Tensión Superficial y Capilaridad
Short Description
Download Tensión Superficial y Capilaridad...
Description
UNIVERSIDAD NACIONAL
Optaciano Vasquez Vasquez
´SANTIAGO ANTÚNEZ DE MAYOLOµ
FACULTAD DE INGENIERÍA CIVIL
CURSO: FISICA II
TENSIÓN SUPERFICIAL Y CAPILARIDAD AUTOR:
Mag.. Op Mag Opta Optaciano taci cian anoo L. Vá Vásq Vásquez sque uezz García Garc Ga rcía ía
HUARAZ - PERÚ PERÚ 2010
OBJETI VOS: VOS VOS: VOS: Depués de completada esta Depués esta unidad será capaz de: I. I.
Determinar Deter ermminar la te tens tensió nsión ión ssu supe upperf errfic fiicia ciialal de de algunos ejemplos Determinar cuanto asciende o desciende un fluido en el interior de un tubo capailar Mostrar con ejemplos ejemplos las aplicacione ingenieriles de la tensión superficial y de la capilarida
OBJETI VOS: VOS VOS: VOS: Depués de completada esta Depués esta unidad será capaz de: I. I.
Determinar Deter ermminar la te tens tensió nsión ión ssu supe upperf errfic fiicia ciialal de de algunos ejemplos Determinar cuanto asciende o desciende un fluido en el interior de un tubo capailar Mostrar con ejemplos ejemplos las aplicacione ingenieriles de la tensión superficial y de la capilarida
TENSION SUPERFICIAL
Si depositamos con cuidado sobre el agua una esfera de acero engrasada, ésta puede flotar, formando en la superficie del agua una depresión, aunque la densidad de la esfera puede llegar a ser hasta ocho veces mayor que la densidad del agua
as fuerzas que soportan la esfera no son las fuerzas de flotación sino más bien son las fuerzas debidas a la tensión superficial las que mantienen a la aguja en dicha posición. L
TENSION SUPERFICIAL
Por otro lado cuando un tubo de vidrio limpio y de pequeño diámetro, se sumerge en agua, el agua ascenderá en el interior del tubo tal como se muestra en la figura a, Pero si el tubo se le sumerge en mercurio, el mercurio desciende en el tubo como se muestra en la figura b.
TENSION SUPERFICIAL
El fenómeno de tensión superficial también ha sido observado en la formación de gotas de agua en las hojas de una planta como se muestra en la figura a, así así mismo gracias a éste fenómeno los insectos acuáticos pueden caminar sobre la superficie libre del agua como lo muestra la figura
TENSION SUPERFICIAL
Estos fenómenos muestran la existencia de una superficie límite entre un líquido y otra sustancia. Es decir la superficie de un líquido puede suponerse en un estado de tensión tal que si se considera considera cualquier línea situada sobre ella o limitándolo, la sustancia que se encuentra a un un lado de dicha línea ejerce una tracción sobre la otra situada al otro lado
TENSION SUPERFICIAL
a molécula en la superficie soporta la acción de una fuerza resultante dirigida hacia el interior del líquido, esta situación repetida a lo largo de toda la superficie del líquido produce la contracción de la superficie total del líquido como si se tratase de uun tratase una na me memb memmbra mbrana rana elelás elástica ástitica ca. Esta Esta ttendencia endencia L
contrác con contráctil tráctil til pr prod produc pro oduc duce ucee el fe fen nóm ómeeno de ten tensión tensión sión superficial superf sup erficia iciall
EXPERIMENTOS QUE MUESTR AN LATENSION SUPERFICIAL
Una fo Una form forma rma ex expe peririme ment menta ntalall co como como mo ppu pued ueede de mo most mos ostr stra tra rars arse rse loloss fenómenos de la tensión superficial es considerar un anillo de alambre de algunos milímetros de diámetro en el cual se ha instalado un bucle de hilo tal como se muestra en la figura
EXPERIMENTOS QUE MUESTR AN LATENSION SUPERFICIAL
Otro equipo sencillo que muestra la existencia de la tensión superficial es el mostrado en la figura, consiste en un trozo de alambre doblado en forma de U y se utiliza un segundo alambre como deslizador. Cuando el sistema se introduce en una disolución jabonosa jabonosa y y posteriormente se saca de ella, el alambre de longitud L, se desplaza rápidamente hacia arriba siempre que su peso W , no sea demasiado grande, 1
Para mantener el alambre en equilibrio es necesario aplicar una segunda fuerza W 2
COEFICIENTE
DE TENSIÓN SUPERFI CIAL.
onsideremos un alambre delgado delgado en forma de U y un alambre móvil de longitud L, extraído extraído de una disolución jabonosa tal como se muestra en la figura Para mantener el alambre móvil en equilibrio o para ampliar el área de la lámina es necesario aplicar una fuerza exterior Fex es decir para ampliar el área es necesario realizar un trabajo C
El trabajo resulta ser proporcional al incremento de área, siendo la constante de proporcionalidad el llamado coeficiente de tensión superficial, Kst .
COEFICIENTE
DE TENSIÓN SUPERFI CIAL.
Entonces, el trabajo U, necesario para aumentar el área de la superficie líquida en una cantidad A, será
(U ! K .(A Donde, K es el coeficiente de tensión superficial El trabajo que hay que desarrollar para incrementar el área de la película superficial también se expresa en la forma.
(U ! F .(r ! Fi .(xi (U ! F (x &
&
&
&
COEFICIENTE
DE TENSIÓN SUPERFI CIAL.
Por otro lado el incremento de área superficial debido la aplicación de la fuerza exterior F, esta dado por
( A ! 2 l( x
Remplazando estas ecuaciones se obtiene F( x ! K (2 L( x)
K!
F
2l
a ecuación expresa que, el coeficiente de tensión superficial se define como la razón entre la fuerza superficial y la longitud perpendicular a la fuerza a lo largo de la cual actúa L
COEFICIENTE
DE TENSIÓN SUPERFI CIAL.
En el sistema sistema internacional internacional el coeficiente coeficiente de la tensión tensión superficial se expresa en N/m y el sistema CGS absoluto, se expresa en dinas/cm. Para un líquido dado el coeficiente de tensión superficial solo depende de la naturaleza del líquido y de la temperatura. Es decir el coeficiente de tensión superficial disminuye con el aumento de la temperatura. Cuando la temperatura del líquido se aproxima a la crítica Tk, el coeficiente de tensión superficial tiende a cero. En la tabla se muestran algunos coeficientes de T.S QU DO TENS ON SUPERF N/m) LI
I
I
ICIAL
(
gua Mercurio Glicerina Aceite de ricino Benzol Keroseno Alcohol A
0,073 0,50 0,064 0,035 0,03 0,03 0,02
SOBREPRESIÓN Y DEPRESIÓN DEBIDA A LA CURVATURA DE LA SUPERFICIE LIBRE DE UN LÍQUIDO.
Es sabido que la superficie de los líquidos se comporta como una membrana elástica estirada. Si la película está limitada por un contorno plano, ella misma tiende a adoptar la forma plana Por lo tanto, si la película es convexa, al tendera ponerse plana presionará sobre las capas líquidas que se encuentran debajo de ella, mientras que si la película es cóncava, tirará de ella, tal como se muestra en la figura
Presión complementaria para una superficie del líquido de forma esférica.
onsideremos un casquete esférico de área A como se muestra. Las fuerzas de tensión superficial aplicadas al contorno del casquete son tangentes a la superficie esférica. La fuerza F, aplicada al elemento diferencial L de dicho contorno está dado por C
( F ! K (L s
Presión complementaria para una superficie del líquido de forma esférica.
