TD communication analogique 3
Short Description
Download TD communication analogique 3...
Description
Exercices de Télécommunications GTR 2nde année
Télécommunications analogiques semaine 3
exercice 1 : Un dispositif électronique réalise l'opération suivante : Multiplieur de gain K u(t)
i(t)
A1
s(t)
A2 cos(ω pt)
Le multiplieur présente un gain K , c'est-à-dire i(t)=K A1 u(t). On suppose que u(t), i(t), A1 et A2 sont des tensions. La fréquence f p=ω p /(2 π) est de 100 kHz. 1. A quelle grandeur K est-il homogène? 2. Représentez s(t) lorsque A1=2 V , A2=1 V , K=1 et u(t) présente l'allure ci-dessous : 1 .5
1
0 .5
0
- 0 . 5
-1
- 1 . 5 0
0 . 5
1
1 . 5
2
2 .5
3
3 .5
4 x
1 0
-4
3. Représentez s(t) lorsque A1=0,5 V , A2=1 V , K=2 et u(t) présente l'allure ci-dessus. 4. Le signal u(t) est la somme de deux signaux signaux sinusoï sinusoï daux, u1(t) et u2(t), l'un d'amplitude Am1=1,2732 et de fréquence f m1 m1=5 kHz, l'autre d'amplitude Am2=0,4244 et de fréquence f m1 m1=15 kHz. Déterminez les taux de modulations u1(t) et u2(t) (respectivement m1 et m2) ainsi que mT , l'indice de modulation total dans le cas des questions 2 et 3.
exercice 2 : 1. Calculez la décomposition en série de Fourier du signal u(t) : u(t) +A u'(t) -τ
-A
τ
T
2T
+2 A
t
-τ
τ
T
2T
t
2. Calculez U'(f), la transformée de Fourier du signal u'(t). 3. Que se passe-t-il lorsque pour le signal u(t), T tend vers l'infini (comparez avec la transformée de Fourier de u'(t))? 4. La somme des 3 premières harmoniques de u(t) forme le signal u''(t) qui module en AM un signal de fréquence f p>>1/ τ. A-t-on besoin de connaître m, le taux de modulation? Représentez le spectre de s(t). De même, représentez le spectre de s(t) dans le cas où le signal modulant est u'(t).
Exercices de Télécommunications GTR 2nde année
Télécommunications analogiques 21 Octobre 1998
CORRIGÉ exercice 1 : -1
1. i(t), A2 et s(t) sont des tensions. A2 i(t) est homogène au carré d'une tension donc K est homogène à des V . traçant l'enveloppe, c'est-à-dire K A2 [ A1 + u(t )] ( ) × [ A1 + u(t )] . En
2. L'expression de s(t) est : K A2 cos ω p t
lorsque A1=2 V , A2=1 V , K=1, on obtient : 5
4 3 2 1 0
-1 -2 -3 -4 0
0 .5
1
1 .5
2
2 .5
3
3 .5
4 x
1 0
x
1 0
-4
3. s(t) lorsque A1=0,5 V , A2=1 V , K=2 : 4
3
2
1
0
-1
-2
-3 0
0 .5
1
1 .5
2
2 .5
(
4. La forme générale d'un signal modulé AM est s(t ) = A p cos ωp t
3
3 .5
4 -4
) × [1 + m u(t )] . Ici, nous sommes en
présence d'un signal modulé par deux signaux sinusoï daux. L'expression analytique de s(t) est alors :
( ) × [1+ m1 cos(
s(t ) = A p cos ω p t
ω m1
t
) + m2 cos(
ω m2
t
)] . En identifiant avec l'expression de s(t) obtenue en
( ) × [ A1 + Am1 cos(
sortie du modulateur : s(t ) = K A2 cos ω p t m1
=
Am1 A1
, m2
=
Am2 A1
et mT =
m1
2
+ m2
ω m1
2
t
) + Am2 cos(
Am1 2 Am1 2 + = A1 A1
ω m2
t
)] , on obtient :
.
A.N. : dans le cas de la question 2, m1=1,2732/2= 0,6366, m2=0,4244/2=0,2122 et mT =0,671 1!!
exercice 2 :
rappels : La transformée de Fourier : soit u(t), un signal à énergie finie et X(f), sa transformée de Fourier. Les signaux sont liés par les relations suivantes : X( f ) = x (t ) =
+∞
∫ −∞ x (t ) ⋅ e −2 j
π
+∞
∫ −∞ X ( f ) ⋅ e2 j
π
⋅ f ⋅t dt
⋅ f ⋅t dt
1. u( t ) =
2 A τ
τ
∞ sin 2 n π T
∑
T n = 0
τ
2 nπ
2. U'(f)= TF ( u' ' ( t )) = 2τ
cos 2 n π
T sin(2 π f τ )
2 π f τ
t
. Remarquer que u(t)est paire.
T
.
3. U'(f) est le passage à la limite des coefficients de Fourier de u(t). Faire un dessin pour expliquer que si T→∞, la fréquence (en 1/T) tend vers 0, donc le spectre de raies tend vers un spectre continu.
4.
View more...
Comments