Teorema Central Del Limite-ejercicios Resueltos

December 5, 2020 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Teorema Central Del Limite-ejercicios Resueltos...

Description

EJERCICIOS DE ESTADÍSTICA

© Inmaculada Leiva Tapia

IES Alborán

DISTRIBUCIÓN DE LAS MEDIAS MUESTRALES. TEOREMA CENTRAL DEL LÍMITE.APLICACIONES.

2

Teorema central del límite

Practica

3

Consecuencias del TCL

4

Control de las medias muestrales

5

Control de la suma de todos los individuos de la muestra

Practica

6

EJERCICIO 1: Los parámetros de una variable estadística son: media µ = 16,4,y desviación típica σ = 4,8 .Se extrae una muestra de n = 400 individuos. a) ¿Qué distribución siguen las medias muestrales x extraídas aleatoriamente de la población?Justifica la respuesta. b) Halla el intervalo característico para las medias muestrales x correspondientes a una probabilidad p = 0,99 c) Calcula P(16 < x < 17)

7

Solución a):

8

Solución b):

9

Solución c):

10

EJERCICIO 2: Los sueldos x (en euros),de los empleados de una fábrica se distribuyen N(1200,400). a)¿A qué distribución se ajusta la variable “suma de los sueldos” en las muestras de tamaño 25 extraídas aleatoriamente de la población?Justifica la respuesta. b) Elegida al azar una muestra de 25 individuos, ¿cuál es la probabilidad de que la suma de sus sueldos sea superior a 35000 €? c) Halla el intervalo característico para las sumas de los sueldos de 25 individuos correspondientes a una probabilidad del 0,9.

11

12

ESTIMACIÓN DE LA MEDIA

13

Intervalo de confianza para estimación de la media La fórmula E = zα/2 ·σ/√n relaciona las tres variables. Siempre se fijan dos de ellas,y se calcula la tercera; por ello hay tres tipos de ejercicios: Conocidos (1 – α) , n ==> E ? Conocidos (1 – α) , E ==> n ? Conocidos

E,n

==> (1 – α) ?

14

EJERCICIO : Sea x una variable aleatoria que se distribuye normal,con media desconocida μ y desviación típica σ = 4.Tomamos una muestra de tamaño n = 22,en la que se obtiene una media muestral x = 5. a) Halla el intervalo de confianza para estimar la media de la población,con un nivel de confianza del 82,62%. b) Si queremos reducir el error para que sea menor o igual que una décima, manteniendo el nivel de confianza al 82,62%,¿hasta qué valor habrá que aumentar el tamaño mínimo de la muestra elegida para realizar la estimación? c) ¿Cuál sería el nivel de confianza con que haríamos la estimación utilizando muestras de tamaño 22,y admitiendo como error máximo una décima? ¿Interesaría hacer la estimación en tales condiciones?

15

Intervalo de confianza para estimación de la media: 1) Hallar el error máximo admisible E

16

Intervalo de confianza para estimación de la media: 2) Hallar el tamaño n de la muestra

17

Intervalo de confianza para estimación de la media: 3) Hallar el nivel de confianza (1 - α)

Practica

18

DISTRIBUCIÓN DE LAS PROPORCIONES MUESTRALES

19

Distribución de las proporciones muestrales Sea una población donde p es la proporción de individuos que posee una determinada característica C.Tomamos muestras del mismo tamaño n.En cada una de esas muestras habrá una proporción pr de individuos con C.¿Cómo se distribuye la variable pr?

PROPOSICIÓN: si np ≥ 5 y nq ≥ 5, entonces la proporción pr de individuos con la característica C en las muestras de tamaño n,es una variable estadística que sigue una distribución normal de media p y de desviación típica √pq/n: np ≥ 5 y nq ≥ 5 ==> pr es N(p ,√pq/n )

Demostración: Si x = nº individuos en cada muestra de tamaño n con la característica C, x es B(n,p). Si además np ≥ 5 y nq ≥ 5,entonces: x es B(n,p) ≈ N(np ,√npq). Si pr = proporción de individuos de la muestra con la característica C,entonces pr = x/n y,por tanto,la distribución de pr es como la de x,pero con los parámetros media y desv. típica divididos por n: pr es N(np/n ,√npq/n) = N(p ,√pq/n) 20