Debido a que esta fuerza es tangente a la superficie esférica, forma cierto ángulo con el radio OC. Por lo tanto, la componente de la fuerza paralela al radio OC, no será igual a cero. Es decir existirá una sobrepresión. Del gráfico se observa que
( F ! (F senN 1
( F ! K (L senN 1
S
Presión complementaria para una superficie del líquido de forma esférica.
Debido a que alrededor del casquete existe un conjunto de fuerzas análogas a F , la fuerza resultante paralela al radio OC, es 1
F1
! § F ! K 1
S
senN
§ (L.
a suma L, es la longitud del contorno que limita al casquete esférico. Este contorno es una circunferencia de radio r, por por lo tanto, L = 2r L
F1
! K S 2T r senN
Presión complementaria para una superficie del líquido de forma esférica.
Del gráfico se observa además senN
!
r R
De donde se tiene
2T r K S 2
F 1 !
R
Presión complementaria para una superficie del líquido de forma esférica.
Por otro lado, la fuerza debida a la diferencia de presiones entre el interior y exterior del casquete (p p0), viene expresado por ( F p ! p p (A Esta fuerza es perpendicular a la superficie tal como muestra. La componente de esta fuerza en dirección vertical será 0
( F p ! p p (A 'cos N 0
( F p ! p p (Aproy 0
.
Presión complementaria para una superficie del líquido de forma esférica.
a fuerza total en la dirección vertical se expresa L
F
!p § (F !p p p A royp 0
l proyectar toda la superficie del casquete de radio radio r se obtiene un círculo círculo de área Aproy = r2, entonces la ecuación se escribe A
F p
! p p T r
2
0
.
Presión complementaria para una superficie del líquido de forma esférica.
En la dirección Y, Y, las fuerzas debido a la diferencia de presiones y la debida debida a la tensión superficial se compensan, por tanto se tiene § F y ! 0
p p T .r 2 !
T 2K
2 .r
0
S
R
Simplificando se resulta
( p ! p
p0
!
K S
2
R
Presión complementaria para una lámina de líquido de forma esférica.
onsideremos una lámina esférica pompa de jabón) jabón) muy delgada de tal manera que los radios interior y exterior sean iguales a R Para determinar la fuerza debido a la tensión superficial aislemos un casquete esférico de radio r, tal como se muestra en la figura La componente de la fuerza F, paralela al eje X, en este caso es ( F ! (F senN ( F1 ! K S (L senN C (
1
Presión complementaria para una lámina de líquido de forma esférica.
a fuerza resultante total en dirección horizontal es L
F1
! § F ! K 1
S
senN
§ (L.
Del gráfico se observa que
§ ( L ! 2 2T r
En donde se considera el doble de la longitud de la circunferencia de radio r, por el hecho de existir dos superficies, una exterior y la otra interior F1
! K S 4T r senN
F 1 !
T
4
r K S 2
R
Presión complementaria para una lámina de líquido de forma esférica.
Por otro lado, la fuerza debida a la diferencia de presiones que actúa sobre el elemento de área A , está dado por
( F p ! p p (A ' 0
F p , x
! p p T r
2
0
Presión complementaria para una lámina de líquido de forma esférica.
Debido a que en la dirección horizontal existe equilibrio, la resultante de todas las fuerzas en esta dirección es nula, es decir
§ F x ! 0 T K 2
p p T r ! 2
0
4 r
R
S
( p ! p
p0
!
K S
4
R
Presión bajo la superficie curva de un líquido de forma cualquiera.
Para determinar la diferencia de presión bajo una superficie de forma arbitraria, en primer lugar, existe la necesidad de conocer lo que es curvatura de una superficie en general. En la figura, se muestra una superficie cualquiera, en donde se ha trazado una perpendicular a la superficie que pasa por O. AAl trazar un plano P por la normal, la intersección de este plano con la superficie se genera una sección normal. 1
Presión bajo la superficie curva de un líquido de forma cualquiera.
Para el caso de una esfera, cualquier sección normal es un arco de circunferencia AA B , cuyo radio coincide con el de la esfera. La magnitud C = 1 /R /R,, se le conoce con el nombre de curvatura de la esfera Para el caso de una superficie de forma arbitraria, el trazado de diferentes secciones normales por el punto O dará diferentes curvas geométricas y por tanto diferentes curvaturas. La curvatura media de la superficie en el punto O 1
C !
1 R1
1 R2
1
Presión bajo la superficie curva de un líquido de forma cualquiera.
onsideremos ahora una superficie del líquido de forma arbitraria y por el punto O tracemos dos secciones normales AAB y CD tal como se muestra en la figura. C
Cada
curvatura tiene sus radios de curvatura R1 y R2 que en general son diferentes
Presión bajo la superficie curva de un líquido de forma cualquiera.
onsideremos ahora una superficie del líquido de forma arbitraria arbitraria y por el punto O tracemos dos secciones normales AA B y A2B2, tal como se muestra en la figura Teniendo en cuenta que la figura es un cuadrilátero curvilíneo, entonces L será la longitud de DE y L2 la longitud de DG y EF EF,, entonces el área del cuadrilátero será ( A! ( L1 ( L2 . C
1
1
1
Presión bajo la superficie curva de un líquido de forma cualquiera.
a fuerza debido a la tensión superficial en el borde DE DE,, será L
( F ! K S (L 1
1
a componente de F en dirección del radio OC es diferente de cero, por tanto L
1
1
( F ' ! (F senN 1
1
De la geometria ¨ ( L2 ¸ © 2 ¹ OA º !ª senN $ 1
1
A1 C 1
R1
senN1
!
( L2 2 R1
Presión bajo la superficie curva de un líquido de forma cualquiera. De donde obtenemos
( F ! '
K (L (L2
1
S
1
2 R1
Esta ecuación se expresa en la forma
( F ! '
1
K S (A 2 R1
Presión bajo la superficie curva de un líquido de forma cualquiera. En el borde GF actúa una fuerza idéntica
( F ! '
1
K S (A 2 R1
Siguiendo el mismo procedimiento se determina la fuerza de tensión superficial en el borde DG y el borde EF obteniéndose obteniéndose
( F 2 ! '
K S (A 2 R2
Presión bajo la superficie curva de un líquido de forma cualquiera.
a fuerza neta sobre el cuadrilátero debido a la tensión superficial será L
¨ K ( A ¸ ¨ K (A ¸ ( F ! 2 © 2© ¹ ¹ ª 2 R º ª 2 R2 º '
S
S
1
as fuerzas debidas a la diferencia de presiones presiones se expresan en la forma L
( F p ! p p (A 0
I
gualando estas expresiones ( F p ! (F
p p
0
'
¨ 1 (A ! K S (A © ª R 1
1 R2
¸ ¹ º
p p
0
¨1 1¸ ! K © ¹ ª R R2 º S
1
Presión bajo la superficie curva de un líquido de forma cualquiera.
la ecuación anterior se le denomina fórmula de Laplace,. Así sí por ejemplo si la superficie es de forma esférica, los radios de curvatura son iguales, entonces se tiene
A
¨11¸ ¹ R R ª º 2K
p p0 ! K S © p p0
!
S
R
Si la superficie es un cilindro de revolución, uno de los radios de curvatura es infinito y el otro es igual al radio del cilindro R K S 1 1 ¸ ¨ p p ! p p ! K © ¹ 0
S
ªg
R
º
0
R
EJEMPLO 01
Un anillo de 25 mm de diámetro interior y 26 mm de diámetro exterior está colgado de un resorte, cuyo coeficiente de deformación es igual a 0,98 N/m, y se encuentra en contacto con al superficie superficie de un líquido. AAl descender la superficie del líquido el anillo se desprendió de ella en el momento en que el resorte se había alargado 5,3 mm. Hallar el coeficiente de tensión superficial del líquido.
EJEMPLO 02
Sobre un bastidor vertical AABCD mostrado en la figura, provisto de un travesaño móvil MN MN,, hay extendida una película de agua jabonosa jabonosa. (a) ¿Qué diámetro deberá tener el travesaño de cobre MN para poder estar en equilibrio?. (b) ¿Qué longitud tiene este travesaño si sabemos que para desplazarlo 1 cm hay que realizar un trabajo igual a 4,5.10-5 J?. Para el agua jabonosa jabonosa S = 0,045N/m 045N/m.
EJEMPLO 03
El alcohol que hay en un recipiente aislado sale a través través de un tubo vertical que tiene 2 mm de diámetro interior. Considerando que cada gota se desprende 1 segundo después que la anterior, hallar cuánto tiempo tardará en salir 10 gramos de alcohol. El diámetro del cuello de la gota en el momento en que ésta se desprende tómese igual al diámetro interior del tubo.
EJEMPLO 04
¿Qué trabajo hay que realizar contra las fuerzas de tensión superficial para aumentar al doble el volumen de una pompa de jabón jabón que tiene 1 cm de radio? El coeficiente de la tensión superficial del agua jabonosa jabonosa tómese igual 0,043 N/m.
EJEMPLO 05
Determinar la presión del aire (en mm de Hg) que hay dentro de una burbuja de diámetro d = 0,01 mm que se encuentra a la profundidad de h = 20 cm bajo la superficie libre del agua. la presión atmosférica exterior es p0 =765 mmHg.
EJEMPLO 06
Del fondo de una laguna se separó una pompa de gas de diámetro d. Durante su ascenso a la superficie su diámetro aumentó, veces. Si la presión atmosférica es normal p0 y la densidad del agua es , y considerando que el proceso de expansión del gas es isotermo. (a) Calcular la profundidad de la laguna en dicho lugar en función de d, , S; p0 y . (b) ¿ Cuál es el valor de la profundidad si d= 4 m; =1,1; =1000kg/m 000kg/m3; S =0,073 N7m y p0 =101300 N/m2?.
ANGULOS DE CONTACTO as secciones anteriores anteriores se limitaron limitaron al estudio estudio de los fenómenos de tensión superficial en láminas que separan un líquido de un gas Sin embargo, existen otros límites en los cuales se observa la presencia de láminas superficiales. Uno de estos límites aparece entre la pared sólida y un líquido, y otra entre la pared sólida y un fluido gaseoso. Estos límites se muestran en la figura, conjuntamente con sus láminas. L
ANGULOS DE CONTACTO Debe notarse además que las láminas solo tienen espesores de algunas moléculas y a cada lámina se encuentra asociada una determinada tensión superficial. AAsísí por ejemplo ejemplo:: FS = Tensión superficial de la lámina sólidosólido -líquido FSV = Tensión superficial de la lámina sólido sólido--vapor F V =Tensión superficial de la lámina líquidolíquido -vapor L
L
ANGULOS DE CONTACTO a curvatura de la superficie líquida en la cercanía de la pared sólida depende de la diferencia entre la tensión tensión superficial sólido sólido--vapor (FSV) y la tensión superficial sólido--líquido (FS sólido Para determinar la relación relación entre estas tensiones superficiales, se traza el DCL de una porción de láminas en la intersección como se muestra en la figura, y se aplica las ecuaciones de equilibrio L
L
ANGULOS DE CONTACTO plicando las ecuaciones de equilibrio se tiene
A
§ F x ! 0 A ! F LV sen U
§ F y ! 0 FV F L! F LV cos U. S
S
Donde A, es la fuerza de atracción entre la posición aislada y la pared, y se denomina fuerza de adhesión
ANGULOS DE CONTACTO a primera ecuación nos permite determinar la fuerza de adhesión conocida la tensión superficial líquido líquido--vapor y el ángulo de contacto segunda ecuación muestra La segunda que el ángulo de contacto, el cual es una medida de la curvatura de la superficie del líquido--vapor adyacente a la líquido pared, depende de la diferencia entre la fuerza de tensión superficial sólido sólido--vapor y de la tensión superficial sólido sólido--líquido L
ANGULOS DE CONTACTO En la figura 4, se observa que FSV es mayor FS , entonces cos es positivo y el ángulo de contacto está comprendido entre 0º y 90 90º,º, en estas condiciones se dice que el líquido moja a la pared sólida L
FS V " F S L 0 e U 90r
En esta situación situación se observa observa que la fuerza de adhesión es mayor que la fuerza de cohesión entre las moléculas del líquido.
ANGULOS DE CONTACTO En la figura se muestra la interacción molecular del líquido con el sólido y el vapor. La fuerza de cohesión molecular es menor que la de adhesión
ANGULOS DE CONTACTO Por otro lado, cuando interactúa un fluido como el mercurio con una pared sólida como el vidrio, la curvatura de la superficie es convexa como lo muestra la figura.
ANGULOS DE CONTACTO
plicando las ecuaciones de equilibrio al DCL de la porción de láminas en la intersección de la pared sólida y líquida § F ! 0 A ! F sen 180º U
A
x
LV
§ F y ! 0 FS V FS
!L F LV cos 180º U
En este caso el ángulo de contacto es mayor que 90 90ºº y menor que 180º, 80º, por tanto la fuerza de tensión superficial sólido sólido--vapor es menor que la fuerza de tensión superficial sólido sólido--líquido
ANGULOS DE CONTACTO
En estas condiciones se dice que el fluido no moja al vidrio. FS V F S L 90 U e 180r
Para esta situación se observa que la fuerza adhesiva es menor que la fuerza cohesiva. uando el ángulo U =180°, se dice que el fluido no moja en absoluto a la pared del depósito C
ANGULOS DE CONTACTO
Finalmente, si se pone en contacto una superficie de plata con un fluido líquido como el agua, como se muestra en figura, se observa que el ángulo de contacto es aproximadamente 90 90ºº. En estas condiciones las ecuaciones de equilibrio nos dan
§ F x ! 0 A ! F LV § F y ! 0 F V ! F LV S
ANGULOS DE CONTACTO
Debe aclararse además que un mismo líquido puede mojar unos sólidos y no mojara a otros, así así por ejemplo, el agua moja perfectamente la pared de vidrio limpio pero no moja a una pared de parafina parafina;; en forma análoga el mercurio no moja el vidrio pero si a una pared de hierro. Cuando un fluido líquido moja a un sólido en forma de tubo d diámetro pequeño, su superficie libre es cóncava, mientras qu si el fluido no moja al tubo la superficie es convexa. AA esta superficies curvas se le llaman meniscos.
ANGULOS DE CONTACTO
Por otro lado el agregado agregado de impurezas impurezas a los líquidos modifica considerablemente el ángulo de contacto como se muestra en la figura. Así sí por ejemplo cuando se derrama agua sobre un piso el agua moja al piso limpio, pero si el piso esta grasosso se forman gotas como la que se muestra
C APILARIDAD
Uno de los efectos más importantes de la tensión superficial es la elevación de un fluido líquido en un tubo abierto de radio muy pequeño. Este fenómeno fenómeno es conocido como capilaridad y a los tubos donde se presenta este efecto se les llama capilares (análogo a cabello).
C APILARIDAD
En el caso donde el fluido líquido moja a la pared, el ángulo de contacto es menor que 90 90º,º, en esta situación el fluido se eleva una altura h hasta alcanzar el equilibrio tal como se muestra en la figura.
C APILARIDAD
Para determinar la altura h en primer lugar se traza el DCL de la masa líquida ABBCD que ascendió, como se muestra, sobre ella se observa que actúan las fuerzas:: la tensión superficial (FS), el fuerzas peso de la masa líquida (W), la fuerza debido a la presión atmosférica sobre CD y la fuerza debido a la presión sobre la superficie AAB. § F y ! 0 F ! mg 2T rK cos U ! V g (T r 2 h) 2K cos U h! S
s
S
V gr
C APILARIDAD
a elevación del fluido líquido será tanto mayor cuanto menor es el radio r del capilar. Por esta razón se vuelve notorio el ascenso del líquido en tubos de radios muy pequeños. Por otro lado la elevación será mucho mayor, cuanto más grande sea el coeficiente de tensión superficial. AAdemás si el líquido moja perfectamente (=0º) se tiene L
h!
K LV
2
V gr
C APILARIDAD
uando el líquido no moja la pared del tubo, el menisco menisco es convexo, en este caso la presión complementaria es positiva y el nivel del líquido en dicho tubo es inferior al de la superficie libre en la vasija, esta situación se muestra en la figura, la altura h que desciende el fluido en el capilar es C
h!
2K LV cos U
V gr
EJEMPLO 01
En un recipiente con agua se introduce un tubo capilar abierto cuyo diámetro interior es d =1 mm. La diferencia entre los niveles de agua en el recipiente y en el tubo capilar es h = 2,8 cm. (a) ¿Qué radio de curvatura tendrá el menisco en el tubo capilar?.(b) ¿ Cuál es la diferencia entre los niveles del agua en el recipiente y en el tubo capilar si este líquido mojara perfectamente?.
EJEMPLO 02
Un tubo capilar cuyo radio es r =0,16 mm está introducido verticalmente en un recipiente recipiente con agua. ¿Qué presión deberá ejercer el aire sobre el líquido que hay dentro del tubo capilar para que éste se encuentre al mismo nivel que el agua que hay en el recipiente ancho?. La presión exterior es p0=760 mmHg. Considere que el agua moja perfectamente.
EJEMPLO 03
Un tubo capilar está introducido verticalmente en un recipiente con agua. El extremo de este tubo está soldado. Para que el nivel del agua fuera igual dentro del tubo que en el recipiente ancho hubo que sumergir el tubo en el líquido hasta el 15% 5% de su longitud. ¿Qué radio interior tendrá el tubo?. La presión exterior es igual a 750 mmHg. Considerar que el agua moja perfectamente.
EJEMPLO 04
El tubo barométrico AA de la figura está lleno de mercurio y tiene un diámetro interior d igual a: (a) 5 mm y (b) 1,5 cm. ¿Se puede determinar directamente la presión atmosférica por la columna de mercurio de este tubo?. Hallar la altura de la columna en cada uno de los casos antes mencionados, si la presión atmosférica es p0 = 758 mmHg. Considerar que el mercurio no moja en absoluto.
EJEMPLO 05
Un capilar de longitud L, que tiene el extremo superior soldado, se puso en contacto con la superficie de un líquido, después de lo cual éste ascendió por el capilar hasta alcanzar una altura h. La densidad del líquido es ; el diámetro de la sección interna del canal del capilar es d; el ángulo de contacto es , y la presión atmosférica atmosférica es po. Hallar el coeficiente de tensión superficial del líquido.
EJEMPLO 06
En un capilar de vidrio cuyo canal interno tiene un diámetro d2 =2 mm se colocó concéntricamente, una barra de vidrio de diámetro d = 1,5 mm. Luego el sistema se estableció verticalmente y se puso, en contacto con la superficie del agua. ¿ A qué altura ascenderá el agua en este capilar?. 1
EJEMPLO 07
Dos láminas láminas de vidrio verticales paralelas entre sí, se sumergen parcialmente en agua. La distancia entre estás es d = 0,10 mm, mm, su anchura L = 12 cm. Considerando que el agua no llega hasta los bordes superiores de las láminas y que la humectación es total, calcular la fuerza de atracción mutua que existe entre estas.
View more...
Comments