Teori Dasar Analisa Vibrasi
January 23, 2017 | Author: Kusuma Zulyanto | Category: N/A
Short Description
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIR...
Description
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
TEORI DASAR ANALISA VIBRASI
DARYANTO
Predictive Maintenance - CRM PT KRAKATAU STEEL
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
Tujuan training : Bisa Membaca Spectrum Getaran
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
PREDICTIVE MAINTENACE PROGRAM 1. Data Collection – Monitoring schedule : monthly, weekly, daily 2. Detection & Analysis •
Trends
•
Alarms
•
Spectral Analysis
3. Problem Correction
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
TUJUAN PENGUKURAN GETARAN 1. Menentukan kondisi mekanis mesin. 2. Merencanakan jadwal pemeliharaan. 3. Memeriksa hasil repair/overhaul. 4. Menghentikan mesin untuk mencegah gangguan serius. 5. Lokalisasi gangguan. 6. Pengesahan aspek keselamatan.
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
Vibration is a "back and forth" movement of a structure. It can also be referred to as a "cyclical" movement
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
What Is Vibration Caused By ? Imperfections in the Machine: Design
Assembly
Manufacture
Operation
Installation
Maintenance
What Are Some Common Machine Problems? That Generate Mechanical Vibration: ● Misalignment ● Unbalance ● Worn belts & pulleys ● Bearing Defects ● Hydraulic Forces ● Aerodynamic Forces ● Reaction Forces ● Reciprocating Forces ● Bent Shafts ● Rubbing ● Gear Problems ● Housing Distortion ● Certain Electrical Problems ● Frictional Forces
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
What Are Some Common Machine Problems That Amplify Mechanical Vibration (But Don't Cause It):
• Resonance • Looseness
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
F = 1/T T = The period of the wave F = The Frequency of the wave where d = instantaneous displacement, D = maximum, or peak, Displacement = angular frequency, = 2f t = time
where v = instantaneous velocity
where a = instantaneous acceleration
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
Displacement, Velocity and Acceleration
English Units:
Metric Units:
Displacement = mils Velocity = in/sec Acceleration = g's Frequency = cycles/min
Displacement = um Velocity = mm/sec Acceleration = g's Frequency = cycles/min
Displacement = (19,231 x V) / F
Displacement = (19,231 x V) / F
Velocity = 0.000052 x D x F
Velocity = 0.000052 x D x F
Acceleration = 0.00027 x V x F
Acceleration = 0.0000107 x V x F
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
Example #1: A Bearing Vibrates 100 Mils Pk-Pk @ 30 cpm Displacement @ 1x rpm = 100 mils
Displacement @ 1x rpm = 2540 um
English Units: Velocity = 0.000052 x D x F V = 0.000052 x 100 mils x 30 cpm
Metric Units: Velocity = 0.000052 x D x F V = 0.000052 x 2540 um x 30 cpm
V = 0.16 ips
V = 4 mm/sec
Acceleration = 0.00027 x V x F A = 0.00027 x 0.16 x 30
Acceleration = 0.0000107 x V x F A = 0.0000107 x 4 x 30
A = 0.0013 g's
A = 0.0013 g's
Example #2: A Bearing Vibrates 10 Mils Pk-Pk At 1000 cpm Displacement @ 1x rpm = 10 mils
Displacement @ 1x rpm = 250 um
English Units: Velocity = 0.000052 x D x F V = 0.000052 x 10 mils x 1000 cpm
Metric Units: Velocity = 0.000052 x D x F V = 0.000052 x 250 um x 1000 cpm
V = 0.52 ips
V = 13 mm/sec
Acceleration = 0.00027 x V x F A = 0.00027 x 0.52 x 1000
Acceleration = 0.0000107 x V x F A = 0.0000107 x 13 x 1000
A = 0.14 g's
A = 0.14 g's
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
Example #3: A Bearing Vibrates 3 Mils Pk-Pk At 9,000 cpm Displacement @ 9,000 cpm = 3 mils
Displacement @ 9,000 cpm = 75 um
English Units: Velocity = 0.000052 x D x F V = 0.000052 x 3 mils x 9,000 cpm
Metric Units: Velocity = 0.000052 x D x F V = 0.000052 x 75 um x 9,000 cpm
V = 1.404 ips
V = 35.1 mm/sec
Acceleration = 0.00027 x V x F A = 0.00027 x 1.404 x 9,000
Acceleration = 0.0000107 x V x F A = 0.0000107 x 35.1 x 9,000
A = 3.41 g's
A = 3.41 g's
Example #4: A High Speed Compressor Rotor Shaft Vibrates 0.003 Mils Pk-Pk At 1,080,000 cpm Displacement @ 1,080,000 cpm = 0.003 mils (3 millionths of an inch)
Displacement @ 1,080,000 cpm = 0.077 um (7.7 millionths of a centimeter)
English Units: Velocity = 0.000052 x D x F V = 0.000052 x 0.003 mils x 1,080,000 cpm
Metric Units: Velocity = 0.000052 x D x F V = 0.000052 x 0.077 um x 1,080,000 cpm
V = 0.17 ips
V = 4.32 mm/sec
Acceleration = 0.00027 x V x F A = 0.00027 x 0.17 x 1,080,000
Acceleration = 0.0000107 x V x F A = 0.0000107 x 4.33 x 1,080,000
A = 50 g's
A = 50 g's
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
Vibration Amplitude Measurement The following definitions apply to the measurement of mechanical vibration amplitude.
Root Mean Square Amplitude (RMS) is the square root of the average of the squared values of the waveform. In the case of the sine wave, the RMS value is 0.707 times the peak value
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
Spectrum Resolution =
Max Frequency (Fmax) # of Lines of Resolution
Lines of Resolution: 200, 400, 800,1600, 3200, 6400, 12800
Fmax = # Lines / Time Sample Fmax [Hertz] = 800 / 0.1 seconds = 8000 Hz Fmax [CPM] = 8,000 Hz x 60 = 480,000 cpm
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
The Raw Signal
The Actual Signals Used To Generate
The Resulting FFT
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
1x rpm w/ amplitude of 1.8 (pk-pk), '+' peak on y-axis 2x rpm w/ amplitude of 0.45 (pk-pk) 3x rpm w/ amplitude of 0.05 (pk-pk), '-' peak on y-axis
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
Beats
'
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
Amplitude Scales Linear Amplitude Scaling
Logarithmic Amplitude Scaling
The decibel (dB) is defined by the following expression:
The Decibel
where: LdB = The signal level in dB L1 = Vibration level in Acceleration, Velocity, or Displacement Lref = Reference level, equivalent to 0 dB The vibration velocity level in dB is abbreviated VdB, and is defined as:
or
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
ISO 10816-3
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
VIBRATION TRANSDUCERS The Proximity Probe
The Velocity Probe
Velocity Transducer
The Accelerometer
Piezo-Electric Accelerometer
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
Konfigurasi daripada meteran tingkat getaran
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
SENSITIFITAS SENSOR VIBRASI
Recommended Frequency Ranges for Different Amplitude Units Displacement Units: < 600 cpm (< 10 Hz)
Velocity Units: 300 - 120,000 cpm (5 - 2,000 Hz) Acceleration Units: > 60,000 cpm (> 1,000 Hz)
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
PENGAMBILAN DATA VIBRASI
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
RUANG LINGKUP PENGUKURAN GETARAN 1. Kelompok penggerak mula (prime mover) – mesin-mesin yang mampu mengolah daya sendiri. Contohnya: Elektric Motor, Steamturbin, Gasturbin, Hydraulic & Pneumatic Motor dll. 2. Kelompok sistem transmisi – peralatan untuk memindahkan daya. Contohnya : Gearbox, Coupling, V-Belts dll. 3. Kelompok mesin bukan penggerak mula – peralatan produksi yang harus digerakkan oleh penggerak mula. Contohnya : Compressor, Centrifugal Pump, Hydraulic Pump, Fans, Reciprocating Pump, Cooling Tower Fans, Rolling Machines dll.
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
MACHINE DATA SHEET 1. Plant Name 2. Train Name 3. Machine Name 4. Machine Description 5. Machine Sketch 6. Position 7. Direction 8. Measurement Units 9. Point Identification 10. Coupling Type 11. RPM 12. Number of Gear Teeth 13. Bearings (Type, manufacture, Number of balls/Series Number)
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
Horizontal machines
Vertical machines
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
MENENTUKAN ARAH PENGUKURAN
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
ANALISA DATA VIBRASI
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
Following is an example of forcing frequency calculation for a gear-driven machine:
Let us assume that the motor/gear/fan components have the following element counts: Elements of Component
Number of Elements
Motor Cooling Fan
Fan Blades
11
Motor Rotor
Rotor Bars
42
Drive Pinion
Gear Teeth
36
Driven Gear
Gear Teeth
100
Fan
Fan Blades
9
Machine Component
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
Let us assume that the motor is again running at 1780 RPM. Divide the drive pinion tooth count by the driven gear tooth count:
or
Next, multiply this ratio by the motor shaft RPM to find the fan shaft RPM;
We would now say that the fundamental frequency of the motor is 1780 CPM and the fundamental frequency of the fan is 640.8 CPM. Elements
Forcing Frequency,CPM
Rotation
1
640.8
19,580
Driven Gear
100
64,080
42
74,760
Fan
9
5,767.2
36
64,080
Motor Shaft
Elements
Forcing Frequency, CPM
Fan Shaft
Rotation
1
1,780
Motor Cooling Fan
11
Motor Rotor Drive Pinion
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
Formulas for Calculating Belt Frequencies: You can calculate belt RPM with the following: 3.14 x PS1 x PD1/BL = Belt RPM - or 3.14 x PS2 x PD2/BL = Belt RPM Belt Length = 1.57 x (PD1 + PD2) + 2(SD) PS = Pulley rpm (PS1 = Driver Pulley Speed, PS2 = Driven Pulley Speed) PD = Pulley diameter (PD1 = Driver Pulley Dia., PD2 = Driven Pulley Dia) SD = Distance between shaft centers BL = Belt Length
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
Deep Groove Ball Bearing (BPFO) (BSF) (BPFI) (FTF)
BPFO : Ball Pass Frequency Outer BPFI : Ball Pass Frequency Inner BSF
: Ball Spin Frequency
FTF
: Foundation Train Frequency
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
Spectrum Interpretation (Troubleshooting chart) The following pages are designed to provide typical examples of the vibration spectrums that will result from different problems a machine might experience. They are probability based and field testing should always be performed regardless of how "sure" you are of the diagnosis. Remember: EVERY diagnosis made from an FFT interpretation can be characterized as:
An ASSUMPTION based on an ESTIMATE
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
Troubleshooting chart
Typical Radial FFT Generated By Unbalance
Typical FFT Generated By Angular Misalignment Definition: Shaft Centerlines Intersect But Are Not Parallel
Typical Axial FFT Generated By Unbalance
Typical FFT Generated By Offset Misalignment Definition: Shaft Centerlines Are Parallel But Do Not Intersect
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
MISALIGNMENT
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
Typical FFT Generated By Cocked Bearing
Typical FFT Generated By Shaft Bent Through The Bearing
Typical Radial FFT Generated By Mechanical (Structural) Looseness
Typical Radial FFT Generated By Bearing Looseness
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
Typical Axial FFT Generated By Housing Distortion
Typical Radial FFT Generated By Housing Distortion
Relatively High Amplitudes Will Be Generated.
FFT Typical Of Pulley Misalignment
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
Typical FFT Showing Belt/Pulley Wear Problems
Typical FFT Showing Pulley Eccentricity / Bent Shaft Near Pulley
FFT Showing Sleeve Bearing Looseness
FFT Resulting From Oil Whirl
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
Typical Spectrum Showing High Vane Pass Frequency
Typical Spectrum Showing Cavitation
Typical FFT Showing Flow Turbulence
Typical Spectrum Showing Indications Of Variation In Air Gap, Winding Shorts, Stator Weakness
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
Typical Spectrum Showing Indications Of Eccentric Rotor
One Possible Spectrum Caused By A Problem With A Short In One Of The Phases Or Feeder Cables
Spectrum Showing Pattern Of Peaks Separated By 2xLine Frequency (Sidebands) In High Frequency Range (3090xRPM)
Another Possible Spectrum Caused By A Problem With A Short In One Of The Phases Or Feeder Cables
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
Loose in Winding Slots, Iron, End Turns And/Or Connections
Figure 1 - Full-Wave Rectified Velocity Spectrum w/ Drive
"Normal" FFT Taken On DC Drive
Problems
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
Figure 2 - Half-Wave Rectified Velocity Spectrum w/
Figure 3 - Spectrum on DC Motor w/ Speed Fluctuations
Drive Problems
Normal Gear Spectrum
Typical FFT For Eccentric Gear Or Gear On Bent Shaft
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
ANALISA DATA VIBRASI 1. Trends Data v [mm/ s]
Strip Dryer Fan No.1 - G1.420\ Fan/ blower Dryer # 1\ BH3\ 101 Ov erall v eloc ity >600
44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 14/ 02/ 2009
14/ 03/ 2009
11/ 04/ 2009
09/ 05/ 2009
06/ 06/ 2009
04/ 07/ 2009
01/ 08/ 2009
29/ 08/ 2009
26/ 09/ 2009
24/ 10/ 2009
21/ 11/ 2009
19/ 12/ 2009 date
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
2. Waterfall Trends Data v rms [mm/ s]
10,0 9,5 9,0 8,5 8,0 7,5 7,0 6,5 6,0 5,5 5,0 4,5 4,0 3,5 3,0 2,5 2,0 1,5 1,0 0,5 0,0
St rip D ryer Fan N o. 1 - G1. 420\ Fan/ blow er D ryer # 1\ BH 3\ 103 Mac h. spec t r. >600 13/ 11/ 2009 8: 42: 18
06/ 10/ 2009 09/ 09/ 2009 25/ 08/ 2009 07/ 08/ 2009 10/ 07/ 2009 12/ 05/ 2009 15/ 04/ 2009 24/ 03/ 2009 M
24/ 02/ 2009 24/ 01/ 2009
0
2000
4000
6000
8000
10000
12000
14000
16000
18000
20000
22000
24000
f [cpm]
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
3. Single Spectra v rms [mm/ s] 8,0
Strip D ryer Fan N o.1 - G1.420\ Fan/ blow er D ryer # 1\ BH 3\ 103 Mac h. spec tr. >600 06/ 10/ 2009 9:02:35
7,5
M
7,0 6,5 6,0 5,5 5,0 4,5 4,0 3,5 3,0 3 2,5 2,0 1,5 1,0 2 0,5
D
0,0 0
2000
4000
6000
8000
10000
12000
14000
16000
18000
20000
22000
24000 f [cpm]
Housing Bearing Gearbox Aus
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
KESIMPULAN LOKASI / AREA MESIN MESIN & SPESIFIKASINYA
POSISI & ARAH PENGUKURAN
A M P L I T U D O
PUTARAN POROS
PROGRAM KERJASAMA HUMAN CAPITAL DEVELOPMENT CENTER (PT.KRAKATAU STEEL) DENGAN JURUSAN TEKNIK MESIN UNIV.SULTAN AGENG TIRTAYASA
PROGRAM PREDICTIVE MAINTENANCE 1. Data Collection •
Pemantauan getaran terjadwal
2. Analysis (diperlukan Software) •
Domain frekuensi (harus tahu anatomi mesin)
•
Domain waktu
•
Frek. eksitasi getaran, database bantalan, gearbox dll
3. Diagnosis •
Prakiraan sumber masalah
•
Dibantu oleh Software
•
Human Interface (Tergantung pengalaman)
TERIMA KASIH
View more...
Comments