300 300 300

Tamaño del mercado en cajas

Ganancia condicional

10 11 12 13

$280 330 330 330

Probabilidad del tamaño de mercado (3)    

0.15 0.20 0.40 0.25 .0 0  1

Ganancia esperada (4) = = = =

Probabilidad del tamaño de mercado    

0.15 0.20 0.40 0.25 .0 0  1

$ 45.00 60.00 120.00 75.00 3 $ 0 0 .0 0 

Ganancia esperada = = = =

$ 42.00 66.00 132.00 82.50 3 $ 2 2 .5 0 

Tabla 17-6 Ganancia esperada al tener 12 cajas en inventario

Tamaño del mercado en cajas

Ganancia condicional

10 11 12 13

$260 310 360 360

Tabla 17-7 Ganancia esperada al tener 13 cajas en inventario

Probabilidad del tamaño de mercado    

Ganancia esperada

0.15 0.20 0.40 0.25 .0 1 0 

Tamaño del mercado en cajas

Ganancia condicional

10 11 12 13

$240 290 340 390

= = = =

$ 39.00 62.00 144.00 90.00 3 $ 3 5 .5 0 ,

Acción de

← inventario óptima

Probabilidad del tamaño de mercado    

0.15 0.20 0.40 0.25 .0 0  1

Ganancia esperada = = = =

$ 36.00 58.00 136.00 97.50 3 $ 2 7 .5 0 

$335.00. Sin embargo, si almacena 12 cajas cada día bajo las condiciones dadas, tendrá ganancias promedio de $335.00 diarios. Esto es lo mejor que puede hacer, porque la opción de cualquiera de las otras tres acciones posibles de existencias ocasionará una ganancia diaria esperada menor.

Ganancia esperada con información perfecta Definición de información perfecta

Uso de la información perfecta

Ganancia esperada con información perfecta

Ahora, supongamos que el comerciante de nuestro ejemplo pudiera eliminar toda la incertidumbre de su problema al obtener información completa y precisa respecto al futuro, denominada información perfecta. Esto no significa que las ventas variarían de 10 a 13 cajas diarias. Las ventas seguirían siendo 10 cajas diarias el 15% del tiempo, 11 el 20%, 12 el 40% y 13 cajas el 25%. Sin embargo, con información perfecta, el comerciante sabría de antemano cuántas cajas le pedirían cada día. En estas circunstancias, el comerciante tendría en existencia hoy el número exacto de cajas que los compradores desearían mañana. Para ventas de 10 cajas, el comerciante tendría 10 cajas y obtendría una ganancia de $300. Cuando las ventas fueran de 11 cajas, almacenaría exactamente 11 cajas, obteniendo una ganancia de $330.00. La tabla 17-8 muestra los valores de la ganancia condicional aplicables al problema del comerciante si tiene una información perfecta. Conociendo el tamaño del mercado con antelación para un día particular, el comerciante elije la acción de inventario que maximizará sus ganancias. Esto significa que puede comprar y tener en inventario cantidades que evitan todas las pérdidas por existencias obsoletas, así como todas las pérdidas por demanda de fresas no satisfecha. Ahora podemos calcular la ganancia esperada con información perfecta. Esto se muestra en la tabla 17-9. El procedimiento es el mismo que usamos, pero observe que las cifras de ganancia condicional de la columna 2 de la tabla 17-9 son las ganancias máximas posibles para cada volumen de ventas. Cuando los compradores adquieren 12 cajas, por ejemplo, el comerciante siempre obtendrá una ganancia de $360 con información perfecta, porque habrá almacenado exactamente 12 cajas.

Tabla 17-8 Tabla de ganancias condicionales con información perfecta

17.2

Acción de inventario posible Venta posibles en cajas

10 cajas

11 cajas

12 cajas

13 cajas

10 11 12 13

$300 — — —

— $330 — —

— — $360 —

— — — $390

Ganancia esperada en condiciones de incertidumbre: asignación de valores de probabilidad

761

Tamaño del mercado en cajas

Ganancia condicional con información perfecta

10 11 12 13

$300 330 360 390

Tabla 17-9 Ganancia esperada con información perfecta

   

Probabilidad de tamaño de mercado 0.15 0.20 0.40 0.25 1.00

Ganancia esperada con información perfecta = = = =

$ 45.00 66.00 144.00 97.50 $352.50

Con información perfecta, entonces, el comerciante podría confiar en tener una ganancia promedio de $352.50 diariamente. Ésta es una cifra significativa porque es la máxima ganancia esperada posible.

Valor esperado de la información perfecta Valor de la información perfecta ¿Por qué se necesita el valor de la información perfecta?

Suponiendo que un comerciante pudiera obtener un pronosticador perfecto del futuro, ¿cuál sería su valor para él? Debe comparar el costo de esa información con la ganancia adicional que obtendría como resultado de tener la información. El comerciante de nuestro ejemplo puede obtener ganancias diarias promedio de $352.50 si tiene información perfecta acerca del futuro (vea la tabla 17-9). Su mejor ganancia diaria esperada sin el pronosticador es sólo $335.00 (vea las tablas 17-4 a 17-7). La diferencia de $17.50 es la cantidad máxima que el comerciante estaría dispuesto a pagar, por día, por un pronosticador perfecto, porque ésa es la cantidad máxima en que puede incrementar su ganancia diaria esperada. La diferencia es el valor esperado de información perfecta y se conoce como VEIP. No tiene sentido pagar más de $17.50 por el pronosticador; hacerlo costaría más que lo que vale el conocimiento. El cálculo del valor de la información adicional en el proceso de toma de decisiones es un problema serio para los administradores. En el ejemplo que estamos trabajando, encontramos que nuestro comerciante pagaría $17.50 al día por un pronosticador perfecto. Sin embargo, rara vez podemos asegurar un pronosticador perfecto. En la mayoría de los casos de toma de decisiones, los administradores en realidad intentan evaluar el valor de la información que les permitirá tomar mejores decisiones, aunque no perfectas.

Advertencia: todos los ejemplos usados en esta sección involucraron distribuciones discretas; es decir, se permitió que las variables aleatorias tomaran sólo unos cuantos valores. Esto no refleja la mayoría de las situaciones del mundo real, pero facilita los cálculos necesarios para presentar esta idea. Con eventos discretos, la ganancia esperada no necesariamente es uno de los eventos. Sugerencia: 50% de posibilidad de una ganancia esperada de SUGERENCIAS Y SUPOSICIONES

$10, unida a 50% de posibilidad de no tener ganancias da una ganancia esperada de $5. Pero con una distribución discreta el resultado será ¡ya sea $10 o cero! Algunas situaciones del mundo real también se comportan de esta manera. Una parcela de tierra no desarrollada puede valer ya sea $5 millones o $250,000, dependiendo de dónde van a construir un nuevo aeropuerto. La tierra puede también venderse por $500,000 a un especulador que espera obtener el precio de venta final de $5 millones.

Ejercicios 17.2 Ejercicios de autoevaluación EA 17-1

762

La Writer’s Workbench opera una cadena de franquicias de procesamiento de palabras en ciudades universitarias. Por una tarifa de $8.00 por hora, Writer’s Workbench proporciona acceso a una computadora personal, software de procesamiento de palabras y una impresora a los estudiantes que necesitan elaborar

Capítulo 17

Teoría de decisiones

trabajos escritos para sus clases. El papel se proporciona sin costo adicional. La compañía estima que el costo variable por hora por máquina (principalmente por el papel, las cintas, electricidad y desgaste de las computadoras e impresoras) es alrededor de $0.85. Deborah Rubin está considerando abrir una franquicia de Writer’s Workbench en Ames, Iowa. Una investigación de mercado preliminar arrojó la siguiente distribución de probabilidad del número de máquinas requeridas por hora durante las horas que planea operar: Número de máquinas Probabilidad

22 0.12

23 0.16

24 0.22

25 0.27

26 0.18

27 0.05

Si desea maximizar sus beneficios, ¿cuántas máquinas debe Deborah planear tener?, ¿cuál es el valor esperado de la información perfecta en esta situación? Aunque Deborah pudiera obtener un pronóstico preciso de la demanda para cada hora, ¿por qué no estaría dispuesta a pagar el VEIP por esa información en esta situación?

Aplicaciones ■

17-4

La Center City Motor Sales se acaba de constituir en sociedad. Su principal activo es una franquicia para vender automóviles de un importante fabricante estadounidense. El gerente general de la Center City está planeando cuánto personal ocupará en las instalaciones del taller del negocio. A partir de información proporcionada por el fabricante y por otros negocios cercanos, ha estimado el número de horas de mecánica anuales que es probable que requiera el taller. Horas Probabilidad



17-5

17-6

14,000 0.4

16,000 0.1

10 0.18

11 0.19

12 0.21

13 0.15

14 0.14

15 0.13

La compañía pretende ofrecer el plan 6 días a la semana (312 días al año) y anticipa que su costo variable por automóvil por día será $2.25. Después de usar los automóviles durante un año, la Airport Rent-ACar espera venderlos y recuperar 45% del costo original. Ignorando el valor del dinero en el tiempo y cualesquiera otros gastos no monetarios, determine el número óptimo de automóviles que la Airpor RentA-Car debe comprar. Durante varios años, la tienda departamental Madison Rhodes ha ofrecido lápices personalizados como artículo especial de Navidad. Madison Rhodes compraba los lápices a su proveedor, quien proporcionaba la máquina de grabado en relieve. La personalización se hacía en los departamentos de la tienda. A pesar del éxito en la venta de los lápices, Madison Rhodes recibió comentarios respecto a que la mina de los lápices era de mala calidad, y la tienda encontró un proveedor diferente. El nuevo proveedor, sin embargo, no puede comenzar a surtir a la tienda antes del primero de enero. Madison Rhodes se vio forzada a comprar sus lápices una última vez con su proveedor original para satisfacer la demanda navideña. Era importante, por un lado, que no hubiera exceso de lápices y, por otro, que hubiera suficientes para no perder clientes por faltantes. Los lápices vienen empacados en estuches de 15 unidades, en cajas de 72 estuches. Madison Rhodes pagó $60 por caja y vendió los lápices a $1.50 el estuche. Los costos de mano de obra son de 37.5 centavos por estuche vendido. Basándose en las ventas del año anterior, la gerencia construyó la siguiente tabla: Ventas esperadas (cajas) Probabilidad

17.2

12,000 0.3

El gerente planea pagar a cada mecánico $9.00 por hora y cobrar a su cliente $16.00. Los mecánicos trabajan una semana de 40 horas y tienen 2 semanas de vacaciones anuales. a) Determine cuántos mecánicos debe contratar Center City. b) ¿Cuánto debe pagar Center City por la información perfecta del número de mecánicos que necesita? Airport Rent-A-Car es un negocio local que compite con varias compañías importantes. La administración de Airport Rent-A-Car planea un nuevo trato para los clientes que desean rentar un automóvil por un solo día y regresarlo al aeropuerto. Por $24.95, la compañía rentará un automóvil económico pequeño a un cliente cuyo único otro gasto será ponerle gasolina al final del día. La empresa planea comprar al fabricante varios automóviles pequeños al reducido precio de $6,750. La gran pregunta es cuántos comprar. Los ejecutivos de la compañía han decidido aplicar la siguiente distribución de probabilidad estimada del número de automóviles rentados por día: Número de automóviles rentados Probabilidad



10,000 0.2

15 0.05

16 0.20

17 0.30

18 0.25

19 0.10

20 0.10

Ganancia esperada en condiciones de incertidumbre: asignación de valores de probabilidad

763



17-7

a) ¿Cuántas cajas debe ordenar Madison Rhodes? b) ¿Cuál es la ganancia esperada? Emily Scott, jefa de una pequeña compañía consultora de negocios, debe decidir cuántos egresados de la maestría en administración (MBA) contratar como asesores de tiempo completo el año siguiente. (Emily ha decidido que no contratará empleados de tiempo parcial.) Emily sabe por experiencia que la distribución de probabilidad del número de trabajos de consultoría que su compañía obtiene cada año es la siguiente: Trabajos de consultoría Probabilidad



17.8

17-9

27 0.2

30 0.4

33 0.1

Emily también sabe que cada MBA contratado podrá manejar exactamente tres trabajos de consultoría al año. El salario de cada uno es $60,000. Cada trabajo de consultoría que gana la compañía pero que no puede concluir le cuesta $10,000 por la pérdida de negocios futuros. a) ¿Cuántos MBA debe contratar Emily? b) ¿Cuál es el valor esperado de la información perfecta para Emily? Algunos estudiantes de la sociedad de alumnos, como organización que colecta fondos, han decidido vender pizzas individuales en la entrada de sus instalaciones los viernes. Cada pizza cuesta $0.77 y se puede vender a $1.75. Las ventas históricas indican que se venderán entre 66 y 60 docenas de pizzas con la siguiente distribución de probabilidad: Docenas Probabilidad



24 0.3

55 0.15

56 0.20

57 0.10

58 0.35

59 0.15

60 0.05

Para maximizar la contribución a la ganancia, ¿cuántas pizzas deben ordenar? Suponga que las pizzas deben ordenarse por docena. ¿Cuál es el valor esperado de la información perfecta en este problema? ¿Cuál es la cantidad máxima que la organización estaría dispuesta a pagar por la información perfecta? Manfred Baum, gerente de comercialización de la Grant Shoe Company, está planeando las decisiones de producción para la línea de zapatos de verano del año entrante. Su principal preocupación es estimar las ventas de un nuevo diseño de sandalias de moda. Estas sandalias han planteado problemas en el pasado por dos razones: 1) la temporada de ventas limitada no proporciona tiempo suficiente para que la compañía produzca una segunda corrida del popular artículo y 2) los estilos cambian drásticamente de un año para otro, y las sandalias no vendidas pierden todo valor. Manfred discutió el nuevo diseño con la gente de ventas y formuló las siguientes estimaciones sobre las ventas del artículo: Pares (miles) Probabilidad

45 0.25

50 0.30

55 0.20

60 0.15

65 0.10

La información del departamento de producción revela que la fabricación de las sandalias costará $15.25 el par, y los estudios de mercado informan a Manfred que el precio total por par será $31.35. Usando el criterio de decisión del valor esperado, calcule el número de pares que Manfred debe recomendar que produzca la compañía.

Soluciones a los ejercicios de autoevaluación EA

17-1

La siguiente tabla de pagos da las ganancias tanto esperadas como condicionales: Máquinas necesarias Probabilidad

Máquinas provistas

22 23 24 25 26 27

22 0.12 157.30 156.45 155.60 154.75 153.90 153.05

23 0.16 157.30 164.45 163.60 162.75 161.90 161.05

24 0.22 157.30 164.45 171.60 170.75 169.90 169.05

25 0.27 157.30 164.45 171.60 178.75 177.90 177.05

Debe tener 26 máquinas. VEIP  157.30(0.12)  164.45(0.16)  171.60(0.22)  178.75(0.27)  185.90(0.18)  193.25(0.05) 172.54  $1.787

764

Capítulo 17

Teoría de decisiones

26 0.18 157.30 164.45 171.60 178.75 185.90 185.05

27 0.05 157.30 164.45 171.60 178.75 185.90 193.25

Ganancia esperada 157.30 163.49 168.40 171.55 172.54 ← 172.09

Como el número de máquinas que tendrá disponibles no puede ajustar cada hora, un pronóstico de la demanda cada hora será de poco valor en esta situación.

17.3 Uso de distribuciones continuas: análisis marginal Limitaciones del enfoque tabular

Obtención de la ganancia marginal

Pérdida marginal

Derivación de la regla de inventario

En muchos problemas de inventarios, el número de cálculos requeridos dificulta el uso de las tablas de ganancias condicionales y ganancias esperadas. El ejemplo anterior contenía sólo cuatro acciones de existencias posibles y cuatro niveles de ventas posibles, que daban como resultado una tabla de ganancias condicionales con 16 posibilidades. Si tuviéramos 300 valores posibles para el volumen de ventas y un número igual de cálculos para determinar la ganancia condicional y esperada, tendríamos que hacer muchísimos cálculos. El enfoque marginal evita este problema. El análisis marginal se basa en el hecho de que cuando se compra una unidad adicional de un artículo, pueden ocurrir dos cosas: la unidad se vende o no se vende. La suma de las probabilidades de estos dos eventos debe ser 1. (Por ejemplo, si la probabilidad de vender la unidad adicional es 0.6, entonces la probabilidad de no venderla debe ser 0.4.) Si hacemos que p represente la probabilidad de vender una unidad adicional, entonces 1  p debe ser la probabilidad de no venderla. Si se vende la unidad adicional, lograremos un incremento de nuestras ganancias condicionales como resultado de la ganancia de la unidad adicional. Nos referimos a esto como ganancia marginal, o GM. En el ejemplo anterior sobre el comerciante, la ganancia marginal resultante de la venta de una unidad adicional es $30, el precio de venta ($50) menos el costo ($20). La tabla 17-10 ilustra esto. Si tenemos 10 unidades cada día y la demanda diaria es 10 o más unidades, nuestra ganancia condicional es $300 diarios. Ahora decidimos tener 11 unidades cada día. Si la onceava unidad se vende (y éste es el caso cuando la demanda es 11, 12 o 13 unidades), nuestra ganancia condicional se incrementa a $330 diarios. Observe que el incremento en la ganancia condicional no es consecuencia simplemente de tener en existencia la onceava unidad. En las condiciones supuestas en el problema, este incremento en la ganancia se obtiene sólo cuando la demanda es 11 unidades o más. Esto ocurrirá 85% del tiempo. También debemos considerar que afectará las ganancias tener almacenada una unidad adicional que no se vende. Esto reduce nuestra ganancia condicional. La cantidad de la reducción se conoce como la pérdida marginal (PM) que resulta de tener en existencia un elemento que no se vende. En el ejemplo anterior, la pérdida marginal era $20 por unidad, el costo del artículo. La tabla 17-10 también ilustra la pérdida marginal. Una vez más decidimos tener en inventario 11 unidades. Si la onceava unidad (la unidad marginal) no se vende, la ganancia condicional es $280. La ganancia condicional de $300, con un inventario de 10 unidades y una venta de 10, se reduce en $20, el costo de la unidad no vendida. Las unidades adicionales deben almacenarse mientras la ganancia marginal esperada de tener cada una de ellas sea mayor que la pérdida marginal esperada de almacenarlas. El tamaño de la orden de cada día debe incrementarse hasta el punto en que la ganancia marginal esperada de almacenar una unidad más si ésta se vende sea justo igual a la pérdida marginal esperada de almacenar esa unidad si no se vende. Tabla 17-10 Tabla de ganancias condicionales

Demanda posible (ventas) en cajas

Probabilidad del tamaño del mercado

10 cajas

11 cajas

12 cajas

13 cajas

10 11 12 13

0.15 0.20 0.40 0.25

$300 $300 $300 $300

$280 $330 $330 $330

$260 $310 $360 $360

$240 $290 $340 $390

17.3

Posible acción de inventario

Uso de distribuciones continuas: análisis marginal

765

En nuestro ejemplo, la distribución de probabilidad de la demanda es: Tamaño del mercado

Prob. del tamaño del mercado

10 11 12 13

0.15 0.20 0.40 0.25 .0 0  1

Esta distribución nos dice que al aumentar el inventario, la probabilidad de vender una unidad adicional ( p) disminuye. Si incrementamos el inventario de 10 a 11 unidades, la probabilidad de vender las 11 es 0.85. Ésta es la probabilidad de que la demanda sea 11 unidades o más. Los cálculos son los siguientes: Probabilidad de que la demanda sea 11 Probabilidad de que la demanda sea 12 Probabilidad de que la demanda sea 13 Prob. de que la demanda sea 11 o más unidades

0.20 0.40 0.25  5 0.8

Si añadimos una doceava unidad, la probabilidad de vender las 12 unidades se reduce a 0.65 (la suma de las probabilidades de demanda de 12 o 13 unidades). Por último, la adición de una treceava unidad lleva consigo sólo una probabilidad de 0.25 de vender las 13 unidades, porque la demanda será 13 unidades sólo 25% del tiempo.

Derivación de la ecuación de probabilidad mínima Definición de ganancia y pérdida marginal esperada

La ganancia marginal esperada de almacenar y vender una unidad adicional es la ganancia marginal de la unidad multiplicada por la probabilidad de que se venda dicha unidad; esto es p(GM). La pérdida marginal esperada de almacenar y no vender una unidad adicional es la pérdida marginal en que se incurre si no se vende la unidad multiplicada por la probabilidad de que no se venda; es decir (1  p)(PM). Podemos generalizar que el comerciante en esta situación mantendría existencias hasta el punto en que: p(GM)  (1 – p)(PM)

Acción de inventario óptima

Esta ecuación describe el punto hasta el cual la ganancia marginal esperada de almacenar y vender una unidad adicional, p(GM), es igual a la pérdida marginal esperada de almacenar y no vender la unidad (1  p)(PM). Mientras p(GM) sea mayor que (1  p)(PM), se deben almacenar unidades adicionales, porque la ganancia esperada de esa decisión es mayor que la pérdida esperada. En cualquier problema de inventario, habrá un solo valor de p para el que la ecuación de maximización es cierta. Debemos determinar ese valor para conocer la acción de inventario óptima. Podemos hacer esto tomando nuestra ecuación de maximización y despejando p de la siguiente manera: p(GM)  (1 – p)(PM) Multiplicando los dos términos del lado derecho de la ecuación, obtenemos p(GM)  PM – p(PM) Reuniendo los términos que contienen a p, tenemos p(GM)  p(PM)  PM o p(GM  PM)  PM Dividiendo ambos lados de la ecuación entre GM  PM obtenemos

766

[17-1]

Capítulo 17

Teoría de decisiones

[17-1]

Probabilidad mínima requerida para almacenar otra unidad

Ecuación de probabilidad mínima

PM p*   GM  PM

[17-2]

El símbolo p* representa la probabilidad mínima requerida de vender al menos una unidad adicional para justificar la existencia de esa unidad adicional. El comerciante debe tener unidades adicionales siempre y cuando la probabilidad de vender al menos una unidad adicional sea mayor que p*. Ahora podemos calcular p* para nuestro ejemplo. La ganancia marginal por unidad es $30 (el precio de venta menos el costo); la pérdida marginal por unidad es $20 (el costo de cada unidad); por tanto, $20 PM $20 p*        0.40 GM  PM $30  $20 $50

Cálculo de las probabilidades acumuladas

[17-2]

Este valor de 0.40 para p* significa que para justificar el almacenamiento de una unidad adicional, debemos tener al menos 0.40 de probabilidad acumulada de vender esa unidad o más. Con el fin de determinar la probabilidad de vender cada unidad adicional que pensamos almacenar, debemos calcular una serie de probabilidades acumuladas, como se ve en la tabla 17-11. Las probabilidades acumuladas de la columna derecha de la tabla 17-11 representan las probabilidades de que las ventas alcancen o excedan cada uno de los cuatro niveles de ventas. Por ejemplo, el 1.00 que aparece junto al nivel de ventas de 10 unidades significa que estamos 100% seguros de vender 10 o más unidades. Esto debe ser cierto porque nuestro problema supone que siempre ocurrirá uno de los cuatro niveles de ventas. El valor de probabilidad de 0.85 junto a la cifra de ventas de 11 unidades significa que sólo estamos 85% seguros de vender 11 o más unidades. Esto puede calcularse de dos maneras. Primero, podemos sumar las posibilidades de vender 11, 12 o 13 unidades: 11 unidades 0.20 12 unidades 0.40 13 unidades 0.25   probabilidad de vender 11 o más 13 unidades 0.85

O podemos razonar que las ventas de 11 o más unidades incluyen todos los resultados posibles, excepto la venta de 10 unidades, que tiene una probabilidad de 0.15. Todos los resultados posibles 1.00 Probabilidad de vender 10 0.15   probabilidad de vender 11 o más Todos los resultados posibles 0.85

El valor de la probabilidad acumulada de 0.65 asignado a ventas de 12 unidades o más puede establecerse de una manera similar. La venta de 12 o más significa ventas de 12 o 13 unidades; de esta forma Probabilidad de vender 12 0.40 Probabilidad de vender 13 0.25  0.65  probabilidad de vender 12 o más

Unidades de ventas

Probabilidad de este nivel de ventas

Probabilidad acumulada de que las ventas estén en este nivel o en uno mayor

10 11 12 13

0.15 0.20 0.40 0.25

1.00 0.85 0.65 0.25

Tabla 17-11 Probabilidades acumuladas de ventas

17.3

Uso de distribuciones continuas: análisis marginal

767

Regla de inventario

Por supuesto la probabilidad acumulada de vender 13 unidades sigue siendo 0.25, ya que las ventas nunca excederán 13. Como mencionamos, el valor de p disminuye al aumentar el nivel de inventario. Esto ocasiona que la ganancia marginal esperada disminuya y la pérdida marginal esperada aumente hasta que, en algún punto, almacenar una unidad adicional no sea rentable. Hemos afirmado que las unidades adicionales deben almacenarse mientras la probabilidad de vender al menos una unidad adicional sea mayor que p*. Ahora podemos aplicar esta regla a nuestra distribución de probabilidad de ventas y determinar cuántas unidades deben almacenarse. En este caso, la probabilidad de vender 11 o más unidades es 0.85, cifra claramente mayor que nuestro p* de 0.40; por consiguiente, debemos tener en existencia una onceava unidad. La ganancia marginal esperada de tener esta unidad es mayor que la pérdida marginal esperada. Podemos verificar esto de la siguiente manera: p(GM)  0.85($30)  $25.50 de ganancia marginal esperada (1  p)(PM)  0.15($20)  $3.00 de pérdida marginal esperada Debe almacenarse una doceava unidad porque la probabilidad de vender 12 o más unidades (0.65) es mayor que la p* requerida de 0.40. Tal acción ocasionará la siguiente ganancia marginal esperada y pérdida marginal esperada: p(GM)  0.65($30)  $19.50 de ganancia marginal esperada (1  p)(PM)  0.35($20)  $7.00 de pérdida marginal esperada

Nivel de existencias óptimo para este problema

Doce es el número óptimo de unidades que debe haber en inventario, porque agregar una treceava unidad tiene una probabilidad de sólo 0.25 de venderse, y eso es menos que la p* requerida de 0.40. Las siguientes cifras revelan por qué la treceava unidad no debe tenerse en existencia: p(GM)  0.25($30)  $7.50 de ganancia marginal esperada (1  p)(PM)  0.75($20)  $15.00 de pérdida marginal esperada

Ajuste del nivel de inventario óptimo

Si almacenamos una treceava unidad, añadimos más a la pérdida esperada que a la ganancia esperada. Observe que el uso del análisis marginal nos conduce a la misma conclusión que obtuvimos con las tablas de ganancia condicional y ganancia esperada. Ambos métodos de análisis sugieren que el comerciante debe tener en inventario 12 unidades cada periodo. Nuestra estrategia, tener 12 cajas cada día, supone que las ventas diarias es una variable aleatoria. Sin embargo, en la práctica las ventas diarias a menudo siguen patrones detectables, dependiendo del día de la semana. En las ventas al menudeo, se sabe en general que el sábado es un día con un volumen más alto que, digamos, el martes. De manera similar, las ventas al menudeo del lunes son por lo general menores que las del viernes. En situaciones con patrones reconocibles de ventas diarias, podemos aplicar estas técnicas calculando un nivel de inventario óptimo para cada día de la semana. Para el sábado, usaríamos como datos de entrada la experiencia de ventas anteriores de los sábados únicamente. Cada uno de los otros seis días podría tratarse de la misma manera. Básicamente, este enfoque no representa más que el reconocimiento, y la reacción, a patrones discernibles en lo que a primera vista podría parecer un entorno completamente aleatorio.

Uso de la distribución de probabilidad normal estándar

Solución de un problema usando análisis marginal

768

Vimos el concepto de distribución de probabilidad normal estándar en el capítulo 5. Ahora podemos usar esa idea como ayuda para resolver un problema de teoría de decisiones empleando una distribución continua. Suponga que un gerente ofrece un artículo que tiene ventas con distribución normal con media de 50 unidades diarias y desviación estándar en las ventas diarias de 15 unidades. El gerente compra este artículo en $4 por unidad y lo vende en $9. Si el artículo no se vende el día que sale a la venta,

Capítulo 17

Teoría de decisiones

pierde su valor. Usando el método marginal de calcular niveles de compra de inventario óptimos, podemos calcular nuestra p* requerida: PM p*   GM  PM

[17-2]

$4    0.44 $5  $4

Uso de la distribución de probabilidad normal estándar en el análisis marginal

Solución óptima para este problema

Esto significa que el gerente debe estar 0.44 seguro de vender al menos una unidad adicional antes de almacenar esa unidad. Reproducimos aquí la curva de las ventas históricas para determinar cómo incorporar el método marginal con distribuciones continuas de ventas diarias históricas. Ahora consulte la figura 17-1. Si trazamos una línea vertical b en 50 unidades, el área bajo la curva a la derecha de esta línea es la mitad del área total. Esto nos dice que la probabilidad de vender 50 o más unidades es 0.5. El área a la derecha de cualquier línea vertical de este tipo representa la probabilidad de vender esa cantidad o más. Al disminuir el área a la derecha de cualquier línea vertical, también disminuye la probabilidad de que vendamos esa cantidad o más. Supongamos que el gerente desea almacenar 25 unidades, la línea a. La mayor parte del área completa bajo la curva está a la derecha de la línea vertical trazada en 25; por tanto, la probabilidad de que el gerente venda 25 unidades o más es alta. Si piensa almacenar 50 unidades (la media), la mitad del área total bajo la curva está a la derecha de la línea vertical b; por consiguiente, está 0.5 seguro de vender las 50 unidades o más. Ahora, digamos que considera almacenar 65 unidades. Sólo una pequeña porción de toda el área bajo la curva cae a la derecha de la línea c; en consecuencia, la probabilidad de vender 65 o más unidades es bastante pequeña. La figura 17-2 ilustra la probabilidad de 0.44 que debe existir antes de que convenga a nuestro gerente almacenar otra unidad. Mantendrá en inventario unidades adicionales hasta que llegue al punto Q. Si almacena una cantidad mayor, el área sombreada bajo la curva es menor que 0.44 y la probabilidad de vender otra unidad o más será menor que el 0.44 requerido. ¿Cómo podemos localizar el punto Q? Como vimos en el capítulo 5, podemos usar la tabla 1 del apéndice para determinar cuántas desviaciones estándar se necesitan para incluir cualquier porción del área bajo la curva, midiendo desde la media hasta cualquier punto como Q. En este caso particular, como sabemos que el área sombreada debe ser 0.44 del área total, entonces el área desde la media hasta el punto Q debe ser 0.06 (el área desde la media hasta la cola derecha es 0.50). Al consultar el contenido de la tabla, encontramos que 0.06 del área bajo la curva se localiza entre la media y un punto a 0.15 de la desviación estándar a la derecha de la media. Por tanto, sabemos que el punto Q está a 0.15 de la desviación estándar a la derecha de la media (50). Tenemos la información de que 1 desviación estándar para esta distribución es 15 unidades; así, esto por 0.15 serían 2.25 unidades. Como el punto Q está 2.25 unidades a la derecha de la media (50), b

c

a

FIGURA 17-1 Distribución normal de ventas diarias históricas

20

25

30

35

40

45

50 55

60 65

70

75

80

Media de 50

17.3

Uso de distribuciones continuas: análisis marginal

769

0.44 del área

FIGURA 17-2 Distribución de probabilidad normal, con 0.44 del área bajo la curva sombreada

Problema de inicio del capítulo

0

50 Punto Q

100

debe estar aproximadamente en 52 unidades. Ésta es la cantidad a ordenar óptima para el gerente: 52 unidades cada día. Una vez terminado un problema usando una distribución de probabilidad continua, podemos trabajar en nuestro problema de inicio del capítulo con los datos siguientes de las ventas diarias que siguen una distribucióln normal: Media de ventas diarias históricas Desviación estándar de distribución de ventas diarias históricas Costo por caja Precio de venta por caja Valor si no se vende el primer día

60 cajas 10 cajas $20 $32 $2

Igual que en el problema anterior, primero calculamos la p* que se requiere para justificar el inventario de una caja adicional. En este caso: PM p*   GM  PM

Probabilidad mínima requerida

[17-2]

$20  $2   $12  ($20 – $2)

Observe que el valor de recuperación de $2 se deduce del costo de $20 para obtener la PM

$18   $12  $18 $18    0.60 $30 Ahora podemos ilustrar la probabilidad sobre una curva normal marcando 0.60 del área bajo la curva, comenzando desde la cola derecha de la curva, como se muestra en la figura 17-3. El administrador desea incrementar su tamaño de orden hasta el punto Q. Ahora bien, el punto Q está a la izquierda de la media, mientras que en el problema anterior estaba a la derecha. ¿Cómo

0.60 del área

FIGURA 17-3 Distribución de probabilidad normal, con 0.60 del área bajo la curva sombreada

770

Capítulo 17

0.25 de la desviación estándar 0

60 Punto Q

Teoría de decisiones

120

podemos localizar el punto Q? Como se tiene 0.50 del área bajo la curva entre la media y la cola derecha, debemos tener 0.10 del área sombreada a la izquierda de la media (0.60  0.50  0.10). En la tabla 1 del apéndice, el valor más cercano a 0.10 es 0.0987, de manera que, deseamos encontrar un punto Q con 0.0987 del área bajo la curva contenida entre la media y el punto Q. La tabla indica que el punto Q está a 0.25 de desviación estándar de la media. Ahora obtenemos el valor del punto Q de la siguiente manera: 0.25  desviación estándar  0.25  10 cajas  2.5 cajas

Solución óptima para el problema de inicio del capítulo

Punto Q  media menos 2.5 cajas  60  2.5 cajas  57.5, o 57 cajas

Advertencia: usar la ganancia esperada máxima calculada de una sola distribución de ventas como regla de decisión supone que la distribución de ventas que se maneja representa toda la información que tiene acerca de la demanda. Si sabe, por ejemplo, que las ventas el sábado se representan mejor con otra distribución, entonces debe manejar el sábado como una decisión separada y calcular un nivel de inventario para los sábados, que tal vez difiera del de los otros seis días. Sugerencia: de todos modos, SUGERENCIAS Y SUPOSICIONES

ésta es la manera en que los buenos administradores toman decisiones. En lugar de aceptar que todos los días de la semana tienen características de mercado idénticas, se sabe desde hace mucho que existen diferencias fuertes y discernibles. Estas diferencias entre los días son en sí distintas en ciertos países. Sugerencia: mientras que el sábado es el día más importante para las compras en Estados Unidos, las ventas del sábado serían nulas en Israel, debido a sus creencias religiosas.

Ejercicios 17.3 Ejercicios de autoevaluación EA

17-2

Floyd Guild atiende un puesto de periódicos cerca de la estación de la línea suburbana de la calle 53. El City Herald es el más popular de los periódicos que tiene Floyd. Durante muchos años, ha observado que la demanda diaria del Herald queda bien descrita por una distribución normal con media   165 y desviación estándar   40. Él vende los ejemplares del Herald a 30 centavos, y los compra a la casa editora a 20 centavos cada ejemplar. Si quedan algunos Herald al final de las horas de trasbordo de la tarde, Floyd los vende al mercado de pescado de Jesselman de la misma calle a 10 centavos cada uno. Si Floyd desea maximizar su ganancia diaria esperada, ¿cuántos ejemplares del Herald debe ordenar?

Aplicaciones ■ 17-10

■ 17-11

La construcción de carreteras en Dakota del Norte se concentra en los meses de mayo a septiembre. Para proporcionar protección a las cuadrillas de trabajo en las carreteras, el Departamento de Transporte (DT) requiere que se coloquen grandes letreros anaranjados de HOMBRES TRABAJANDO antes de cualquier construcción. Debido al vandalismo, el desgaste y el robo, el DT compra nuevos letreros cada año. Aunque los letreros se hacen con el apoyo del Departamento de Correccionales, el DT paga un precio equivalente al que pagaría por los letreros a una fuente externa. El cargo interdepartamental por los letreros es $21 si se ordenan más de 35 del mismo tipo; de otra forma, el costo por letrero es $29. Debido a las presiones de presupuesto, el DT intenta minimizar sus costos no comprando demasiados letreros, a la vez que intenta comprar una cantidad suficiente para obtener el precio de $21. En los últimos años, el departamento ha promediado compras de 78 letreros al año, con una desviación estándar de 15. Determine el número de letreros que el DT debe comprar. La ciudad de Green Lake, Wisconsin, se está preparando para la celebración del “79° Día Anual de Productos Lácteos”. Para recolectar fondos, el ayuntamiento nuevamente planea vender camisetas de recuerdo. Las camisetas, impresas en seis colores, tendrán la imagen de una vaca y las palabras “79° Día Anual de Productos Lácteos” al frente. El ayuntamiento compra parches de aplicación térmica a un proveedor 17.3

Uso de distribuciones continuas: análisis marginal

771

■ 17-12

■ 17-13

■ 17-14

■ 17-15

en $0.75 y camisetas blancas de algodón a $1.50. Un comerciante local provee el dispositivo para aplicar calor y también compra todas las camisetas blancas que no se venden. El ayuntamiento planea establecer un puesto en la avenida principal y vender las camisetas a $3.25. La impresión de la camiseta se realizará en el momento de la venta. El año anterior, las ventas de camisetas similares promediaron 200 con una desviación estándar de 34. El ayuntamiento sabe que no habrá mercado para los parches después de la celebración. ¿Cuántos parches debe comprar? Jack compra salchichas todas las mañanas para su puesto de hot-dogs en la ciudad. Se enorgullece de vender sólo salchichas frescas, rostizadas lentamente y, por ello, puede vender sólo las que compra en la mañana. El precio de cada hot-dog es $1.50; su costo es $0.67. Suponga que Jack puede comprar cualquier cantidad de salchichas. Como mañana es viernes, sabe que la demanda tendrá una distribución normal con media de 375 hot-dogs y varianza de 400. Si Jack se queda con alguna salchicha, deberá comérsela él mismo o regalarla a los pobres, sin ingresos por ella. Para maximizar sus ganancias, ¿cuántas salchichas deberá comprar Jack? ¿Cuántas compraría si cada salchicha sobrante pudiera venderse a $0.50 cada una? Bike Wholesale Parts se estableció a principios de la década de 1990 como respuesta a la demanda de varias tiendas de bicicletas pequeñas recién establecidas que requerían acceso a una amplia variedad de partes, pero que no podían financiarse a sí mismas. La compañía tiene en existencia una gran diversidad de partes y accesorios pero no bicicletas completas. La gerencia está preparando un pedido de rines de 27″  11/4″ que comprará a la Flexspin Company, anticipándose a una mejora comercial esperada en alrededor de dos meses. Flexspin fabrica un producto superior, pero el tiempo de entrega requerido obliga a que los mayoristas hagan un solo pedido, que les debe durar los meses críticos del verano. En el pasado, Bike Wholesale Parts ha vendido un promedio de 120 rines en verano, con una desviación estándar de 28. La compañía espera que su inventario se agote para el momento en que llegue el nuevo pedido. Bike Wholesale Parts ha tenido bastante éxito y planea trasladar sus operaciones a una planta mayor durante el invierno. La gerencia calcula que el costo combinado de trasladar algunos productos, como los rines, y el costo existente de financiarlos es al menos igual al costo de compra de la compañía de $7.30. Aceptando la hipótesis de la gerencia de que los rines no vendidos al final del verano ya no se venden, determine el número de rines que la compañía debe ordenar si el precio de venta es de $8.10. La cafetería B&G ofrece pollo a la parrilla todos los jueves y Priscilla Alden, la gerente, desea asegurar que la cafetería obtendrá ganancias por este platillo. Incluyendo los costos de mano de obra y preparación, cada porción de pollo cuesta $1.35. El precio de venta de $2.15 por porción es una ganga, por lo que el especial de pollo a la parrilla se ha vuelto un plato muy popular. Los datos tomados del último año indican que la demanda del plato especial sigue una distribución normal con media   190 porciones y desviación estándar   32 porciones. Si la cafetería B&G prepara dos porciones del pollo a la parrilla por cada pollo entero que cocina, ¿cuántos pollos debe ordenar Priscilla cada jueves? Paige’s Tire Service almacena dos tipos de llantas radiales: con banda de poliéster y con banda de acero. Las llantas de banda de poliéster cuestan a la compañía $30 cada una y las vende en $35. Las de banda de acero le cuestan $45 cada una y las vende en $60. Por varias razones, Paige’s Tire Service no podrá volver a ordenar neumáticos a la fábrica este año, así que debe ordenar sólo una vez para satisfacer la demanda de los clientes todo el año. Al final de éste, debido a los nuevos modelos de llantas, Paige’s tendrá que vender todo su inventario como caucho de desecho a $5 cada pieza. Las ventas anuales de ambos tipos de llantas radiales tienen distribución normal con las siguientes medias y desviaciones estándar: Tipo de llanta radial

Ventas medias anuales

Desviación estándar

Banda de poliéster Banda de acero

300 200

50 20

a) ¿Cuántas llantas de banda de poliéster debe ordenar? b) ¿Cuántas llantas de banda de acero debe ordenar?

Soluciones a los ejercicios de autoevaluación EA 17-2 GM  50  20  30

PM  20  10  10

PM 10 p*      0.25, que corresponde a 0.67, de manera que debe ordenar   0.67  GM  PM 40 165  0.67(40)  191.8 o 192 ejemplares.

772

Capítulo 17

Teoría de decisiones

17.4 Utilidad como criterio de decisión Diferentes criterios de decisión

En lo que va de este capítulo, utilizamos el valor esperado (ganancia esperada, por ejemplo) como nuestro criterio de decisión. Supusimos que si la ganancia esperada de la alternativa A es mejor que la de la opción B, entonces el tomador de decisiones sin duda elegirá la alternativa A. De manera inversa, si la pérdida esperada de la opción C es mayor que la pérdida esperada de la opción D, entonces el tomador de decisiones seguramente elegirá D como el mejor curso de acción.

Inconvenientes del valor esperado como un criterio de decisión El valor esperado algunas veces es inadecuado

Existen situaciones, en las que el uso del valor esperado como criterio de decisión causaría problemas serios a un administrador. Suponga que un empresario posee una nueva fábrica con un valor de $2 millones. Suponga también que existe sólo una posibilidad en 1,000 (0.001) de que se incendie este año. A partir de estas cifras, podemos calcular la pérdida esperada: 0.001  $2,000,000  $2,000  pérdida esperada por incendio



Utilidad positiva

Un ejemplo personal

Un agente de seguros le ofrece asegurar el edificio por $2,250 este año. Si el empresario aplica la idea de minimizar pérdidas esperadas, se negará a asegurar el inmueble. La pérdida esperada de asegurar ($2,250) es mayor que la pérdida esperada por incendio. No obstante, si el empresario piensa que una pérdida no asegurada de $2 millones lo arruinaría, probablemente descarte el valor esperado como su criterio de decisión y compre el seguro al costo adicional de $250 por año de la póliza ($2,250  $2,000). Elegiría no minimizar la pérdida esperada en este caso. Tome un ejemplo quizá más cercano a la vida estudiantil. Usted es un estudiante con el dinero justo para acabar el semestre. Un amigo le ofrece una oportunidad de 0.9 de ganar $10 por $1. Es probable que usted analice el problema en términos de valores esperados y razone de la siguiente manera: “¿Es 0.9  $10 mayor que $1?” Como $9 (el valor esperado de la apuesta) es nueve veces mayor que el costo de la apuesta ($1), puede sentirse inclinado a aceptar la oferta de su amigo. Aun si pierde, la pérdida de $1 no afectará su situación monetaria. Ahora su amigo le ofrece una oportunidad de 0.9 de ganar $1,000 por $100. Ahora se plantearía la pregunta: “¿Es 0.9  $1,000 mayor que $100?” Claro está que $900 (el valor esperado de la apuesta) sigue siendo nueve veces el costo de la apuesta ($100), pero es más que seguro que lo piense dos veces antes de dar su dinero. ¿Por qué? Porque aunque el placer de ganar $1,000 sería alto, el dolor de perder sus $100 ganados con esfuerzo podría ser mayor que el que desearía experimentar. Digamos, por último, que, su amigo le ofrece una oportunidad de 0.9 de ganar $10,000 por todos sus bienes, que resultan ser $1,000. Si utiliza el valor esperado como su criterio de decisión, se preguntaría: “¿Es 0.9  $10,000 mayor que $1,000?” Obtendría la misma respuesta que antes: sí. El valor esperado de la apuesta ($9,000) sigue siendo nueve veces mayor que el costo de la apuesta

1,000

Utilidad de diferentes ganancias y pérdidas

Pérdida monetaria en dólares



Utilidad negativa

1,000

FIGURA 17-4

5,000

9,000

Ganancia monetaria en dólares

17.4

Utilidad como criterio de decisión

773

Función de utilidad

($1,000), pero ahora probablemente se negará a apostar, no porque el valor esperado de la apuesta no sea atractivo, sino porque la idea de perder todo es un resultado completamente inaceptable. En este ejemplo, cambió el criterio de decisión del valor esperado cuando la idea de perder $1,000 era demasiada dolorosa, a pesar del placer que podría constituir ganar $10,000. En este punto, ya no consideró el valor esperado; sólo pensó en la utilidad. En este sentido, la utilidad es el placer o disgusto que se derivaría de ciertos resultados. Su curva de utilidad, en la figura 17-4, es lineal alrededor del origen (en esta región $1 de ganancia es tan deseable como $1 de pérdida es doloroso), pero disminuye rápidamente cuando la pérdida potencial aumenta a niveles cercanos a $1,000. En particular, esta curva de utilidad muestra que desde su punto de vista, el disgusto de perder $1,000 es casi igual al placer de ganar nueve veces esa cantidad. La forma de la curva de utilidad personal es producto de la constitución sicológica, las expectativas personales respecto al futuro y la decisión o acto particular que se esté evaluando. Una persona puede tener una curva de utilidad para una situación y otra bastante diferente para la siguiente.

Diferentes utilidades Actitudes hacia el riesgo

Las curvas de utilidad para la decisión de tres administradores se muestran en la gráfica de la figura 17-5. Damos los nombres arbitrarios de David, Ann y Jim a estos administradores. Sus actitudes son evidentes a partir del análisis de sus curvas de utilidad. David es un hombre de negocios cauto y conservador. Un movimiento a la derecha del punto de ganancias cero incrementa sólo un poco su utilidad, mientras que un movimiento a la izquierda de ese punto disminuye su utilidad rápidamente. En términos de valores numéricos, la curva de utilidad de David indica que ir de una ganancia de $0 a $100,000 incrementa su utilidad en un valor de 1 en la escala vertical, mientras que moverse al intervalo de pérdida de sólo $40,000 disminuye su utilidad en el mismo valor de 1 en la escala vertical. David evitará situaciones en que puedan ocurrir grandes pérdidas; se dice que tiene aversión al riesgo. Ann es otra historia. Vemos en su curva de utilidad que una ganancia incrementa su utilidad mucho más de lo que la disminuye una pérdida de la misma cantidad. Específicamente, aumentar sus ganancias en $20,000 (de $80,000 a $100,000) aumenta su utilidad de 0 a 5 en la escala vertical, pero disminuirlas $20,000 (de $0 a $20,000) disminuye su utilidad en sólo 0.33, de 4 a 4.33. Ann es una apostadora arriesgada; está convencida de que una gran pérdida no empeoraría demasiado las cosas, pero que una gran ganancia sería bastante remuneradora. Se arriesgará para tener ganancias aún mayores. +5 +4

id

Dav

• •



+3 +2

Jim

Utilidad

+1



0 –1 n

An

–2



–3 –4



FIGURA 17-5 –5

Tres curvas de utilidad

774

–80,000

–40,000

• 0

40,000

Ganancia o pérdida monetaria

Capítulo 17

Teoría de decisiones

80,000

¿Quién usaría el valor esperado?

Jim, una persona con buenas finanzas, es la clase de hombre de negocios que no sufriría mucho por una pérdida de $60,000 y que tampoco incrementaría significativamente su riqueza con una ganancia de $60,000. El placer de obtener $60,000 adicionales o de perderlos tendría casi la misma intensidad. Como su curva de utilidad es lineal, puede usar efectivamente el valor esperado como su criterio de decisión, mientras que David y Ann deben usar su utilidad. Jim actuará cuando el valor esperado sea positivo, David pedirá un valor esperado alto en su resultado y Ann quizá actúe cuando el valor esperado sea negativo.

Un requisito importante para entender el comportamiento de los inversionistas es advertir que sus curvas de utilidad no son iguales. En especial, los “grandes apostadores” se sienten atraídos por inversiones de alto riesgo que pueden dar como resultado la pérdida de la inversión completa o la ganancia de una fortuna. Es de suponerse que esas personas con fortunas significativas pueden darse el SUGERENCIAS Y SUPOSICIONES

lujo de perder. Por otro lado, las personas con fortunas moderadas y fuertes obligaciones familiares tienden a sentir aversión al riesgo e invierten sólo cuando el resultado esperado es positivo. Una pregunta interesante para analizar con sus compañeros es por qué las personas de edad avanzada son víctimas de los esquemas de inversión para “hacerse ricos rápido”, muy por arriba de la proporción que corresponde a su número en la población.

Ejercicios 17.4 Aplicaciones ■ 17-16

■ 17-17

■ 17-18

El ingreso de Bill Johnson lo sitúa en la categoría del 50% en términos de impuestos federales por ingresos. Johnson a menudo proporciona capital de riesgo a pequeñas compañías que inician, a cambio de algún tipo de participación en la compañía. Recientemente, Bill fue contactado por Circutronics, una pequeña compañía que intenta ingresar a la industria de microcircuitos. Circutronics le solicitó $1.6 millones de respaldo. Debido a su posición fiscal, Bill invierte en valores municipales exentos de impuestos cuando no encuentra empresas atractivas que respaldar. Actualmente, tiene una cantidad grande colocada en bonos de la Agencia Energía Municipal del Este de Carolina del Norte, cuyo rendimiento es 9.43%. Bill considera que este rendimiento después de impuestos es su punto de equilibrio de utilidad. Arriba de este punto, su utilidad aumenta con rapidez; abajo, disminuye un poco, ya que bien puede permitirse perder el dinero. a) ¿Qué rendimiento en dólares debe prometer Circutronics antes de que Bill considere financiarlo? b) Grafique la curva de utilidad de Bill. La Enduro Manufacturing Company es una sociedad que produce componentes de acero estructural para la construcción. El gerente financiero y socio William Flaherty está examinando proyectos potenciales que la compañía podría emprender en el siguiente año fiscal. La compañía tiene una tasa de rendimiento meta del 10% sobre su inversión, pero como no existe financiamiento ni interferencia externa, los socios han aceptado proyectos con tasas de rendimiento entre 0 y 100%. Arriba del 10%, la utilidad de los socios se incrementa muy rápido; entre 0 y 10%, se incrementa sólo un poco arriba de 0; abajo de 0, cae muy rápido. Flaherty está considerando varios proyectos que implican que Enduro invierta $250,000. Grafique la curva de utilidad de la compañía. Una inversionista está convencida de que el precio de unas acciones de movimiento rápido (PDQ) se incrementará en el futuro cercano. Las acciones PDQ se venden actualmente a $57 la acción. Después de inspeccionar las últimas cotizaciones del mercado, la inversionista se da cuenta que puede comprar una opción a un costo de $5 por acción, que le permite comprar acciones PDQ a $55 por acción en los siguientes dos meses. También puede adquirir una opción de compra de acciones en un periodo de 4 meses; esta opción, con costo de $10 por acción, también tiene un precio de uso de $55 por acción. Ella ha estimado las siguientes distribuciones de probabilidad para el precio de las acciones en los días en que expiran las opciones: Precio Probabilidad en 2 meses Probabilidad en 4 meses

50 0.05 0

55 0.15 0.05

17.4

60 0.15 0.05

65 0.25 0.20

70 0.35 0.30

75 0.05 0.40

Utilidad como criterio de decisión

775

La inversionista planea ejercer su opción justo antes de la expiración si las acciones PDQ se venden en más de $55 y venderlas de inmediato al precio de mercado. Claro está que si las acciones se venden en $55 o menos, cuando la opción expire, perderá todo el costo de compra de la opción. La inversionista es relativamente conservadora, con los siguientes valores de utilidad para cambios en sus bienes en dólares: Cambio Utilidad

1,500 1.0

1,000 0.9

500 0.8

0 0.7

500 0.1

1,000 0.0

Ella está considerando una de tres opciones: 1) Comprar una opción a 2 meses sobre 100 acciones. 2) Comprar una opción a 4 meses sobre 100 acciones. 3) No comprar en absoluto. ¿Cuál de estas alternativas maximizará su utilidad esperada?

17.5 Ayuda para que los tomadores de decisiones proporcionen las probabilidades correctas Información faltante

Los dos problemas que trabajamos usando la distribución de probabilidad normal requerían que conociéramos la media () y la desviación estándar (). Pero, ¿cómo podemos usar una distribución de probabilidad cuando los datos históricos faltan o están incompletos? Al trabajar un problema, veremos cómo muchas veces podemos generar los valores requeridos utilizando un enfoque intuitivo.

Un enfoque intuitivo para estimar la media y la desviación estándar

Estimación de la media

Estimación de la desviación estándar

776

Suponga que está pensando en comprar una máquina que reemplace la mano de obra de una operación. La operación de la máquina costará $10,000 al año y ahorrará $8 por cada hora que opere. Entonces, para quedar a mano, deberá operar al menos $10,000/$8  1,250 horas al año. Si está interesado en la probabilidad de que trabaje más de 1,250 horas, debe saber algo acerca de la distribución de los tiempos de operación, en especial, la media y la desviación estándar de esta distribución. Pero como no tiene un registro de la operación de la máquina, ¿dónde encontraría esas cifras? Podríamos pedir al supervisor, quien ha estado estrechamente involucrado en el proceso, que calcule el tiempo de operación promedio de la máquina. Digamos que su mejor estimación es 1,400 horas. ¿Pero cómo reaccionaría él si usted le pidiera la desviación estándar de esta distribución? Este término podría no tener significado para él, y sin embargo, quizá tenga alguna noción intuitiva de la dispersión de la distribución de los tiempos de operación. La mayoría de las personas entienden las posibilidades de una apuesta, así que lo abordamos con esa idea. Comenzamos por descontar una distancia igual a cada lado de su media, digamos, 200 horas. Esto produce un intervalo de 1,200 a 1,600 horas. Entonces podemos preguntarle al supervisor, ¿cuál es la posibilidad de que el número de horas caiga entre 1,200 y 1,600 horas? Si él ha apostado alguna vez, debe poder contestar. Supongamos que dice, “creo que la posibilidad de que opere entre 1,200 y 1,600 horas es de 4 a 3”. Mostramos su respuesta en una distribución de probabilidad en la figura 17-6. La figura 17-6 ilustra la respuesta del supervisor de que las posibilidades son de 4 a 3 de que la máquina corra entre 1,200 y 1,600 horas, y no fuera de esos límites. ¿Cuál es el siguiente paso? Primero, etiquetamos el punto de 1,600 horas en la distribución de la figura 17-6 como el punto Q. Después vemos que el área bajo la curva entre la media y el punto Q, de acuerdo con las estimaciones del supervisor, es 4/7 de la mitad del área bajo la curva, o 4/14  (0.2857) del área total bajo la curva.

Capítulo 17

Teoría de decisiones

FIGURA 17-6 Intervalos de posibilidades del supervisor para tiempos de operación de las máquinas propuestas

3

4 1,200

4 1,400 Media

3 1,600 Q

0.79 de desviación estándar

FIGURA 17-7 Determinación de la desviación estándar a partir de las posibilidades del encargado



1,200



1,400



Q = 1,600

Horas

Observe la figura 17-7. Si consultamos el valor 0.2857 en la tabla 1 del apéndice, encontramos que el punto Q está a 0.79 de desviación estándar a la derecha de la media. Como sabemos que la distancia desde la media hasta Q es de 200 horas, vemos que 0.79 de desviación estándar  200 horas y, por tanto, 1 desviación estándar  200/0.79  253 horas Cálculo de la probabilidad de quedar a mano

Ahora que conocemos la media y la desviación estándar de la distribución del tiempo de operación, podemos calcular que la probabilidad de que la máquina opere menos horas que su punto de equilibrio de 1,250 horas: 150 1,250  1,400    253 253  0.59 de desviación estándar

Obtención de información para los modelos

La figura 17-8 ilustra esta situación. En la tabla 1 del apéndice, encontramos que el área entre la media de la distribución y un punto a 0.59 de desviación estándar abajo de la media (1,250 horas) es 0.2224 del área total bajo la curva. A 0.2224 sumamos 0.5, el área de la media a la cola derecha. Esto nos da 0.7224. Como 0.7224 es la probabilidad de que la máquina opere más de 1,250 horas, la posibilidad de que opere menos de 1,250 horas (su punto de equilibrio) es 1  0.7224 o 0.2776. Aparentemente, ésta no es una situación demasiado riesgosa. Este problema ilustra cómo podemos usar el conocimiento de otras personas respecto a una situación sin requerir que comprendan lo intrincado de las diversas técnicas estadísticas. Si hubiéramos esperado que el supervisor comprendiera la teoría en que se basan los cálculos, o si hubiéramos intentado explicarle esa teoría, tal vez nunca hubiéramos aprovechado su conocimiento práctico de la situación. Al usar un lenguaje y términos comprensibles para él, pudimos hacer que nos diera esti17.5

Ayuda para que los tomadores de decisiones proporcionen las probabilidades correctas

777

0.59 de desviación estándar

FIGURA 17-8 Probabilidad de que la máquina opere entre 1,250 y 1,400 horas

Horas de operación para quedar a mano



1,250



1,400 Horas

maciones manejables de la media y la desviación estándar de la distribución de los tiempos de operación para la máquina que pensábamos comprar. En este ejemplo (y para el caso, también en muchos otros), es mejor ajustar las ideas y el conocimiento de otras personas dentro de sus modelos que buscar hasta encontrar una situación que se ajuste a un modelo que ya está desarrollado. Si se usan sólo los métodos descritos en este capítulo para tomar decisiones, no hay muchas posibilidades de éxito; si lo único que emplea para tomar decisiones es la intuición, habrá muchas situaciones en que pierda oportunidades. Pero al combinar una gran inteligencia, una fuerte intuición y los modelos cualitativos sólidos, la oportunidad de ganar aumenta de manera drástica. Sugerencia: SUGERENCIAS Y SUPOSICIONES

las personas con las ideas intuitivas más firmes acerca de cómo funcionan las cosas y qué es posible y más probable que ocurra no son “deportistas numéricos” sino personas normales que tienen mucha experiencia y quizá poco conocimiento de los modelos de valor esperado. El reto real es captar la sabiduría industrial de estos veteranos y enfocarla en una toma de decisiones más sensata cuando se desconoce el futuro.

Ejercicios 17.5 Ejercicio de autoevaluación EA

17-3

John Stein es el director de programación de SATPlus Services, una empresa que garantiza que su curso de preparación para el examen de admisión a la universidad elevará la calificación combinada de las partes oral y cuantitativa de esos exámenes por lo menos 120 puntos. El precio del curso es $275 para cada estudiante y el costo del mismo para SATPlus es alrededor de $3,300 en salarios, suministros y renta de instalaciones. John no programará el curso en lugares donde no tenga una certeza de por lo menos el 90% de que SATPlus obtendrá una ganancia mayor o igual que $2,200. De acuerdo con un estudio de mercado que acaba de recibir de Charlottesville, Virginia, ha decidido que si ofrece el curso ahí, puede esperar que se inscriban alrededor de 30 estudiantes. También piensa que tiene posibilidades de 8 a 5 de que el número real de inscritos esté entre 25 y 35 estudiantes, y que es apropiado usar la distribución normal para describir la inscripción. ¿Debe John programar el curso en Charlottesville?

Aplicaciones ■ 17-19

■ 17-20

778

La Northwestern Industrial Pipe Company está considerando la compra de un nuevo soldador de arco eléctrico a $2,100. Se espera que el soldador ahorre a la compañía $5 por hora cuando pueda usarse en lugar del actual, un soldador menos eficiente. Antes de tomar la decisión, el gerente de producción de Northwestern observó que sólo había cerca de 185 horas al año de soldaduras en las que el nuevo soldador de arco podía sustituir al actual. Calculó una posibilidad de 7 a 3 de que el resultado real estaría dentro de las 25 horas de su estimación. Además, se sentía seguro al suponer que el número de horas estaba bien descrito por una distribución normal. ¿Puede Northwestern estar 98% segura de que se recuperará lo gastado en el nuevo soldador de arco eléctrico en un periodo de tres años? La Relman Electric Battery Company ha sentido los efectos de una economía en recuperación al aumentar la demanda de sus productos en los meses recientes. La compañía está considerando contratar seis per-

Capítulo 17

Teoría de decisiones

■ 17-21

■ 17-22

■ 17-23

■ 17-24

sonas más para su operación de ensamble. El gerente de producción de la planta, Mike Casey, cuyo desempeño se valora en parte por la eficiencia en costos, no desea contratar empleados adicionales a menos que se espere que tendrán trabajo durante al menos seis meses. Si se corre a los empleados involuntariamente antes de ese tiempo, la compañía está forzada por las reglas del sindicato a pagar un bono sustancial de despido. Además, si se despide a los empleados antes de 6 meses de haberlos contratado, la tasa de seguro de desempleo de la compañía se eleva. El economista corporativo de Relman espera que el alza en la economía dure al menos ocho meses y da posibilidades de 7 a 2 de que la duración de la mejora esté en un intervalo de un mes de esa cifra. Casey desea estar 95% seguro de que no tendrá que despedir a ningún empleado recién contratado. ¿Debe contratar a seis personas en este momento? El servicio de mensajería Speedy Rabbit opera una flota de 30 vehículos que cubren muchas millas por día. En la actualidad los vehículos usan gasolina normal a un costo de $1.059 por galón, y la eficiencia de la gasolina en la flota es alrededor de 36 millas por galón (mpg). Un informe reciente indica que si cambian a gasolina premium, a un costo de $1.229 por galón, cada vehículo tendrá un incremento de 6.4 mpg. La compañía cambiará de gasolina siempre que puedan tener una certidumbre del 95% de que ahorrarán dinero, lo que ocurrirá si la eficiencia en gasolina para la flota es mayor que 40 mpg. Creen que las posibilidades son de 6 a 4 de que la eficiencia actual esté entre 33 y 39 mpg y que es adecuado usar una distribución normal para describir la eficiencia de la gasolina. ¿Deben cambiar de combustible? Natalie Larsen, representante de ventas de viajes Nova Products, está considerando comprar un nuevo automóvil para usarlo en el trabajo. El automóvil que quiere tiene un precio de $13,497, pero piensa que puede negociarlo con el vendedor y bajarlo a $12,250. Como su auto se usa sólo para propósitos comerciales, Natalie puede deducir $0.31 por milla por gastos de operación. Comprará el auto sólo si el ahorro en impuestos resultante compensa el costo durante su vida útil. Natalie ha estado en una categoría combinada de 34% de impuestos federales y estatales durante algunos años y parece que seguirá allí en el futuro previsible. Una afamada revista de automotores afirma que la vida promedio del automóvil que está pensando comprar es de 120,000 millas. El artículo además establece que las posibilidades son de 4 a 3 de que la vida real del automóvil esté dentro de 12,000 millas arriba o abajo de 120,000. ¿Cuál es la probabilidad de que el automóvil dure lo suficiente para que Natalie no pierda dinero en su inversión? El Departamento de Policía de Newton Pines está considerando comprar una unidad de radar VASCAR para instalarla en la única vía rápida de la ciudad. El ayuntamiento se ha opuesto a la idea porque no está seguro de que la unidad valga su precio de $2,000. El jefe de policía, Buren Hubbs, afirma que con seguridad la unidad se pagará con el mayor número de multas de $20 que levantarán él y su adjunto. Se oyó a Buren decir que calcula posibilidades de 9 a 1 de que el incremento en multas el primer año será entre 95 y 135 si se compra la unidad. Espera levantar 115 multas más si la vía se equipa con el VASCAR. ¿Puede el ayuntamiento estar 99% seguro de que la unidad se pagará con el aumento en los ingresos por multas durante el primer año? Usted planea invertir $15,000 en acciones comunes de Infometrics si puede estar razonablemente seguro de que su precio subirá hasta $60 por acción en seis meses. Pregunta a dos corredores expertos lo siguiente: a) ¿Cuál es su mejor estimación del precio más alto al que se venderá Infometrics en los próximos 6 meses? b) ¿Qué posibilidades da a que su estimación falle en no más de $5? Las respuestas son las siguientes: Corredor

Mejor estimación

Posibilidades

A B

68 65

2a1 5a1

Si ha decidido que comprará las acciones sólo si cada corredor está al menos 80% seguro que se venderán en al menos $60 en algún momento dentro de los seis meses siguientes, ¿qué debe hacer?

Solución al ejercicio de autoevaluación EA

17-3

8/26  0.0377, correspondiente a 0.87, de manera que   5/0.87  5.75 estudiantes. Para tener 3,330  2,200 ganancias de $2,200 tendrán que inscribir al menos   20 estudiantes, corresondientes a 275 20  30 z    1.74. 5.75 P(z 1.74)  0.9591. Como esto excede el 0.90 necesario, debe programar el curso en Charlottesville. 17.5

Ayuda para que los tomadores de decisiones proporcionen las probabilidades correctas

779

17.6 Análisis de árboles de decisiones Fundamentos del árbol de decisiones

Un árbol de decisiones es un modelo gráfico de un proceso de decisión. Con él podemos introducir probabilidades al análisis de decisiones complejas que involucran muchas opciones y condiciones futuras que no se conocen, pero que pueden especificarse en términos de un conjunto de probabilidades discretas o de una distribución de probabilidad continua. El análisis de árboles de decisiones es una herramienta útil en la toma de decisiones referentes a inversiones, adquisición o disposición de propiedades físicas, administración de proyectos, personal y estrategias de nuevos productos. El término árbol de decisiones se deriva de la apariencia física de la representación gráfica usual de esta técnica. Un árbol de decisiones se parece a los árboles de probabilidades presentados en el capítulo 4; pero un árbol de decisiones no sólo contiene las probabilidades de los resultados, sino también los valores monetarios (o de utilidad) condicionales vinculados con esos resultados. Por esto, podemos usar estos árboles para indicar los valores esperados de las diferentes acciones que podamos tomar. Los árboles de decisión tienen símbolos estándar: • Los cuadrados simbolizan puntos de decisión, donde el tomador de decisiones debe elegir entre varias acciones posibles. De estos nodos de decisión, sale una rama para cada acción posible. • Los círculos representan eventos aleatorios, donde ocurre algún estado de la naturaleza. Estos eventos aleatorios no están bajo el control del tomador de decisiones. De estos nodos aleatorios sale una rama para cada resultado posible.

Ejemplo de árbol de decisiones: funcionamiento de un centro de esquí

El árbol de decisiones de Christie

Utilicemos un árbol de decisiones para ayudar a Christie Stem, la propietaria y gerente general del centro de esquí Snow Fun, a decidir cómo debe administrar el hotel la próxima temporada. Las ganancias de Christie de la temporada de esquí de este año dependerán de cuántas nevadas haya durante el invierno. Con base en la experiencia, cree que la distribución de probabilidad de las nevadas y la ganancia resultante puede resumirse en la tabla 17-12. Hace poco, Christie recibió una oferta de una cadena de hoteles para operar el centro durante el invierno, garantizándole una ganancia de $45,000; por otro lado, ha estado considerando la renta de equipo de fabricación de nieve para la temporada. Si renta el equipo, la estación podría operar tiempo completo, sin importar la cantidad de nieve natural que caiga. Si decide usar nieve fabricada para complementar las nevadas naturales, su ganancia de la temporada será $120,000, menos el costo de rentar y operar el equipo de fabricación de nieve. El costo de renta será cerca de $12,000 por la temporada, independientemente de cuánto se use. El costo de operación será $10,000 si cae más de 40 pulgadas de nieve natural, $50,000 si cae entre 20 y 40 pulgadas y $90,000 si cae menos de 20 pulgadas. La figura 17-9 ilustra el problema de Christie como un árbol de decisiones. Las tres ramas que salen del nodo de decisión representan las tres formas posibles de operar el centro este invierno: contratar la cadena de hoteles, administrarlo sin equipo de fabricación de nieve y administrarlo con equipo de fabricación de nieve. Cada una de las dos últimas ramas termina en un nodo aleatorio que representa la cantidad de nieve que caerá durante la temporada. Cada uno de estos nodos tiene tres ramas que salen, una para cada cantidad de nieve posible, y las probabilidades de esa cantidad de nieve se indican en cada rama. Observe que el tiempo fluye de izquierda a derecha del árbol, esto es, los nodos de la izquierda representan acciones o eventos aleatorios que ocurren antes que en los nodos que están más a la derecha. Es muy importante mantener el orden de tiempo adecuado al construir los árboles de decisiones.

Tabla 17-12 Distribución de nevadas y ganancias para el centro de esquí Snow Fun

780

Capítulo 17

Teoría de decisiones

Cantidad de nieve

Ganancia

Probabilidad de ocurrencia

Más de 40 pulgadas De 20 a 40 pulgadas Menos de 20 pulgadas

$120,000 40,000 40,000

0.4 0.2 0.4

Dejar que la cadena hotelera opere el centro

Operar ella sin fabricación de nieve

FIGURA 17-9 Operar ella

Árbol de decisiones de Christie

Reglas para analizar un árbol de decisiones

$45,000

0.4

> 40" de nieve

0.2

20"-40" de nieve

0.4

< 20" de nieve

0.4

> 40" de nieve

0.2

20"-40" de nieve

0.4

< 20" de nieve

con fabricación de nieve

$120,000 $40,000 –$40,000 $98,000 $58,000 $18,000

Al final de cada rama a la derecha está la ganancia neta que Christie obtendrá si se sigue un camino desde la raíz del árbol (en el nodo de decisión) hasta la copa del árbol. Por ejemplo, si ella opera el centro con la fabricación de nieve y las nevadas están entre 20 y 40 pulgadas, su ganancia será $58,000 ($120,000 menos $12,000 de renta del equipo para hacer nieve y $50,000 de operarlo). Las otras ganancias netas se calculan de manera similar. Ahora podemos iniciar el análisis del árbol de decisiones de Christie. (El proceso inicia a la derecha —en la copa del árbol— y regresa a la izquierda —a la raíz del árbol—. En este proceso hacia atrás, al trabajar de derecha a izquierda, tomamos las decisiones futuras primero y luego retrocedemos para que formen parte de decisiones anteriores.) Tenemos dos reglas que dirigen este proceso: 1. Si estamos analizando un nodo aleatorio (círculo), calculamos el valor esperado en ese nodo multiplicando la probabilidad en cada rama que sale por la ganancia al final de esa rama y luego sumando los productos de todas las ramas que salen del nodo. 2. Si estamos analizando un nodo de decisión (cuadrado), el valor esperado de ese nodo será el máximo de los valores esperados de todas las ramas que salen del nodo. De esta forma, elegimos la acción con el mayor valor esperado y podamos las ramas que corresponden a las acciones menos rentables. Marcamos esas ramas con una doble diagonal para indicar que se podaron.

La decisión óptima de Christie

Para la decisión de Christie que se ilustra en la figura 17-10, el valor esperado de contratar a la cadena de hoteles para que administre el centro es $45,000. Si opera la estación ella y no usa equipo de fabricación de nieve, su ganancia esperada es $40,000  $120,000(0.4)  $40,000(0.2)  $40,000(0.4) Si utiliza la fabricación de nieve, su ganancia esperada es $58,000  $98,000(0.4)  $58,000(0.2)  $18,000(0.4) Por tanto, su decisión óptima es operar Snow Fun con equipo de fabricación de nieve. Dejar que la cadena hotelera opere el centro

$45,000 0.4

> 40" de nieve

0.2

20"-40" de nieve

0.4

< 20" de nieve

0.4

> 40" de nieve

0.2

20"-40" de nieve

0.4

< 20" de nieve

$120,000

$40,000 Operar ella $58,000

sin fabricación de nieve

FIGURA 17-10 Árbol de decisiones de Christie Stem analizado

$58,000 Operar ella con fabricación de nieve

17.6

$40,000 –$40,000 $98,000 $58,000 $18,000

Análisis de árboles de decisiones

781

Árboles de decisión e información nueva: aplicación del teorema de Bayes para revisar las probabilidades Costo y valor de información nueva

Incorporación de nueva información

Valor esperado de la información perfecta

Precisamente cuando Christie se está preparando para decidir si dejar que la cadena de hoteles opere Snow Fun u operarlo ella, recibe una llamada de la Asociación Meteorológica ofreciendo venderle un pronóstico de las nevadas de la siguiente temporada. El precio del pronóstico será $2,000, e indicará ya sea que las nevadas estarán por encima o bien que estarán por debajo de lo normal. Después de hacer un poco de investigación, Christie se entera de que la Asociación Meteorológica es una compañía reconocida cuyos pronósticos han sido bastante buenos en el pasado, aunque, por supuesto, no han sido perfectamente confiables. La compañía ha pronosticado nevadas arriba de lo normal el 90% de todos los años en que la cantidad de nieve ha sido más de 40 pulgadas; 60% en que ha estado entre 20 y 40 pulgadas, y 30% de los años en que ha estado por debajo de 20 pulgadas. Para incorporar esta nueva información y decidir si debe comprar el pronóstico de nevadas, Christie tiene que usar el teorema de Bayes (que analizamos en el capítulo 4) para ver cómo los resultados del pronóstico harán que revise las probabilidades de nevadas que está usando para tomar su decisión. El pronóstico tendrá algún valor para ella si con él cambia su decisión y evita tomar una decisión no óptima. Sin embargo, antes de hacer los cálculos necesarios para aplicar el teorema de Bayes, decide ver cuánto valdría un pronóstico perfectamente confiable de las nevadas. El cálculo de este VEIP puede hacerse con el árbol dado en la figura 17-11. En esta figura, invertimos el orden del tiempo de la decisión de Christie y cuándo conoce la cantidad de nieve de la temporada. En la figura 17-9, tuvo que decidir cómo operar el centro, y después supo la cantidad de nieve que hubo en realidad. Si dispusiera de un pronóstico perfectamente confiable, sabría cuánta nieve caería antes de tener que decidir cómo operar el centro. Examinemos con cuidado la figura 17-11. Aunque Christie trata de determinar el valor de un pronóstico perfectamente confiable, no puede saber de antemano el resultado del pronóstico. Cerca del 40% del tiempo habrá más de 40 pulgadas de nieve en una temporada de esquí. Entonces, la probabilidad de que el pronóstico sea de más de 40 pulgadas de nieve es 0.4. Cuando las nevadas están en ese nivel, el mejor curso de acción de Christie es operar el centro sin usar equipo de fabricación de nieve, y su ganancia será $120,000. Otro 20% de todas las temporadas, cuando las nevadas están entre 20 y 40 pulgadas, Christie ganará $58,000 operando el centro y usando fabricación de nieve para complementar las exiguas nevadas naturales. Finalmente, en los años con menos de 20 pulgadas de nevadas naturales (lo que sucede 40% del tiempo), debe tomar los $45,000 de ganancias por dejar que la cadena hotelera opere Snow Fun. Con un pronóstico perfectamente confiable, vemos que la ganancia esperada de Christie sería: $77,600  $120,000(0.4)  $58,000(0.2)  $45,000(0.4) Dejar que la cadena 0.4

hotelera opere el centro Operar ella sin fabricación de nieve

> 40" de nieve $120,000

Dejar que la cadena hotelera opere el centro Operar ella sin fabricación de nieve

20"-40" de nieve

0.2

$58,000

$77,600

FIGURA 17-11 Árbol de Christie con un pronóstico perfectamente confiable

782

Capítulo 17

0.4

< 20" de nieve $45,000

Teoría de decisiones

Operar ella con fabricación de nieve

Operar ella con fabricación de nieve Dejar que la cadena hotelera opere el centro Operar ella sin fabricación de nieve Operar ella con fabricación de nieve

$45,000 $120,000 $98,000 $45,000 $40,000 $58,000

$45,000 –$40,000 $18,000

Evento (nevada)

P(evento)

P(pronóstico evento)

Arriba de lo normal

Más de 40” 20”-40” Menos de 20”

0.4 0.2 0.4

0.9 0.6 0.3

Abajo de lo normal

Más de 40” 20”-40” Menos de 20”

0.4 0.2 0.4

0.1 0.4 0.7

Tabla 17-13 Probabilidades posteriores de Christie

Actualización de probabilidades con el teorema de Bayes

Pronóstico

P(pronóstico y evento)

P(evento pronóstico)

0.4.  0.9  0.36 0.2  0.6  0.12 0.4  0.3  0.12 P(arriba de lo normal)  0.60 0.4  0.1  0.04 0.2  0.4  0.08 0.4  0.7  0.28 P(abajo de lo normal)  0.40

0.36/0.60  0.6 0.12/0.60  0.2 0.12/0.60  0.2 0.04/0.40  0.1 0.08/0.40  0.2 0.28/0.40  0.7

Como su mejor curso de acción sin el pronóstico (operar Snow Fun con el equipo de fabricación de nieve) tiene una ganancia esperada de sólo $58,000, su VEIP es de $19,600 ($77, 600  $58,000). Como el pronóstico de la Asociación Meteorológica no es perfectamente confiable, valdrá menos de $19,600. Sin embargo, Christie se da cuenta que la información adicional respecto a la cantidad de nieve puede ser bastante valiosa. ¿Valdrá el pronóstico de la Asociación Meteorológica su costo

––––––––––––––––––––––––

CENTRO DE ESQUÍ SNOW FUN RESULTADO DEL ¿COMPRAR PAGO PRONÓSTICO? PAGO PRONÓSTICO PROB. PAGO PAGO DE DECISIÓN DE OPERAR NEVADAS PROB PAGO ––––– ––––––– ––––– ––––– ––––––– –––– ––––– ––––– –––––––––––––– –––––– –––– –––– –––– –––– ––––– ––––––– ––––––– –––– –––––––––––––– –––– –––– –––––– QUE LA CADENA OPERE –––––––––––––––––––––––––––––––––––––– $45,000

––––––––––––––––––––––––

OPERAR CON FÁBRICA DE NIEVE

$58,000 (7)



–––––––––––––––––––––––––––––––

OPERAR SIN >NORMAL 60% $72,000 [4] FÁBRICA DE NIEVE $70,000 (8) ––––––––––

$60,400–(2)

OPERAR CON FÁBRICA DE NIEVE

$72,000 (9)

Árbol de decisiones completo de Christie Stem

40% $120,000

20–40"

20%

$40,000

40"

60% $118,000

20–40"

20%

$38,000

40"

QUE LA CADENA OPERE –––––––––––––––––––––––––––––––––––––– $43,000

$60,400–[1]

––––––––––––––––––––––––

––––––––––––––––––––––––––––––––––––––––––––––

OPERAR SIN NO –––––––––––––––––––––––––– $58,000 [3] FÁBRICA DE NIEVE $40,000 (6)

OPERAR CON FÁBRICA DE NIEVE

17.6

$32,000 (11)

>40"

10% $118,000

20–40"

20%

$38,000

NORMAL NORMAL NORMAL 40" 20–40"
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF