Teknik Produksi i

June 26, 2018 | Author: Andi Susetio | Category: N/A
Share Embed Donate


Short Description

produksi...

Description

Materi Kuliah

TEKNIK PRODUKSI I Wibowo – JTM UPN “Veteran” o!"a#arta



PRODUKTIVITAS FORMASI



VERTICAL LIFT PERFORMANCE



CHOKE PERFORMANCE



HORIZONTAL FLOW PERFORMANCE



NATURAL FLOW WELL



NODAL ANALYSIS

I$ PRODUKTIVIT%S &ORM%SI Ter'iri 'ari ( )$ %liran &lui'a Melalui Me'ia Pori *$ Pro'u+ti,it" In'e.$ IPR /In0low Per0or1an+e Relation2hi34



%liran &lui'a 'ala1 Me'ia 5er3ori 'i3ela6ari oleh 7enr" Dar+" "an! 1en!e1u#a#an hubun!an e13iri2 'ala1 bentu# 'i00erential v

=

q A

=−

k δP

µ δL

q 8 9a6u aliran 0lui'a: ++;2e+ A 8 9ua2 1e'ia 3ena13an! 1e'ia ber3ori: +1* v 8 Ke+e3atan aliran 0lui'a: +1;2e+ k 8 Per1eabilita2: Dar+" δP/δL = Gradien tekanan dalam arah aliran, atm/cm



%2u12i Dar+"

P2

θ >

Pwf

tan

θ 8 PI

PI = J =

)>>>

dq dPw

B1a>

)>>

q

*>>

Satu &a2a /PwPb4

*C>

Dua &a2a /P2Pb4

Per2a1aan Pro'u+ti,it" In'eqo = 0 ,00708

k o .h ( Pe − Pwf ) µ o .Bo ln( re / rw )

q P% = $ = (Ps # Pwf)

= J ~ PI

'i1ana ( P& 8  8 Pro'u#ti,it" In'e-: bbl;hari;32i q 8 la6u 3ro'u#2i aliran total: bbl;hari Ps 8 Te#anan 2tati2 re2er,oir: 32i Pwf 8 Te#anan 'a2ar 2u1ur wa#tu a'a aliran: 32i



Contoh Soal Productivity Index > 32i Pw0 8 )GC> 32i Bo 8  32i Pw0 >> 32i 32i Pb 8 8 )*>> Bo 8 C>> b3' Pertanyaan : 5a!ai1ana#ah IPRn"a H



5awaan Contoh IPR 4ua Fasa Ps / P 2an Pwf - P Men+ari % ( A = 1 − 0 ,2 Pwf   Pb

2

 − 0,8 Pwf       Pb 2  900  − 0,8 900  A = 1 − 0,2     1200   1200  8 >:F

Men+ari PI (

P%

=

qo

Ps # Pb + (Pb/&,)A * P% = &2+ # & + (&/&,),'

8 >:.FC



5awaan Contoh IPR 4ua Fasa Ps / P 2an Pwf - P Men+ari Bb ( qb = P% (Ps # Pb)

qb = ,21'*0' (&2+ # &) 8 F>F:>)C b3' Men+ari B- ( q = P% ( Pb ) 1,8 0 ,734694(1200) q = 8 F:G b3' 1,8 Men+ari B1a- ( q -a = qb + q

q -a. = '',&* + 489 ,7959 8 .:C b3'



5awaan Contoh IPR 4ua Fasa Ps / P 2an Pwf - P

Men+ari Bo 3a'a Pw0 8 .>> (

qo qo

2     P P     wf wf    b -a. . = q +  ( q − q ) 1 − 0 ,2 Pb  − 0 ,8 Pb    2     900 900       = 404,0816 + ( 893,8776 − 489,7959)1 − 0,2  − 0,8      1200   1200     

8 C:GG) b3'



5awaan Contoh IPR 4ua Fasa Ps / P 2an Pwf - P Dari bebera3a har!a Pw0 a2u12i 'i'a3at ( Pw f

qo

> .>>

*:.G* .G:*F

C>>

F):)C

>>

C>>:>>>

)*>>

F)):CG

)G>

>



S Q > = &E Q ) < Stan'in! 1e1o'i0i#a2i 3er2a1aan Vo!el ber'a2ar#an #en"ataan bahwa 0or1a2i "an! 1en!ala1i #eru2a#an /'a1a!e4 a#an ter6a'i ta1bahan #ehilan!an te#anan < Pw0 i'eal /ti'a# 'i3en!aruhi 2#in 0a+tor4  Pwf (Ps Pwf ! ) "# 2#in 0a+tor4  P < Pw0 a+tual /'i3en!aruhi wf (P P ) −

=



s

wf

< &E /&low E00i+ien+"4 ( ! P wf

o 34 =1 max

=

P s

− (P

s



) 34 P wf

! !     = 1 − 0.2  Pwf  − 0.8  Pwf   Ps   Ps 

2



Aontoh Meto'e Stan'in! Di#etahui 'ata la3an!an 2eba!ai beri#ut ( P2 8 *C>> 32i Bo 8 G>> b3' 3a'a Pw0 8 )>> 32i &E 8 >$C Pertanyaan : 5a!ai1ana#ah IPRn"a H

Jawaban Meto'e Stan'in! Pwf ! = 2600 − (2600 − 1800) 0.6 = 2120 34 =1 max

500

=

 2120 

1 − 0.2 

 2120 

2

= 1639

− 0.8   2600   2600 

L1a- 3a'a &E8>$C

Pw08>

Pwf ! = 2600 − (2600 − 0) 0.6 = 1040 34 = 0.6 max



= 1639

2  1040  1040      1 − 0.2  2600  − 0.8  2600   = 1298      

Jawaban Meto'e Stan'in!

Dari bebera3a har!a Pw0 a2u12i 'i'a3at (

Pwf

Pwf’

6o

0

1 0 0

1 & %

$0 0

1 ' 0

11&

1 00 0

1 ! 0

&11

1 $0 0

1 & 0

!! 

 00 0

  0

'% '

 !0 0

 !0 0

0



S Q > = &E Q ) < 7arri2on 1e1o'i0i#a2i 3er2a1aan Stan'in! #arena 3a'a har!a &E "an! 2an!at #e+il atau &E 3o2iti0 be2ar /Pw0 ne!ati04 1en!ha2il#an bentu# IPR "an! ti'a# 2e1e2tin"a ! = P 'i!una#an Pwfteta3 34 #on'i2i 22atu < Kon2e3 &E s − ( Ps − Pwf )untu# 0a2a



 Pwf !   Ps 

1.792 

o = 1.2 − 0.(2 e < Per2a1aan 347arri2on max=1

Jawaban Meto'e 7arri2on Pwf ! = 2600 − (2600 − 1800) 0.6 = 2120

500 34 =1

max

= 1.2 − 0.2

 2120    2600 

 34 = 1 = 1480.16 max

1.792 

e

L1a- 3a'a &E8>$C

Pw08>

Pwf ! = 2600 − (2600 − 500) 0.6 = 1340 34 =0.6 max



= 1480.16

 1.2 − 0.2 

 1940    2600 

1.792 

e

  = 859.47 

Aontoh Meto'e 7arri2on Di#etahui 'ata la3an!an 2eba!ai beri#ut ( P2 8 *C>> 32i Bo 8 G>> b3' 3a'a Pw0 8 )>> 32i &E 8 *$C Pertanyaan : 5a!ai1ana#ah IPRn"a H

Jawaban Meto'e 7arri2on Pwf ! = 2600 − (2600 − 1800) 0.6 = 2120

500 34 =1

max

= 1.2 − 0.2

 2120    2600 

1.792 

e

L1a- 3a'a &E8>$C

34 = 1 = 1480.16 max

Pw08>

Pwf ! = 2600 − (2600 − 0) 0.6 = 1040 34 = 0.6 max



= 1480.16

 1.2 − 0.2 

 1040    2600 

1.792

e

  = 1169.96 

Jawaban Meto'e 7arri2on

Dari bebera3a har!a Pw0 a2u12i 'i'a3at (

Pwf

Pwf’

6o

0

1 0 0

11#0

$0 0

1 ' 0

1 0' 1

1 00 0

1 ! 0

%! 0

1 $0 0

1 & 0

! &

 00 0

  0

'& 0

 !0 0

 !0 0

0



S Q > = &E Q ) < Aouto 1e1ani3ula2i 3er2a1aan Stan'in! 'en!an 1en!!abun!#an #on2e3 PI < Per2a1aan 7arri2on (

o

h  ko  = 0.00419   ln (0.472 re )  µ o Bo  rw  

Di1an a:

) 1− 5 )) A = ( (1 − )5 (1.8 −( 0)(.8 34

. Pr ( 34 ) . A

5=

Pwf Pr

Kon2tanta A): A*: A.: 'an AF an

c1

c

c'

c

a1

0.1%&

70.'!'%

0.%1$1

70.0$$%#'

a

71.#!&$0

70.$!!'

1.!!!

70.'0!

a'

7.1&#

70.1&$&#!

.%&

70.0'''

a

70.01#%'

0.0%%%!

70.!0'%$

70.10%01

a$

70.$$#

70.0'&

70.$%'

70.'0!&!

Aontoh Meto'e Pu'6o Su#arno /*Ø4 Di#etahui 'ata la3an!an 2eba!ai beri#ut ( P2 8 )G> 32i Bo 8 *F b3' 3a'a Pw0 8 *F>32i S 8 *$F. /&E 8 >$>4 Pertanyaan :

5a!ai1ana#ah IPRn"a H

Jawaban Meto'e Pu'6o Su#arno /*Ø4 <

7itun! #on2tanta a ) 2;' aG

a1

= 0.182922

<

a*8 >$>G>F

924 =0 oSmax

=

e ( −0.364438

. 2.43 )

a .8 >$>>G**

+ 0.814541

a F8 ?>$).

a

G

e ( −0.055873

. 2.43)

8 ?>$)

0.78658 + 0.00522 0.15094 − 0.7819 ( 0.15094 2 ) 1 + 0.07504 ( 0.15094) − 0.183 ( 0.15094 2 )

<

Pw0;P2 8 *F>;)G> 8 >$)G>F

<

Lo1a- 8 *F;>$C.C 8 )*>$F bbl;hari

<

%2u12i#an bebera3a har!a Pw0 untu# 1enentu#an har!a Lo

= 0.78658

Tabula2i ha2il 3erhitun!an

P wf 6o Pw f 6o 1 & 0

0 .0

%0 0

#0. &'

100

'!. #1

!00

%1#. 0$

100

'!. '%

00

%%!. &

1000

$&$. '!

0.0

&$1. 1&

.$ %liran &lui'a Ti!a &a2a < 8paila flui2a yan9 men9alir 2ari formasi e luan9 sumur ter2iri 2ari ti9a fasa" yaitu minya" air 2an 9as" maa 2i9unaan 3eto2e Pu2;o Suarno.

qo q t ,max

= Ao + A1 ( Pwf ) Pr ( + A)2

Pwf Pr

2

• An = konstanta persamaan (n = 0, 1 dan 2), yang harganya berbeda untuk water cut yang berbeda. • Hubungan antara konstanta tersebut dengan watercut dtentukan pu!a dengan ana!ss regres, dan dpero!eh persamaan berkut "

An 

= 60 + 61 ( 76 ) * +( 6)2

76*

An 8 #on2tanta untu# 1a2in!?1a2in! har!a %n 'itun6u##an 'ala1 Tabel beri#ut ini

2

Tabel Kon2tanta An Untu# Ma2in!?Ma2in! har!a %n

An

C0

C1

C2

$1

−0.414360

− × -1 −0.115661× 10-2 0.392799× 10

$2

−0.564870

0.762080× 10

$

0.980321

0

-2

× -4 0.179050× 10 -5 0.237075× 10 −0.202079× 10-4

< Se'an!#an hubun!an antara te#anan alir 'a2ar 2u1ur terha'a3 water?+ut 'a3at 'in"ata#an 2eba!ai Pw0;Pr terha'a3 WA;/WA  Pw0 =Pr4: 'i1ana /WA  Pw0 =Pr4 telah 'itentu#an 'en!an anali2i2 re!re2i 'an 1en!ha2il#an 3er2a1aan beri#ut (

76 76 % Pwf Aatatan (

≈ Pr

234Pwf5Pr

= P1 × 4.p [ P2 Pwf =

236

/ Pr ]

< 'i1ana har!a P) 'an P* ter!antun! 'ari har!a water?+ut 3en!u#uran: 'i1ana(

P1

= 1.606207 − 0.130447 × Ln (76 )

P2

= −0.517792 + 0.110604 × Ln (76 )

'i1ana ( water?+ut 'in"ata#an 'ala1 3er2en /4 'an 1eru3a#an 'ata u6i 3ro'u#2i

Pro2e'ur Perhitun!an < 5er'a2ar#an har!a WA 3en!u#uran tentu#an WAPw0=Pr: P) 'an P* < 7itun! har!a?har!a %>: %): 'an %* 2e2uai har!a %n 2e3erti tertera 'ala1 tabel < 7itun! Lt 1a< %2u12i#an bebera3a har!a Pw0 'an hitun! Lo 2e2uai har!a Pw0 a2u12i < 5uat hubun!an /3lot4 antara Pw0 'an Lo 3a'a #erta2 #arte2ian untu# 1en'a3at#an #ur,a IPR

PER%M%9%N IPR M%S% %K%N D%T%N@

< S 0 :

3eto2e Stan2in9 (ot Point ( ( Meto'e E+#1ier ( 3en"e'erhanaan 'ari 3er2a1aan &et#o,i+h 'en!an an!!a3an n 8 ): 2ehin!!a 3erban'in!an Lo1a- 3a'a wa#tu 3ro'u#2i t) 'an t* 'in"ata#an (

3

,o max  , o max 

f p

Psf   =  P     sp 

Lo1a- 3 3a'a P2 3 'itentu#an ber'a2ar#an u6i te#anan 'an 3ro'u#2i 3a'a t) 1en!!una#an 3er2a1aan Vo!el 2e'an!#an Lo1a- 0 3a'a P2 0 'itentu#an ber'a2ar#an 3er2a1aan 'iata2 Selan6utn"a untu# 1e1buat IPR 'i!una#an 3er2a1aan Vo!el ber'a2ar#an har!a Lo1a- 0 'an P2 0

OVERVIEW

OPTIM%SI PRODUKSI 'en!an

%N%9ISIS SISTEM NOD%9  wibowo?t1 u3n”,eteran”"o!"a#arta

TUJU%N 'an S%R%T

?5?8@

• Mendapatkan laju produksi optimum sumur dengan melakukan evaluasi secara lengkap dan terintegrasi pada sistem produksi sumur SA8R8

• Tersedia Infow Perormance (IPR) • Tersedia Outfow Perormance (!P"#P"$%P" &P)

METODO9O@I

<

Me1aha1i #o13onen In0low Per0or1an+e

<

Me1aha1i #o13onen Out0low Per0or1an+e: "an! ter'iri 'ari #iner6a (  Verti+al 9i0t Per0or1an+e  Aho#e Per0or1an+e  7oriontal &low Per0or1an+e  Se3arator

<

Me1aha1i hubun!an in0low 'an out0low 3er0or1an+e

<

Me1aha1i 'i2#ri32i hubun!an Te#anan ,er2u2 Ke'ala1an 3a'a berba!ai 1eto'e 3ro'u#2i /li0tin! 1etho'24

Pwh

Se3arator

Sur0a+e Aho#e

P2e3

P'2+ Sa0et" Val,e

Pu2,

5otto1 7ole Re2tri+tion

P'r

DP) 8 Pr ? Pw02 8 9o22 in Porou2 Me'iu1 DP* 8 Pw02 ? Pw0 8 9o22 a+ro22 Ao13letion DP. 8 Pur ? P'r 8 9o22 a+ro22 Re2tri+tion DPF 8 Pu2, ? P'2, 8 9o22 a+ro22 Sa0et" Val,e DPG 8 Pwh ? P'2+ 8 9o22 a+ro22 Sur0a+e Aho#e DPC 8 P'2+ ? P2e3 8 9o22 in &lowline

Pur

DP 8 Pw0 ? Pwh 8 Total 9o22 in Tubin! DP 8 Pwh ? P2e3 8 Total 9o22 in &lowline

Pw0

Pw02

 Pr

Pe

M%N&%%T %N%9ISIS SISTEM NOD%9 • Optimasi laju produksi • Menentukan laju produksi 'ang dapat diperole secara semur alam • Meramalkan kapan sumur akan *mati+ • Memeriksa setiap komponen dalam sistem produksi untuk mementukan adan'a amatan aliran • Menentukan saat 'ang teraik untuk mengua sumur semur alam menjadi semur uatan atau metode produksi satu ke metode produksi lainn'a

%9IR%N ME9%9UI PIP%

I$

VERTA%9 9I&T PER&ORM%NAE /TU5IN@4

II$ 7ORIONT%9 &9OW PER&ORM%NE /PIPE9INE4

Pen'ahuluan < Ke1a13uan re2er,oir 'a3at 'i3ro'u#2i#an #e <

3er1u#aan ter!antun! te#anan 2u1ur /Pw04$ @a1bar ) 1e13erlihat#an be2arn"a Pw0 ter!antun! 3a'a te#anan 'an #on0i!ura2i 2i2te1 ter!antun! 2ehin!!a 3a'a te#anan #on0i!ura2i 2i2te1 3er3i3aan: 'a3at'an 'ituli2

Pwf

= Psep + ∆Pfl + ∆Pch + ∆Ptb ∆Prts

< Untu# 1e1entu#an #e1a13uan 2i2te1 2e+ara total 3erlu 1en!hitun! #ehilan!an te#anan 1a2in!?1a2in! #o13onen

Per2a1aan 'a2ar aliran < Da2ar 3er2a1aan aliran( #e2eti1ban!an ener!" antara 'ua titi# 'ala1 2uatu 2i2te1 < Den!an 1en!!una#an 3rin2i3 ter1o'ina1i#a: 3er2a1aan t2b 'a3at 'ituli2 'ala1 bentu# 3er2a1aan !ra'ien te#anan < Ke2eti1ban!an ener!i( ener!i 'ari 0lui'a "an! 1a2u# #e 'ala1 2i2te1  #er6a "an! 'ila#u#an oleh 0lui'a  ener!i 3ana2 "an! 'ita1bah#an 8 ener!i "an! 1enin!!al#an 2i2te1 ter2ebut

Per2a1aan 'a2ar aliran < @a1bar * 1e16ela2#an 3rin2i3 #e2eti1ban!an ener!i 'i 'ala1 2uatu 2i2te1 < Per2a1aan #e2eti1ban!an ener!i 'a3at 'ituli2(

91 +

-v12 p181 + 2 !c

9 2 + p282 +

+ -!h1 + q + 7s =

2 2

-v 2 !c

!c

+ -!h2 !c

'a #n'* +anas

#n'* dalam #n'* 's+ans*/om+'s*

#n'* 'n',* #n'* +o,'ns*al

Per2a1aan 'a2ar aliran < @a1bar *?S"2te1 aliran

Per2a1aan 'a2ar aliran < Den!an 1e1ba!i 3er2a1aan 'iata2 'en!an m 'an 'iubah 'ala1 bentu# 3er2$ 'i00eren2ial(

d9 <

+ d ( p ) + vdv +

!