Control de las proporciones muestrales

21

ESTIMACIÓN DE LA PROPORCIÓN

22

Intervalo de confianza para estimación de la proporción Se desea estimar la proporción p de individuos de una población con una característica C. Se toma una muestra aleatoria de tamaño n,y se obtiene en ella la proporción muestral pr. Si n·p ≥ 5 y n·q ≥ 5,y además la muestra es grande (n ≥ 30), entonces el intervalo de confianza para la estimación de la proporción p en la población,con un nivel de confianza de (1 – α) ·100% , es el intervalo simétrico centrado en pr: ( pr – E, pr + E) = ( pr - zα/2 ·√pr·(1-pr)/n , pr + zα/2 ·√pr·(1-pr)/n ) en el que se cumple que P( pr – E < p < pr + E ) = 1 – α.

La fórmula E = zα/2 ·√pr·(1-pr)/n relaciona las tres variables. Siempre se fijan dos de ellas,y se calcula la tercera;por ello hay tres tipos de ejercicios: Conocidos (1 – α) , n ==> E ? Conocidos (1 – α) , E ==> n ? Conocidos

E,n

==> (1 – α) ?

23

EJERCICIO : Tomada una muestra de 300 personas mayores de 15 años en una gran ciudad, se encontró que 104 de ellas leían el periódico regularmente. a)Halla,con un nivel de confianza del 90%,un intervalo para estimar la proporción de lectores del periódico entre los mayores de 15 años. b)A la vista del resultado anterior,se pretende repetir la experiencia para lograr una cota de error de 0,01,con el mismo nivel de confianza del 90%.¿Cuántos individuos debe tener la muestra? c)A partir de una muestra de 100 individuos,se ha estimado la proporción mediante el intervalo de confianza (0'17; 0'25).¿Cuál es el nivel de confianza con el que se ha hecho la estimación?

24

Intervalo de confianza para estimación de la proporción: 1) Hallar el error máximo admisible E

25

Intervalo de confianza para estimación de la proporción: 2) Hallar el tamaño n de la muestra

26

Intervalo de confianza para estimación de la proporción: 3) Hallar el nivel de confianza (1 - α)

27

Practica

CONTRASTES DE HIPÓTESIS

Pasos para efectuar un contraste de hipótesis: Enunciación: de las hipótesis nula H0 y alternativa H1. Deducción de conclusiones: suponiendo cierta la hipótesis nula H0 , el parámetro muestral (media x o proporción pr ,de las muestras),se distribuye mediante una normal con parámetros conocidos. Entonces,se elige un nivel de significación α y se construye la zona de aceptación,que es el intervalo (o semirrecta) fuera del cual sólo se encuentran el α·100% de los casos “raros” de la población. Verificación: se extrae ahora una muestra de tamaño n, y en ella se calcula el parámetro muestral. Decisión: si el valor del parámetro muestral obtenido cae dentro de la zona de aceptación, se acepta la hipótesis nula con un nivel de significación α. En caso contrario,se rechaza la hipótesis nula y se acepta la alternativa. Hay dos tipos de contrastes: bilateral y unilateral.

29

Contrastes de hipótesis para la media (bilateral)

30

EJERCICIO 27: Un fabricante de lámparas está ensayando un método de producción que se considera aceptable si las lámparas así obtenidas dan lugar a una población normal de duración media 2400 horas,con una desviación típica de 300 horas. Se toma una muestra de 100 lámparas,dando una duración media de 2320 horas. ¿Se puede aceptar la hipótesis de validez del nuevo proceso de fabricación con un riesgo igual o menor al 5%?

31

32

EJERCICIO 28: Se sabe por experiencia que el tiempo obtenido por los participantes olímpicos de la prueba de 100 metros,en la modalidad de decathlon, es una variable aleatoria que sigue una distribución normal con media 12 segundos y desviación típica 1,5 seg. Para contrastar,con un nivel de significación del 5%,si no ha variado el tiempo medio en la última Olimpiada,se extrajo una muestra aleatoria de 10 participantes y se anotó el tiempo obtenido por cada uno,con los siguientes resultados en segundos: 13 12 11 10 11 11 9 10 12 11 a) ¿Cuáles son la hipótesis nula y la alternativa del contraste? b) Determina la región crítica. c) Realiza el contraste.

33

34

EJERCICIO 29: Se ha comprobado que el tiempo de espera (en minutos) hasta ser atendido, en cierto servicio de urgencias,sigue un modelo normal de probabilidad. A partir de una muestra de 100 personas atendidas en dicho servicio,se ha calculado un tiempo medio de espera de 14,25 minutos y una desviación típica de 2,5 minutos. a)¿Podríamos afirmar,con un nivel de significación del 5%,que el tiempo medio de espera en urgencias,no es de 15 minutos? b)¿Qué podríamos concluir si el nivel de significación hubiese sido del 0,1%? c)¿Existe contradicción entre ambas situaciones?

35

Solución a):

36

Solución b) y c):

37

Contrastes de hipótesis para la media (unilateral,a la derecha)

38

EJERCICIO 30: La duración de las bombillas de 100 vatios de una fábrica sigue una distribución normal con una desviación típica de 120 horas.Su vida media está garantizada durante un mínimo de 800 horas. Se escoge,al azar,una muestra de 50 bombillas de un lote y tras probarlas, se obtiene una vida media de 750 horas. Con un nivel de significación de 0,01,¿habría que rechazar el lote por no cumplir la garantía?

39

40

Contrastes de hipótesis para la media (unilateral,a la izquierda)

41

EJERCICIO 31: Una encuesta,realizada a 64 empleados de una fábrica,concluyó que el tiempo medio de duración de un empleo en la misma era de 6,5 años con una desviación típica de 4 años. ¿Sirve esta información para aceptar,con un nivel de significación del 5%,que el tiempo medio de empleo en la fábrica es menor o igual que 6 años?

42

43

Contrastes de hipótesis para la proporción (bilateral)

44

EJERCICIO 32: Un dentista afirma que el 40% de los niños de 10 años presentan indicios de caries dental. Tomada una muestra de 100 niños,se observó que 30 presentaban indicios de caries. Con un nivel de significación del 5%,¿se puede rechazar la afirmación del dentista?

45

46

EJERCICIO 33: Una empresa farmaceútica afirma que uno de sus medicamentos reduce de foma considerable los síntomas de la alergia primaveral en el 90% de la población. Una asociación de consumidores ha experimentado dicho fármaco en una muestra de 200 alérgicos,obteniendo el resultado indicado por la empresa en170 casos. Determina si la asociación de consumidores puede considerar que la afirmación de la farmacéutica es estadísticamente correcta,al nivel de significación de 0,05.

47

48

Contrastes de hipótesis para la proporción(unilateral,a la izquierda)

49

EJERCICIO 34: El 42% de los escolares suele perder,al menos,un día de clase a causa de gripes y catarros.Sin embargo,un estudio sobre 1000 escolares revela que en el último curso hubo 450 en tales circunstancias. Las autoridades sanitarias defienden que el porcentaje del 42% para toda la población de escolares,se ha mantenido. Contrasta,con un nivel de significación del 5%,la hipótesis defendida por las autoridades sanitarias,frente a que el porcentaje ha aumentado, como parecen indicar los datos,explicando claramente a que conclusión se llega.

50

51

Contrastes de hipótesis para la proporción(unilateral,a la derecha)

52

EJERCICIO 35: En una muestra aleatoria de 225 habitantes de una población, hay 18 que hablan alemán. A un nivel de significación de 0,05,¿hay suficiente evidencia para refutar la afirmación de que al menos el 10% de los habitantes de la población hablan alemán?

53

54

EJERCICIO 36: En el año 2005 un estudio indicaba que un 15% de los conductores utilizaban el móvil con el vehículo en marcha. Con el fin de investigar la efectividad de las campañas realizadas para reducir estos hábitos,se ha hecho una encuesta a 120 conductores de los cuales 12 reconocieron hacer un uso indebido del móvil. Plantea un test para contrastar que las campañas no han cumplido su objetivo frente a que sí lo han hecho,como parecen indicar los datos obtenidos. ¿A qué conclusión se llega con un nivel de significación del 4%?

55

56

FIN

© Inmaculada Leiva Tapia

IES Alborán

57

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF