TCC53 Column Design - 2002-2008
April 12, 2017 | Author: AnbalaganV | Category: N/A
Short Description
Download TCC53 Column Design - 2002-2008...
Description
Project
Spreadsheets to EC2
Client
Advisory Group
Location
The Concrete Centre Made by
Column D2
RMW
SYMMETRICALLY REINFORCED RECTANGULAR COLUMN DESIGN, BENT ABOUT TWO AXES TO EN 1992-1 : 2004 Originated from TCC53.xls v 3.4 on CD
Checked
Date
Page
30-Nov-14 Revision
Job No
-
© 2002-2008 TCC
279
FB625
MATERIALS fck fyk
32 500
φ
2.2
h b with and
550 550 3 3
γs γc
1.15 1.5
Cover to link, Cnom dg
70 20
mm
φef Steel class . .
1.21 B
Δc,dev
10
mm
N/mm² N/mm²
SECTION mm mm
mm
Y
bars per 550 face
Y
bars per 550 face
ie. 550 x 550 columns with 8 bars Remote
RESTRAINTS Y-AXIS Z-AXIS
Y-AXIS Z-AXIS
Top Condition
Condition
Braced ?
7500 7500
F F
F F
Y Y
L (mm)
L0 (mm)
h0 (mm)
7000 7325
5792 6027
275
Asc %
Link Ø
3.32 2.13 1.30 0.83 0.53 0.30
10 8 8 8 8 8
BAR ARRANGEMENTS Bar Ø B 40 B 32 B 25 B 20 B 16 B 12 LOADCASES 1 2 3 4 5 6 DESIGN MOMENTS 1 2 3 4 5 6
CONNECTING BEAMS/SLABS
Storey height (mm)
AXIAL
Btm
175 181 185 187 189 191
500 500 175 175 500 500 500 500 70%
L (m)
end (F) or (P)
8 F 6 F 5 F 5 F 8 F 6 F 5 F 5 F of uncracked stiffness Col below? Y Checks
ok ok ok ok ok ok
8822 7621 6789 6319 6019 5786
BTM MOMENTS (kNm)
N (kN)
m0y
m0z
m0y
m0z
1800 1700 1500 1000 600 900
19.5 29.9 50.0 80.0 120.0 130.0
2.5 2.5 2.5 2.5 2.5 2.5
14.0
2.3
Y AXIS
h (mm)
Top West 300 Top East 300 Top North 3500 Top South 3500 Bottom West 300 Bottom East 300 Bottom North 300 Bottom South 300 Beam stiffnesses are Column above? Y BAR CENTRES (mm) 550 Face 550 Face Nuz (kN) 175 181 185 187 189 191
TOP MOMENTS (kNm)
b (mm)
8.0
Z AXIS
Moments m 0 at top and bottom of column (from analysis) are combined to find m 0e . The moment due to imperfections (e 1 N) and the second order moment (M 2 ) are then added to obtain M Ed In the table below.
Critical
Biaxial Check
MEd y
MRd y
MEd z
MRd z
axis
Equation (5.39)
REBAR
40.0 49.3 66.4 90.9 126.6 139.9
391.2 382.4 362.3 296.3 224.8 279.6
21.8 20.7 24.1 13.2 8.9 12.1
391.2 382.4 362.3 296.3 224.8 279.6
Z Z Z Z Z Z
0.104 0.128 0.195 0.324 0.602 0.523
8 B12 8 B12 8 B12 8 B12 8 B12 8 B12
SEE CHARTS ON NEXT SHEET
The Concrete Centre
Spreadsheets to EC2
Project
Client Advisory Group Location Column D2
Made by
RMW
SYMMETRICALLY REINFORCED RECTANGULAR COLUMN DESIGN, BENT ABOUT TWO AXES TO EN 1992-1 : 2004
Originated from TCC53.xls v 3.4 on CD
Checked
Page
280
30-Nov-14 Revision
-
© 2002-2008 TCC
N:M interaction chart for MEd Y
Date
Job No
FB625
550 x 550 column (h x b), fck = 32, 70 mm cover
10000 9000
AXIAL LOAD NEd (kN)
8000 8B40
7000 6000
8B32
5000
8B25 8B20 8B16
4000
8B12
3000 N bal
2000
1800 1700 1500 1000900 600
1000
0 0
100
200
300
400
500
600
700
800
900
1000
MOMENT MEd Y (kNm) N:M interaction chart for MEd Z
550 x 550 column (h x b), fck = 32, 70 mm cover
10000 9000
AXIAL LOAD NEd (kN)
8000 8B40
7000 8B32
6000 8B25 8B20 8B16
5000
8B12
4000
3000 N bal
2000
1800 1700 1500
1000
1000 900 600
0 0
100
200
300
400
500
MOMENT MEd Z (kNm)
600
700
800
900
1000
Project
Spreadsheets to EC2
Client Location
Advisory Group Column D2
The Concrete Centre Made by
RMW
SYMMETRICALLY REINFORCED RECTANGULAR COLUMN DESIGN, BENT ABOUT TWO AXES TO EN 1992-1 : 2004
Originated from TCC53.xls v 3.4 on CD
TYPICAL CALCULATION
for loadcase 1
Checked
Date
Page
30-Nov-14 Revision
281 Job No
-
© 2002-2008 TCC
FB625
550 x 550 column with 8 B12 bars
About Y axis Column is braced 7325
SLENDERNESS Clear height, L
mm
About Z axis Column is braced 7000
Rotational stiffness, k 1
Max[0.1, EI/l cols /∑(κEI/l beams )]
1.189
0.854
Rotational stiffness, k 2
0.854
5.8.3.2(3)
(κ=2 braced, or 4 unbraced)
0.595
Effective length, l 0 Exp (5.15) braced or (5.16) unbraced Radius of gyration, i including reinforcement
6027
mm
5792
5.8.3.2(3)
159.0
mm
159.0
5.8.3.2(1)
Slenderness ratio, λ
l 0 /i
37.9
36.4
Reinforcement ratio, ω
A s ∙f yd /(A c ∙f cd )
0.072
0.072
5.8.3.1
Relative normal force, n
N Ed /(A c ∙f cd )
0.328
0.328
5.8.3.1
Limiting slenderness, λ lim
Exp (5.13N)
72.7
78.8
Slenderness condition N Ed = BUCKLING
λ > λ lim ?
Short
Short
At maximum MOR, n bal
from charts
0.418
0.418
5.8.8.3(3)
Axial correction factor, K r
(n u - n)/(n u - n bal )
1.138
1.138
Eqn (5.36)
Creep adjust factor, β
0.257
0.267
5.8.8.3(4)
Creep effect factor, K φ
0.35 + f ck /200 - λ / 150 1 + β∙φ ef ≤ 1
1.311
1.323
Eqn (5.37)
Basic curvature, 1/r 0
f yd /(0.45d.E s )
0.0104
/mm
0.0104
5.8.8.3(1)
Curvature, 1/r
K r ∙K φ ∙1/r 0
0.01547
/mm
0.01561
Eqn (5.34)
Curvature distribution, c
9.870
5.8.8.2(4)
Deflection, e 2
8 if M 0 costant, otherwise π² (1/r)∙l 0 ² /c
0.0569
mm
0.0531
5.8.8.2(3)
Second order moment, M 2
N Ed ∙e 2 if short, otherwise 0
0.00
kNm
0.00
Eqn (5.33)
0.0037
Eqn (5.1) Eqn (5.2)
1800
kN
9.870
IMPERFECTIONS Inclination, θ i
0.0038
Imperfection M, M imp
Min[1,Max(⅔, 2/√l)]∙θ 0 θ i ∙N Ed ∙l 0 /2
20.50
kNm
19.26
MOMENTS First order end M, M 01
lesser of end moments
14.00
kNm
2.30
First order end M, M 02
greater of end moments
19.50
kNm
2.50
Equivalent end M, M 0e
0.6M 02 + 0.4M 01
7.80
kNm
1.00
Eqn (5.32)
Minimum moment, M min
Max(20, h/30)∙N Ed
36.00
kNm
0.00
6.1(4)
Final design M, M Ed
Max[M min ,max(M 02 +M 2 /2,M 0e +M 2 )+ M imp ]
40.00
kNm
21.76
Eqn (5.33)
BIAXIAL CHECK Section MOR, M Rd
from charts, with NEd = 1800
391.16
kNm
391.16
Relative force, n
N Ed /(A c ∙f cd + A s ∙f yd ) =
0.303
Exponent, a
If{n
View more...
Comments