dh + dq + d7s

=0

!c !c ρ Dala1 bentu# 7: 2ulit 'ia3li#a2i#an$ Untu# 1e13er1u'ah 'iubah #e 'ala1 3er2a1aan ener!i 1e#ani#

< 7ubun!an ter1o'ina1i#a(

p d9 = dh − d ( ) ρ

dh = TdS −

dp ρ

Per2a1aan 'a2ar aliran dp p − d( ) d9 = TdS + ρ ρ Di'a3at( dp vdv ! TdS + ρ + ! c + ! c dh + dq + d7s

< Sehin!!a( <

=0

< Untu# irre,er2ible: 'i!una#an ineBualit" Alau2iu2 2tate2(

− dq dS ≥ T

TdS

= −dq + dLw

's'an a,a f*s*

Per2a1aan 'a2ar aliran < Dian!!a3 W8>: 1a#a( dp

+

ρ

vdv ! + dh + dLw !c !c

=

0

< Ji#a 'i!una#an 3i3a 'en!an #e1irin!an terha'a3 horiontal: 1a#a 'h8'9 2in θ

dp vdv + + ! dL s*n θ ρ !c !c

θ

+ dLw = 0

< Den!a1 1en!ali#an 3er2a1aan 'en!an ρ;'9:

dp dL

+

ρvdv ! c dL

+

! !c

ρ s*n θ



dLw dL

=0

Per2a1aan 'a2ar aliran

Per2a1aan 'a2ar aliran < Per2a1aan '3t untu# 1enentu#an !ra'ien te#anan: 6i#a 3enurunan te#anan berhar!a /4 3a'a arah aliran(

dp = ρvdv + ! ρ s*n θ dL ! c dL ! c

+ ( dp ) f dL

< Dala1 bentu# Dar+"?Wei2ba+h: f 8 0a#tor !e2e#an ( 2

(

dp )f dL

=

fρ v 2 !c :

Per2a1aan 'a2ar aliran < Moo'" 0ri+tion 0a+tor +hart

&ri+tion 9o22 Willian?7aen 1e1buat 2uatu 3er2a1aan e13iri2 untu# 0ri+tion lo22 /h04: "aitu ( 1, 85

100

hf 'i1ana( h0 A L ID

= 2,0830 

6



 ( , / 34.3)1,85   %: 4,8655 

8 0eet 0ri+tion lo22 3er )>>> 0eet$ 8 #on2tanta 'ari bahan "an! 'i!una#an 'ala1 3e1buatan 3i3a$ 8 la6u 3ro'u#2i: b3' 8 'ia1eter 'ala1 3i3a: in+hi

@ra0i# &ri+tion 9o22 Willia1?7aen$

5ilan!an Re"nol'2 /NRe4 < 5ilan!an Re"nol'2 a'alah bilan!an tan3a 'i1en2i(

;

= 1488 : ft v ft / s'ρlb- / cuft 

< Ra2io !a"a 1o1entu1 'an !a"a ,i2+ou2 ' < Di!una#an untu# 1enentu#an a3a#ah 2uatu aliran la1iner atau turbulen < Turbulen *)>>

µ lb- / ft s'

Ke#a2aran Relati0 Pi3a < Dala1 'in'in! 3i3a bia2an"a halu2 < Ke#a2aran 3i3a ber'a2ar#an – Ke#a2aran 3i3a – Meto'a 3e1buatan"a – 9in!#un!an < Ke#a2aran relati0 /e;D4 a'alah 3erban'in!an #e#a2aran 3i3a ab2olut th' 'ia1eter 'ala1 3i3a(

'la,*f on'ss =

ein :in

Ke#a2aran Relati0 Pi3a < 5ebera3a #e#a2ran ab2olut 3i3a e XinY Drawn tubin! Welltubin!

>$>>>>C >$>>>C

9ine3i3e

>$>>>

@al,anie' 3i3e

>$>>C

Ae1ent?line' 3i3e

>$>) – >$)

Ke#a2aran Relati0 Pi3a < Ke#a2aran 3i3a untu# berba!ai 3i3a

%liran 9a1iner Satu &a2a < &a#tor !e2e#an untu# aliran la1iner 'tentu#an 2e+ara analiti# < Per2a1aan 7a!en?Poi2euille untu# la1iner(

dp ( dL ) f

32 µv

= !c : 2

< Sub2titu2i #e 3er2a1aan Dar+"?Wei2ba+h: 2ehin!!a(

fρv 2 32 µv = 2 !c : !c : 2

f

=

64 µ

ρv:

=

64

; '

%liran Turbulen Satu &a2a < Ditentu#an ber'a2ar#an ha2il 3er+obaan < San!at ter!antun! 3a'a #ara#teri2ti# 3er1u#aan 3i3a < Per2a1aan e13iri2 untu# 1enentu#an 0a#tor !e2e#an /04 < S1ooth?wall 3i3e 0.32 – Per2a1aan Drew:+Koo 0.5 f = 0.0056 ;M+%'a12( −

'

– Untu# Nre  )>G: 'i3a#ai 3er2a1aan 5la2iu2 − 0.25C – Untu# .>>> ≤ ;. ' ×)> f =≤0Nre .316

%liran Turbulen Satu &a2a < Rou!h?wall 3i3e < Ni#ura'2e telah 1e1buat 3er+obaan untu# 1enentu#an 0a#tor !e2e#an 3i3a #a2ar

1

f

= 1.74 − 2 lo)  2ε  :

< Aolebroo# 'an White /).4 untu# 1en"u2un 3er2a1aan 2eba!ai beri#ut(

1 f

= 1.74 − 2 lo)  2ε + :

18 .7 ; ' f

< Ti'a# bi2a 'itentu#an 2e+ara lan!2un!: 'ihitun! 'en!an +oba?+oba

%liran Turbulen Satu &a2a < Korela2i 0a#tor !e2e#an 2e+ara e-3li2it 'i#e1u#a#an oleh Jain

1 f

= 1.14 − 2 lo) ε + 21.250.9   : ; ' 

< Per2a1aan ini 1e1beri#an #e2alahan 2ebe2ar ) 'iban'in!#an 'en!an 3er2a1aan Aolebroo# 'an White untu# G>>>  NRe  )> 'an )> ?C e;D )>?*$ < Ke2alahan 1a#2i1u1 2ebe2ar . ter6a'i untu# NRe  *>>>

Total #ehilan!an te#anan < Per2a1aan !ra'ien te#anan

dp dL

=

ρvdv

+

! c dL

!

ρ s*n θ

+

!c

f ρv 2 2 !c :

< @ra'ien te#anan untu# ti!a #o13onen( dp dp dp dp

dL

=(

dL

) acc

+(

dL

) el

+(

dL

)f

%liran Dala1 Su1ur < 5an"a# 1eto'a untu# 1en!hitun! te#anan 2tati# 'an alir 3a'a 2u1ur !a2 < Meto'a 3alin! 2erin! 'i3a#ai a'alah Aullen'er  S1ith < @ra'ien a++eleration 'iabai#an < %#an 'ibaha2(

– Te#anan 2tati# – Te#anan alir

%liran 'ua 0a2a < Verti#al /'i well bore4 – @ra,ita2i +a13uran – 7a!e'orn  5rown

< 7oriontal /2i2te1 3er3i3aan4 – &lani!an – 5e!!2  5rill

Wellbore 3er0or1an+e < Meto'a !ra,ita2i +a13uran

– Pro2e'ur 1eto'a ini a'alah 1e13erhitun!#an 3ena1bahan 'en2ita2 a#ibat a'an"a liBui'$ – Den!an 3erhitun!an ini 'a3at 'iter3#an 3a'a 1eto'a

Aullen'er  S1ith atau "an! lainn"a – Metho'a !ra,ita2i +a13uran 'ihitun! 'en!an

+ 4591γ L / 5 γ- = 1 + 1123 / 5 γ!

– Da3at 'i!una#an untu# 2u1ur 'en!an @9R tin!!i: 6i#a @9R)>>>SA&;ST5 #orela2i ini ti'a# 'a3at 'i!una#an

Meto'a 7a!e'orn  5rown < De!an 1en!abai#an a#2elera2i: 1a#a2

dp ! = ρ - osθ dh ! c

< 'i1ana

+

fρ f v-

2 !c :

ρ - = ρ - < L + ρ ! (1 − < L ) v- = vsL + vs=

= ρ n2 / ρ ρ n = ρ L λ + ρ ! (1 − λ ) λ = vsL / vρf

Meto'a 7a!e'orn  5rown < &a#tor !e2e#an 'ihitun! 'en!an 3er2 Jain atau Moo'" 'ia!ra1: bilan!an Re"nol' 'ihitun! ρ - v- :

; ' -

< Di1ana

µ-

= µL<

L

=

µ!

µ-

(1− < L )

< Untu# 1enentu#an 79: 'a3at 'i!una#an ti!a #orela2i e13iri# 2e3erti !a1bar beri#ut (

Meto'a 7a!e'orn  5rown < Korela2i 1enentu#an 79

= 1.938vsL ( ρ L / σ ) 0.25 ; !v = 1.938vs! ( ρ L / σ ) 0.25

; Lv

;d

= 120.872 :( ρ L / σ )0.5

; Lv

= 1.938vsL ( ρ L / !σ )0.25

Meto'a 7a!e'orn  5rown <

Pro2e'ur 3erhitun!an

)$ 7itun! N 9 *$ Menentu#an A N9 'ari !a1bar N9 ,2 AN9 .$ 7itun!

>

<

=

; Lv (6; L ) p 0.1 ; d ; !v 0.575 pa0.1

F$ Tentu#an 79;ψ >Ψ

G$ 7itun! C$ Tentu#an

=

ψ

$ 7itun! 798

ψ/79; ψ4

; !v ; L ;d

0.38

2.14

Pi3eline 3er0or1an+e < Meto'a &lani!an

– Men!!una#an 3er2a1aan Panhan'le % #arena !e2e#an ber'a2ar#an la6u alir !a2 – &a#tor #orela2i 2eba!ai 0un!2i #e+e3ata2 2u3er,a2ial !a2 'an liBui' loa'in! 'a3at lihat 2bb

Meto'a &lani!an < Kehilan!an te#anan a#ibat be'a #etin!!ian

∆pel =

ρL < 3

∑<

144

< &a#tor hol'u3 'ihitun!

$>) 'an N&R  9) atau λ9≥>$>) 'an

– Tran2ition(

>$>) 'an 9 N 9

*

9

&R

.

≥ ≤λ9>$F 'an 9≤. N&R ≤ 9) atau – Inter1ittent(λ >$>) λ9≥>$F 'an 9. N&R ≤ 9F – Di2tribute'( λ9>$F 'an N&R ≥ 9) atau  9F

λ9 ≥ >$F 'an N&R

< %3abila ter6a'i #on'i2i tran2i2i2: 'ihitun!

< L (transisi)

A=

=

A< L ( se! ) + B< L (*n, er )

L3 − ; 35 L L 3



2

B

=1−

A

Meto'a 5e!!2  5rill < 9iBui' 7ol'u3 'ihitun!

< L (θ ) = < L (0) Ψ %liran

a

< L ( 0) =

aλbL c ; 35

b

+

Se!re!ate'

>$

>$FFC

>$>C

Inter1ittent

>$FG

>$G.G)

>$>).

Di2tribute'

)$>CG

>$G*F

>$>C>

Meto'a 5e!!2  5rill < Kore#2i in#lina2i 3i3a

Ψ = 1 + 6 (s*n(1.8θ ) − 0.333s*n 3 (1.8θ )) e

f L L 'anL8 #e1irin!an A

∀ θ a'alah 6 = 2u'ut (1 − λ ) ln(dλ ;

=

+

! 35 'ihitun!

; )

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF