Targate-maths Booklet (Non Dowloadable)

December 17, 2017 | Author: Sonal Kumar Agrawal | Category: Integral, Differential Equations, Equations, Nonlinear System, Laplace Transform
Share Embed Donate


Short Description

REFER THE TARGATE-MATHS ANSWER KEY IN OTHER FILE...

Description

ENGINEERING MATHEMATICS Objective Paper –“Topic & Level-wise”

GATE For “Electrical”, “Mechanical”, “CS/IT” & “Electronics & Comm.” Engg.

Product of,

TARGATE EDUCATION a team of

Copyright © TARGATE EDUCATION, Bilaspur-2013

All rights reserved No part of this publication may be reproduced, stored in retrieval system, or transmitted in any form or by any means, electronics, mechanical, photocopying, digital, recording or otherwise without the prior permission of the TARGATE EDUCATION.

Authors: Subject Experts @TRGATE EDUCATION, BILASPUR

TARGATE EDUCATION Ground Floor, Below Old Arpa Bridge,Jabdapara, SARKANDA RD. Bilaspur (Chhattisgarh) 495001 Phone No: 07752406380,093004-32128 (01:30 PM - 07:30 PM, Wed-Off) Web Address: www.targate.org, E-Contact: [email protected]

SYLLABUS: ENGG. MATHEMATICS GATE – 2013 EE /ECEC Linear Algebra: Matrix Algebra, Systems of linear equations, Eigen values and eigen vectors. Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series. Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green’s theorems. Differential equations: First order equation (linear and nonlinear), Higher order linear differential equations with constant coefficients, Method of variation of parameters, Cauchy’s and Euler’s equations, Initial and boundary value problems, Partial Differential Equations and variable separable method. Complex variables: Analytic functions, Cauchy’s integral theorem and integral formula, Taylor’s and Laurent’ series, Residue theorem, solution integrals. Probability and Statistics: Sampling theorems, Conditional probability, Mean, median, mode and standard deviation, Random variables, Discrete and continuous distributions, Poisson,Normal and Binomial distribution, Correlation and regression analysis. Numerical Methods: Solutions of non-linear algebraic equations, single and multi-step methods for differential equations. Transform Theory: Fourier transform,Laplace transform, Z-transform.

Mechanical Engineering (ME) Linear Algebra: Matrix algebra, Systems of linear equations, Eigen values and eigen vectors. Calculus: Functions of single variable, Limit, continuity and differentiability, Mean value theorems, Evaluation of definite and improper integrals, Partial derivatives, Total derivative, Maxima and minima, Gradient, Divergence and Curl, Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green’s theorems. Differential equations: First order equations (linear and nonlinear), Higher order linear differential equations with constant coefficients, Cauchy’s and Euler’s equations, Initial and boundary value problems, Laplace transforms, Solutions of one dimensional heat and wave equations and Laplace equation. Complex variables: Analytic functions, Cauchy’s integral theorem, Taylor and Laurent series. Probability and Statistics: Definitions of probability and sampling theorems, Conditional probability, Mean, median, mode and standard deviation, Random variables, Poisson,Normal and Binomial distributions. Numerical Methods: Numerical solutions of linear and non-linear algebraic equations Integration by trapezoidal and Simpson’s rule, single and multi-step methods for differential equations.

Computer Science and Information Technology (CS) Mathematical Logic: Propositional Logic; First Order Logic. Probability: Conditional Probability; Mean, Median, Mode and Standard Deviation; Random Variables; Distributions; uniform, normal, exponential, Poisson, Binomial. Set Theory & Algebra: Sets; Relations; Functions; Groups; Partial Orders; Lattice; Boolean Algebra. Combinatorics: Permutations; Combinations; Counting; Summation; generating functions; recurrence relations; asymptotics. Graph Theory: Connectivity; spanning trees; Cut vertices & edges; covering; matching; independent sets; Colouring; Planarity; Isomorphism. Linear Algebra: Algebra of matrices, determinants, systems of linear equations, Eigen values and Eigen vectors. Numerical Methods: LU decomposition for systems of linear equations; numerical solutions of non-linear algebraic equations by Secant, Bisection and Newton-Raphson Methods; Numerical integration by trapezoidal and Simpson’s rules. Calculus: Limit, Continuity & differentiability, Mean value Theorems, Theorems of integral calculus, evaluation of definite & improper integrals, Partial derivatives, Total derivatives, maxima & minima.

Expert Comment Comparing to the ME syllabus EE/EC has an extra topic “Transform Theory”. ME students need not to read this topics. CS students have to refer topics from this booklet which is listed in there syllabus. Remaining topic for CS will be covered in separate booklet.

Table of Contents LINEAR ALGEBRA

7

1.1 PROPERTY BASED PROBLEM 1.2 DETERMINANTE 1.3 ADJOINT - INVERSE 1.4 EIGEN VALUES & EIGEN VECTORS 1.5 RANK 1.6 SOLUTION OF LINEAR EQUATION 1.7 MISCELLANEOUS 1.8 CALY- HAMILTON

7 10 11 13 19 21 26 31

CALCULUS

32

2.1 MEAN VALUE THEOREM 2.2 MAXIMA AND MINIMA 2.3 DIFFERENTIAL CALCULUS 2.4 INTEGRAL CALCULUS 2.5 LIMIT AND CONTINUITY 2.6 SERIES 2.7 VECTOR CALCULUS 2.8 AREA / VOLUME 2.9 MISCELLANEOUS

32 32 34 36 39 43 44 51 52

DIFFERENTIAL EQUATIONS

55

3.1 DEGREE AND ORDER OF DE 3.2 HIGHER ORDER DE 3.3 LEIBNITZ LINEAR EQUATION 3.4 MISCELLANEOUS

55 56 61 62

COMPLEX VARIABLE

66

4.1CAUCHY’S THEOREM 4.2 MISCELLANEOUS

66 68

PROBABILITY AND STATISTICS

74

5.2 COMBINATION 5.3 PROBABILITY RELATED PROBLEMS 5.4 BAYS THEOREMS 5.5 PROBABILITY DISTRIBUTION 5.6 RANDOM VARIABLE 5.7 EXPECTION

74 75 80 80 82 85

Page 5

www.targate.org

5.8 SET THEORY

86

NUMERICAL METHODS

87

6.1 CLUBBED PROBLEM

87

6.2 NEWTON-RAP SON

89

6.3 DIFFERENTIAL 6.4 INTEGRATION

93 93

TRANSFORM THEORY

95

01 Linear Algebra Complete subtopic in this chapter, is in the scope of “GATE- CS/ME/EC/EE SYLLABUS”

.

1.1 Property Based Problem

1 (A) P

(B) Q 1

Question Level – 0 (Basic Problems)

(C) P 1Q 1 P

(D) P Q P 1

eE1 / T1 / K1 / L0 / V1 / R11 / AD [GATE – CS – 1994]

-----00000-----

(01) If A and B are real symmetric matrices of order n then which of the following is true.

Question Level – 01 T

-1

(A) A A = I

(B) A = A

eE1 / T1 / K1 / L1 / V1 / R11 / AB [GATE – CE – 1998] T

(C) AB = BA

T

T

(D) (AB) = B A

eE1 / T1 / K1 / L0 / V1 / R11 / AA [GATE – PI – 1994]

(01) If A is a real square matrix then AAT is

(A) Un symmetric

(02) If for a matrix, rank equals both the number of rows and number of columns, then the matrix is

(B) Always symmetric

called (A) Non-singular

(B) singular

(C) Transpose

(D) Minor

(C) Skew – symmetric

(D) Sometimes symmetric eE1 / T1 / K1 / L1 / V1 / R11 / AC [GATE – CE – 1998]

eE1 / T1 / K1 / L0 / V1 / R11 / A [GATE – CE – 2000]

(03) If A, B, C are square matrices of the same order then ( ABC )

1

(02) In matrix algebra AS = AT (A, S, T, are matrices of appropriate order) implies S = T only if

is equal be (A) A is symmetric

1

1

(A) C A B

1

1

1

1

(B) C B A

(B) A is singular (C) A1 B1C 1

(D) A1C 1 B1 (C) A is non-singular

eE1 / T1 / K1 / L0 / V1 / R11 / AB [GATE – CE – 2008]

(04) The product of matrices ( PQ) 1 P is

Page 7

(D) A is skew=symmetric

www.targate.org

ENGINEERING MATHEMATICS eE1 / T1 / K1 / L1 / V1 / R11 / AA [GATE – IN – 2001]

(A) Always zero

(03) The necessary condition to diagonalizable a matrix is that

(B) Always pure imaginary

(A) Its all Eigen values should be distinct

(C) Either zero (or) pure imaginary

(B) Its Eigen values should be independent

(D) Always real

(C) Its Eigen values should be real

eE1 / T1 / K1 / L1 / V1 / R11 / AC [GATE – ME – 2011]

(07) Eigen values of a real symmetric matrix are (D) The matrix is non-singular

always

eE1 / T1 / K1 / L1 / V1 / R11 / AD [GATE – EC – 2005]

(A) Positive

(B) Negative

(C) Real

(D) 162. [A] is square

(04) Given an orthogonal matrix A =

1 1 1 1  1 1 1 1   T 1 1 1 0 0  ( AA ) Is ____    0 0 1 1

-----00000-----

Question Level – 02 1 (A) I 4 4

1 (B) I 4 2

(C) I

(D)

1 I4 3

eE1 / T1 / K1 / L2 / V2 / R11 / AA [GATE – CS – 2001]

(01) Consider the following statements

S1: The sum of two singular matrices may be eE1 / T1 / K1 / L1 / V1 / R11 / AA [GATE – ME – 2007]

singular.

(05) If a square matrix A is real and symmetric then the Eigen values

S2: The sum of two non-singulars may be nonsingular.

(A) Are always real This of the following statements is true. (B) Are always real and positive (A) S1 & S2 are both true (C) Are always real and non-negative (B) S1 & S2 are both false (D) Occur in complex conjugate pairs (C) S1 is true and S2 is false eE1 / T1 / K1 / L1 / V1 / R11 / AC [GATE – EC – 2010]

(06) The Eigen values of a skew-symmetric matrix are

Page 8

(D) S1 is false and S2 is true

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 01 – LINEAR ALGEBRA eE1 / T1 / K1 / L2 / V2 / R11 / AD [GATE – EE – 2008]

(02) A is m x n full rank matrix with m > n and I is an identity matrix. Let matrix A  ( AT A) 1 AT .

(II) If A is n  n square matrix then it will be non-singular is rank of A = n (A) Both the statements are false

then which one of the following statements is (B) Both the statements are true

false? (A) AA+A = A

(B) (AA+)2 = AA+

(C) (I) is true but (II) is false

(C) A+A = I

(D) AA+A = A+

(D) (I) is false but (II) is true

eE1 / T1 / K1 / L2 / V1 / R11 / AB [GATE – CE – 2009]

(03) A square matrix B is symmetric if ------------(A) BT = B

eE1 / T1 / K1 / L3 / V2 / R11 / AA [GATE – CE – 2004]

(03) Real

 E 5 ,  F 1

(B) BT = B

 A31,  B 33 , C 35 ,  D  ,

matrices

are given. Matrices [B] and [E]

are symmetric. Following statements are made with respect to their matrices.

(D) B 1 = BT

(C) B 1 = B

(I) Matrix product [F]T[C]T[B] [C] [F] is a scalar. Matrix product [D]T[F] [D] is always -----00000-----

symmetric. With reference to above statements which of the following applies?

Question Level – 03 (A) Statement (I) is true but (II) is false eE1 / T1 / K1 / L3 / V2 / R11 / AD [GATE – CE – 1998]

(01) The real symmetric matrix C corresponding to

(B) Statement (I) is false but (II) is true

the quadratic form Q = 4x1 x2  5x1 x2 is (C) Both the statements are true

1 2  (A)    2 5

2 0  (B)    0 5

1 1  (C)   1 2 

0 2  (D)    2 5

(D) Both the statements are false eE1 / T1 / K1 / L3 / V2 / R11 / AB [GATE – EE – 2008]

(04) Let P be 2x2 real orthogonal matrix and x is a real vector

eE1 / T1 / K1 / L3 / V2 / R11 / AB [GATE – CE – 2000]

(02) Consider the following two statements.

 x1

T

x2 

with length || x || =

( x12  x22 )1/2 Then which one of the following

statement is correct? (I)

The

maximum

number

of

linearly

independent column vectors of a matrix A is called the rank of A.

(A) || px |||| x || where at least one vector satisfies || px |||| x ||

www.targate.org

Page 9

ENGINEERING MATHEMATICS (B) || px |||| x || for all vectors x

1.2 Determinante

(C) || px |||| x || when atleast one vector satisfies

Question Level – 00 (Basic Problem)

|| x || and || px || eE1 / T1 / K2 / L0 / V1 / R11 / AD [GATE – PI – 1994]

(01) The (D) No relationship can be established between

1

|| x || and || px ||

value

4

of

the

following

determinant

9

4 9 16 is 9 16 25

eE1 / T1 / K6 / L3 / V2 / R11 / A [GATE – CS – 2008]

(05) The

following

system

x1  x2  2 x3  1,

of

equations

x1  2x1  3x3

(A) 8

(B) 12

(C) – 12

(D) – 8

,

x1  4 x1  αx3  4 has a unique solution solution. The only possible value(s) for α is/are

Question Level – 01 (A) 0

(B) either 0 (or) 1

(C) one of 0, 1 (or) – 1

(D) any real number

eE1 / T1 / K1 / L3 / V2 / R11 / AD [GATE – CS – 2011]

(06) [A] is a square matrix which is neither symmetric nor skew-symmetric and [A]T is its transpose.

eE1 / T1 / K2 / L1 / V2 / R11 / AB [GATE – CS – 1997]

 6 8 0 2 (01) The determinant of the matrix  0 0  0 0

1 4

1 6  4 8  0 1

The sum and differences of these matrices are defined as [S] = [A] + [A]T and [D] = [A] – [A]T

(A) 11

(B) – 48

(C) 0

(D) – 24

respectively. Which of the following statements is true?

(A) Both [S] and [D] are symmetric

(B) Both [S] and [D] are skew-symmetric

(C) [S] is skew-symmetric and [D] is symmetric

eE1 / T1 / K2 / L1 / V1 / R11 / AA [GATE – CE – 1997]

1 3 2    (02) If the determinant of the matrix 0 5 6  is  2 7 8  26

(D) [S] is symmetric and [D] is skew-symmetric

-----00000-----

Page 10

then

the

determinant

of

2 7 8   0 5 6    is 1 3 2 

(A) – 26

(B) 26

(C) 0

(D) 52

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

the

matrix

TOPIC. 01 – LINEAR ALGEBRA Question Level – 02

1.3 Adjoint - Inverse

eE1 / T1 / K2 / L2 / V2 / R11 / AB [GATE – CS – 1998]

Question Level – 00 (Basic Problem) 1 a bc (01) If  = 1 b ca then which of the following is 1 c ab

1 2 (01) The inverse of 2  2 matrix   is 5 7 

a factor of  .

(A) a + b

(B) a - b

(C) abc

1 b (02) The determinant

b 1

b

1

1 7 2  3  5 1

(B)

1 7 2 3 5 1 

(C)

1  7 2 3  5 1 

(D)

1  7 2  3  5 1

Question Level – 01

1  b 1 equals to 2b 1

(A) 0

(B) 2b(b – 1)

(C) 2(1 – b)(1 + 2b)

(D) 3b(1 + b)

eE1 / T1 / K3 / L1 / V1 / R11 / AA [GATE – PI – 1994]

1 4  (01) The matrix   is an inverse of the matrix 1 5   5 4  1 1  

eE1 / T1 / K2 / L2 / V2 / R11 / AB [GATE – PI – 2009]

1 3 2

(A) True

(B) False

Question Level – 02

(03) The value of the determinant 4 1 1 is 2 1 3

(C) 32

(A) (D) a + b + c

eE1 / T1 / K2 / L2 / V2 / R11 / AA [GATE – PI – 2007]

(A) – 28

eE1 / T1 / K3 / L0 / V1 / R11 / AA [GATE – CE – 2007]

eE1 / T1 / K3 / L2 / V2 / R11 / AD [GATE – EE – 1995]

(B) – 24

(D) 36

-----00000-----

1 1 0   (01) The inverse of the matrix S = 1 1 1  is 0 0 1 

1 0 1    (A) 0 0 0  0 1 1 

www.targate.org

 0 1 1   (B)  1 1 1  1 0 1

Page 11

ENGINEERING MATHEMATICS 2 2 2   (C)  2 2 2   0 2 2 

 1 / 2 1 / 2 1 / 2  (D)  1 / 2 1 / 2 1 / 2     0 0 1 

eE1 / T1 / K3 / L2 / V1 / R11 / AA [GATE – CE – 1997]

0 1 0    (02) Inverse of matrix 0 0 1  is 1 0 0  0 0 1    (A) 1 0 0  0 1 0 

1 0 0    (B) 0 0 1  0 1 0 

1 0 0    (C) 0 1 0  0 0 1 

0 0 1    (D) 0 1 0  1 0 0 

(A) – 5

(B) 3

(C) – 3

(D) 5

eE1 / T1 / K3 / L2 / V2 / R11 / AA [GATE – PI – 2008]

0 1 0    (05) The inverse of matrix 1 0 0  is 0 0 1 

0 1 0    (A) 1 0 0  0 0 1 

 0 1 0    (B)  1 0 0   0 0 1

0 1 0    (C) 0 0 1  1 0 0 

 0 1 0    (D)  0 0 1  1 0 0 

eE1 / T1 / K3 / L2 / V2 / R11 / AA [GATE – EE – 1998] eE1 / T1 / K3 / L2 / V2 / R11 / AA [GATE – ME – 2009]

5 0 2    1 (03) If A = 0 3 0  then A =  2 0 1  0 2  1  0 1/ 3 0  (A)    2 0 5 

0 2 5  0 1/ 3 0  (B)    2 0 1 

 3 / 4 4 / 5 (06) For a matrix [M] =   . The transpose  x 3 / 5 of the matrix is equal to the inverse of the matrix, [ M ]T  [ M ]1. The value of x is given by

(A) 

1/ 5 0 1/ 2   (C)  0 1/ 3 0  1/ 2 0 1 

0 1 / 2   1/ 5  (D) 1/ 3 0   0  1 / 2 0 1 

(C)

3 5

4 5

(B) 

(D)

3 5

4 5

eE1 / T1 / K3 / L2 / V2 / R11 / AA [GATE – EE – 1999] eE1 / T1 / K3 / L2 / V2 / R11 / AB [GATE – CE – 2010]

1 2 1   (04) If A =  2 3 1  and ad(A) = 0 5 2 

 11 9 1   4 2 3   Then k =  10 k 7 

Page 12

i  3  2i (07) The inverse of the matrix  is 3  2i   i

(A)

i  1 3  2i  3  2i  2 i

(B)

i  1 3  2i  3  2i  12  i

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 01 – LINEAR ALGEBRA (C)

i  1 3  2i  3  2i  14  i

(D)

i  1 3  2i  14  i 3  2i 

(A) 5

(B) 7

(C) 9

(D) 18

eE1 / T1 / K4 / L0 / V1 / R11 / AC [GATE – CE – 2004]

-----00000-----

 4 2  (04) The eigen values of the matrix   are  2 1 

1.4 Eigen Values & Eigen Vectors (A) 1, 4

(B) – 1, 2

(C) 0, 5

(D) cannot be determined

Question Level – 00 (Basic Problem) eE1 / T1 / K4 / L0 / V1 / R11 / AA [GATE – EE – 1994] eE1 / T1 / K4 / L0 / V1 / R11 / AB [GATE – CS – 2005]

 a 1 (01) The Eigen values of the matrix   are  a 1

(A) (a  1),0

(B) a, 0

(C) (a  1),0

(D) 0, 0

 2 1 matrix?   4 5 

eE1 / T1 / K4 / L0 / V1 / R11 / AA [GATE – EE – 1998]

2 0 (02) A =  0   1

(05) What are the Eigen values of the following 2 x 2

0 0 1 1 0 0  the sum of the Eigen 0 3 0  0 0 4

Values of the matrix A is

(A) – 1, 1

(B) 1, 6

(C) 2, 5

(D) 4, -1

eE1 / T1 / K4 / L0 / V1 / R11 / AC [GATE – PI – 2005]

(06) The Eigen values of the matrix M given below

 8 6 2    are 15, 3 and 0. M =  6 7 4  , the value of  2 4 3  the determinant of a matrix is

(A) 10

(B) – 10

(C) 24

(D) 22

eE1 / T1 / K4 / L0 / V1 / R11 / AB [GATE – ME – 2004]

(A) 20

(B) 10

(C) 0

(D) – 10

eE1 / T1 / K4 / L0 / V1 / R11 / A [GATE – CS – 2008]

(07) How many of the following matrices have an (03) The sum of the eigen values of the matrix given

1 1 3   below is 1 5 1 3 1 1

Eigen value 1?

1 0 0 1 1 1  1 0  0 0 , 0 0 , 1 1  &  0 1        

www.targate.org

Page 13

ENGINEERING MATHEMATICS (A) One

(B) Two

(C) Three

(D) Four

eE1 / T1 / K4 / L1 / V1 / R11 / AD [GATE – EC – 1998]

0 1  (03) The eigen values of the matrix A =   are 1 0 

eE1 / T1 / K4 / L0 / V1 / R11 / AC [GATE – EE – 2009]

(08) The trace and determinant of a 2x2 matrix are shown to be -2 and -35 respectively. Its eigen

(A) 1, 1

(B) -1, -1

(C) j ,  j

(D) 1,  1

values are eE1 / T1 / K4 / L1 / V1 / R11 / AD [GATE – CE – 2001

(A) -30, -5

(B) -37, -1

(C) -7, 5

(D) 17.5, -2

-----00000-----

]

 5 3 (04) The eigen values of the matrix   are  2 9

(A) (5.13,9.42)

(B) (3.85,2.93)

(C) (9.00,5.00)

(D) (10.16,3.84)

Question Level – 01 eE1 / T1 / K4 / L1 / V1 / R11 / AA [GATE – CE – 2002] eE1 / T1 / K4 / L1 / V1 / R11 / AA [GATE – –1993]

(01) The eigen vector (s) of the matrix

0 0 α  0 0 0 , α  0 Is (are);    0 0 0 

(A)  0,0, α 

(B)  α ,0,0 

(C)  0,0,1

(D)  0, α ,0 

(05) Eigen values of the following matrix are

 1 4   4 1  

(A) 3, -5

(B) -3, 5

(C) -3, -5

(D) 3, 5

eE1 / T1 / K4 / L1 / V1 / R11 / A [GATE – IN – 2005] eE1 / T1 / K4 / L1 / V1 / R11 / AC [GATE – ME – 1996]

1 1 1   (02) The eigen values of 1 1 1 are 1 1 1

(A) 0, 0, 0

(B) 0, 0, 1

(C) 0, 0,3

(D) 1, 1, 1

Page 14

(06) Identify which one of the following is an eigen

1 0 vector of the matrix A =   1 2

T

(B) 3 1

T

(D)  2 1

(A)  1 1

(C) 1 1

T

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

T

TOPIC. 01 – LINEAR ALGEBRA eE1 / T1 / K4 / L1 / V1 / R11 / AB [GATE – CE – 2007]

2 (A)   1

 2 (B)   1 

 4 (C)   1 

1 (D)   1

(07) The minimum and maximum Eigen values of

1 1 3   Matrix 1 5 1 are -2 and 6 respectively. 3 1 1

eE1 / T1 / K4 / L1 / V1 / R11 / AD [GATE – CS – 2010]

What is the other Eigen value?

(A) 5

(B) 3

(C) 1

(D) -1

2 (11) Consider the following matrix A =  x

3 . If y 

the eigen values of A are 4 and 8 then

eE1 / T1 / K4 / L1 / V1 / R11 / AD [GATE – EC – 2008]

(A) x = 4, y = 10

(B) x = 5, y = 8

(C) x = -3, y = 9

(D) x = -4, y = 10

(08) All the four entries of 2 x 2 matrix P =

 p11 p  21

p12  are non-zero and one of the Eigen p22 

values is zero. Which of the following statement

eE1 / T1 / K4 / L1 / V2 / R11 / AA [GATE – CS – 2002]

(12) Obtain the eigen values of the matrix A =

is true?

(A) P11P22  P12 P21  1

(B) P11P22  P12 P21  1

(C) P11P22  P21P12  0

(D) P11P22  P12 P21  0

eE1 / T1 / K4 / L1 / V1 / R11 / AB [GATE – CE – 2008]

4 5  (09) The eigen values of the matrix [P] =   are  2 5

(A) – 7 and 8

(B) – 6 and 5

(C) 3 and 4

(D) 1 and2

1 0  0  0

2 34 2 43

49  94  0 2 104   0 0 1 

(A) 1,2,-2,-1

(B) -1,-2,-1,-2

(C) 1,2,2,1

(D) None

-----00000-----

Question Level – 02 eE1 / T1 / K4 / L1 / V1 / R11 / AA [GATE – ME – 2010]

(10) One of the eigen vector of the matrix A =

 2 2 1 3 is  

eE1 / T1 / K4 / L2 / V2 / R11 / AC [GATE – EE – 1998]

1   (01) The vector  2  is an eigen vector of A = 1

www.targate.org

Page 15

ENGINEERING MATHEMATICS eE1 / T1 / K4 / L2 / V2 / R11 / AA [GATE – ME – 2006]

 2 2 3  2 1 6    one of the eigen value of A is  1 2 0 

 3 2 (04) Eigen values of a matrix S =   are 5 and 1.  2 3

(A) 1

(B) 2

What are the Eigen values of the matrix S2 = SS?

(C) 5

(D) -1

(A) 1 and 25

(B) 6, 4

(C) 5, 1

(D) 2, 10

eE1 / T1 / K4 / L2 / V2 / R11 / AB [GATE – EC – 2000]

 2 1 0 0 3 0 (02) The eigen values of the matrix   0 0 2   0 0 1

0 0  0  4

are

(A) 2, -2, 1, -1

(B) 2, 3, -2, 4

(C) 2, 3, 1, 4

(D) None

eE1 / T1 / K4 / L2 / V1 / R11 / AB [GATE – ME – 2007]

(05) The number of linearly independent eigen vectors

2 1 of   is  0 2

(A) 0

(B) 1

(C) 2

(D) Infinite

eE1 / T1 / K4 / L2 / V2 / R11 / AD [GATE – EE – 2005] eE1 / T1 / K4 / L2 / V2 / R11 / AC [GATE – ME – 2008]

 3 2 2    (03) For the matrix P = 0 2 1  , one of the Eigen 0 0 1 

1 2 4    (06) The matrix 3 0 6  has one eigen value to 3. 1 1 p 

A value is – 2. Which of the following is an The sum of the other two eigen values is

Eigen vector?

3   (A)  2  1  

1   (C)  2   3 

Page 16

 3   (B)  2   1

 2   (D)  5   0 

(A) p

(B) p – 1

(C) p – 2

(D) p – 3

eE1 / T1 / K4 / L2 / V2 / R11 / AB [GATE – ME – 2008]

1 2  (07) The eigen vectors of the matrix   are 0 2   1  1  written in the form   &   . What is a+ b?  a  b 

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 01 – LINEAR ALGEBRA (A) 0

(B) 1/2

(C) 1

(D) 2

eE1 / T1 / K4 / L2 / V2 / R11 / AB [GATE – EE – 2010]

eE1 / T1 / K4 / L2 / V2 / R11 / AA [GATE – PI – 2008]

3 4  (08) The eigen vector pair of the matrix   is  4 3

1 1 0    (11) An eigen vector of p = 0 2 2  is 0 0 3 

T

(B) 1 2 1

T

(D)  2 1 1

(A)  1 1 1

(C) 1 1 2

 2  1  (A)     1  2

 2  1  (B)     1   2 

T

T

eE1 / T1 / K4 / L2 / V2 / R11 / AB [GATE – PI – 2011]

(12) The Eigen values of the following matrix

 2  1  (C)      1   2

10 4  18 12  are  

 2 1 (D)      1  2 

(A) 4, 9

(B) 6, - 8

(C) 4, 8

(D) – 6, 8

eE1 / T1 / K4 / L2 / V2 / R11 / AC [GATE – EC – 2006]

 4 2 (09) For the matrix   . The eigen value  2 4 101 corresponding to the eigen vector   is 101

(A) 2

(B) 4

(C) 6

(D) 8

eE1 / T1 / K4 / L2 / V2 / R11 / AD [GATE – EC – 2009]

(13) The eigen values of the following matrix

 1 3 5   3 1 6    are  0 0 3

(A) 3, 3  5 j,6  j

(B) 6  5 j,3  j,3  j

(C) 3  j,3  j,5  j

(D) 3, 1  3 j, 1  3 j

eE1 / T1 / K4 / L2 / V2 / R11 / AB [GATE – CE – 2006]

 2 2 3    (10) For a given matrix A =  2 1 6  , one of the  1 2 0  eigen value is 3. The other two eigen values are

(A) 2, -5

(B) 3, -5

eE1 / T1 / K4 / L2 / V2 / R11 / AB [GATE – IN – 2011]

 2 2 3   (14) The matrix M =  2 1 6  has eigen values  1 2 0  -3, -3, 5. An eigen vector corresponding to the T

eigen value 5 is 1 2 1 . One of the eigen (C) 2, 5

(D) 3, 5

vector of the matrix M3 is

www.targate.org

Page 17

ENGINEERING MATHEMATICS T

T

(A) 1 8 1

(C) 1 

3

1

2

(B) 1 2 1 T

T

(D) 1 1 1

Question Level – 03 eE1 / T1 / K4 / L3 / V2 / R11 / AB [GATE – PI – 2007]

(01) If A is square symmetric real valued matrix of

eE1 / T1 / K4 / L2 / V2 / R11 / AA [GATE – CS – 2011]

1 2 3    (15) Consider the matrix as given below 0 4 7  . 0 0 3  Which one of the following options provides the

dimension 2n, then the eigen values of A are (A) 2n distinct real values

(B) 2n real values not necessarily distinct

correct values of the eigen values of the matrix? (C) n distinct pairs of complex conjugate (A) 1, 4, 3

(B) 3, 7, 3

(C) 7, 3, 2

(D) 1, 2, 3

numbers

(D) n pairs of complex conjugate numbers, not necessarily distinct

eE1 / T1 / K4 / L2 / V2 / R11 / AA [GATE – PI – 2010]

(16) If {1,0, 1}T is an eigen vector of the following

eE1 / T1 / K4 / L3 / V2 / R11 / AA [GATE – EC – 2006]

(02) The eigen values and the corresponding eigen

 1 1 0    matrix  1 2 1 then the corresponding  0 1 1 

eigen value is

(A) 1

(C) 3

vectors of a 2x2 matrix are given by

Eigen Value

Eigen Vector

λ1  8

1 V1    1

λ2  4

1 V2     1

(B) 2

(D) 5

eE1 / T1 / K4 / L2 / V3 / R11 / AC [GATE – IN – 2009]

The matrix is

(17) The eigen values of a 2  2 matrix X are -2 and 3. The eigen values of matrix ( X  I ) 1 ( X  5 I ) are

(A) – 3, - 4

(C) -1, -3

 6 2 (A)    2 6

 4 6 (B)    6 4

 2 4 (C)    4 2

4 8 (D)   8 4 

(B) -1, -2

(D) -2, -4

eE1 / T1 / K4 / L3 / V2 / R11 / AA [GATE – ME – 2005]

-----00000-----

Page 18

(03) Which one of the following is an eigen vector of

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 01 – LINEAR ALGEBRA 5 0 the matrix  0  0

eE1 / T1 / K4 / L3 / V3 / R11 / AB [GATE – CE – 2007]

0 0 0 5 0 0 is 0 2 1  0 3 1 T

T

(07) X =  x1 x2 ........... xn  is an n – tuple non zero vector. The n x n matrix V = XXT T

(A) 1 2 0 0 

(B) 0 0 1 0

T

(A) has rank zero

(B) has rank 1

(C) is orthogonal

(D) has rank n

T

(C) 1 0 0 2 

(D) 1 1 2 1

eE1 / T1 / K4 / L3 / V2 / R11 / AA [GATE – IN – 2010]

-----00000-----

(04) A real nxn matrix A = aij  is defined as follows

aij  i,  i  j    0, otherwise

1.5 Rank

The sum of all n eigen values of A is

(A)

n(n  1) 2

(B)

Question Level – 00 (Basic Problem)

n(n  1) 2

eE1 / T1 / K5 / L0 / V1 / R11 / AA [GATE – EC – 1994]

(01) The rank of (m x n) matrix (m < n) cannot be more than

n( n  1)(2n  1) (C) 2

2

(D) n

(A) m

(B) n

(C) mn

(D) None

eE1 / T1 / K4 / L3 / V2 / R11 / A [GATE – EE – 2011]

(05) The two vectors

1

1 1 and 1 a a 2 

1 3 where a    j and j  1 are 2 2

eE1 / T1 / K5 / L0 / V1 / R11 / AC [GATE – CS – 2002]

(A) Orthonormal

(B) Orthogonal

(C) Parallel

(D) Collinear

1 1  (02) The rank of the matrix   is 0 0 

(A) 4

(B) 2

(C) 1

(D) 0

eE1 / T1 / K4 / L3 / V3 / R11 / AA [GATE – EE – 2007]

(06)

q1 , q2 , q3 ,........qm are n-dimensional vectors with

eE1 / T1 / K5 / L0 / V1 / R11 / AC [GATE – EE – 1994]

m < n. This set of vectors is linearly dependent.

(03) A 5x7 matrix has all its entries equal to -1. Then

Q is the matrix with q1 , q2 , q3 ,.......qm as the

the rank of a matrix is

columns. The rank of Q is (A) Less than m

(B) m

(A) 7

(B) 5

(C) Between m and n

(D) n

(C) 1

(D) Zero

www.targate.org

Page 19

ENGINEERING MATHEMATICS eE1 / T1 / K5 / L1 / V1 / R11 / AA [GATE – EE – 1995]

Question Level – 01

(05) The rank of the following (n+1) x (n+1) matrix, eE1 / T1 / K5 / L1 / V1 / R11 / AA [GATE – EE – 1994]

where ‘a’ is a real number is

(01) The number of Linearly independent solutions of

1 0 2   x1      the system of equations 1 1 0   x2  =0 is  2 2 0   x3  equal to

1 a a 2  2 1 a a .  .  2 1 a a

.

.

.

.

.

.

.

.

.

an   an      an 

(A) 1

(B) 2

(A) 1

(B) 2

(C) 3

(D) 0

(C) n

(D) depends on the value of a

eE1 / T1 / K5 / L1 / V1 / R11 / AC [GATE – CS – 1994]

----00000-----

0 0 3   (02) The rank of matrix 9 3 5  is 3 1 1 

Question Level – 02 eE1 / T1 / K5 / L2 / V2 / R11 / AD [GATE – CS – 1998]

(A) 0

(C) 2

(B) 1

(D) 3

eE1 / T1 / K5 / L1 / V1 / R11 / AB [GATE – EC –]

0 2 2   (03) Rank of the matrix  7 4 8  is 3  7 0 4 

(A) True

1 4 8 0 0 3 (01) The rank of the matrix  4 2 3   3 12 24

(A) 3

(B) 1

(C) 2

(D) 4

7 0  is 1  2

(B) False eE1 / T1 / K5 / L2 / V2 / R11 / AC [GATE – EC – 2006]

eE1 / T1 / K5 / L1 / V1 / R11 / AC [GATE – IN – 2000]

1 2 3   (04) The rank of matrix A =  3 4 5 is  4 6 8

(A) 0

(C) 2

Page 20

1 1 1   (02) The rank of the matrix 1 1 0 is 1 1 1

(A) 0

(B) 1

(C) 2

(D) 3

(B) 1

(D) 3

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 01 – LINEAR ALGEBRA Question Level – 03

1.6 Solution of Linear Equation

eE1 / T1 / K5 / L3 / V2 / R11 / AC [GATE – CE – 2003]

 4 2 1 3   (01) Given matrix [A] =  6 3 4 7  , the rank of  2 1 0 1  the matrix is

Question Level – 01 eE1 / T1 / K6 / L1 / V1 / R11 / AB [GATE – EC – 1994]

(01) Solve the following system

x1  x2  x3  3

(A) 4

x1  x3  0

(B) 3

x1  x2  x3  1 (C) 2

(D) 1 (A) Unique solution

eE1 / T1 / K5 / L3 / V2 / R11 / AB [GATE – IN – 2007]

(02) Let A = [ aij ],1  i, j  n with n  3 and aij  i. j .

(B) No solution

Then the rank of A is (C) Infinite number of solutions (A) 0

(B) 1 (D) Only one solution

(C) n – 1

(D) n eE1 / T1 / K6 / L1 / V1 / R11 / AC [GATE – ME – 1996]

eE1 / T1 / K5 / L3 / V2 / R11 / AA [GATE – EE – 2008]

(02) In the Gauss – elimination for a solving system of

(03) If the rank of a 5x6 matrix Q is 4 then which one

linear algebraic equations, triangularization leads

of the following statements is correct?

to

(A) Q will have four linearly independent rows

(A) diagonal matrix

and four linearly independent columns (B) lower triangular matrix (B) Q will have four linearly independent rows and five linearly independent columns (C) QQT will be invertible. (D) QT Q will be invertible.

(C) upper triangular matrix

(D) singular matrix eE1 / T1 / K6 / L1 / V1 / R11 / AB [GATE – IN – 2005]

(03) Let A be 3  3 matrix with rank 2. Then AX = O has -----00000----(A) Only the trivial solution X = 0

(B) One independent solution

www.targate.org

Page 21

ENGINEERING MATHEMATICS Question Level – 02 (C) Two independent solutions eE1 / T1 / K6 / L2 / V2 / R11 / AB [GATE – CS – 2003]

(D) Three independent solutions

(01) A system of equations represented by AX = 0 where X is a column vector of unknown and A is

eE1 / T1 / K6 / L1 / V1 / R11 / A [GATE – CS – 2004]

(04) How many solutions does the following system of linear equations have

 x  5 y  1 x y 2

a matrix containing coefficient has a non-trivial solution when A is.

(A) non-singular

(B) singular

(C) symmetric

(D) Hermitian

eE1 / T1 / K6 / L2 / V2 / R11 / AB [GATE – CS – 1998]

(02) Consider

x  3y  3

the

following

set

of

equations

x  2 y  5, 4x  8 y  12, 3x  6 y  3z  15. This set (A) Infinitely many (A) has unique solution (B) Two distinct solutions (B) has no solution (C) Unique (C) has infinite number of solutions (D) None (D) has 3 solutions eE1 / T1 / K6 / L1 / V1 / R11 / AC [GATE – EC –]

(05) The value of q for which the following set of linear equations 2x + 3y = 0, 6x + qy = 0 can

eE1 / T1 / K6 / L2 / V2 / R11 / AB [GATE – CE – 2005]

(03) Consider the following system of equations in three real variable x1 , x2 and x3 :

have non-trival solution is

2 x1  x2  3x3  1 (A) 2

(B) 7

3x1  2x2  5x3  2  x1  4 x2  x3  3

(C) 9

(D) 11 This system of equations has

(A) No solution -----00000----(B) A unique solution

Page 22

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 01 – LINEAR ALGEBRA (C) More than one but a finite number of

eE1 / T1 / K6 / L2 / V2 / R11 / AD [GATE – IN – 2006]

(07) A system of linear simultaneous equations is

solutions.

given as AX = b (D) An infinite number of solutions. eE1 / T1 / K6 / L2 / V2 / R11 / AD [GATE – CE – 2005]

(04) Consider a non-homogeneous system of linear equations represents mathematically an over

1 0 Where A =  1  0

0 1 0 1 0 1  &b= 1 0 0  0 0 1

0  0    0    1 

Then the rank of matrix A is

determined system. Such a system will be (A) Consistent having a unique solution

(A) 1

(B) 2

(B) Consistent having many solutions.

(C) 3

(D) 4

(C) Inconsistent having a unique solution.

eE1 / T1 / K6 / L2 / V2 / R11 / AB [GATE – EC –]

(08) A system of linear simultaneous equations is

(D) Inconsistent having no solution.

given as Ax  b eE1 / T1 / K6 / L2 / V2 / R11 / AA [GATE – EE – 2005]

(05) In the matrix equation PX = Q which of the following is a necessary condition for the existence of at least one solution one solution for

1 0 Where A =  1  0

0 1 0 1 0 1  &b= 1 0 0  0 0 1

0  0    0    1 

the unknown vector X. Which of the following statement is true? (A) Augmented matrix [P|Q] must have the same rank as matrix P.

(A) x is a null vector

(B) Vector Q must have only non-zero elements.

(B) x is unique

(C) Matrix P must be singular

(C) x does not exist

(D) x has infinitely many values

(D) Matrix p must be square

eE1 / T1 / K6 / L2 / V2 / R11 / AD [GATE – CE – 2006] eE1 / T1 / K6 / L2 / V1 / R11 / AB [GATE – ME – 2005]

(06) A is a 3  4 matrix and AX = B is an inconsistent system of equations. The highest possible rank of

(09) Solution for the system defined by the set of equations 4 y  3z  8,2x  z  2 & 3x  2 y  5 is

A is

(A) 1

(B) 2

(C) 3

(D) 4

(A) x  0, y  1, z  4 / 5

(B) x  0, y  1/ 2, z  2

www.targate.org

Page 23

ENGINEERING MATHEMATICS (C) x  1, y  1/ 2, z  2 eE1 / T1 / K6 / L2 / V2 / R11 / A [GATE – IN – 2010]

(13) X and Y are non-zero square matrices of size

(D) Non existent

nxn. If XY = Onxn then eE1 / T1 / K6 / L2 / V2 / R11 / AA [GATE – CE – 2007]

(10) For what values of α and β the following

(A) | X | 0 and | Y | 0

simultaneous equations have an infinite number of

solutions

x  y  z  5,

x  3y  3z  9,

x  2 y  αz = β

(B) | X | 0 and | Y | 0

(C) | X | 0 and | Y | 0

(A) 2, 7

(B) 3, 8

(C) 8, 3

(D) 7, 2

(D) | X | 0 and | Y | 0

eE1 / T1 / K6 / L2 / V2 / R11 / AC [GATE – ME – 2011]

(14) Consider the following system of equations eE1 / T1 / K6 / L2 / V2 / R11 / A [GATE – CE – 2008]

(11) The following system of equations x  y  z  3,

x  2 y  3z  4, x  4 y  k  6 will not have a unique solution for k equal to

2 x1  x2  x3  0, x2  x3  0 and x1  x2  0 . This system has

(A) A unique solution

(A) 0

(B) 5

(B) No solution

(C) 6

(D) 7

(C) Infinite number of solution

eE1 / T1 / K6 / L2 / V2 / R11 / AD [GATE – EE – 2010]

(D) Five solutions

(12) For the set of equations x1  2 x2  x3  4 x4  2,

3x1  6 x2  3x3  12 x4  6.

The

following

eE1 / T1 / K6 / L2 / V2 / R11 / AB [GATE – EC – 2008]

statement is true (15) The system of linear equations (A) Only the trivial solution x1  x2  x3  x4  0

4x  2 y  7  has 2x  y  6 

exist (A) A unique solution (B) There are no solutions (B) No solution (C) A unique non-trivial solution exist (C) An infinite no. of solution (D) Multiple non-trivial solution exist (D) Exactly two distinct solution.

Page 24

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 01 – LINEAR ALGEBRA (19) In the solution of the following set of linear eE1 / T1 / K6 / L2 / V2 / R11 / AB [GATE – EC –]

(16) The value of x3 obtained by solving the following

equations by Gauss-elimination using partial pivoting

5x  y  2z  34,

4 y  3z  12

and

system of linear equations is

10x  2 y  z  4. The pivots for elimination of

x1  2x2  2 x3  4

x and y are

2 x1  x2  x3  2

(A) 10 and 4

(B) 10 and 2

(C) 5 and 4

(D) 5 and – 4

 x1  x2  x3  2 (A) – 12

(B) - 2

(C) 0

(D) 12

Question Level – 03 eE1 / T1 / K6 / L3 / V2 / R11 / AB [GATE – CS – 1996] eE1 / T1 / K6 / L2 / V2 / R11 / AB [GATE – EC – 2011]

(01) Let AX = B be a system of linear equations

x yz 6 ,

where A is an m  n matrix B is an m  1 column

(17) The

system

of

equations

x  4 y  6z  20, and x  4 y  λz  μ has no solution for values of λ and μ given by

(A) λ  6, μ  20

(B) λ  6, μ  20

matrix which of the following is false? (A) The system has a solution, if ρ( A)  ρ( A / B) (B) If m = n and B is a non – zero vector then the system has a unique solution

(C) λ  6, μ= 20

(D) λ  6, μ  20 (C) If m < n and B is a zero vector then the

eE1 / T1 / K6 / L2 / V2 / R11 / AC [GATE – EC –]

system has infinitely many solutions.

(18) For the following set of simultaneous equations (D) The system will have a trivial solution when

1.5x  0.5 y  z  2

m = n , B is the zero vector and rank of A is

4 x  2 y  3z  0

n.

7x  y  5z  10 eE1 / T1 / K6 / L3 / V2 / R11 / AB [GATE – EE – 1998]

(A) the solution is unique

(02) A set of linear equations is represented by the matrix equations Ax = b. The necessary condition

(B) infinitely many solutions exist

for the existence of a solution for this system is

(C) the equations are incompatible

(A) must be invertible

(D) finite many solutions exist

(B) b must be linearly dependent on the columns of A

eE1 / T1 / K6 / L2 / V3 / R11 / AA [GATE – CE – 2009]

(C) b must be linearly independent on the columns of A

www.targate.org

Page 25

ENGINEERING MATHEMATICS (C) 1 (D) None eE1 / T1 / K6 / L3 / V2 / R11 / AB [GATE – IN – 2007]

(03) Let A be an n x n real matrix such that A2 = I and

(D) There is no such value

1.7 Miscellaneous

Y be an n-dimensional vector. Then the linear system of equations Ax = Y has (A) No solution (B) unique solution

Question Level – 00 (Basic Problem) eE1 / T1 / K7 / L0 / V1 / R11 / AB [GATE – CS – 2004]

(01) Let A, B,C, D be n  n matrices, each with nonzero determinant. ABCD = I then B 1 =

(C) More than one but infinitely many dependent solutions. (D) Infinitely many dependent solutions eE1 / T1 / K6 / L3 / V2 / R11 / AB [GATE – EE – 2007]

(04) Let x and y be two vectors in a 3 – dimensional

(A) D1C 1 A1

(B) CDA

(C) ABC

(D) Does not exist

eE1 / T1 / K7 / L0 / V1 / R11 / AA [GATE – CE – 1997]

(02) If A and B are two matrices and if AB exist then

space and  x, y  denote their dot product. Then

BA exists.

  x, x   x , y   the determinant det   =_____   y, x   y , y  

(A) Only if A has as many rows as B has columns

(A) Is zero when x and y are linearly independent (B) Only if both A and B are square matrices (B) Is positive when x and y are linearly independent

(C) Is non-zero for all non-zero x and y

(D) Is zero only when either x(or) y is zero eE1 / T1 / K6 / L3 / V2 / R11 / AB [GATE – ME – 2008]

(C) Only if A and B are skew matrices

(D) Only if both A and B are symmetric

-----00000-----

Question Level – 01

(05) For what values of ‘a’ if any will the following system of equations in x, y are z have a solution?

2x  3 y  4, x  y  z  4, x  2 y  z  a

eE1 / T1 / K7 / L1 / V1 / R11 / AC [GATE – CS – 1997]

(01) Let Anxn be matrix of order n and I12 be the matrix obtained by interchanging the first.

(A) Any real number (A) Row is the same as its second row (B) 0 (B) row is the same as second row of A

Page 26

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 01 – LINEAR ALGEBRA (C) column is the same as the second column of

(D) Row is a zero row. eE1 / T1 / K7 / L1 / V1 / R11 / AC [GATE – CE – 1999]

35 22 (C)   61 42

32 56 (D)   24 46

(02) If A is any n  n matrix and k is a scalar then

| kA | α | A | where α is

eE1 / T1 / K7 / L1 / V1 / R11 / AC [GATE – CS – 2004]

(06) The (A) kn

(B) nk

(C) k n

(D)

number

of

different

n  n symmetric

matrices with each elements being either 0 or 1 is

k n

n (A) 2

eE1 / T1 / K7 / L1 / V1 / R11 / AB [GATE – CE – 1999]

(03) The number of terms in the expansion of general

(C)

n2  n 2 2

2

n (B) 2

(D)

n2 n 2 2

determinant of order n is eE1 / T1 / K7 / L1 / V1 / R11 / AD [GATE – EC – 2005]

(A) n2

(B) n!

(C) n

(D) (n  1) 2

 4 2  (07) Given the matrix   , the eigen vector is  4 3

eE1 / T1 / K7 / L1 / V1 / R11 / AB [GATE – CE – 2001]

(04) The

determinant

of

the following

(B) – 28

(C) 28

(D) 72

 4 (B)    3

2 (C)   1

 2 (D)   1

matrix

5 3 2  1 2 6    3 5 10

(A) – 76

 3 (A)    2

Question Level – 02 eE1 / T1 / K7 / L2 / V1 / R11 / A [GATE – PI – 1994]

1 1 (01) For the following matrix   the number of 2 3  eE1 / T1 / K7 / L1 / V1 / R11 / AA [GATE – CE – 2001]

(05) The product [P] [Q]T of the following two

2 3 matrices [P] and [Q] is where [P] =  , 4 5  4 8 [Q]    9 2 

positive roots is

(A) One

(B) Two

(C) Four

(D) Cannot be found

eE1 / T1 / K7 / L2 / V2 / R11 / AB [GATE – PI – 1995]

32 24 (A)   56 46

46 56 (B)   24 32

www.targate.org

Page 27

ENGINEERING MATHEMATICS 2 1  3 2   (02) Given matrix L =  3 2  and M =  then 0 1    4 5  L x M is

 8 1   (A) 13 2  22 5 

6 5   (B)  9 8  12 13

1 8    (C)  2 13   5 22

6 2    (D) 9 4  0 5 

(A) 4

(B) 0

(C) 15

(D 20

eE1 / T1 / K7 / L2 / V2 / R11 / AA [GATE – CE – 2005]

(06) Consider the matrices X4x3, Y4x3, and P2x3. The T

order of  P ( X T Y ) 1 P T  will be

eE1 / T1 / K7 / L2 / V2 / R11 / AC [GATE – ME – 1995]

(03) Among the following, the pair of the vector orthogonal to each other is

(A) 2x2

(B) 3x3

(C) 4x3

(D) 3x4

eE1 / T1 / K7 / L2 / V2 / R11 / AA [GATE – EC –2005]

(07) The determinant of the matrix given below is 0 1  1 1  0 0   1 2

(A) 3, 4, 7 , 3, 4, 7

0 2 1 3  0 1  0 1

(B) 1, 0, 0 , 1, 1, 0 (C) 1, 0, 2 ,  0, 5, 0 (D) 1, 1, 1 ,  1, 1, 1

eE1 / T1 / K7 / L2 / V2 / R11 / AC [GATE – EE – 2002]

(04) The

determinant

0 0  1 100 1 0  100 200 1  100 200 300

of

the

matrix

0 0 is 0  1

(A) 100

(B 200

(C) 1

(D) 300

Page 28

(B) 0

(C) 1

(D) 2

eE1 / T1 / K7 / L2 / V2 / R11 / AB [GATE – EE – 2005]

1 0 1   (08) If R = 2 1 1 then the top row of R 1 is 2 3 2  (A) 5 6 4

(B) 5 3 1

(C)  2 0 1

(D)  2 1 0

eE1 / T1 / K7 / L2 / V2 / R11 / AA [GATE – EE – 2005]

eE1 / T1 / K7 / L2 / V2 / R11 / AA [GATE – CS – 2000]

2 8 (05) The determinant of the matrix  2  9

(A) -1

0 0 0 1 7 2 is 0 2 0  0 6 1

 2 0.1 (09) If A =  and 3  0

1 / 2 a  A1     0 b

a  b  __________

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

then

TOPIC. 01 – LINEAR ALGEBRA (A)

7 20

(B)

3 20

2 1  (12) The matrix [A] =   is decomposed into a  4 1 product of lower triangular matrix [L] and an

(C)

19 60

(D)

11 20

upper triangular [U]. The property decomposed [L] and [U] matrices respectively are

eE1 / T1 / K7 / L2 / V2 / R11 / AC [GATE – IN – 2006]

1 0  1 1  (A)  and     4 1 0 2 

(10) For a given 2x2 matrix A, it is observed that

1 1 A    1   1  1

and

1 A   2 

and

1 0  2 1  (B)  and    2 1  0 3

1 1 A    2   then the matrix A is  2  2 1 0  2 1  (C)  and    4 1  0 1

 2 1  1 0   1 1  (A) A       1 1  0 2  1 2

2 0  (D)   and  4 3

1 0.5 0 1   

 1 1  1 0   2 1  (B) A       1 2 1 2  1 1 -----00000-----

 1 1   1 0   2 1  (C) A       1 2  0 2  1 1

Question Level – 03 eE1 / T1 / K7 / L3 / V2 / R11 / AA [GATE – CS – 1996]

0 2 (D) A    1 3

(01) The

eE1 / T1 / K7 / L2 / V2 / R11 / AD [GATE – ME – 2011]

2 4 4 6 (11) If a matrix A =  and matrix B =    1 3  5 9

matrices

cos θ  sin θ   sin θ cos θ   

and

 a 0  0 b  

commute under multiplication.

(A) If a = b (or) θ  nπ , n is an integer

the transpose of product of these two matrices (B) Always

i.e., ( AB)T is equal to

(C) never

 28 19  (A)   34 47 

19 34  (B)    47 28

 48 33 (C)    28 19 

 28 19  (D)    48 33

(D) If a cos θ  b sin θ

eE1 / T1 / K7 / L3 / V2 / R11 / AB [GATE – CE – 1999]

eE1 / T1 / K7 / L2 / V2 / R11 / AB [GATE – EE – 2011]

www.targate.org

Page 29

ENGINEERING MATHEMATICS

(02) The

equation

2

1

1

1

1

1  0

y

2

x

(05) Consider represents

a

x

system

of

equations,

Ann X n1  λX n1 where λ is a scalar. Let

 λi , X i 

parabola passing through the points.

the

be an eigen value and its corresponding

eigen vector for real matrix A. Let Inxn be unit (A) (0,1), (0,2),(0,-1)

(B) (0,0), (-1,1),(1,2) matrix. Which one of the following statement is

(C) (1,1), (0,0), (2,2)

(D) (1,2), (2,1), (0,0)

eE1 / T1 / K7 / L3 / V2 / R11 / AC [GATE – EC –2004]

(03) What values of x, y, z satisfy the following system of linear equations

not correct?

(A) For a homogeneous nxn system of linear equations (A- λ I) is less than n. (B) For matrix Am, m being a positive integer, ( λim , X im ) will be eigen pair for all i.

 1 2 3  x   6   1 3 4  y    8        2 2 3   z  12 

T 1 (C) If A  A then | λi | 1 for all i. T (D) If A  A then λi are real for all i.

(A) x = 6, y = 3, z = 2

eE1 / T1 / K7 / L3 / V2 / R11 / AC [GATE – ME – 2006]

(06) Multiplication of matrices E and F is G. Matrices (B) x = 12, y = 3, z = -4

cos θ  sin θ 0   E and G are E =  sin θ cos θ 0 and G =  0 0 1 

(C) x = 6, y= 6, z = -4

1 0 0  0 1 0    . What is the matrix F? 0 0 1 

(D) x = 12, y = -3, z = 4 eE1 / T1 / K7 / L3 / V2 / R11 / AB [GATE – EC –2004]

(04) If

matrix

X

=

a 1    2   a  a  1 1  a 

and

cos θ  sin θ 0   (A)  sin θ cos θ 0  0 0 1 

X 2  X  I  0. Then the inverse of X is

1  a 1 (A)  2  a  a

1  1 a (B)  2  a  a  1 a 

a 1    a2  a  1 a  (C)  2  (D)   1 1  a  a  a  1 a  1  eE1 / T1 / K7 / L3 / V2 / R11 / AB [GATE – CE – 2005]

Page 30

 cos θ cos θ 0   (B)   cos θ sin θ 0   0 0 1   cos θ sin θ 0   (C)   sin θ cos θ 0  0 0 1 

 sin θ  cos θ 0    (D) cos θ sin θ 0   0 0 1 

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 01 – LINEAR ALGEBRA eE1 / T1 / K7 / L3 / V2 / R11 / AA [GATE – CS – 2000]

2 (A) P  P  2I

2 (B) P  P  I

(C) ( P 2  P  I )

(D) ( P 2  P  2 I )

(07) An n  n array V is defined as follows V[i,j] = i  j for all i, j, 1  i, j  n then the sum of the

elements of the array V is

(A) 0

(B) n – 1

(C) n2  3n  2

(D) n(n  1)

-----00000-----

1.8 CALY- HAMILTON Question Level – 01 eE1 / T1 / K8 / L1 / V1 / R11 / AC [GATE – CE – 2007]

 3 2 (01) If A =   then A satisfies the relation  1 0

1

(A) A + 3I + 2 A = O

(B) A2  2 A  2I  O

(C) ( A  I )( A  2I )  O (D) e A  O

eE1 / T1 / K8 / L1 / V1 / R11 / AA [GATE – EE – 2007]

 3 2 9 (02) If A =  then A equals   1 0

(A) 511 A + 510 I

(B) 309 A + 104 I

(C) 154 A + 155 I

(D) e9 A

Question Level – 02 eE1 / T1 / K8 / L2 / V2 / R11 / AD [GATE – EE – 2008]

(01) The characteristic equation of a 3x3 matrix P is defined as α ( λ) | λI  P | λ3  2 λ  λ 2  1  0.

If I denotes identity matrix then the inverse of P will be

www.targate.org

Page 31

02 Calculus Complete subtopic in this chapter, is in the scope of “GATE- CS/ME/EC/EE SYLLABUS”, Note: Subtopic “2.7 Vector Calculus” is excluded in GATE- CS SYLLABUS.

2.1 Mean Value theorem

2.2 Maxima and Minima

Question Level – 01

Question Level – 00 (Basic Problem)

eE1 / T2 / K1 / L1 / V1 / R11 / AC [GATE – – 1994]

eE1 / T2 / K2 / L0 / V1 / R11 / AB [GATE – – ]

(01) The value of ε in the mean value theorem of

(01) A point on the curve is said to be an extremum

f(B)



f(A)

=

(b



a)

f’( ε)

for

f ( x)  Ax 2  Bx  C in (a, b) is

if it is a local minimum (or) a local maximum. The number of distinct extreme for the curve

3x4  16 x3  24 x2  37 is ___________ (A) b  a

(C)

(B) b  a

ba 2

(D)

ba 2

(A) 0

(B) 1

(C) 2

(D) 3

-----00000-----

-----00000-----

Question Level – 02

Question Level – 03 eE1 / T2 / K1 / L3 / V2 / R11 / AB [GATE – – 1995]

eE1 / T2 / K2 / L2 / V2 / R11 / AB [GATE – – 1994]

(01) The function y  x 2 

250 at x = 5 attains x

value theorem are ____________

(A) Maximum

(B) Minimum

(A) 1.9, 2.2

(B) 2.2, 2.25

(C) Neither

(D) 1

(C) 2.25, 2.5

(D) None of the above

eE1 / T2 / K2 / L2 / V2 / R11 / AA [GATE – – 1995]

(01) If f(0) = 2 and f’(x) =

1 , then the lower 5  x2

and upper bounds of f(1) estimated by the mean

(02) The function f(x) = x3  6 x2  9 x  25 has -----00000-----

Page 32

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 02 – CALCULUS (A) A maxima at x = 1 and minima at x = 3

eE1 / T2 / K2 / L2 / V2 / R11 / AA [GATE – EC – 2007]

(06) Consider the function f(x) = x2  x  2. the (B) A maxima at x = 3 and a minima at x = 1

maximum value of f(x) in the closed interval [4, 4] is

(C) No maxima, but a minima at x = 3 (A) 18

(B) 10

(C) – 2.25

(D) indeterminate

(D) A maxima at x = 1, but no minima eE1 / T2 / K2 / L2 / V2 / R11 / AC [GATE – CS – 1997]

(03) What is the maximum value of the function eE1 / T2 / K2 / L2 / V2 / R11 / AC [GATE – IN – 2008]

f ( x)  2 x 2  2 x  6 in the interval [0, 2]?

(07) Consider the function

y  x 2  6 x  9. The

maximum value of y obtained when x varies (A) 6

(B) 10

over the internal 2 to 5 is

(C) 12

(D) 5.5

(A) 1

(B) 3

(C) 4

(D) 9

eE1 / T2 / K2 / L2 / V2 / R11 / AA [GATE – ME – 2005] 3

2

(04) The function f(x) = 2 x  3x  36 x  2 has its maxima at

eE1 / T2 / K2 / L2 / V2 / R11 / AA [GATE – EC – 2008]

(08) For real values of x, the minimum value of (A) x = - 2 only

function f(x) = ex  e x is

(B) x = 0 only

(A) 2

(B) 1

(C) x = 3 only

(C) 0.5

(D) 0

(D) both x = - 2 and x = 3

eE1 / T2 / K2 / L2 / V2 / R11 / AA [GATE – EC – 2010]

(09) If e y  x1/ x then y has a eE1 / T2 / K2 / L2 / V2 / R11 / AA [GATE – EE – 2005]

(05) For the function f(x) = x 2 e  x , the maximum

(A) Maximum at x = e

occurs when x is equal to (B) Minimum at x = e (A) – 2

(B) 1

(C) 0

(D) – 1

(C) Maximum at x = e 1

(D) Minimum at x = e 1

www.targate.org

Page 33

ENGINEERING MATHEMATICS eE1 / T2 / K2 / L3 / V2 / R11 / AB [GATE – PI – 2007]

Question Level – 03

(05) For the function f(x, y) = x 2  y 2 defined on R2, eE1 / T2 / K2 / L3 / V2 / R11 / A [GATE – ME – 1993]

the point (0, 0) is

(01) The function f ( x, y )  x 2 y  3xy  2 y  x has (A) A local minimum (A) No local extremism (B) Neither a local minimum (nor) a local (B) One local maximum but no local minimum

maximum.

(C) One local minimum but no local maximum

(C) A local maximum

(D)One local minimum and one local maximum

(D) Both a local minimum and a local maximum

eE1 / T2 / K2 / L3 / V2 / R11 / A [GATE – CS – 1998]

eE1 / T2 / K2 / L3 / V2 / R11 / AB [GATE – EE – 2007]

(02) Find the points of local maxima and minima if



(06) Consider the function f ( x )  x 2  4

any of the following function defined in 3



2

where x

is a real number. Then the function has

2

0  x  6, x  6x  9 x  15. eE1 / T2 / K2 / L3 / V2 / R11 / AB [GATE – – 2002]

(03) The function f(x, y) = 2 x 2  2 xy  y 3 has

(A) Only one minimum

(B) Only two minima

(C) Three minima

(D) Three maxima

(A) Only one stationary point at (0, 0)

-----00000-----

 1 1 (B) Two stationary points at (0, 0) and  ,    6 3

2.3 Differential Calculus

(C) Two stationary points at (0, 0) and (1, -1)

Question Level – 00 (Basic Problem) eE1 / T2 / K3 / L0 / V1 / R11 / AA [GATE – – 1996]

(D) No stationary point.

(01) If a function is continuous at a point its first derivative eE1 / T2 / K2 / L3 / V2 / R11 / AC [GATE – IN – 2007]

(04) For real x, the maximum value of

esin x is ecos x

(A) May or may not exist

(B) Exists always (A) 1

(B) e (C) Will not exist

(C) e

2

(D)  (D) Has a unique value

Page 34

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 02 – CALCULUS Question Level – 01

Question Level – 03

eE1 / T2 / K3 / L1 / V1 / R11 / AB [GATE – IN – 2008]

(01) Given y = x2  2x  10 the value of

dy dx

is X 1

(B) 4

(C) 12

(D) 13

(01) If x = a(θ  sin θ) and y  a(1  cos θ ) then dy  ______ dx

equal to

(A) 0

eE1 / T2 / K3 / L3 / V2 / R11 / AC [GATE – – 2004]

(A) sin

θ 2

(B) cos

θ 2

(C) tan

θ 2

(D) cot

θ 2

eE1 / T2 / K3 / L1 / V1 / R11 / AA [GATE – PI – 2009]

(02) The total derivative of the function ‘xy’ is eE1 / T2 / K3 / L3 / V2 / R11 / AC [GATE – – 2005]

(A) xdy  ydx

(B) xdx  ydy

(02) By a change of variables x(u, v) = uv,

y(u, v)  v / u in a double integral, the integral (C) dx  dy

(D) dx dy

f ( x, y)

eE1 / T2 / K3 / L2 / V2 / R11 / AA [GATE – – 1997]

(01) If ( x) 



x

0

to

(A)

d t dt then  __________ dx

2v u

v

.

Then

(B) 2 u v

(C) V 2 (A) 2x



f uv, u

(u, v) is _______

Question Level – 02

2

changes

2

(B)

(C) 0

x

(D) 1

eE1 / T2 / K3 / L3 / V2 / R11 / AC [GATE – PI – 2010]

(03) If (x) = sin | x | then the value of

(D) 1

df π at x  dx 4

is eE1 / T2 / K3 / L2 / V2 / R11 / AA [GATE – – 2000]

(02) If

f(x,

y,

z)

= (A) 0

2 f 2 f 2 f ( x 2  y 2  z 2 ) 1/2 , 2  2  2 is equal to x y z

(C) 

(B)

1

1 2

(D) 1

2

_______ eE1 / T2 / K3 / L3 / V2 / R11 / AA [GATE – CE – 2010]

(04) Given (A) 0

a

function

(B) 1 f ( x, y )  4 x 2  6 y 2  8 x  4 y  8, the optimal

(C) 2

(D) 3( x 2  y 2  z 2 )5/2

values of f(x, y) is

www.targate.org

Page 35

ENGINEERING MATHEMATICS (A) a minimum equal to

(B) a maximum equal to

eE1 / T2 / K4 / L0 / V2 / R11 / AD [GATE – EC – 2005]

10 3

(02) The value of the integral

10 3

(C) a minimum equal to

8 3

(D) a maximum equal to

8 3



1

1

1 dx is x2

(A) 2

(B) does not exists

(C) - 2

(D) 

-----00000-----

Question Level – 01 eE1 / T2 / K3 / L3 / V2 / R11 / AC [GATE – EE – 2011]

(05) The function f(x) = 2 x  x2  3 has

eE1 / T2 / K4 / L1 / V1 / R11 / A [GATE – PI – 1995]

(01) Given y 



x2

1

cos t dt , then

(A) A maxima at x = 1 and a minima at x = 5

(B) A maxima at x = 1 and a minima at x = - 5

(C) Only a maximum at x = 1

(D) Only a minima at x = 0

-----00000-----

dy  ________ dx

eE1 / T2 / K4 / L1 / V1 / R11 / AA [GATE – CS – 1995]

(02) If at every point of a certain curve, the slope of the tangent equals

2x , the curve is _________ y

(A) A straight line

(B) A parabola

(C) A circle

(D) An Ellipse

eE1 / T2 / K4 / L1 / V1 / R11 / AA [GATE – PI – 2008]

(03) The value of the integral

2.4 Integral Calculus Question Level – 00 (Basic Problem) eE1 / T2 / K4 / L0 / V1 / R11 / AC [GATE – EE – 2005]

(01) IF S =



α

1

X 3 dx then S has the value

1 3

(B)

1 2

Page 36

π / 2

( x cos x) dx is

(B) π  2

(C) π

(D) π  2

eE1 / T2 / K4 / L1 / V1 / R11 / AD [GATE – ME – 2010]

1 4

(A)  π (C)

π/2

(A) 0

(04) The value of the integral (A)



dx α 1  x 2



α

(B)

(D) 1 (C)

π 2

π 2

(D) π

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 02 – CALCULUS Question Level – 02 (C) 0

(D) None

eE1 / T2 / K4 / L2 / V2 / R11 / AA [GATE – – 1994]

(01) The integration of



eE1 / T2 / K4 / L2 / V2 / R11 / AC [GATE – – 2002]

log xdx has the value

(05) The value of the following improper integral is 1

x log x dx = ________

(A) ( x log x  1)

(B) log x  x



(C) x(log x  1)

(D) None of the above

(A)

0

1 4

(B) 0

eE1 / T2 / K4 / L2 / V2 / R11 / AC [GATE – – 1995]

(02) By

reversing

2

2x

0

x2



the

order

of

(C) 

integration

1 4

(D) 1

f ( x, y ) dydx may be represented as _____ eE1 / T2 / K4 / L2 / V2 / R11 / AA [GATE – – 2005]

(A)

(B)

2

2x

0

x2

 2

 0

integral I = y

y

4



y

0

y /2

2x

2

(D)

  x

f ( x, y )dxdy

I=

(C)

2

(06) Changing the order of integration in the double f ( x, y ) dydx

0

(03)

π/2

0

0

 

r

p

0

x/4

f ( x, y )dy dx leads to

f ( x, y)dy dx. What is q?

(A) 4y

(B) 16 y2

f ( x, y ) dydx

(C) x

(D) 8



a

sin 6 x  sin 7 x  dx is equal to 

a 

a

(A) 2 sin 6 xdx



(B) π

2

eE1 / T2 / K4 / L2 / V2 / R11 / AA [GATE – ME – 2005]

(07)

sin( x  y )dxdy

(A) 0

(C) π

q

2

f ( x, y )dxdy

eE1 / T2 / K4 / L2 / V2 / R11 / AD [GATE – – 2000] π/2

s



8



0

(D) 2

a

(B) 2 sin 7 xdx



0

eE1 / T2 / K4 / L2 / V2 / R11 / AC [GATE – – 2002]

(04) The value of the following definite integral in



π /2

sin 2 x dx  _______ cos

 π /2 1 

(A) - 2 log 2

(C) 2

a

 sin 0

6



x  sin 7 x dx

(D) zero (B) 2

www.targate.org

Page 37

ENGINEERING MATHEMATICS eE1 / T2 / K4 / L2 / V2 / R11 / AA [GATE – – ]

(08) The value of the integral I =

1

2π 



0

e x

2

/8

Question Level – 03

dx is

____

eE1 / T2 / K4 / L3 / V2 / R11 / A [GATE – – 1994]

(01) The value of





0

3

e  y . y1/ 2 dy is ________

(B) π

(A) 1

eE1 / T2 / K4 / L3 / V2 / R11 / AD [GATE – IN – 2007]

(C) 2

(D) 2π

eE1 / T2 / K4 / L2 / V2 / R11 / AA [GATE – CS – 2008]

(09) The value of

3

x

0

0



(02) The value of

(B) 27.0

(C) 40.5

(D) 54.0

α

0

0

2

2

e x e y dx dy is

π 2

(A)

(6  x  y ) is _____

(A) 13.5

α



π

(B)

(C) π

(D)

π 4

eE1 / T2 / K4 / L3 / V2 / R11 / AB [GATE – EE – 2007]

(03) The integral eE1 / T2 / K4 / L2 / V2 / R11 / AB [GATE – EC – 2007]

1 2



2

0

sin(t  τ ) cos τdτ equals

(10) The following plot shows a function y which varies linearly with x. The value of the integral I =



2

1

(A) Sin cost

ydx

(C)

(A) 1

1 cos t 2

(B) 0

(D)

1 sin t 2

(B) 2.5 eE1 / T2 / K4 / L3 / V2 / R11 / AA [GATE – EC – 2008]

(04) The value of the integral of the function (C) 4

(D) 5 g ( x, y )  4 x3  10 y 4 along the straight line

eE1 / T2 / K4 / L2 / V2 / R11 / AB [GATE – IN – 2010]

(11) The integral

 π   t   6sin(t ) dt evaluates to α  6



segment from the point (0, 0) to the point (1, 2)

α

in the xy-plane is

(A) 6

(B) 3

(A) 33

(B) 35

(C) 1.5

(D) 0

(C) 40

(D) 56

eE1 / T2 / K4 / L3 / V2 / R11 / AD [GATE – ME – 2008]

-----00000-----

(05) Which of the following integrals is unbounded?

(A)

Page 38



π/4

0

tan dx

(B)

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)



α

0

1 dx 1  x2

TOPIC. 02 – CALCULUS (C)



α

0

x.e  x dx

(D)

1

eE1 / T2 / K5 / L0 / V1 / R11 / AD [GATE – – 2000]

1

 1  x dx 0

(03) Limit of the function f ( x )  eE1 / T2 / K4 / L3 / V2 / R11 / AD [GATE – CS – 2011]

is given

(06) Given i  1, what will be the evaluation of the definite integral

π 2 0



1  a4 as x   x4

cos x  i sin x dx ? cos x  i sin x

(A) 1

(B) e  a

(D) 0

4

(A) 0

(B) 2

(C) 

(C) – i

(D) i

eE1 / T2 / K5 / L0 / V1 / R11 / AA [GATE – – 2003]

(04) -----00000-----

2.5 Limit and Continuity

sin 2 x  ____ x 0 x

lim

(A) 0

(B) 

(C) 

(D) – 1

Question Level – 00 (Basic Problem) eE1 / T2 / K5 / L0 / V1 / R11 / AC [GATE – IN – 2007]

eE1 / T2 / K5 / L0 / V1 / R11 / AB [GATE – – 1995]

(01)

(05) Consider the function f(x) = | x |3 , where x is real. Then the function f(x) at x = 0 is

lim x sin 1  ______ x x 0

(A) Continuous but not differentiable

(A) 

(B) 0

(C) 1

(D) Does not exist

(B) Once differentiable but not twice.

eE1 / T2 / K5 / L0 / V1 / R11 / AD [GATE – – ]

(C) Twice differentiable but not thrice.

(02) Limit of the following series as x approaches (D) Thrice differentiable

 is 2 x3 x5 x7 f ( x)  x     3! 5! 7!

eE1 / T2 / K5 / L0 / V1 / R11 / AB [GATE – ME – 2007]

(06) The minimum value of function y  x 2 in the interval [1, 5] is

(A)

(C)

2π 3

π 3

(B)

π 2

(D) 1

(A) 0

(B) 1

(C) 25

(D) Undefined

www.targate.org

Page 39

ENGINEERING MATHEMATICS eE1 / T2 / K5 / L0 / V1 / R11 / AB [GATE – ME – 2007]

eE1 / T2 / K5 / L0 / V1 / R11 / AD [GATE – EE – 2010]

(11) At t = 0, the function f(t) =

 x2  e x  1  x   2    (07) lim x 0 x3

(A) A minimum

(B) A discontinuity

(C) A point of inflection (D) A Maximum

1 (B) 6

(A) 0

sin t has t

eE1 / T2 / K5 / L0 / V1 / R11 / AD [GATE – ME – 2011]

(C)

1 3

(D) 1

(12) What is lim

θ 0

eE1 / T2 / K5 / L0 / V1 / R11 / AA [GATE – – ]

(08)

x  sin x  ______ x  x  cos x lim

(A) 1

(B) - 1

(C) 

(D) 

sin θ equal to? θ

(A) θ

(B) sin θ

(C) 0

(D) 1

-----00000-----

Question Level – 01 eE1 / T2 / K5 / L1 / V1 / R11 / AB [GATE – – 1995]

eE1 / T2 / K5 / L0 / V1 / R11 / AC [GATE – – ]

(01) The function f(x) = | x  1| on the interval

[2,0] is _________ (09)

lim

x 0

sin x is x

(A) Continuous and differentiable (B) Continuous on the interval but not

(A) Indeterminate

(B) 0

(C) 1

(D) 

differentiable at all points

(C) Neither continuous nor differentiable

eE1 / T2 / K5 / L0 / V1 / R11 / AB [GATE – ME – 2008]

(D) Differentiable but not continuous x1/3  2 is x 8 x  8

(10) The value of lim

eE1 / T2 / K5 / L1 / V1 / R11 / AA [GATE – – 1997]

(02) (A)

1 16

1 (C) 8

Page 40

(B)

1 12

1 (D) 4

sin mθ , where m is an integer, is one of the θ 0 θ lim

following:

(A) m

(B) m π

(C) mθ

(D) 1

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 02 – CALCULUS eE1 / T2 / K5 / L1 / V1 / R11 / AC [GATE – – 1997]

Question Level – 02

(03) If y=| x| for x < 0 and y = x for x  0 then eE1 / T2 / K5 / L2 / V2 / R11 / AC [GATE – IN – 1999]

dy (A) is discontinuous at x = 0 dx

(01)

1 1  e j 5 x  _____ x 0 10 1  e jx

lim

(B) y is discontinuous at x = 0 (A) 0

(B) 1.1

(C) 0.5

(D) 1

(C) y is not defined at x = 0

(D) Both y and

dy are discontinuous at x = 0 dx

eE1 / T2 / K5 / L1 / V1 / R11 / AA [GATE – EC – 2007]

eE1 / T2 / K5 / L2 / V2 / R11 / AD [GATE – – 1999]\

n

(02) Limit of the function, lim

n

(04)

lim

θ 0

sin(θ / 2) θ

(A) 1 (A) 0.5

(B) 1

(C) 2

(D) Not defined

2

(C) 

is _____

2

n n

(B) 0

(D) 1

eE1 / T2 / K5 / L2 / V2 / R11 / AA [GATE – – 2001] eE1 / T2 / K5 / L1 / V1 / R11 / AB [GATE – – 2004]

3

2

x x (05) The value of the function. f ( x )  lim 3 x 0 2 x  7 x 2

(03) The value of the integral is I =

is _____

(A) 0

(C)

1 7

(B)

(A)

 5 2

(C)

5 2

1 7



(B)

π/4

0

cos 2 x dx

5

(D) 

5 2

(D)  eE1 / T2 / K5 / L2 / V2 / R11 / AB [GATE – CE – 2002]

eE1 / T2 / K5 / L1 / V1 / R11 / AC [GATE – PI – 2008]

 sin( x )  (06) The value of the expression lim  x  is x0  e x 

(04) Limit of the following sequence as n   is ___________ x  n1/n

(A) 0

(B)

1 2

(A) 0

(B) 1

(C) 1

(D)

1 1 e

(C) 

(D) - 

www.targate.org

Page 41

ENGINEERING MATHEMATICS eE1 / T2 / K5 / L2 / V2 / R11 / AC [GATE – PI – 2007]

cos x  sin x x π /4 xπ / 4

(05) What is the value of lim

(02) Value

of

the

function

lim  x  a 

xa

x a

is

________

2

(A)

eE1 / T2 / K5 / L3 / V2 / R11 / AA [GATE – CE – 2000]

(B) 0

(C)  2

(A) 1

(B) 0

(C) 

(D) a

eE1 / T2 / K5 / L3 / V2 / R11 / AD [GATE – – 2002]

(03) Which of the following functions is not (D) Limit does not exist

differentiable in the domain [-1, 1]?

eE1 / T2 / K5 / L2 / V2 / R11 / AB [GATE – ME – 2010]

(A) f(x) = x2

(06) The function y | 2  3x | (B) f(x) = x – 1 (A) is continuous  x  R and differential

 xR

(C) f(x) = 2

(B) is continuous  x  R and differential

 x  R except at x =

3 2

(D) f(x) = maximum (x – x)

eE1 / T2 / K5 / L3 / V2 / R11 / AC [GATE – CE – 2011]

(04) What should be the value of λ such that the (C) is continuous  x  R and differential function defined below is continuous at x =

 x  R except at x =

2 3

(D) Is continuous  x  R and except at x = 3 and differential  x  R

-----00000-----

π  λ cos x if x   π 2  x f ( x)   2  π if x  1  2

(A) 0

(B) 2π

(C) 1

(D)

Question Level – 03 eE1 / T2 / K5 / L3 / V2 / R11 / A [GATE – ME – 1993]

-----00000----(01)

x (e x  1)  2(cos x  1)  ________ x 0 x (1  cos x )

lim

Page 42

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

π 2

π ? 2

TOPIC. 02 – CALCULUS eE1 / T2 / K6 / L1 / V1 / R11 / AA [GATE – EC – 2008]

2.6 Series

(02) Which of the following function would have only odd powers of x in its Taylor series

Question Level – 00 (Basic Problem)

expansion about the point x = 0?

eE1 / T2 / K6 / L0 / V1 / R11 / AB [GATE – CE – 1998]

 

(B) sin x2

 

 

(D) cos x 2

(A) sin x3

1 1 (01) The infinite sires 1         2 3

 

(C) cos x3 (A) Converges

(B) Diverges

(C) Oscillates

(D) Unstable -----00000-----

eE1 / T2 / K6 / L0 / V1 / R11 / AB [GATE – ME – 2011]

Question Level – 02

(02) A series expansion for the function sin θ is ______

eE1 / T2 / K6 / L2 / V2 / R11 / AB [GATE – – ]

(01) Consider 2

(A) 1 

(B) θ 

4

θ θ   ........ 2! 4!

lim



a

x  1

the

(B) converges to 1/3

(C) Converges to  1 (C) 1  θ 

integral

x4 dx ___

(A) Diverges

θ3 θ6   ........ 3! 5!

2

following

3

θ θ   ........ 2! 3!

a3

(D) converges to 0

eE1 / T2 / K6 / L2 / V2 / R11 / AB [GATE – ME – 2007]

(D) θ 

θ3 θ 5   ...... 3! 5!

(02) If y  x  x  x  x  ........α

then y(2) =

_____ -----00000----(A) 4 (or) 1

(B) 4 only

(C) 1 only

(D) Undefined

Question Level – 01 eE1 / T2 / K6 / L1 / V1 / R11 / AB [GATE – – 1995]

(01) The third term in the taylor’s series expansion of eE1 / T2 / K6 / L2 / V2 / R11 / AB [GATE – IN – 2011]

ex about ‘a’ would be _______

α

(03) The series (B)

ea (C) 2

ea (D) ( x  a )3 6

m

( x  1) 2m converges for

m 0

ea ( x  a )2 2

(A) e a ( x  a)

1

4

(A) 2  x  2

(B) 1  x  3

(C) 3  x  1

(D) x  3

www.targate.org

Page 43

ENGINEERING MATHEMATICS eE1 / T2 / K6 / L2 / V2 / R11 / AB [GATE – ME – 2010]

(B) x 

x3 x5 x7    3! 5! 7!

(04) The infinite series 3

f ( x)  x 

5

3

7

x x x       Converges to 3! 5! 7!

(A) cos(x)

(B) sin( x)

(C) sinh( x)

(D) ex

5

(C)

(D)

1 2

eE1 / T2 / K6 / L3 / V2 / R11 / AD [GATE – EC – 2009]

(04)The Taylor series expansion of

eE1 / T2 / K6 / L3 / V2 / R11 / AB [GATE – EC – 2008]

(A) 1 

(01) In the Taylor series expansion of ex  sin x about the point x = π , the coefficient of 2

( x  π )2  3!

(B) 1 

is (C) 1 

(A) eπ

(B) 0.5 eπ

( x  π )2  3!

( x  π)2  3!

(D) 1  (C) eπ  1

sin at x  π is xπ

given by

Question Level – 03

x  π

7

     x    x  x  6 6 6   6     1! 3! 5! 7!

x

( x  π )2  3!

(D) eπ  1 -----00000-----

eE1 / T2 / K6 / L3 / V2 / R11 / AC [GATE – – ]

(02) In the Taylor series expansion of ex about x = 2, the coefficient of (x – 2)4 is

(A)

1 4!

(B)

2.7 Vector Calculus Question Level – 00 (Basic Problem)

24 4!

eE1 / T2 / K7 / L0 / V1 / R11 / AD [GATE – ME – 1996]

e2 (C) 4!

(01) The expression curl (grad f ) where f is a

e4 (D) 4!

scalar function is

eE1 / T2 / K6 / L3 / V2 / R11 / AA [GATE – CE – 2000]

(A) Equal to  2 f

(03) The Taylor series expansion of sin x about x

 is given by 6

(A)

1 3  1  3   x  x   x   2 2  6  4 6 12  6

(B) Equal to div (grad f )

2

3

(C) A scalar of zero magnitude

(D) A vector of zero magnitude

Page 44

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 02 – CALCULUS eE1 / T2 / K7 / L0 / V1 / R11 / AA [GATE – –]

(02) Stokes theorem connects

eE1 / T2 / K7 / L1 / V1 / R11 / AD [GATE – PI – 2005]

(03) Which one of the following is Not associated with vector calculus?

(A) A line integral and a surface integral (A) Stoke’s theorem (B) A surface integral and a volume integral (B) Gauss Divergence theorem (C) A line integral and a volume integral (C) Green’s theorem (D) Gradient of a function and its surface integral.

(D) Kennedy’s theorem

-----00000-----

eE1 / T2 / K7 / L1 / V1 / R11 / AD [GATE – EC – 2005]

(04)

    P where P is a vector is equal to

Question Level – 01 (A) P  P  2 P

(B) P  (P)

(C)  2 P    P)

(D) ( P)   2 P

eE1 / T2 / K7 / L1 / V1 / R11 / AA [GATE – – ]



(01) Given a vector field F , the divergence theorem states that

(A)



S

F . ds 



V

eE1 / T2 / K7 / L1 / V1 / R11 / AB [GATE – CE – 2007]

. F dv

(05) The area of a triangle formed by the tips of vectors a, b and c is

(B)

(C)

(D)



S

F . ds 





F  ds 



F  ds 

S

S

V

  F dv



 F dv



  F dv

V

V

(A)

1 ( a  b )  (a  c) 2

(B)

1 | ( a  b)  ( a  c ) | 2

(C)

1 | abc | 2

(D)

1 ( a  b)  c 2

eE1 / T2 / K7 / L1 / V1 / R11 / AA [GATE – – ]

(02) If a vector R (t ) has a constant magnitude than

(A) R.

dR 0 dt

(B) R.

dR 0 dt

eE1 / T2 / K7 / L1 / V1 / R11 / AD [GATE – – ]

(06) The angle (in degrees) between two planar (C) R.R 

dR dt

(D) R  R 

dR dt

vectors a 

www.targate.org

3 1  3 1 i  j and b  i  j is 2 2 2 2

Page 45

ENGINEERING MATHEMATICS (A) 30

eE1 / T2 / K7 / L1 / V1 / R11 / AA [GATE – – 1993]

(B) 60

(10) A sphere of unit radius is centred at the origin. (C) 90

The unit normal at a point (x, y, z) on the

(D) 120

surface of the sphere is the vector. eE1 / T2 / K7 / L1 / V1 / R11 / AD [GATE – ME – 2008]

(07) The

divergence

of

the

vector

field

(A) (x, y, z)

 1 1 1  , , (B)    3 3 3

 x y z  , , (C)    3 3 3

 x y z  , , (D)    2 2 2

( x  y )i  ( y  x) j  ( x  y  z ) k is

(A) 0

(B) 1

(C) 2

(D) 3

eE1 / T2 / K7 / L1 / V1 / R11 / AD [GATE – – ]

-----00000-----

(08) If r is the position vector of any point on a closed surface S that encloses the volume V

Question Level – 02

 (r . d s) is equal to

then

S

eE1 / T2 / K7 / L2 / V2 / R11 / AB [GATE – – 1995]

(01) The directional derivative of the function f(x, y, 1 (A) V 2

(B) V

(C) 2V

(D) 3V

z) = x + y at the point P(1, 1, 0) along the   direction i  j is

(A) 1/ 2

(B)

2

eE1 / T2 / K7 / L1 / V1 / R11 / AB [GATE – – ]

(09) If a vector field V is related to another field A

(C) -

2

(D) 2

through V =   A , which of the following is eE1 / T2 / K7 / L2 / V2 / R11 / AD [GATE – – 1999]

true? Note: C and SC refer to any closed contour and any surface whose boundary is C.

(A)



  V .dl 



(02) For the function   ax 2 y  y 3 to represent the velocity potential of an ideal fluid,  2  should

  A.ds

be equal to zero. In that case, the value of ‘a’

  V .ds

(A) -1

(B) 1

(C) – 3

(D) 3

Sc

has to be

C

(B)



  A.dl 



Sc

C

(C)



    V .dl 



Sc

    A.ds

eE1 / T2 / K7 / L2 / V2 / R11 / AB [GATE – – 2002]

C

(03) The directional derivative of the following (D)

 C

Page 46

    A.dl 



Sc

    V .ds

function at (1, 2) in the direction of (4i + 3j) is: F(x, y) = x 2  y 2

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 02 – CALCULUS (A) 4/5

(B) 4

(C) 2/5

(D) 1

eE1 / T2 / K7 / L2 / V2 / R11 / AD [GATE – EE – 2006]



(07) The expression V =

H

o

2

h  πR 2 1   dh for the  H

eE1 / T2 / K7 / L2 / V2 / R11 / AC [GATE – – 2003]

(04) The vector field F = xi  yj (where i and j are

volume of a cone is equal to _______.

unit vectors) is (A) (A) Divergence free, but not irrotational

(B) Irrotational, but divergence free

(B)



R

o

R



o

2

h  πR 2 1   dr  H

2

h  πR 2 1   dh  H

(C) Divergence free and irrotational (C) (D) Neither divergence free nor irrotational eE1 / T2 / K7 / L2 / V2 / R11 / AC [GATE – – ]

x 2 y3 (05) For the scalar field u =  , the magnitude 2 3

(D)



R

o



R

o

(08) The

(A)

(C)

(B)

5

(D)

directional

vector

is

given

as

velocity vector at (1, 1, 1) is

9 2

derivative

velocity

v  5 xyi  2 y 2 j  3 yz 2 k . The divergence of this

9 2

eE1 / T2 / K7 / L2 / V2 / R11 / AC [GATE – – ]

(06) The

2

r  2πrH 1   dr  R

eE1 / T2 / K7 / L2 / V2 / R11 / AD [GATE – CE – 2007]

of the gradient at the point (1, 3) is

13 9

r  2πrH  1   dh R 

(A) 9

(B) 10

(C) 14

(D) 15

of eE1 / T2 / K7 / L2 / V2 / R11 / AA [GATE – – ]

f ( x, y , z )  2 x 2  3 y 2  z 2 at the point p(2, 1, 3)

in the direction of the vector a  i  2k is _____.

(09) Divergence of the vector field v( x, y, z) 

( x cos xy  y)i  ( y cos xy) j [(sin z 2 )  x 2  y 2 ]k

(A) – 2.785

(B) – 2.145

(C) – 1.789

(D) 1.000

is

(A) 2 z cos z 2

(B) sin xy  2 z cos z 2

(C) x sin xy  cos z

(D) None of these

www.targate.org

Page 47

ENGINEERING MATHEMATICS eE1 / T2 / K7 / L2 / V2 / R11 / AB [GATE – – ]

eE1 / T2 / K7 / L2 / V2 / R11 / AD [GATE – –]

(10) The directional derivative of the scalar function

(14) F(x, y) = ( x 2  xy )aˆ x  ( y 2  xy ) aˆ y . its line

f ( x, y, z )  x 2  2 y 2  z at the point P = (1, 1,

integral over the straight line from ( x, y)  (0,2)

2) in the direction of the vector a  3i  4 j is

(A) – 4

to (x, y) = (2, 0) evaluates to

(A) - 8

(B) 4

(C) 8

(D) 0

(B) - 2

(C) – 1

(D) 1 eE1 / T2 /K7 / L2 / V2 / R11 / AC [GATE – –]

(15) The line integral of the vector function eE1 / T2 / K7 / L2 / V2 / R11 / AB [GATE – –]

(11) For a scalar function f(x, y, z) = x 2  3 y 2  2 z 2 ,

F  2 xiˆ  x 2 ˆj along the x – axis from x = 1 to x

= 2 is

the gradient at the point P (1, 2, -1) is

(A) 2 i  6 j  4k

(B) 2 i  12 j  4k

(C) 2 i  12 j  4k

(D)

(A) 0

(B) 2.33

(C) 3

(D) 5.33

eE1 / T2 /K7 / L2 / V2 / R11 / AA [GATE – –]

56

(16) Divergence of the 3 – dimensional radial vector eE1 / T2 / K7 / L2 / V2 / R11 / AB [GATE – –]

fields r is

(12) For a scalar function f(x, y, z) = x 2  3 y 2  2 z 2 , the directional derivative at the point P (1, 2, -1)

1 r

(A) 3

(B)

(C) iˆ  ˆj  kˆ

(D) 3 iˆ  ˆj  kˆ

in the direction of a vector i  j  2k is





(B) 3 6

(A) - 18

eE1 / T2 /K7 / L2 / V2 / R11 / AA [GATE – – ]

(C) 3 6

(17) If a and b are two arbitrary vectors with

(D) 18

magnitudes a and b respectively, | a  b |2 will eE1 / T2 / K7 / L2 / V2 / R11 / AC [GATE – –]

(13) The

divergence

of

the

vector

field

be equal to

3 xziˆ  2 xyjˆ  yz 2 kˆ at a point (1, 1, 1) is equal to

(A) 7

(B) 4

(C) 3

(D) 0

Page 48

(A) a 2 b 2  ( a.b) 2

(B) ab  a.b

(C) a 2 b 2  ( a.b) 2

(D) ab  a.b

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 02 – CALCULUS eE1 / T2 /K7 / L2 / V2 / R11 / AA [GATE – PI – 2011]

(18) If A (0, 4, 3), B (0, 0, 0) and C (3, 0, 4) are there

(01) The directional

derivative

of

f(x,

 



direction of the vector a  i  2k is

which

(A) 4 / 5

(B) 4 / 5

(C)

(D)  5 / 4

of

the

following vectors

is

=

2 x 2  3 y 2  z 2 at point P(2, 1, 3) in the

points defined in x, y, z coordinate system, then one

y)

perpendicular to both the vectors B A and BC

(A) 16i  9 j  12 K

(B) 16i  9 j  12 K

(C) 16i  9 j  12 K

(D) 16i  9 j  12 K

5/4

(02) The derivative of f(x, y) at point (1, 2) in the direction of vector i + j is 2 2 and in the direction of the vector -2j is -3. Then the derivative of f(x, y) in direction –i-2j is

eE1 / T2 /K7 / L2 / V2 / R11 / AD [GATE – – ]

(19) Consider a closed surface ‘S’ surrounding a

(A) 2 2  3 / 2

(B) 7 / 5

(C) 2 2  3 / 2

(D) 1 / 5

volume V. If r is the position vector of a point inside S with n the unit normal on ‘S’, the value of the integral

  5 r .nˆ ds is eE1 / T2 / K7 / L3 / V2 / R11 / AC [GATE – – 2005]

(A) 3V

(B) 5V

(C) 10V

(D) 15V

(03) Value of the integral

 xydy  y dx, where, c is 2

c

the square cut from the first quadrant by th line x= 1 and y = 1 will be (Use Green’s theorem to

eE1 / T2 /K7 / L2 / V2 / R11 / AB [GATE – – ]

change the line integral into double integral)

(20) The two vectors [1, 1, 1] and [1, a, a2] where a = 1 3  j are 2 2

(A) Orthonormal

(B) Orthogonal

(C) Parallel

(D) Collinear

(A) 1/2

(B) 1

(C) 3/2

(D) 5/3

eE1 / T2 / K7 / L3 / V2 / R11 / AA [GATE – – 2005]

(04) The line integral -----00000-----

 V . dr of the vector function

V(r) = 2xyzi  x 2 zj  x 2 yk from the origin to the point P (1, 1, 1)

Question Level – 03 (A) is 1 eE1 / T2 / K7 / L3 / V2 / R11 / AB [GATE – – 1994]

(B) is Zero

(C) is – 1

www.targate.org

Page 49

ENGINEERING MATHEMATICS (D) Cannot be determined without specifying the path eE1 / T2 / K7 / L3 / V2 / R11 / AA [GATE – –]

(05) A scalar field is given by f = x 2/3  y 2/3 , where x and y are the Cartesian coordinates. The derivative of ‘f’ along the line y = x directed away from the origin at the point (8, 8) is

2 (A) 3

3 (B) 2

2

(C)

(D)

3

3

2

(A) 0

(B)

(C) 1

(D) 2 3

3

2 eE1 / T2 /K7 / L3 / V2 / R11 / AA [GATE – – ]

eE1 / T2 / K7 / L3 / V2 / R11 / AB [GATE – –]

(08) The line integral

(06) Consider points P and Q in xy – plane with P = (1, 0) and Q = (0, 1). The line integral 2



Q

P

( xdx  ydy ) along the semicircle with the



P2

P1

( ydx  xdy ) from P1 ( x1 , y1 )

to P2 ( x2 , y2 ) along the semi-circle P1P 2 shown in the figure is

line segment PQ as its diameter

(A) is – 1

(B) is 0

(C) 1

(D) Depends on the direction (clockwise (or) anti-clockwise) of the semi circle eE1 / T2 /K7 / L3 / V2 / R11 / AC [GATE – – ]

 (07) If A  xy aˆ x  x 2 aˆ y then

shown in the figure is



  A . dl over the path

(A) x2 y2  x1 y1

(B) ( y22  y12 )  ( x22  x12 )

(C) ( x2  x1 )( y2  y1 )

(D) ( y2  y1 )2  ( x2  x1 ) 2

eE1 / T2 /K7 / L3 / V2 / R11 / AA [GATE – PI – 2011]

(09) If T(x, y, z) = x 2  y 2  2 z 2 defines the temperature at any location (x, y, z) then the

Page 50

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 02 – CALCULUS magnitude of the temperature gradient at point eE1 / T2 / K8 / L3 / V2 / R11 / AB [GATE – – 2004]

P(1, 1, 1) is -----

(04) The area enclosed between the parabola y = x2 (A) 2 6

(B) 4

(C) 24

(D)

ad the straight line y = x is _____

6

(A)  

(B)  

(C)  

(D)  

-----00000----eE1 / T2 / K8 / L3 / V2 / R11 / AA [GATE – – 2004]

(05) The volume of an object expressed in spherical

2.8 AREA / VOLUME co-ordinates is given by

Question Level – 03 V E1 / T2 / K8 / L3 / V2 / R11 / AD [GATE – – 1994]



π /3 1

0

0

  r 0

2

sin drd  dθ

The value of the integral

(01) The volume generated by revolving he area bounded by the parabola y 2  8 x and the line (A)

π 3

(B)

π 6

(C)

2π 3

(D)

π 4

x  2 about y-axis is

(A)

128π 5

(B)

(C)

127 5π

(D) None of the above

5 128π

eE1 / T2 / K8 / L3 / V2 / R11 / AA [GATE – ME – 2008]

(06) Consider the shaded triangular region P shown

eE1 / T2 / K8 / L3 / V2 / R11 / AB [GATE – ME – 1995]

in the figure. What is

 xy dx dy ? P

(02) The area bounded by the parabola 2 y  x 2 and the lines x  y  4 is equal to _________

(A) 6

(B) 18

(C) 

(D) None of the above

eE1 / T2 / K8 / L3 / V2 / R11 / AB [GATE – – 1997]

(03) Area bounded by the curve y = x2 and the lines x = 4 and y = 0 is given by (A)

1 6

(B)

(C)

7 16

(D) 1

64 3

(A) 64

(B)

128 (C) 3

128 (D) 4

www.targate.org

2 9

Page 51

ENGINEERING MATHEMATICS

2.9 Miscellaneous eE1 / T2 / K8 / L3 / V2 / R11 / AA [GATE – EE – 2009]

(07) If (x, y) is continuous function defined over (x,

Question Level – 00 (Basic Problem)

y)  [0,1]  [0,1] Given two constraints, x  y 2 and y  x 2 , the volume under f(x, y) is (A)

y 1

 

 

x 1

(01) The function f(x) = ex is ________

f ( x , y ) dxdy

y0 x  y2

y 1

(B)

x y

eE1 / T2 / K9 / L0 / V1 / R11 / AC [GATE – – 1999]

(A) Even

(B) Odd

(C) Neither even nor odd

(D) None

f ( x, y )dxdy

y  x2 x  y 2

eE1 / T2 / K9 / L0 / V1 / R11 / AB [GATE – – 1998]

(02) The continuous function f(x, y) is said to have y 1

(C)

 

x 1

y  0 x 0

saddle point at (a, b) if

f ( x, y)dxdy

(A) f x ( a, b)  f y ( a, b)  0 (D)



y x

x 0



x y

x 0

f ( x, y)dxdy

f xy2  f xx f yy  0 at (a, b)

(B) f x (a, b)  0, f y (a, b)  0, f xy2  f xx f yy  0 at (a,b)

eE1 / T2 / K8 / L3 / V2 / R11 / AA [GATE – ME – 2009]

(C) f x (a, b)  0, f y (a, b)  0, f xy2  f xx f yy  0 at (a, b)

(08) The area enclosed between the curves y 2  4 x (D) f x (a, b)  0, f y (a, b)  0, f xy2  f xx f yy  0 at (a,b)

and x 2  4 y is

eE1 / T2 / K9 / L0 / V1 / R11 / AC [GATE – IN – 2008]

(A)

16 3

(B) 8

(C)

32 3

(D) 16

eE1 / T2 / K8 / L3 / V2 / R11 / AD [GATE – ME – 2010]

(09) The parabolic arcy =

(03) The expression e ln x for x > 0 is equal to

(A) – x

(B) x

(C) x1

(D)  x1

x , 1  x  2 is revolved

around the x-axis. The volume of the solid of

eE1 / T2 / K9 / L0 / V1 / R11 / AD [GATE – – 1998]

(04) A discontinuous real function can be expressed

revolution is

as (A)

π 4

(B)

π 2

(C)

3π 4

(D)

3π 2

(A) Taylor’s series and Fourier’s series

(B) Taylor’s series and not by Fourier’s series

(C) Neither Taylor’s series nor Fourier’s series

(D) Not by Taylor’s series, but by Fourier’s -----00000-----

Page 52

series

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 02 – CALCULUS Question Level – 01

Question Level – 03

eE1 / T2 / K9 / L1 / V1 / R11 / AD [GATE – – 1998]

(01) The

taylor’s

series

expansion

of

sin x

is_________

(A) 1 

eE1 / T2 / K9 / L3 / V2 / R11 / AC [GATE – – 1997]

(01) The curve given by the equation x 2  y 2  3axy is

x 2 x4 x2 x4   .......... (B) 1    ...... 2! 4! 2! 4!

(A) Symmetrical about x –axis (B) Symmetrical about y – axis

(C) x 

x 3 x5   .... 2! 4!

(D) x 

x3 x 5   .... 3! 5!

(C) Symmetrical about the line y = x (D) Tangential to x = y = a/3

Question Level – 02 eE1 / T2 / K9 / L3 / V2 / R11 / AA [GATE – EC – 2007] eE1 / T2 / K9 / L2 / V2 / R11 / AA [GATE – CE – 1999] 

(01) The infinite series

( n!)

(02) For the function e  x , the linear approximation

2

 (2n)!

around x = 2 is

n 1

(A) Converges

(B) Diverges

(A) (3 – x ) e 2

(C) Is unstable

(D) Oscillate

(B) 1  x

eE1 / T2 / K9 / L2 / V2 / R11 / AB [GATE – CS – 2010] 2n

 1 (02) What is the value of lim 1   ? n α  n





(C)  3  2 2  1  2 x  e 2   (D) e 2

(B) e 2

(A) 0

eE1 / T2 / K9 / L3 / V2 / R11 / AC [GATE – EC – 2007]

(C) e

1/2

(D) 1

(03) For | x | 1,coth( x) can be approximated as

eE1 / T2 / K9 / L2 / V2 / R11 / AA [GATE – EE – 2011]

(03) Roots

of

the

algebraic

equation

(A) x

x3  x2  x  1  0 are (C) (A) (1, j, -j)

(B) (1, -1, 1)

1 x

(B) x2 (D)

1 x2

eE1 / T2 / K9 / L3 / V2 / R11 / AD [GATE – ME – 2008]

(C) (0, 0, 0)

(D) (-1, j, -j)

(04) The length of the curvey y =

2 3/2 x between x = 3

0 & x = 1 is -----00000-----

(A) 0.27

(B) 0.67

(C) 1

(D) 1.22

www.targate.org

Page 53

ENGINEERING MATHEMATICS eE1 / T2 / K9 / L3 / V2 / R11 / AD [GATE – CE – 2010]

(05) A parabolic cable is held between two supports at the same level. The horizontal span between the supports is L. The sag at the mid-span is h. The equation of the parabola is y = 4h

x2 , where x is the L2

horizontal coordinate and y is the vertical coordinate with the origin at the centre of the cable. The expression for the total length of the cable is

(A)



1  64

0

(B) 2

(C)

L





L /2

0

L /2

0

(D) 2



L /2

0

h2 x 2 dx L4

h2 x 2 1  64 4 dx L

1  64

h2 x 2 dx L4

1  64

h2 x 2 dx L4

eE1 / T2 / K9 / L3 / V2 / R11 / AA [GATE – ME – 2009]

(06) The distance between the origin and the point nearest to it on the surface Z2 = 1 + xy is

(A) 1

(C)

(B)

3

3 2

(D) 2

-----00000-----

Page 54

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

03 L

Differential Equations Complete subtopic in this chapter, is in the scope of “GATE- ME/EC/EE SYLLABUS”

eE1 / T3 / K1 / L0 / V1/ R11 / AB [GATE – EC – 2009]

3.1 Degree and order of DE

(03) The

differential

differential

equation

3

eE1 / T3 / K1 / L0 / V2 / R11 / AB [GATE – ME – 2007]

partial

of

d 2 y  dy      y 4  e t is dx 2  dx 

Question Level – 00 (Basic Problem)

(01) The

order

equation

 2  2        0 has x 2 y 2 y y

(A) 1

(B) 2

(C) 3

(D) 4

eE1 / T3 / K1 / L0 / V2 / R11 / AB [GATE – EC – 2005]

(A) degree 1 and order 2

(04) The

following

differential

equation

has

3

(B) degree 1 and order 1

d2y  dy  3 2  4   y2  2  x dt  dt 

(C) degree 2 and order 1

(A) degree = 2, order = 1

(D) degree 2 and order 1

(B) degree = 1, order = 2

eE1 / T3 / K1 / L0 / V1/ R11 / AC [GATE – PI – 2005]

(02) The

differential

equation

2

d2y C 2  2  is of  dx 

(A) 2nd order and 3rd degree

  dy  2  1       dx  

3

(C) degree = 4, order = 3 = (D) degree = 2, order = 3 eE1 / T3 / K1 / L0 / V3 / R11 / A [GATE – CE – 2010]

(05) The order and degree of a differential equation 3

(B) 3rd order and 2nd degree

d3y  dy   4    y2  0 3 dx  dx  are respectively

(C) 2nd order and 2nd degree

(A) 3 and 2

(B) 2 and 3

(C) 3 and 3

(D) 3 and 1

(D) 3rd order and 3rd degree

www.targate.org

Page 55

ENGINEERING MATHEMATICS eE1 / T3 / K1 / L1 / V1/ R11 / AB [GATE – CE – 2007]

(C) 2nd order linear

(06) The degree of the differential equation d2x  2x3  0 2 dt is

(D)

non



homogeneous

with

constant

coefficients

(A) 0

(B) 1

(C) 2

(D) 3

-----00000-----

eE1 / T3 / K1 / L1 / V1/ R11 / AB [GATE – ME – 2007]

(07) The differential equation

d4y d2y  P  ky  0 dx 4 dx 2

3.2 Higher Order DE Question Level – 01

is eE1 / T3 / K2 / L1 / V1/ R11 / AC [GATE – PI – 2011]

(A) Linear of Fourth order

(B) Non – Linear of fourth order

(01) The

solution

of

the

differential

equation

d2y dy  6  9 y  9 x  6 with C1 and C2 as 2 dx dx

constants is (C) Non – Homogeneous (A) y  (C1 x  C2 )e 3 x (D) Linear and Fourth degree (B) y  C1e3 x  C2e 3 x eE1 / T3 / K1 / L1 / V2 / R11 / AD [GATE – ME – 1999]

(08) The equation

d2y dy  ( x 2  4 x )  y  x8  8 is a 2 dx dx

(A) partial differential equation

(B) non-linear differential equation

(C) y  (C1 x  C2 )e 3 x  x

(D) y  (C1 x  C2 )e3 x  x

eE1 / T3 / K2 / L1 / V1/ R11 / AD [GATE – CE – 1998]

(02) The general solution of the differential equation (C) non-homogeneous differential equation

x2

d2y dy  x  y  0 is 2 dx dx

(D) ordinary differential equation eE1 / T3 / K1 / L1 / V2 / R11 / AC [GATE – – 1995]

(A) Ax + Bx2 (A, B are constants)

(09) The differential equation y11  ( S 3 sin x)5 y1  y  cos x 3 is

(B) Ax + B logx (A, B are constants)

(A) homogeneous

(C) Ax + Bx2logx (A, B are constants)

(B) non – linear

(D) Ax + Bxlog (A, B are constants)’’

Page 56

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 03 – DIFFERENTIAL EQUATIONS eE1 / T3 / K2 / L2 / V1/ R11 / AA [GATE – EC – 1994]

Question Level – 02 (04)

item from 1, 2, 3, 4 and 5

eE1 / T3 / K2 / L2 / V2 / R11 / AA [GATE – EC – 1994]

(01)

Match each of the items A, B, C with an appropriate

y  e2 x is a solution of the differential equation 11

1

y  y  2y  0

a1

d2y dy  a2 y  a3 y  a4 2 dx dx

a1

d3y  a2 y  a3 dx 3

a1

d2y dy  a2 x  a3 x 2 y  0 2 dx dx

(A)

(A) True

(B) False (B)

eE1 / T3 / K2 / L2 / V2 / R11 / AD [GATE – IN – 2005]

(02) The general solution of the differential equation ( D 2  4 D  4) y  0 is of the form (given D =

(C)

d an C1, C2 are constants) dx

(1) Non – linear differential equation

(2) Linear differential equation with constant

(B) C1 e 2 x  C2 e 2 x

(A) C1 e 2 x

coefficients

(C) C1e 2 x  C2e 2 x

(D) C1 e 2 x  C2 x e 2 x

(3) Linear homogeneous differential equation (4) Non – linear homogeneous differential equation (5) Non – linear first order differential equation

eE1 / T3 / K2 / L2 / V2 / R11 / AA [GATE – EC – 2006]

(03) For the differential equation

d2y  k 2 y  0, the 2 dx

(A) A – 1, B – 2, C – 3

(B) A – 3, B – 4, C - 2

(C) A – 2, B – 5, C – 3

(D) A – 3, B – 1, C – 2

boundary conditions are

(i) y  0 for x  0 and

eE1 / T3 / K2 / L2 / V1/ R11 / AD [GATE – EC – 2007]

(ii) y  0 for x  a

(05)

The form of non-zero solution of y (where m

The solution of the differential equation

k2

d2y  y  y2 dx 2 under the boundary conditions

(i)

y  y1 at x  0 and

(ii)

y  y2 at x   where k, y1 and y2 are

varies over all integers) are (A) y 

 m

 mπx  Am sin    a 

constant is

(B) y 

A

m

m

(C) y 

 mπx  cos    a  mπ a



Am x



Am e

(B) y  ( y2  y1 )e

m

(D) y 

m



x

(A) y  ( y1  y2 )e

mπx a

x k

k2

 y2

 y1

x y  ( y1  y2 ) sin h    y1 k (C)

www.targate.org

Page 57

ENGINEERING MATHEMATICS (D)

y  ( y1  y2 )e

x

k

eE1 / T3 / K2 / L2 / V2 / R11 / AB [GATE – ME – 2006]

 y2

eE1 / T3 / K2 / L2 / V1/ R11 / AA [GATE – PI – 2008] (06)

(09)

d2y dy  4  3 y  3e 2 x , 2 dx For dx the particular integral is

The solutions of the differential equation

d2y dy  2  2y  0 2 dx dx are

1 2x e (A) 15

 (1 i ) x , e (1i ) x (A) e

(1 i ) x (1 i ) x ,e (B) e

 (1 i ) x (1 i ) x ,e (C) e

(D) e

(C) 3e

1 2x e (B) 5

x 3 x (D) c1e  c2 e

2x

(1i ) x , (1 i ) x

e

eE1 / T3 / K2 / L2 / V2 / R11 / AA [GATE – PI – 2009] (10)

The homogeneous part of the differential equation

eE1 / T3 / K2 / L2 / V1/ R11 / AB [GATE – EE – 2010]

(07)

d2y dy  p  2q  r 2 dx dx (p, q, r are constants) has real

d 2x dx  6  8x  0 2 dt For the differential equation dt

distinct roots if

 dx    0 dt with initial conditions x(0) = 1 and  t 0 the solution

6t 2 t (A) x(t )  2e  e

2t 4 t (B) x(t )  2e  e

6t 4t (C) x(t )  e  2e

2t 4t (D) x(t )  e  2e

2 (B) p  4q  0

2 (C) p  4q  0

2 (D) p  4q  r

eE1 / T3 / K2 / L2 / V2 / R11 / AB [GATE – EC – 2005] (11)

eE1 / T3 / K2 / L2 / V2 / R11 / AA [GATE – EC – 2010] (08)

2 (A) p  4q  0

A solution of the differential equation

d2y dy  5  6y  0 2 dx dx is given by

A function n(x) satisfies the differential equation

d 2 n( x ) n( x )  2 0 dx 2 L where L is a constant. The

() = 0. The boundary conditions are n(0) = k and n

2x 3 x (A) y  e  e

2x 3x (B) y  e  e

2 x 3x (C) y  e  e

(D) None of these.

solution to this equation is 06. A function n(x) satisfies the differential equation. This equation is eE1 / T3 / K2 / L2 / V2 / R11 / AA [GATE – ME – 2008] (A)

n( x )  k exp   x / L 

(B)

n( x )  k exp   x / L 

what is

x( n)  k 2 exp   x / L 

(A) 0

(B) 0.37

(C)

(C) 0.62

(D) 1.13

(D)

(12)



n( x)  k exp  x / L2

Page 58



It is given that

y " 2 y ' y  0, y(0)  0 y(1)  0

y(0.5)?

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 03 – DIFFERENTIAL EQUATIONS eE1 / T3 / K2 / L2 / V1/ R11 / AC [GATE – ME – 2007]

(A) y = 1

dy  y 2 with initial value y(0) = dx

(B) y = x

(13) The solution of

1 is bounded in the internal is (C) y = x + c where c is an arbitrary constants are (A)   x  

(B)   x  1

(C) x  1, x  1

(D) 2  x  2

arbitrary constants

(D) y = C1 x  C2 where C1, C2 are arbitrary constants

eE1 / T3 / K2 / L2 / V2 / R11 / AA [GATE – IN – 2006]

(14) For initial value problem y  2 y  101 y  10.4e x , y(0)=1.1 and y(0) = - 0.9. Various solutions are written in the following groups. Match the type

eE1 / T3 / K2 / L2 / V2 / R11 / AC [GATE – ME – 1995]

(16) The

solution

to

the

differential

equation

f 11 ( x)  4 f 1 ( x)  4 f ( x )  0

of solution with the correct expression.

Group – I P.

General solution

(A) f1 ( x )  e 2 x

Group – II (1) 0.1 e x

(B) f1 ( x )  e 2 x , f 2 ( x )  e 2 x

of Homogeneous equations Q. Particular integral

(2) e x [A

(C) f1 ( x )  e2 x , f 2 ( x)  xe 2 x

cos10 x  B sin10 x ] R. Total solution

(3) e x cos10x  0.1e x

(D) f1 ( x )  e 2 x , f 2 ( x )  e  x

satisfying boundary

eE1 / T3 / K2 / L2 / V2 / R11 / AC [GATE – – 1995]

conditions

(17) The

solution

of

a

differential

equation

y11  3 y1  2 y  0 is of the form

Codes: (A) P – 2, Q – 1, R -3

(C) P – 1, Q – 2, R – 3

(B) P -1, Q -3, R – 2

d2y 0 2 (15) The solution of the differential equation dx

dy 1 (i) dx at x = 0

dy 1 (ii) dx at x = 1 is

(B) c1e  x  c2 e3 x

(C) c1e x  c2 e 2 x

(D) c1e 2 x  c2 2  x

(D) P -3 , Q – 2, R – 1

eE1 / T3 / K2 / L2 / V2 / R11 / AC [GATE – – ]

with boundary conditions

(A) c1e x  c2 e2 x

eE1 / T3 / K2 / L2 / V2 / R11 / AA [GATE – ME – 1996]

(18) The particular solution for the differential equation

d2y dy  3  2y  2 dx dt

sx is

(A) 0.5cos x  1.5sin x

(B) 1.5cos x  0.5sin x

(C) 1.5sin x

(D) 0.5cos x

www.targate.org

Page 59

ENGINEERING MATHEMATICS eE1 / T3 / K2 / L2 / V2 / R11 / AA [GATE – ME – 1994]

eE1 / T3 / K2 / L2 / V2 / R11 / AC [GATE – CE – 2001]

d2y dy  2  y  0 with y(0) = 1 2 dt dt

(23) The solution for the following differential

(19) Solve for y if and y1 (0)  2 (A) (1  t )e t

equation with boundary conditions y(0) = 2 and y1 (1)  3 is where

(B) (1  t ) et (A) y  x

(C) (1  t ) e

d2y  3x  2 dx 2

t

(D) (1  t )e

3

3

t

eE1 / T3 / K2 / L2 / V2 / R11 / AC [GATE – EC – 2005]

x

(B) y  3x 3  x

2

2

2

(20) Which of the following is a solution of the

2

 3x  2

 5x  2

differential equation d2y dy  P  ( q  1)  0? Where p = 4, q = 3 dx dx

(C) y  x

3

3

 x2  5 x  2 2

(D) y  x3  x 3x

(A) e

(B) xe

2

x

2

 5x  3

2

eE1 / T3 / K2 / L2 / V2 / R11 / AA [GATE – CE – 2005]

(C) x e

2 x

2

(D) x e

2 x

(24) The eE1 / T3 / K2 / L2 / V2 / R11 / AB [GATE – EE – 2005]

x(t )  3x(t)  2x(t)  5, the (21) For the equation 

solution

d2y dy  2  17 y  0; 2 dx dx

 dy  y (0)  1,    0 in the range 0  x  π 4 is  dx  x  π 4

solution x(t) approaches the following values as t 

given by

(A) 0

(B) 5/2

1 (A) e  x [cos 4 x  sin 4 x ] 4

(C) 5

(D) 10

1 (B) e x [cos 4 x  sin 4 x ] 4

eE1 / T3 / K2 / L2 / V2 / R11 / A [GATE – EE – 2005]

(22) The solution to the ordinary differential equation 2

d y dy   6y  0 dx 2 dx is

1 (C) e 4 x [cos 4 x  sin x ] 4 1 (D) e4 x [cos 4 x  sin 4 x] 4 eE1 / T3 / K2 / L2 / V2 / R11 / AC [GATE – ME – 2005]

3x 2 x (A) y  C1e  C2e

(25) The complete solution of the ordinary differential equation

3x 2x (B) y  C2 e  C2e

d2y dy  P  qy  0 is 2 dx dx

y  C1e  x  C2 e3 x then P and q are

3 x 2x (C) y  C1e  C2 e

(A) P = 3, q = 3

(B) P = 3, q = 4

(C) P = 4, q = 3

(D) P = 4, q = 4

3 x 2 x (D) y  C1e  C2 e

Page 60

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 03 – DIFFERENTIAL EQUATIONS

3.3 Leibnitz linear equation

(A) (1  x)e x

2

(B) (1  x)e  x

Question Level – 02

(C) (1  x)e x

2

(D) (1  x)e  x

eE1 / T3 / K3 / L2 / V2 / R11 / AB [GATE – EC – 2008]

(01) Which of the following is a solution to the differential equation d x(t )  3x (t )  0, x(0)  2? dt

(A) x(t )  3e

2ln x  dy  (05) If x 2    2 xy  and y(1) = 0 then what x  dx 

is y(e)?

(B) x(t )  2 e

3 2 t 2

(D) x(t )  3t 2

(02) For the differential equation

dy  5 y  0 with dt

y(0)  1, the general solution is:

(B) e5t

(C) 5 e 5 t

(D) e

of

the

differential

equation

is:

equation of first order only if,

(D) P and Q are functions of x (or) constants eE1 / T3 / K3 / L2 / V2 / R11 / AA [GATE – ME – 2009]

(07) The solution of x

y(1)  6 2 x  2 3 3x

(B) y 

2 x  3 3

(D) y 

x 1  2 2x

2 x2  3x 3

eE1 / T3 / K3 / L2 / V2 / R11 / AB [GATE – ME – 2006]

(04) The

dy  py  Q, (06) The differential equation dx is a linear

(C) P is a functions of y but Q is a constant

5t

dy y   x with the condition that y  1 at x = 1 dx x

(C) y 

solution

1 e2

(B) P and Q are functions of y (or) constants

eE1 / T3 / K3 / L2 / V2 / R112 / A [GATE – EE – 1994]

(A) y 

(D)

(A) P is a constant but Q is a function of y

(A) e5t

solution

1 e

eE1 / T3 / K3 / L2 / V2 / R11 / AD [GATE – CE – 1997]

eE1 / T3 / K3 / L2 / V2 / R112 / AB [GATE – ME – 1994]

(03) The

(B) 1

3t

(C) (C) x(t ) 

2

eE1 / T3 / K3 / L2 / V1/ R11 / AD [GATE – ME – 2005]

(A) e t

2

of

the

differential

2 dy  2 xy  e  x with y(0)  1 is dx

equation

dy  y  x 4 with condition dx

5

(A) y 

x4 1  5 x

(B) y 

4 x4 4  5 5x

(C) y 

x4 1 5

(D) y 

x5 1 5

eE1 / T3 / K3 / L2 / V2 / R11 / AA [GATE – CE – 2005]

(08) Transformation to linear form by substituting v = y1 n of the equation

dy  P (t ) y  q (t ) y n , n  0 dt

will be

www.targate.org

Page 61

ENGINEERING MATHEMATICS (A)

dv  (1  n) pv  (1  n)q dt

3.4 Miscellaneous Question Level – 01

dv (B)  (1  n) pv  (1  n)q dt

eE1 / T3 / K4 / L1 / V1/ R11 / AA [GATE – ME – 2003]

(01) The dv (C)  (1  n) pv  (1  n)q dt

(D)

dy  y  ex dx

(C)

solution

the

differential

x3 c 3

(C) c e x

the

f ( x, y )

(D) 2 e  e 1 

of

(B) y  

(02) For

eE1 / T3 / K3 / L2 / V2 / R11 / AD [GATE – PI – 2010]

(10) The

equation

(A)

differential

f g  y x

(C) f  g 2

equation

dy  g ( x, y )  0 to be exact is dx

(B)

f g  x y

(D)

2 f 2 g  x 2 y 2

dy  y 2  1 satisfying the condition y(0) = 1 is dx

(A) y  e x

equation

eE1 / T4 / K4 / L1 / V1/ R11 / AB [GATE – CE – 1997]

1 (B) e  e1  2

1  e  e 1   2

differential

(D) Unsolvable as equations is non – linear

with y(0)  1. Then the value of y(1) is

(A) e  e

the

1 xc

(A) y 

eE1 / T3 / K3 / L2 / V2 / R11 / AC [GATE – IN – 2010]

1

of

dy  y 2  0 is dx

dv  (1  n) pv  (1  n)q dt

(09) Consider the differential equation

solution

(B) y  x eE1 / T4 / K4 / L1 / V1/ R11 / AC [GATE – CE – 1999]



(C) y  cot x  π

4





(D) y  tan x  π

4



(03) If C is a constant, then the solution of dy  1  y 2 is dx

(A) y  sin(x  c)

(B) y  cos( x  c)

(C) y  tan( x  c)

(D) y  e x  c

-----00000-----

-----00000-----

Page 62

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 03 – DIFFERENTIAL EQUATIONS Question Level – 02

Question Level – 03

eE1 / T3 / K4 / L2 / V2 / R11 / AD [GATE – CE – 2007]

(01) The solution for

the differential equation

dy  x 2 y with the condition that y = 1 at x = 0 is dx

(A) y  e

1

2x

(C) ln( y ) 

x3 4 3

(B) ln( y ) 

x2 2

(D) y  e

x3

eE1 / T3 / K4 / L3 / V2 / R11 / AA [GATE – CE – 2009]

(01) Solution 3y

of

the

differential

equation

dy  2 x  0 represents a family of dx

(A) ellipses

(B) circles

(C) parabolas

(D) hyperbolas

3

eE1 / T3 / K4 / L3 / V2 / R11 / AC [GATE – PI – 2010]

(02) Which one of the following differential equations eE1 / T3 / K4 / L2 / V2 / R11 / AB [GATE – CE – 2007]

(02) A body originally at 600 cools down to 40 in 15 minutes when kept in air at a temperature of

has

a

solution

given

by

the

function

π  y  5sin  3 x   5 

250 c. What will be the temperature of the body at the and of 30 minutes?

(A) 35.20 C

(A)

dy 5  cos(3x )  0 dx 3

(B)

dy 5  (cos 3x)  0 dx 3

(C)

d2y  9y  0 dx 2

(D)

d2y  9y  0 dx 2

(B) 31.50 C

(C) 28.70 C

(D) 150 C eE1 / T3 / K4 / L3 / V2 / R11 / AC [GATE – – ]

eE1 / T3 / K4 / L2 / V2 / R11 / AA [GATE – IN – 2008]

(03) Consider the differential equation

(03) Let f  y x . What is

dy  1  y2. dx

Which one of the following can be particular

x at x = 2, y = 1? xy

(A) 0

(B) ln 2

(C) 1

(D)

solution of this differential equation?

(A) y  tan( x  3)

(B) y  tan( x  3)

1 ln 2

eE1 / T3 / K4 / L3 / V2 / R11 / AA [GATE – EC – 2009]

(C) x  tan( y  3)

(D) x  tan( y  3)

(04) Match each differential equation in Group I to its family of solution curves from Group II.

Group I

Group II

P:

dy y  dx x

(1)

Circles

Q:

dy  y  dx x

(2)

Straight lines

-----00000-----

www.targate.org

Page 63

ENGINEERING MATHEMATICS R:

(3)

dy x  dx y

S:

Hyperbolas

eE1 / T3 / K4 / L3 / V2 / R11 / AC [GATE – EC – 2011]

(08) The

solution

of

differential

equation

dy  Ky , y (0)  C is dx

dy  x  dx y

(A) P-2, Q-3, R-3, S-1

(B) P-1, Q-3, R-2, S-1

(A) x  CeKy

(B) x  Kecy

(C) P-2,Q-1,R-3, S-3

(D) P-3, Q-2, R-1, S-2

(C) y  e kx C

(D) y  Ce kx

eE1 / T3 / K4 / L3 / V2 / R11 / AA [GATE – EE – 2011]

(05) With K as constant, the possible solution for the dy first order differential equation  e3x is dx

eE1 / T3 / K4 / L3 / V2 / R11 / AC [GATE – IN – 2011]

(09) Consider the differential equation y  2 y  y  0 with boundary conditions y(0)  1 y(0)  0 .The value of y(2) is

(A)

1 3 x e K 3

(B)

(C) 3e3x  K

1 ( 1)e 3 x  K 3

(D) y  Ce kx

eE1 / T3 / K4 / L3 / V2 / R11 / AB [GATE – ME – 1993]

(A) – 1

(B) - e

(C) e2

(D) e2

1

eE1 / T3 / K4 / L3 / V2 / R11 / AD [GATE – ME – 2011]

2

(06) The differential

d y dy   sin y  0 is dx 2 dx

(10) Consider the differential equation

dy  (1  y 2 ) x. dx

The general solution with constant “C” is (A) linear

(B) non – linear

(C) homogeneous

(D) of degree two

 x2  (A) y  tan    C  2

x  (B) y  tan 2   C  2  

x (C) y  tan 2    C 2

 x2  (D) y  tan   C   2 

eE1 / T3 / K4 / L3 / V2 / R11 / AC [GATE – ME – 1994]

(07) The necessary & sufficient for the differential equation of the form M(x, y)dx + N(x, y) dy = 0

eE1 / T3 / K4 / L3 / V2 / R11 / AC [GATE – ME – 1996]

to be exact is

(11) The one dimensional heat conduction partial M N  x y

(A) M = N

(B)

M N (C)  y x

2M 2 N  2 (D) x 2 y

Page 64

differential equation

T T  is t x 2

(A) parabolic

(B) hyperbolic

(C) elliptic

(D) mixed

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 03 – DIFFERENTIAL EQUATIONS eE1 / T3 / K4 / L3 / V2 / R11 / AA [GATE – CE – 2001]

(12) The number of boundary conditions required to solve the differential equation

 2  2   0 is x 2 y 2

(A) 2

(B) 0

(C) 4

(D) 1

eE1 / T3 / K4 / L3 / V2 / R11 / AB [GATE – CE – 2004]

(13) Biotransformation of an organic compound having concentration (x) can be modelled using an ordinary differentia equation

dx  kx 2  0, dt

where k is the reaction rate constant. If x = a at t = 0 then solution of the equation is

1 1   kt a x

(A) x  a e kt

(B)

(C) x  a(1  e  kt )

(D) x  a  kt

-----00000-----

Question Level – 03 eE1 / T3 / K9 / L3 / V2 / R11 / AC [GATE – IN – 2005]

(1)

f  a0 x n  a1n n 1     an 1 y n 1  an y n

ai (i = 0 to n) are constants then v x

(A)

f n

(C) n f

(B)

where

f f y is x y

n f

(D) n f

-----00000-----

www.targate.org

Page 65

04 L

Complex Variable Complete subtopic in this chapter, is in the scope of “GATE- ME/EC/EE SYLLABUS”

4.1Cauchy’s Theorem

(C)

Question Level – 02

(01) The value of the contour integral

1 dz | z  j| 2 z  4



(B)

(03) For the function

sin z of a complex variable z, z3

the point z = 0 is

2

in the positive sense is jπ 2

(D) 1

eE1 / T4 / K1 / L2 / V2 / R11 / AB [GATE – IN – 2007]

eE1 / T4 / K1 / L2 / V2 / R11 / AD [GATE – – ]

(A)

4π  6πi 81

π 2

(A) a pole of order 3

(B) a pole of order 2

(C) a pole of order 1

(D) not a singularity

eE1 / T4 / K1 / L2 / V2 / R11 / AB [GATE – EC – 2007]

(C)

 jπ 2

(D)

π 2

(04) The value of

1

 (1  z )dz where C is the contour 2

C

| z  i / 2| 1 eE1 / T4 / K1 / L2 / V2 / R11 / AA [GATE – EC – 2006]

(02) Using Cauchy’s integral theorem, the value of the (A) 2 πi

(B) π

(C) tan 1 ( z )

(D) π i tan 1 z

integral (integration being taken in contour clock wise direction)

eE1 / T4 / K1 / L2 / V2 / R11 / AA [GATE – EC – 2007]

z3  6 dz is where C is |z| = 1 3z  i C

(05) If the semi – circulator controur D of radius 2 is



(A)

2π  4πi 81

Page 66

(B)

π  6πi 8

as shown in the figure. Then the value of the

integral

 s D

2

1 ds is 1

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 04 – COMPLEX VARIABLE eE1 / T4 / K1 / L2 / V2 / R11 / AD [GATE – CE – 2011]

(09) For an analytic function f(x + iy) = u(x, y) + iv(x, y), u is given by u = 3 x 2  3 y 2 . The expression for v. Considering k is to be constant is

(A) i π

(B)  i π

(C)  π

(D) π

 C

(C)

cos(2πz ) dz (2 z  1)( z  3)

(D) 6xy  k

eE1 / T4 / K1 / L3 / V2 / R11 / AA [GATE – CE – 2005]

(01) Consider likely applicability of Cauchy’s Integral theorem to evaluate the following integral counter clock wise around the unit circle C I =

 sec zdz, z being a complex variable. The value

πi (B) 5

2π i 5

(C) 6 y  6x  k

Question Level – 03

where C is a closed curve given by 1  1  1 is

(A)  π i

(B) 6x  6 y  k

-----00000-----

eE1 / T4 / K1 / L2 / V2 / R11 / AC [GATE – CE – 2009]

(06) The value of the integral

(A) 3 y 2  3x 2  k

C

of I will be

(D) π i

eE1 / T4 / K1 / L2 / V2 / R11 / AD [GATE – EC – 2009]

(07) If f(z) = C0  C1 z 1 then

1( f ( z ) dz is given z unit



(A) 2 π C1

(B) 2π 1  C0 

(C) 2π j C1

(D) 2 π j (1  C0 )

(A) I = 0; Singularities set = 

(B) I = 0; Singularities set =  (2n  1)  π / n  0,1, 2,........  2  

(C) I = π / 2 ; Singularities set =

 nπ ; n  0,1,2,........... eE1 / T4 / K1 / L2 / V2 / R11 / AC [GATE – IN – 2011]

(08) The contour integral

e

1

z

dz with C as the

(D) None of the above.

C

counter clock – wise unit circle in the z – plane is

eE1 / T4 / K1 / L3 / V2 / R11 / AA [GATE – IN – 2009]

equal to (02) The value of (A) 0

(B) 2 π

(C) 2 π 1

(D) 

 a

sin z dz, where the contour of the z

integration is a simple closed curve around the origin is

www.targate.org

Page 67

ENGINEERING MATHEMATICS (A) 0

eE1 / T4 / K2 / L0 / V1 / R11 / AD [GATE – IN – 1994]

(B) 2 π j (02)

(C) 

(D)

cos can be represented as

1 2π j

(A)

ei  e i 2

(B)

ei  e i 2i

(C)

ei  ei i

(D)

ei  ei 2

eE1 / T4 / K1 / L3 / V2 / R11 / AA [GATE – – ]

(03) The value of the integral

 C

3 z  4 dz , when 2 z  4z  5

C is the circle | z | 1 is given by eE1 / T4 / K2 / L0 / V1 / R11 / AD [GATE – IN – 2009]

(03) If Z = x + jy where x, y are real then the value of (B) 1 10

(A) 0

(C) 4

| e jz | is

(D) 1

5

eE1 / T4 / K1 / L3 / V2 / R11 / AB [GATE – PI – 2011]

(04) The value of

 C

z2 dz , using Cauchy’s integral z4 1

around the circle | z  1| 1 where z  x  iy is

x2  y2

(A) 1

(B) e

(C) e y

(D) e y

eE1 / T4 / K2 / L0 / V1 / R11 / AD [GATE – PI – 2009]

(04) The product of complex numbers (3 – 21) & (3 + i4) results in

(B)  πi

(A) 2 πi (C) 3πi

2

(A) 1 + 6i

(B) 9 – 8i

(C) 9 + 8i

(D) 17 + i 6

(D) π 2i

2

-----00000-----

eE1 / T4 / K2 / L0 / V1 / R11 / AD [GATE – CE – 2009]

(05) The analytical function has singularities at, where

4.2 Miscellaneous

f(z) =

Question Level – 00 (Basic Problem)

z 1 z2 1

(A) 1 and -1

(B) 1 and i

(C) 1 and – i

(D) i and – i

eE1 / T4 / K2 / L0 / V1 / R11 / AC [GATE – IN – 1994]

(01) The real part of the complex number z  x  iy is given by (A) Re( z)  z  z *

(C) Re( z ) 

Page 68

z z* 2

(B) Re( z ) 

z z* 2

-----00000-----

(D) Re( z)  z  z *

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 04 – COMPLEX VARIABLE eE1 / T4 / K2 / L1 / V1 / R11 / AD [GATE – EC – 2010]

Question Level – 01

(06) The contour C in the adjoining figure is described eE1 / T4 / K2 / L1 / V1 / R11 / AB [GATE – ME – 1996]

(01)

i i , where i =

1 is given by

(A) 0

(B) eπ /2

π (C) 2

(D) 1

by

x 2  y 2  16.



z2  8 dz (0.5) z  (1.5) j

C

Then

the

value

of

eE1 / T4 / K2 / L1 / V1 / R11 / AB [GATE – CE – 1997]

(02)

ez is a periodic with a period of (A) 2π

(B) 2πi

(C) π

(D) iπ

(A) 2 π j

(B) 2 π j

(C) 4 π j

(D) 4 π j

eE1 / T4 / K2 / L1 / V1 / R11 / AD [GATE – IN – 2007]

1. Then one value of j j is

(07) Let j = eE1 / T4 / K2 / L1 / V1 / R11 / AA [GATE – IN – 2005]

(03) The function

 

w  u  iv  1 log( x 2  y 2 )  i tan 1 y 2 x is not analytic at the point.

(A)

(C) 1

(A) (0, 0)

(B) (0, 1)

(C) (1, 0)

(D) (2, α )

(B) 1

3

2

(D) e

π

2

eE1 / T4 / K2 / L1 / V1 / R11 / AB [GATE – PI – 2007]

(08) If a complex number z =

3 1 4  i then z is 2 2

eE1 / T4 / K2 / L1 / V1 / R11 / AB [GATE – PI – 2008]

(04) The value of the expression

(A) 1  2i

5  i10 3  4i

(A) 2 2  2i

(B) 1  2i (C)

(C) 2  i

(D) 2  i

eE1 / T4 / K2 / L1 / V1 / R11 / AD [GATE – – ]

3 1 i 2 2

1 3 (B)   i 2 2

(D)

3 1 i 8 8

eE1 / T4 / K2 / L1 / V1 / R11 / AA [GATE – ME – 2011]

(09) The product of two complex numbers 1 + i & 2 –

(05) The equation sin(z)  10 has

5 i is (A) no real (or) complex solution (B) exactly two distinct complex solutions (C) a unique solution

(A) 7 – 3i

(B) 3 – 4i

(C) – 3 – 4 i

(D) 7 + 3i

(D) an infinite number of complex solutions

www.targate.org

Page 69

ENGINEERING MATHEMATICS eE1 / T4 / K2 / L1 / V1 / R11 / AA [GATE – EC – 2008]

(10) The

residue

of

the

function

f(z)

=

eE1 / T4 / K2 / L2 / V2 / R11 / AC [GATE – CE – 2005]

(03) Which one of the following is Not true for the complex numbers z1 and z2?

1 at z = 2 is ( z  2) ( z  2) 2 2

(A) 1

(B) 1 16

32

(C) 1 16

(D) 1

(A)

z1 z1 z2  z2 | z2 |2

(B) | z1  z2 || z1 |  | z2 |

32 (C) | z1  z2 | | z1 |  | z2 |

-----00000-----

(D) | z1  z2 |2  | z1  z2 |2  2 | z1 |2 2 | z2 |2

Question Level – 02 eE1 / T4 / K2 / L2 / V2 / R11 / AB [GATE – IN – 1997]

eE1 / T4 / K2 / L2 / V2 / R11 / AA [GATE – IN – 2005]

(01) The complex number z  x  jy which satisfy

(04) Consider the circle | z  5  5i | 2 in the complex

the equation | z  1| 1 lie on

number plane (x, y) with z = x+iy. The minimum

(A) a circle with (1, 0) as the centre and radius 1

(B) a circle with (-1, 0) as the centre and radius 1

(C) y – axis

(D) x – axis

distance from the origin to the circle is

(A) 5 2  2

(B)

(C)

(D) 5 2

34

54

eE1 / T4 / K2 / L2 / V2 / R11 / AC [GATE – IN – 2005]

eE1 / T4 / K2 / L2 / V2 / R11 / AA [GATE – IN – 2002]

(02) The bilinear transformation w =

z 1 z 1

(A) Maps the inside of the unit circle in the z –

(05) Let z 3  z , where z is a complex number not equal to zero. Then z is a solution of

2 (A) z  1

3 (B) z  1

4 (C) z  1

9 (D) z  1

plane to the left half of the w - plane

(B) Maps the outside the unit circle in the z – plane to the left half of the w – plane

eE1 / T4 / K2 / L2 / V2 / R11 / AB [GATE – EC – 2006]

(06) For the function of a complex variable w = l nz (C) maps the inside of the unit circle in the z – plane to right half of the w – plane

(where w = u  jv and z  x  jy ) the u = constant lines get mapped i the z – plane as

(D) maps the outside of the unit circle in the z – plane to the right half of the w – plane

Page 70

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 04 – COMPLEX VARIABLE eE1 / T4 / K2 / L2 / V2 / R11 / AA [GATE – – ]

(A) Set of radial straight lines

(10) The integral (B) Set of concentric circles

 f ( z)dz evaluated around the unit

circle on the complex plane for p( z ) 

(C) Set of co focal hyperbolas (D) Set of co focal ellipses

(A) 2 π i

(B) 4 π i

(C) 2 π i

(D) 0

Coz z is z

eE1 / T4 / K2 / L2 / V2 / R11 / AA [GATE – CE – 2007]

(07) Potential function  is given   x 2  y 2 . What

-----00000-----

will be the stream function  with the condition

  0 at x = 0, y = 0? Question Level – 03 eE1 / T4 / K2 / L3 / V2 / R11 / AB [GATE – ME – 2007]

(B) x 2  y 2

(A) 2xy

(01) If ( x, y) and  ( x, y) are functions with continuous 2

(C) x  y

2

2

(D) 2x y

2

2nd

derivatives

then

( x, y)  i  ( x, y) can be expressed as an analytic function of x  iy (i  1) when

eE1 / T4 / K2 / L2 / V2 / R11 / AB [GATE – CE – 2010]

(08) The modulus of the complex number

(A) 5

(C)

(B)

1 5

(D)

3  4i is 1  2i

5

(A)

     ,  x x y y

(B)

     ,  x x y y

(C)

 2   2   2  2    1 x 2 y 2 x 2 y 2

(D)

       0 x y x y

1 5

eE1 / T4 / K2 / L2 / V2 / R11 / AA [GATE – PI – 2010]

(09) If complex number  satisfies the equation

3  1 then the value of 1  

1 is _______ 

eE1 / T4 / K2 / L3 / V2 / R11 / AB [GATE – – ]

(02) A complex variable z  x  j (0.1) has its real (A) 0

(B) 1

(C) 2

(D) 4

part x varying in the range   to  . Which one of the following is the locus (shown in thick lines) of

www.targate.org

1 in the complex plane? z

Page 71

ENGINEERING MATHEMATICS eE1 / T4 / K2 / L3 / V2 / R11 / AC [GATE – ME – 2009]

(04) An analytic function of a complex variable z = x  iy is expressed as f(z) = u( x, y)  i v( x, y)

where i  1 . If u = xy then the expression for v should be

(A)

( x  y )2 k 2

(B)

x  y2 k 2

(C)

y 2  x2 k 2

(D)

( x  y) 2 k 2

eE1 / T4 / K2 / L3 / V2 / R11 / AB [GATE – PI – 2010]

(05) If f(x + iy) = x 3  3 xy 2  i( x, y ) where i  1 and

f (x  iy) is an analytic function then

(x / y) is

(A) y 3  3x 2 y

(B) 3x 2 y  y 3

(C) x 4  4 x 3 y

(D) xy  y 2

eE1 / T4 / K2 / L3 / V2 / R11 / AD [GATE – EE – 2011]

(06) A point z has been plotted in the complex plane eE1 / T4 / K2 / L3 / V2 / R11 / AB [GATE – IN – 2009]

as shown in the figure below

(03) One of the roots of equation x 3  j , where j is the +ve square root of – 1 is

(A) j

(C)

Page 72

(B)

3 j  2 2

3 j  2 2

(D) 

3 j  2 2

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 04 – COMPLEX VARIABLE The plot of the complex number

-----00000-----

www.targate.org

Page 73

ENGINEERING MATHEMATICS

05 Probability and Statistics Complete subtopic in this chapter, is in the scope of “GATE- CS/ME/EC/EE SYLLABUS

Question Level – 03

5.2 Combination

eE1 / T5 / K2 / L3 / V2 / R11 / AB [GATE – IT – 2005]

Question Level – 01

(01) A bag contains 10 blue marbles, 20 black marbles

eE1 / T5 / K2 / L1 / V1 / R11 / AD [GATE – – 2004]

(01) From a pack of regular playing cards, two cards are drawn at random. What is the probability that both cards will be kings, if the card is NOT

and 30 red marbles. A marble is drawn from the bag, its colour recorded and it is put back in the bag. This process is repeated 3 times. The probability that no two no two of the marbles drawn have the same colour is

replaced?

(A) 1/26

(B) 1/52

(C) 1/169

(D) 1/221

(A)

1 36

(B)

1 6

(C)

1 4

(D)

1 3

-----00000----eE1 / T5 / K2 / L3 / V2 / R11 / AC [GATE – ME – 2010]

Question Level – 02

(02) A box contains 2 washers, 3 nuts and 4 bolts. Items are drawn from the box at random one at a

eE1 / T5 / K2 / L2 / V1 / R11 / AD [GATE – – 2003]

(01) A box contains 10 screws, 3 of which are defective. Two screws are drawn at random with

time without replacement. The probability of drawing 2 washers first followed by 3 nuts and subsequently the 4 bots is

replacement. The probability that none of the two screws is defective will be

(A) 2/315

(B) 1/630

(A) 100%

(B) 50%

(C) 1/1260

(D) 1/2520

(C) 49%

(D) None of these

eE1 / T5 / K2 / L3 / V1 / R11 / AC [GATE – EE – 2010]

(03) A box contains 4 while balls and 3 red balls. In -----00000-----

succession, two balls are randomly selected and removed from the box. Given that first removed

Page 74

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 05 – PROBABILITY AND STATISTICS ball is white, the probability that the 2nd removed

that one of the balls is red and the other is blue

ball is red is

will be ________

(A) 1/3

(B) 3/7

(C) ¼

(D) 4/7

(A)

1 7

(B)

4 49

(C)

12 49

(D)

3 7

eE1 / T5 / K2 / L3 / V2 / R11 / AC [GATE – PI – 2010]

(04) Two white and two black balls, kept in two bins, -----00000-----

are arranged in four ways as shown below. In each arrangement, a bin has to be chosen randomly and only one ball needs to be picked

5.3 Probability related problems

randomly from the chosen bin. Which one of the following

arrangements

has

the

highest

probability for getting a white ball picked?

Question Level – 00 (Basic Problem) eE1 / T5 / K3 / L0 / V1 / R11 / AD [GATE – EE – 2005]

(01) If P and Q are two random events, then the following is true

(A) Independence of P and Q implies that probability  P  Q   0

(B) Probability  P  Q   probability (P) + probability (Q)

(C) If P and Q are mutually exclusive then they must be independent

(D) Probability  P  Q   probability (P)

eE1 / T5 / K3 / L0 / V1 / R11 / AB [GATE – EE – 2005]

(02) A fair coin is tossed 3 times in succession. If the first toss produces a head, then the probability of getting exactly two heads in three tosses is eE1 / T5 / K2 / L3 / V2 / R11 / AC [GATE – CE – 2011]

(05) There are two containers with one containing 4

(A)

1 8

(B)

1 2

(C)

3 8

(D)

3 4

red and 3 green balls and the other containing 3 blue balls and 4 green balls. One ball is drawn at random from each container. The probabilities

www.targate.org

Page 75

ENGINEERING MATHEMATICS eE1 / T5 / K3 / L0 / V1 / R11 / AD [GATE – EC – 2005]

eE1 / T5 / K3 / L1 / V2 / R11 / AD [GATE – – 2003]

(03) A fair dice is rolled twice. The probability that an

(03) Let P(E) denote the probability of an event E.

odd number will follow an even number is Given P(A) = 1, P(B) =

1 the values of P(A/B) 2

(A)

1 2

(B)

1 6

and P(B/A) respectively are

(C)

1 3

(D)

1 4

(A)

1 1 , 4 2

(B)

(C)

1 ,1 2

(D) 1,

-----00000-----

1 1 , 2 4

1 2

Question Level – 01 eE1 / T5 / K3 / L1 / V1 / R11 / AC [GATE – – 2004] eE1 / T5 / K3 / L1 / V1 / R11 / AD [GATE – – 1997]

(04) A hydraulic structure has four gates which

(01) The probability that it will rain today is 0.5, the

operate independently. The probability of failure

probability that it will rain tomorrow is 0.6. The

of each gate is 0.2. Given that gate 1 has failed,

probability that it will rain either today or

the probability that both gates 2 and 3 will fail is

tomorrow is 0.7. What is the probability that it will rain today and tomorrow?

(A) 0.3

(B) 0.25

(C) 0.35

(D) 0.4

(A) 0.240

(B) 0.200

(C) 0.040

(D) 0.008

eE1 / T5 / K3 / L1 / V1 / R11 / AB [GATE – – 2001]

(05) Seven car accidents occurred in a week, what is

eE1 / T5 / K3 / L1 / V1 / R11 / AD [GATE – – 2000]

the probability that they all occurred on same

(02) E1 and E2 are events in a probability space day? satisfying

the

following

constraints (A)

1 77

(B)

1 76

(C)

1 27

(D)

7 27

P( E1 )  P( E2 ); P( E1 Y E2 )  1 : E1 & E2 are independent then P( E1 ) 

(A) 0

(B)

1 4

eE1 / T5 / K3 / L1 / V2 / R11 / AA [GATE – CS – 2004]

(06) If a fair coin is tossed 4 times, what is the probability that two heads and two tails will

(C)

1 2

Page 76

result? (D) 1

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 05 – PROBABILITY AND STATISTICS (A)

(C)

3 8

5 8

(B)

(D)

1 2

3 4

(A) 1/16

(B) 1/8

(C) ¼

(D) 5/16

eE1 / T5 / K3 / L1 / V1 / R11 / AC [GATE – CE – 2010]

(11) Two coins are simultaneously tossed. The eE1 / T5 / K3 / L1 / V2 / R11 / AD [GATE – PI – 2005]

(07) Two dice are thrown simultaneously. The

probability

of

two

heads

simultaneously

appearing is

probability that the sum of numbers on both exceeds 8 is

(A)

4 36

(B)

7 36

(A) 1/8

(B) 1/6

(C) 1/4

(D) ½

eE1 / T5 / K3 / L1 / V1 / R11 / AD [GATE – ME – 2011]

9 (C) 36

10 (D) 36

(12) An unbiased coin is tossed five times. The outcome of each loss is either a head or a tail. Probability of getting at least one head is

eE1 / T5 / K3 / L1 / V1 / R11 / AA [GATE – ME – 2008]

(08) A coin is tossed 4 times. What is the probability

________

of getting heads exactly 3 times?

(A) 1/4

(B) 3/8

(C) 1/2

(D) ¾

(A)

1 32

(B)

13 32

(C)

16 32

(D)

31 32

eE1 / T5 / K3 / L1 / V1 / R11 / AC [GATE – EC – 2007]

eE1 / T5 / K3 / L1 / V1 / R11 / AA [GATE – CS – 2011]

(09) An examination consists of two papers, paper 1

(13) It two fair coins are flipped and at least one of the

and paper 2. The probability of failing in

outcomes is known to be a head, what is the

probability of failing in paper 1 is 0.6. The

probability that both outcomes are heads?

probability of a student failing in both the papers is (A) 0.5

(B) 0.18

(C) 0.12

(B) 0.06

(A)

1 3

(B)

1 4

(C)

1 2

(D)

2 3

eE1 / T5 / K3 / L1 / V1 / R11 / AD [GATE – EC – 2010]

(10) A fair coin is tossed independently four times. The probability of the event “The number of

-----00000-----

times heads show up is more than the number of times tails show up” is

www.targate.org

Page 77

ENGINEERING MATHEMATICS Question Level – 02

(A)

3 23

(B)

6 23

(C)

3 10

(D)

3 5

eE1 / T5 / K3 / L2 / V2 / R11 / AD [GATE – – 1995]

(01) The probability that a number selected at random between 100 and 999 (both inclusive) will not contain the digit 7 is

eE1 / T5 / K3 / L2 / V2 / R11 / AD [GATE – ME – 2005]

16 (A) 25

9 (B)    10 

27 (C) 75

18 (D) 25

3

eE1 / T5 / K3 / L2 / V1 / R11 / AB [GATE – – 1998]

(05) The probability that there are 53 Sundays in a randomly chosen leap year is

(A)

1 7

(B)

1 14

(C)

1 28

(D)

2 7

(02) A die is rolled three times. The probability that exactly one odd number turns up among the three

eE1 / T5 / K3 / L2 / V2 / R11 / AC [GATE – EC – 2011]

outcomes is

(06) A fair dice is tossed two times. The probability that the 2nd toss results in a value that is higher

(A)

1 6

(B)

3 8

(C)

1 8

(D)

1 2

eE1 / T5 / K3 / L2 / V1 / R11 / AB [GATE – – 1998]

(03) The probability that two friends share the same birth-month is (A) 1/6

(C) 1/144

than the first toss is

(A)

2 36

(B)

2 6

(C)

5 12

(D)

1 2

eE1 / T5 / K3 / L2 / V1 / R11 / AC [GATE – – 1999]

(B) 1/12

(D) 1/24

(07) Consider two events E1 and E2 such that 1 1 1 p ( E1 )  , p ( E2 )  and ( E1 I E2 )  . Which 2 3 5

of the following statement is true? eE1 / T5 / K3 / L2 / V2 / R11 / AB [GATE – IT – 2004]

(04) In a population of N families, 50% of the families

(A) p ( E1 Y E2 ) 

2 3

have three children, 30% of families have two children and the remaining families have one

(B) E1 and E2 are independent

child. What is the probability that a randomly picked child belongs to a family with two

(C) E1 and E2 are not independent

children? (D) P( E1 / E2 )  4 / 5

Page 78

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 05 – PROBABILITY AND STATISTICS eE1 / T5 / K3 / L3 / V2 / R11 / AC [GATE – –]

Question Level – 03

(04) A fair coin is tossed 10 time. What is the eE1 / T5 / K3 / L3 / V2 / R11 / AC [GATE – – 2002]

probability that only the first two tosses will yield

(01) Four fair coins are tossed simultaneously. The heads? probability that at least one heads and at least one tails turn up is

1 (A)   2 (A)

(C)

1 16

(B)

7 8

(D)

1 8

2

10

1 (C)   2

15 16

1 (B) 10c2   2

2

10

1 (D) 10c2   2

eE1 / T5 / K3 / L3 / V2 / R11 / AA [GATE – CS – 2010]

(05) What is the probability that a divisor of 1099 is a eE1 / T5 / K3 / L3 / V2 / R11 / AA [GATE – PI – 2007]

(02) Two cards are drawn at random in succession

multiple of 1096?

with replacement from a deck of 52 well shuffled cards Probability of getting both ‘Aces’ is

(A)

1 169

(B)

2 169

(A) 1/625

(B) 4/625

(C) 12/625

(D) 16/625

eE1 / T5 / K3 / L3 / V2 / R11 / AD [GATE – IN – 2011]

(06) The box 1 contains chips numbered 3, 6, 9, 12 (C)

1 13

(D)

2 13

and 15. The box 2 contains chips numbered 6, 11,

eE1 / T5 / K3 / L3 / V2 / R11 / AC [GATE – PI – 2008]

(03) In a game, two players X and Y toss a coin alternately. Whosever gets a ‘heat’ first, wins the game and the game is terminated. Assuming that player X starts the game the probability of player

16, 21 and 26. Two chips, one from each box are drawn at random. The numbers written on these chips are multiplied. The probability for the product to be an even number is ___________ .

X winning the game is

(A) 1/3

(B) 1/3

(C) 2/3

(D) 3/4

(A)

6 25

(B)

2 5

(C)

3 5

(D)

19 25

www.targate.org

Page 79

ENGINEERING MATHEMATICS eE1 / T5 / K3 / L3 / V2 / R11 / AC [GATE – PI – 2011]

5.4 Bays theorems

(07) It is estimated that the average number of events during a year is three. What is the probability of

No Question

occurrence of not more than two events over a two-year duration? Assume that the number of

5.5 Probability Distribution

events follow a poisson distribution.

Question Level – 00 (Basic Problem) (A) 0.052

(B) 0.062 eE1 / T5 / K5 / L0 / V1 / R11 / AA [GATE – IN – 2007]

(C) 0.072

(D) 0.082

(01) Assume that the duration in minutes of a telephone conversation follows the exponential

eE1 / T5 / K3 / L3 / V1 / R11 / AD [GATE – ME – 2005]

(08) A single die is thrown two times. What is the probability that the sum is neither 8 nor 9?

(A)

(C)

1 9

(B)

1 4

(D)

5 36

3 4

distribution f(x) =

1  x /5 e , x  o. The probability 5

that the conversation will exceed five minutes is

(A)

1 e

(B) 1 

1 e

(C)

1 e2

(D) 1 

1 e2

eE1 / T5 / K3 / L3 / V1 / R11 / AB [GATE – EE – 2009]

(09) Assume for simplicity that N people, all born in

eE1 / T5 / K5 / L0 / V1 / R11 / AB [GATE – – 2005]

(02) Lot has 10% defective items. Ten items are April (a month of 30 days) are collected in a room, consider the event of at least two people in

chosen randomly from this lot. The probability that exactly 2 of the chosen items are defective is

the room being born on the same date of the (A) 0.0036

(B) 0.1937

(C) 0.2234

(D) 0.3874

month even if in different years e.g. 1980 and 1985. What is the smallest N so that the probability of this exceeds 0.5 is? -----00000----(A) 20

(B) 7

(C) 15

(D) 16

-----00000-----

Page 80

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 05 – PROBABILITY AND STATISTICS Question Level – 01

Question Level – 02

eE1 / T5 / K5 / L1 / V1 / R11 / AA [GATE – – 2000]

eE1 / T5 / K5 / L2 / V1 / R11 / AD [GATE – PI – 2007]

(01) In a manufacturing plant, the probability of

(01) If X is a continuous random variable whose

making a defective bolt is 0.1. The mean and standard deviation of defective bolts in a total of 900 bolts are respectively

probability density function is given by

k (5 x  2 x 2 ), f ( x)   0,

0 x2 otherwise

Then P(x >

1) is (A) 90 and 9

(B) 9 and 90

(C) 81 and 9

(D) 9 and 81

(A) 3/14

(B) 4/5

(C) 14/17

(D) 17/28

eE1 / T5 / K5 / L1 / V1 / R11 / AB [GATE – ME – 2005]

(02) A lot had 10% defective items. Ten items are chosen randomly from this lot. The probability

-----00000-----

that exactly 2 of the chosen items are defective is

(A) 0.0036

(B) 0.1937

(C) 0.2234

(D) 0.3874

Question Level – 03 eE1 / T5 / K5 / L3 / V2 / R11 / AB [GATE – – 1999]

(01) Four arbitrary points ( x1 , y1 ) , ( x2 , y2 ),( x3 , y3 ) , eE1 / T5 / K5 / L1 / V1 / R11 / AA [GATE – PI – 2005]

(03) The life of a bulb (in hours) is a random variable

( x4 , y4 ) , are given in the xy – plane using the

with an exponential distribution f(t) = α e αt ,

method of least squares, if, regressing y upon x

0  t  . The probability that its value lies b/w

gives the fitted line y = ax + b; and regressing x

100 and 200 hours is upon y gives the fitted line x = cy + d, then (A) e100 α  e200α

(B) e100  e200 (A) The two fitted lines must coincide

(C) e100 α  e200α

(D) e200 α  e100α (B) the two fitted lines need not coincide

eE1 / T5 / K5 / L1 / V1 / R11 / AC [GATE – CE – 2007]

(04) If the standard deviation of the spot speed of

(C) It is possible that ac = 0

vehicles in a highway is 8.8 kemps and the mean speed of the vehicles is 33 kmph, the coefficient

(D) a must be 1/c

of variation in speed is -----00000----(A) 0.1517

(B) 0.1867

(C) 0.2666

(D) 0.3646

www.targate.org

Page 81

ENGINEERING MATHEMATICS eE1 / T5 / K6 / L0 / V1 / R11 / AA [GATE – ME – 2009]

5.6 Random Variable

(04) The standard deviation of a uniformly distributed random variable b/w 0 and 1 is

Question Level – 00 (Basic Problem) eE1 / T5 / K6 / L0 / V1 / R11 / AB [GATE – – 2009]

(A)

1

(B)

12

1 3

(01) Using given data points tabulated below, a straight line passing through the origin is fitted using least squares method. The slope of the line

x

1

2

3

y

1.5

2.2

2.7

(C)

5

(D)

12

7 12

-----00000-----

Question Level – 01

(A) 0.9

(B) 1

(C) 1.1

(D) 1.5

eE1 / T5 / K6 / L1 / V1 / R11 / AC [GATE – EC – 2008]

(01) X is uniformly distributed random variable that eE1 / T5 / K6 / L0 / V1 / R11 / AD [GATE – ME – 2007]

(02) Let X and Y be two independent random

takes values between 0 and 1. The value of E(X3) will be

variables. Which one of the relations b/w expectation (E), variance (Var) and covariance

(A) 0

(B) 1/8

(C) 1/4

(D) ½

(Cov) given below is FALSE? (A) E(XY) = E(X) E(Y) eE1 / T5 / K6 / L1 / V1 / R11 / AA [GATE – IN – 2008]

(02) A random variable is uniformly distributed over

(B) cov (X, Y) = 0

the interval 2 to 10. Its variance will be (C) Var(X + Y) = Var(X) + Var(Y) (A) 16/3

(B) 6

(C) 256/9

(D) 36

(D) E(X2Y2) = (E(X))2(E(y))2 eE1 / T5 / K6 / L0 / V2 / R11 / A [GATE – – 2008]

(03) Three values of x and y are to be fitted in a straight line in the form y  a  bx by the method

eE1 / T5 / K6 / L1 / V1 / R11 / AB [GATE – IN – 2008]

(03) Consider a Gaussian distributed random variable with zero mean and standard deviation  . The

of

least

squares.

Given

 x  6,  y  21,

2

 x  14,  xy  46, the values of a and b are

value of its cumulative distribution function at the origin will be

respectively

(A) 2, 3

(C) 2, 1

Page 82

(A) 0

(B) 0.5

(C) 1

(D) 10 

(B) 1, 2

(D) 3, 2

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 05 – PROBABILITY AND STATISTICS eE1 / T5 / K6 / L1 / V1 / R11 / AA [GATE – IN – 2008] (-2|x|)

(04) Px(X) = Me

(-3|x|)

+ Ne

is the probability

density function for the real random variable X, over the entire x-axis, M and N are both positive real numbers. The equation relating M and N is

(A) M 

2 N 1 3

(C) M  N  1

1 (B) 2M  N  1 3

(D) M  N  3

computer is p. The company therefore subjects each computer to a testing process. This testing process gives the correct result for any computer with a probability of q. What is the probability of a computer being declared faulty?

(A) pq + (1 – p) (1 – q)

(B) (1 – q)p

(C) (1 – p)q

(D) pq

eE1 / T5 / K6 / L1 / V1 / R11 / AA [GATE – PI – 2008]

(05) For a random variable x(  x  ) following

-----00000-----

normal distribution, the mean is μ  100 If the probability is P = α for x  110. Then the probability of x lying b/w 90 and 110 i.e.

P(90  x  110) and equal to

Question Level – 02 eE1 / T5 / K6 / L2 / V2 / R11 / AD [GATE – PI – 2010]

(01) If a random variable X satisfies the poission’s distribution with a mean value of 2, then the probability that X > 2 is

(A) 1  2α

(B) 1  α

(C) 1  α / 2

(D) 2α

eE1 / T5 / K6 / L1 / V1 / R11 / AD [GATE – IN – 2009]

(A) 2e2

(B) 1  2e2

(C) 3e 2

(D) 1  3e2

(06) If three coins are tossed simultaneously, the probability of getting at least one head is

eE1 / T5 / K6 / L2 / V2 / R11 / AD [GATE – CS – 2011]

(02) If the difference between the expectation of the (A) 1/8

square of a random variable | E(X 2 ) | and the

(B) 3/8

square of the expectation of the random variable (C) ½

(D) 7/8

 E(X 2 )  is denoted by R, then,   eE1 / T5 / K6 / L1 / V1 / R11 / AA [GATE – CS – 2010]

(07) Consider a company that assembles computers. The probability of a faulty assembly of any

(A) R = 0

(B) R < 0

(C) R  0

(D) R > 0

www.targate.org

Page 83

ENGINEERING MATHEMATICS eE1 / T5 / K6 / L2 / V2 / R11 / AA [GATE – PI – 2007]

eE1 / T5 / K6 / L3 / V2 / R11 / AB [GATE – EC – 2009]

(03) The random variable X taken on the values 1, 2

(03) A discrete random variable X takes value from 1

2  5P 1  3P , and 5 5

to 5 with probabilities as shown in the table. A

1.5  2 P respectively the values of P and E(X) 5

student calculates the mean of X as 3.5 and her

(or) 3 with probabilities

teacher calculates the variance to X as 1.5. Which

are respectively of the following statements is true? (A) 0.05, 1.87

(B) 1.90, 5.87

(C) 0.05, 1.10

(D) 0.25, 1.40

K

1

2

3

4

5

P(X = K)

0.1

0.2

0.4

0.2

0.1

(A) Both the student and the teacher are right

-----00000-----

(B) Both the student and the teacher are wrong

Question Level – 03 eE1 / T5 / K6 / L3 / V2 / R11 / AD [GATE – CE – 2009]

(C) The student is wrong but the teacher is right

(01) The standard normal probability function can be (D) The student is right but the teacher is wrong

approximated as F(XN) =

1



1  exp 1.7255 X N | X N |0.012



where

eE1 / T5 / K6 / L3 / V2 / R11 / AC [GATE – IN – 2009]

(04) A screening test is carried out to detect a certain XN = standard normal deviate. If mean and standard deviation of annual precipitation are 102

disease. It is found that 12% of the positive

cm and 27 cm respectively, the probability that

reports and 15% of the negative reports are

the annual precipitation will be b/w 90 cm and

incorrect. Assuming that the probability of a

102 cm is person getting positive report is 0.01, the (A) 66.7%

(B) 50.0%

(C) 33.3%

(D) 16.7%

probability that a person tested gets an incorrect report is

eE1 / T5 / K6 / L3 / V2 / R11 / AC [GATE – EC – 2009]

(A) 0.0027

(B) 0.0173

(C) 0.1497

(D) 0.2100

(02) Consider two independent random variable X and Y with identical distributions. The variables X and Y take values 0,1 and 2 with probability 1/2, ¼ and ¼ respectively. What is the conditional probability P(X + Y = 2/X – Y = 0)?

eE1 / T5 / K6 / L3 / V2 / R11 / AD [GATE – CS – 2011]

(05) Consider a finite sequence of random values X =

{x1 ,x 2 ,x3 ,...........xn }. Let μx be the mean and (A) 0

(B) 1/16

 x be the standard deviation of X. Let another (C) 1/6

Page 84

(D) 1

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 05 – PROBABILITY AND STATISTICS finite sequence Y of equal length be derived from this yi  a.xi  b , where a and b are positive constants. Let μy be the mean and  y be the

Question Level – 02 eE1 / T5 / K2 / L2 / V2 / R11 / AC [GATE – – 1999]

(01) Suppose that the expectation of a random variable X is 5, width of the following statement

standard deviation of this sequence. Which one

is true?

of the following statements is incorrect? (A) There is a sample point at which X has the (A) Index position of mode of X in X is the same as the index position of mode of Y in Y. (B) Index position of median of X i X is the same

value = 5

(B) There is a sample point at which X has the value > 5

as the index position of median of Y in Y. (C) There is a sample point at which X has a (C) μ y  aμ x  b

value  5

(D)  y  a x  b (D) None of the above -----00000-----

-----00000-----

Question Level – 03

5.7 EXPECTION

eE1 / T5 / K2 / L3 / V2 / R11 / AD [GATE – CS – 2004]

(01) An exam paper has 150 multiple choice questions

Question Level – 01

of 1 mark each, with each question having four choices. Each incorrect answer fetches – 0.25

eE1 / T5 / K2 / L1 / V1 / R11 / AA [GATE – EC – 2007]

marks. Suppose 1000 students choose all their

(01) If E denotes expectation, the variance of a

answers randomly with uniform probability. The

random variable X is given by

sum total of the expected marks obtained by all the students is

2

2

(A) E ( X )  E ( X )

(C) E ( X 2 )

2

2

(B) E ( X )  E ( X ) (A) 0

(B) 2550

(C) 7525

(D) 9375

(D) E 2 ( X )

-----00000---------00000-----

www.targate.org

Page 85

ENGINEERING MATHEMATICS

5.8 SET THEORY Question Level – 03 eE1 / T5 / K8 / L3 / V2 / R11 / AC [GATE – IT – 2004]

(01) In a class of 200 students, 125 students have taken programming language course, 85 students have taken data structures course, 65 students have taken computer organization course, 50 students have taken both programming languages and data structures, 35 students Have taken both programming

languages

and

computer

organization, 30 students have taken both data structures and computer organization, 15 students have taken all the three courses. How many students have not taken any of the three courses?

(A) 15

(B) 20

(C) 25

(D) 35

-----00000-----

Page 86

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

06 Numerical Methods Complete subtopic in this chapter, is in the scope of “GATE-CS/ ME/EC/EE SYLLABUS”

eE1 / T6 / K / L2 / V2 / R11 / AC [GATE – –]

6.1 Clubbed problem

(02) The polynomial p ( x)  x 5  x  2 has

Question Level – 01 (A) all real roots eE1 / T6 / K / L1 / V1 / R11 / A [GATE – –]

(01) In the interval [0, π ] the equation x  cos x has

(B) 3 real and 2 complex roots

(A) No solution

(C) 1 real and 4 complex roots

(B) Exactly one solution

(D) all complex roots

(C) Exactly 2 solutions (D) An infinite number of solutions

eE1 / T6 / K / L2 / V2 / R11 / AC [GATE – –]

(03) It is known that two roots of the non-linear 3

2

equation x  6x  11x  6  0 are 1 and 3. The -----00000-----

Question Level – 02 eE1 / T6 / K / L2 / V2 / R11 / AB [GATE – – ]

third root will be

(A) j

(B)  j

(C) 2

(D) 4

(01) For solving algebraic and transcendental equation which one of the following is used?

(A) Coulomb’s theorem

-----00000-----

(B) Newton-Raphson method (C) Euler’s method (D) Stoke’s theorem

Page 87

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

ENGINEERING MATHEMATICS eE1 / T6 / K / L3 / V2 / R11 / AC [GATE – – ]

Question Level – 03

(03) Matching exercise choose the correct one out of eE1 / T6 / K / L3 / V2 / R11 / AC [GATE – – ]

the alternatives A, B, C, D

(01) Match the following and choose the correct Group – I

combination P. E.

Newton –

(1)

Solving non-linear

Raphso

equations

n

nd

2 order

Group – II (1)

Runge –

differe

Kutta

ntial

method

equatio

method

ns Q. F.

Runge-Kutta

(2)

Solving linear

method

simultaneous equations

Non-linear

(2)

Newton –

algebra

Raphso

ic

n

equatio

method

ns G.

Simpson’s Rule

(3)

Solving ordinary differential

R.

equations H.

(A)

Gauss

(4)

Numerical

elimina

intergration

tion

method

E – 6, F – 1, G

Interpolation

(B)

E – 1, F – 6, G – 4, H

– 5, H –

(3)

Gauss

algebra

Elimin

ic

ation

equatio ns S.

(5)

Linear

Numerical

(4)

integrat

Simpson’s Rule

ion

–3

3 (C)

E – 1, F – 3, G

(D)

E – 5, F – 3, G – 4, H

– 4, H –

eE1 / T6 / K / L3 / V2 / R11 / AA [GATE – – ]

that

(B) P-2, Q-4, R-3, S-1

(C) P-1, Q-2, R-3, S-4

(D) P-1, Q-3, R-2, S-4

–1

2

(02) Given

(A) P-3, Q-2, R-4, S-1

one

root

of

the

equation

eE1 / T6 / K2 / L1 / V1 / R11 / AB [GATE – – ]

(04) Back ward Euler method for solving the

x3  10x2  31x  30  0 is 5 then other roots

differential equation

arc

by

dy  f ( x, y ) is specified dx

(A) yn 1  yn  h f ( xn , yn ) (A) 2 and 3

(B) 2 and 4 (B) yn 1  yn  h f ( xn 1 , yn1 )

(C) 3 and 4

(D)  2 and  3 (C) yn1  yn1  2h f ( xn , yn ) (D) yn1  (1  h) f ( xn 1 , yn1 )

Page 88

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 06 – NUMERICAL METHODS eE1 / T6 / K3 / L2 / V2 / R11 / AA [GATE – – ]

Question Level – 01

(05) The following equation needs to be numerically eE1 / T6 / K4 / L1 / V1 / R11 / AB [GATE – – ]

solved using the Newton – Raphson method

x3  4x  9  0. The iterative equation for this purpose is ( k indicates the iteration level)

(01) The iteration formula to find the square root of a positive real number by using the NewtonRaphson method is

2 xk3  9 (A) xk 1  2 3xk  4

3xk3  9 (B) xk 1  2 2 xk  9

(A) xk 1 

3( xk  b) 2 xk

x22  b (B) xk 1  2 xk

(C) xk 1  xk  3k2  4

(D) xk 1 

4 xk2  3 9 xk2  2

(C) xk 1 

xk  2 xk 1 xk2  b

(D) None

-----00000-----

eE1 / T6 / K4 / L1 / V1 / R11 / AC [GATE – – ]

(02) Given a > 0, we wish to calculate it reciprocal value

6.2 Newton-Rap son

1 by using Newton – Raphson method for a

f ( x)  0. The Newton-Raphson algorithm for Question Level – 00 (Basic Problem)

the function will be

eE1 / T6 / K4 / L0 / V1 / R11 / AD [GATE – – ]

(01) The Newton-Raphson method is to be used to

(A) xk 1 

1 a   xk   2 xk 

(B) xk 1  xk 

a 2 xk 2

(D) xk 1  xk 

a 2 xk 2

find the root of the equation and f '( x) is the derivative of f . the method converges

(C) xk 1  2 xk  axk2

(A) Always eE1 / T6 / K4 / L1 / V1 / R11 / AA [GATE – – ]

(B) Only is f is a polynomial

(03) Identify the Newton – Raphson iteration scheme for the finding the square root of 2

(C) Only if f ( x0 )  0

(A) xn 1 

1 2   xn   2 xn 

(B) xn 1 

1 2   xn   2 xn 

(C) xn 1 

2 xn

(D) None of the above

-----00000-----

(D) xn 1  2  xn

www.targate.org

Page 89

ENGINEERING MATHEMATICS eE1 / T6 / K4 / L1 / V1 / R11 / A [GATE – – ]

(04) The

Newton



Raphson

iteration

1 R  xn   can be used to compute the 2 xn 

xn 1 

eE1 / T6 / K4 / L1 / V1 / R11 / AC [GATE – – ] x

(07) The recursion relation to solve x  e Newton – Raphson method is (A) xn 1  e

(A) square or R

using

 xn

(B) reciprocal of R

(C) square root of R

(D) logarithm of R

eE1 / T6 / K4 / L1 / V1 / R11 / A [GATE – – ]

(B) xn 1  xn  e

 xn

(1  xn )e  xn (C) xn 1  (1  e  xn )

2

(05) Let x  117  0. The iterative steps for the solution using Newton – Raphson’s method given by

(A) xk 1 

1 117   xk   2 xk 

117 (B) xk 1  xk  xk (C) xk 1  xk 

xk 117

xn2  e  xn (1  xn )  1 (D) xn 1  xn  e xn

eE1 / T6 / K4 / L1 / V1 / R11 / A [GATE – – ]

(08) The integral



3

1

rd

simpson’s 1/ 3

1 dx when evaluated by using x rule on two equal sub intervals

each of length 1, equal to

(A) 1.000

(B) 1.008

(C) 1.1111

(D) 1.120

1 117  (D) xk 1  xk   xk   2 xk  -----00000----eE1 / T6 / K4 / L1 / V1 / R11 / AA [GATE – – ]

(06) Newton-Raphson formula to find the roots of an equation f ( x)  0 is given by

(A) xn 1  xn 

f ( xn ) f 1 ( xn )

Question Level – 02 eE1 / T6 / K4 / L2 / V2 / R11 / AD [GATE – – ]

(01) The formula used to compute an approximation for the second derivative of a function f at a

(B) xn 1  xn 

(C) xn1 

f ( xn ) f 1 ( xn )

point x0 is

(A)

f ( x0  h)  f ( x0  h) 2

(B)

f ( x0  h)  f ( x0  h) 2h

f ( xn ) xn f 1 ( xn )

(D) none of the above

Page 90

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 06 – NUMERICAL METHODS (C)

(D)

eE1 / T6 / K4 / L2 / V2 / R11 / AB [GATE – – ]

f ( x0  h)  2 f ( x0 )  f ( x0  h) h2

3

2

(05) The equation x  x  4 x  4  0 is to be solved using the Newton – Raphson method using x  2

f ( x0  h)  2 f ( x0 )  f ( x0  h) h2

taken as the initial approximation of the solution eE1 / T6 / K4 / L2 / V2 / R11 / AC [GATE – – ]

then the next approximation using this method,

(02) The Newton-Raphson iteration formula for finding

3

will be

c , where c > 0 is ,

(A) xn 1 

(C) xx 1 

2 xn3  3 c 3 xn2

2 xn3  c 3 xn2

(B) xn 1 

(D) xn 1 

2 xn3  3 c 3xn2

(A) 2/3

(B) 4/3

(C) 1

(D) 3/2

2 xn3  c 3xn2

eE1 / T6 / K4 / L2 / V2 / R11 / AA [GATE – – ] x

(06) Equation e  1  0 is required to be solved eE1 / T6 / K4 / L2 / V1 / R11 / AC [GATE – – ]

using Newton’s method with an initial guess

(03) Starting from x0  1 , one step of Newton –

x0  1. Then after one step of Newton’s Raphson

method in solving the

equation method estimate x1 of the solution will be given

3

x  3x  7  0 gives the next value x1 as by (A) x1  0.5

(B) x1  1.406

(C) x1  1.5

(D) x1  2

(A) 0.71828

(B) 0.36784

(C) 0.20587

(D) 0.0000

eE1 / T6 / K4 / L2 / V2 / R11 / A [GATE – – ]

eE1 / T6 / K4 / L2 / V2 / R11 / AB [GATE – – ]

(04) The real root of the equation xe  2 is

(07) Newton – Raphson method is used to compute a

evaluated using Newton – Raphson’s method. If

root of the equation x  13  0 with 3.5 as the

x

2

the first approximation of the value of x is initial value. The approximation after one 0.8679, the 2 nd approximation of the value of x correct to three decimal places is

iteration is

(A) 0.865

(B) 0.853

(A) 3.575

(B) 3.677

(C) 0.849

(D) 0.838

(C) 3.667

(D) 3.607

www.targate.org

Page 91

ENGINEERING MATHEMATICS eE1 / T6 / K4 / L2 / V2 / R11 / A [GATE – – ]

eE1 / T6 / K4 / L3 / V2 / R11 / A [GATE – – ]

(08) The square root of a number N is to be obtained

(02) Solution, the variable x1 and x2 for the following

by applying the Newton – Raphson iteration to equations is to be obtained by employing the

2

the equation x  N  0. If i denotes the iteration index, the correct iterative scheme will be

Newton – Raphson iteration method Equation (i) 10 x2 sin x1  0.8  0

(A) xi 1

10 x22  10 x2 cos x1  0.6  0

1 N   xi   2 xi 

Assuming

the

initial

values

x1  0.0 and

x2  1.0 the Jacobian matrix is (B) xi 1 

1 2 N  xi  2  2 xi 

10 0.8    0 0.6 

(B) 

 0 0.8   10 0.6 

(D) 

(A)  (C) xi 1 

(D) xn1 

10 0    0 10 

1 N2  x   i  2 xi  (C) 

xn f ( xn ) f 1 ( xn )

10 0   10 10

eE1 / T6 / K4 / L3 / V2 / R11 / AB [GATE – – ]

-----00000-----

(03) Give a > 0, we wish to calculate its reciprocal value

Question Level – 03 eE1 / T6 / K4 / L3 / V2 / R11 / A [GATE – – ]

(01) A

numerical

solution

of

the

equation

1 by using Newton – Raphson method for a

f ( x) = 0. For a  7 and starting with x0  0.2 the first two iteration will be

f ( x)  x  x  3  0 can be obtained using (A) 0.11, 0.1299

(B) 0.12, 0.1392

(C) 0.12, 0.1416

(D) 0.13, 0.1428

Newton – Raphson method. If the starting value is x = 2 for the iteration then the value of x that is to be used in the next step is -----00000----(A) 0.306

(B) 0.739

(C) 1.694

(D) 2.306

Page 92

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 06 – NUMERICAL METHODS

6.3 Differential

6.4 Integration

Question Level – 00 (Basic Problem)

Question Level – 00 (Basic Problem)

eE1 / T6 / K5 / L0 / V1 / R11 / A [GATE – – ]

eE1 / T6 / K6 / L0 / V1 / R11 / AC [GATE – – ]

(01) During the numerical solution of a first order

(01) The trapezoidal rule for integration give exact

differential equation using the Euler (also known

result when the integrand is a polynomial of degree

as Euler Cauchy) method with step size h, the local truncation error is of the order of

2

(B) h

3

4

(D) h

(A) h

(A) but not 1

(B) 1 but not 0

(C) 0 (or) 1

(D)2

-----00000-----

5

(C) h

Question Level – 01 -----00000----eE1 / T6 / K6 / L1 / V1 / R11 / AC [GATE – – ]

(01) The Newton – Raphson method is used to find

Question Level – 02

2

the root of the equation x  2. if the iterations are started from 1, then the iteration will

eE1 / T6 / K5 / L2 / V1 / R11 / A [GATE – – ]

(01) Consider

a

dy ( x )  y ( x)  x dx

differential with

initial

equation

(A) Converge to – 1

(B) Converge to

(C) Converge to  2

(D) not converge

condition

y(0)  0. Using Euler’s first order method with a step size of 0.1 then the value of y(0.3) is

(A) 0.01

(B) 0.031

(C) 0.0631

(D) 0.1

2

-----00000-----

Question Level – 03 eE1 / T6 / K6 / L3 / V2 / R11 / A [GATE – – ]

(01) The following algorithm computes the integral J = -----00000-----



b

a

at

f ( x )dx from the given values f j  f ( x j ) equidistant

points

x0  a, x1  x0  h,

x2  x0  2h, .........x2 m  x0  2mh  b Compute S0  f 0  f 2m

www.targate.org

Page 93

ENGINEERING MATHEMATICS S1  f1  f 3  ......  f 2 m 1 S 2  f 2  f 4  .........  f 2 m 2 J=

h  S0  4(S1 )  2(S2 ) 3

The rule of numerical integration, which uses the above algorithm is

(A) Rectangle rule

(B) Trapezoidal rule

(C) Four – point rule

(D) Simpson’s rule

-----00000-----

Page 94

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

07 Transform Theory Complete subtopic in this chapter, is in the scope of “GATE- EC/EE SYLLABUS”

Question Level – 00 (Basic Problem)

(A)

a s  a2

(B)

a s  a2

(C)

s s  a2

(D)

s s  a2

2

2

eE1 / T7 / K2 / L0 / V1 / R11 / AB [GATE – EE – 1995]

(01) The Laplace transform of f(t) is F(s). Given F(s) =

 , the final value of f(t) is ________. s  2

2

2

2

eE1 / T7 / K2 / L0 / V1 / R11 / AB [GATE – – 2004]

(A) Initially

(B) Zero

(04) A delayed unit step function is defined as

u(t  a) = (C) One

(D) None

Its Laplace transform is __________ .

eE1 / T7 / K2 / L0 / V1 / R11 / AC [GATE – – ]

(02) Let Y(s) be the laplace transform of function y(t),

as

(A) a e

(B) e

 as

/s

then the final value of the function is as

as

(C) e / s (B) LimY ( s)

(A) LimY ( s )

s 

s0

(D) e / a

eE1 / T7 / K2 / L0 / V1 / R11 / AA [GATE – EC – 2006]

(05) Consider the function f(t) having Laplace (C) LimsY (s) s 0

(D) LimsY (s) s

eE1 / T7 / K2 / L0 / V1 / R11 / AB [GATE – – ]

transform F(s) =

0 , Re(s) > 0. The final s  20 2

value of f(t) would be _________

(03) If L denotes the Laplace transform of a function. L{sin at} will be equal to

Page 95

(A) 0

(B) 1

(C) 1  f ()  1

(D)



TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

ENGINEERING MATHEMATICS eE1 / T7 / K2 / L0 / V1 / R11 / AA [GATE – – 2007]

eE1 / T7 / K2 / L0 / V1 / R11 / AC [GATE – – 2010]

(06) If F(s) is the Laplace transform of the function

(10) u(t) represents the unit function. The Laplace

f(t) than Laplace transform of



t

0

transform of u(t  τ ) is

f (t ) dx is

(A) (A)

1 F ( s) s

(B)

(C) sF (s)  f (0)

(D)

1 F (s )  f (0) s



1 sτ

(B)

e sτ (C) s

F ( s ) ds

1 sτ

 sτ

(D) e

-----00000----eE1 / T7 / K2 / L0 / V1 / R11 / AD [GATE – – 2008]

(07) Laplace transform of 8t 3 is

(A)

8 s4

Question Level – 01

(B)

24 (C) 4 s

16 s4

eE1 / T7 / K2 / L1 / V1 / R11 / A [GATE – IN – 1995] at

(01) Find L { e cos t } when L{ cos t } =

s s  2

48 (D) 4 s

2

eE1 / T7 / K2 / L1 / V1 / R11 / AD [GATE – – ] eE1 / T7 / K2 / L0 / V1 / R11 / AA [GATE – – 2008]

(02)

(08) Laplace transform of sin ht is

1 (A) 2 s 1

(s  1)2 is the Laplace transform of

(A) t

1 (B) 1  s2

2

(B) t

2t

(D) te

(C) e (C)

s s 1

(D)

2

s 1  s2

eE1 / T7 / K2 / L0 / V1 / R11 / AB [GATE – EC – 1998]

(09) If L

 f (t )

=

w s  w2 2

then the value of

3

t

\ eE1 / T7 / K2 / L1 / V1 / R11 / AB [GATE – – ]

(03) If L{f(t)} = h(t)=



t

0

s2 1 s2 , L { g ( t )}  , s2 1 ( s  3)( s  2)

f (T ) g (t  T )dT

Then L{h(t)} is ___________

Lim f (t )  ________. t 

(A)

s2 1 s 3

(C)

s2  1 s2  2 (D) None (s  3)( s  2) s  1

(A) can not be determined (B) Zero

(C) unity

Page 96

(D) Infinite

(B)

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

1 s3

TOPIC. 07 – TRANSFORM THEORY eE1 / T7 / K2 / L1 / V1 / R11 / AD [GATE – EC – 2005]

(04) The Dirac delta Function (t ) is defined as

1, 0,

t 0 other wise

, 0,

t 0 other wise

(A) (t )  

(B) (t )  

eE1 / T7 / K2 / L1 / V1 / R11 / AC [GATE – – 2009]

(08) The inverse Laplace transform of

t

(B) 1  e

t

t

(D) 1  e

(A) 1  e

(C) 1  e

1, t  0 and 0, other wise



, t  0 and 0, other wise



(C) (t )  





1 is (s  s) 2

t

(t )dt  1 -----00000-----

(D) (t )  





(t )dt  1

eE1 / T7 / K2 / L1 / V1 / R11 / AA [GATE – EC – 1997]

(05) The inverse Laplace transform of the function

Question Level – 02 eE1 / T7 / K2 / L2 / V2 / R11 / A [GATE – – 1994]

(01) If f(t) is a finite and continuous Function for

t  0 the Laplace transformation is given by

s 5 is _______ ( s  1)( s  3)

F =





0

e  st f (t ), then for f (t )  cos h mt , the

Laplace Transformation is _____________ (A) 2e  e

t

3t

(B) 2e  e

t

3t

t

3t

t

3t

eE1 / T7 / K2 / L2 / V2 / R11 / AD [GATE – – 1999]

(C) e  2e

(D) e  2e

(02) The Laplace transform of the function

f (t )  k, 0  t  c.

eE1 / T7 / K2 / L1 / V1 / R11 / AB [GATE – EC – 1999]

(06) If L{ f (t )}  F (s) then L{ f (t  T )} is equal to

(A) (k / s )e  sc

(B) (k / s )e sc

(D) (k / s )(1  e  sc )

(A) e sT F ( s )

(B) e  sT F ( s )

(C) k e  sc

F ( s) (C) 1  e sT

F (s) (D) 1  e sT

eE1 / T7 / K2 / L2 / V2 / R11 / AC [GATE – – 1999]

(03) Laplace transform of (a  bt ) 2 where ‘a’ and ‘b’ are constants is given by:

eE1 / T7 / K2 / L1 / V1 / R11 / AA [GATE – EC – 1997] αt

(07) The Laplace transform of e cos αt is equal to

(A) (a  bs )2

________ (B) 1/ (a  bs ) 2 (A)

(C)

sα ( s  α )2  α 2

(B)

sα ( s  α) 2  α 2

1 ( s  α) 2

(D) None

(C) (a 2 / s )  (2ab / s 2 )  (2b2 / s 3 )

(D) (a 2 / s )  (2ab / s 2 )  (b 2 / s 3 )

www.targate.org

Page 97

ENGINEERING MATHEMATICS eE1 / T7 / K2 / L2 / V2 / R11 / AD [GATE – – 2001]

eE1 / T7 / K2 / L2 / V2 / R11 / AA [GATE – – 2005]

(04) The inverse Laplace transforms of 1/ (s 2  2s ) is

(08) The Laplace transform of a function f(t) is F(s) =

(A) (1  e 2t )

(B) (1  e2t ) / 2

(C) (1  e 2t ) / 2

(D) (1  e 2t ) / 2

5s 2  23s  6 . As t  , f(t) approaches s ( s 2  2 s  2) (A) 3

(B) 5

(C) 17/2

(D)



eE1 / T7 / K2 / L2 / V2 / R11 / AC [GATE – – 2002]

(05) The Laplace transform of the following function

eE1 / T7 / K2 / L2 / V2 / R11 / AD [GATE – – 2010]

is

sin t f (t )   0

(09) Given

for 0  t  π for t  π

f(t)

=

  3s  1 L1  3 . 2  s  4s  (k  3)s 

If

Lt f (t ) = 1 then value of k is

t 

(A) 1  (1  s 2 ) for all x > 0

(B) 1/ (1  s 2 ) for all s < π

(C) (1  e  πs ) / (1  s 2 ) for all s > 0

(A) 1

(B) 2

(C) 3

(D) 4

eE1 / T7 / K2 / L2 / V2 / R11 / AB [GATE – – 2009]

(10) Laplace transform of f(x) = cos h(ax) is (D) e πs / (1  s 2 ) for all s > 0 (A)

a s  a2

(B)

s s  a2

(C)

a s  a2

(D)

s s  a2

eE1 / T7 / K2 / L2 / V2 / R11 / A [GATE – EE – 2002]

(06) Using 2

Laplace

transforms,

2

2

solve

2

(d y / dt )  4 y  12t

2

2

eE1 / T7 / K2 / L2 / V2 / R11 / AB [GATE – – 2009] eE1 / T7 / K2 / L2 / V2 / R11 / AC [GATE – EC – 2003]

(11) Given that F(s) is the one-sided Laplace

(07) The Laplace transform of i(t) is given by I(s) = transform of f(t), the Laplace transform of

2 As t   , the value of i(t) tends to s(1  s) ____ .

(A) 0

(C) 2

Page 98



t

0

f ( τ ) dτ is

(A) sF (s)  f (0)

(B) 1

(D)

(C)



s

0

f ( τ ) dτ

(B)

1 F ( s) s

(D)

1 [ F ( s )  f (0)] s



TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

TOPIC. 07 – TRANSFORM THEORY eE1 / T7 / K2 / L2 / V2 / R11 / AA [GATE – EC – 2005]

(12) In what range should Re(s) remain so that the ( a  2)t 5

laplace transform of the function e

(A) Re(s) > a + 2

exists?

(B) Re (s) > a + 7

sin t , if (2n  1)π  t  2nπ (n  1, 2, 3,..) f (t )   other wise 0 eE1 / T7 / K2 / L3 / V2 / R11 / AD [GATE – EE – 1995]

(02) The (C) Re (s) < 2

(D) Re (s) > a + 5

eE1 / T7 / K2 / L2 / V2 / R11 / AB [GATE – – 2011]

(13) If F(s) = L{f(t)} =

2( s  1) then the initial s  4s  7

inverse

Laplace

transform

of

( s  9) / ( s 2  6s  13) is

(A) cos 2t  9 sin 2 t

2

3t

cos2t  3e3t sin 2t

(C) e

3t

sin 2t  3e3t cos 2t

(D) e

3t

cos2t  3e3t sin 2t

(B) e

and final values of f(t) are respectively

(A) 0,2

(C) 0,

(B) 2, 0

2 7

(D)

2 ,0 7

eE1 / T7 / K2 / L3 / V2 / R11 / AB [GATE – EC – 1995]

eE1 / T7 / K2 / L2 / V2 / R11 / AA [GATE – – 1998]

(14) The Laplace Transform of a unit step function

(03) If L{f(t)} =

2( s  1) then f(0  ) and f(  ) are s  2s  s 2

given by _______

ua (t ), defined as u a (t )  0 for t < a is = 1 for t > a,

(A) e

 as

/s

(B) se

(A) 0, 2 respectively

(B) 2, 0 respectively

(C) 0, 1 respectively

(D)

2 , 0 respectively 5

 as

eE1 / T7 / K2 / L3 / V2 / R11 / A [GATE – – 1996]

(04) Using Laplace Transform, solve the initial value (C) s  u (0)

(D) se

 as

1

problem

9 y11  6 y1  y  0

y(0)  3 and

y1 (0)  1, where prime denotes derivative with

-----00000-----

respect to t.

Question Level – 03 eE1 / T7 / K2 / L3 / V2 / R11 / A [GATE – – 1993]

(01) The Laplace transform of the periodic function f(t) described by the curve below i.e. – 1993)

(Gate

eE1 / T7 / K2 / L3 / V2 / R11 / A [GATE – ME – 1997]

(05) Solve

the

initial

value

problem

d2y dy dy  4  3 y  0 with y = 3 and  7 at 2 dx dx dt x0

www.targate.org

Page 99

ENGINEERING MATHEMATICS eE1 / T7 / K2 / L3 / V2 / R11 / AC [GATE – EC – 1998]

(06) The laplace transform of (t 2  2t )u (t  1) is ________ .

(A)

eE1 / T7 / K2 / L3 / V2 / R11 / AA [GATE – – 2010]

(09) The Laplace transform of f(t) is

2  s 2 s e  2e s3 s

(B)

2 2 s 2  s e  2e s3 s

function

(A) t  1  e (C)

2 s 2 s e  e s3 s

1 . The s (s  1) 2

t

(B) t  1  e

t

(D) None t

(C) 1 e

t

(D) 2t  e

eE1 / T7 / K2 / L3 / V2 / R11 / AD [GATE – – ]

(07) Let F(s) = £[f(t)] denote the Laplace transform of the function f(t). Which of the following statements is correct?

eE1 / T7 / K2 / L3 / V2 / R11 / AA [GATE – – 2011]

(10) Given two continuous time signals x(t) = e y(t) = e

2t

t

which exists for t > 0 then the

convolution z(t) = f(t) * y(t) is ___________ . (A) £[df / dt ]  1/ s F (s); £

 f (τ (dτ t

0

t

(A) e  e

2t

(B) e

2t

= sF(s)  f(0) (B) £[df / dt ] = sF(s) – F(0). £

 f (τ )dτ t

0

(C) e

t

t

(D) e  e

3t

(C) £[df / dt ] = s F(s) – F(0);

£

 f (τ )dτ  F (s  a) t

------THE END ------

0

(D) £[df / dt ] = s F(s) – F(0);

£

 f (τ )dτ  1/ s F (s) t

0

eE1 / T7 / K2 / L3 / V2 / R11 / AA [GATE – – 2005]

(08) Laplace transform of f(t) = cos( pt  q) is

(A)

s cos q  p sin q s 2  p2

(B)

s cos q  p sin q s2  p2

(C)

s sin q  p cos q s 2  p2

(D)

s sin q  p cos q s2  p2

Page 100

and

TARGATE EDUCATION: GATE, IES, PSU (EE/EC/ME/CS)

FINALLY HISTORY HAS BEEN CHANGED IN BILASPUR FIRST TIME IN BILASPUR  62% of students are qualified in GATE (28 students out of 45) .  Min 5 students will be securing seats in IIT out of 45.  8 students scored above 99 percentile.  Highest rank of 400.

GATE - 2013 RESULT (@ TARGATE EDU) EC/EE/CS:

PARAS JAIN (EC - 99.54 %ile)

AJAY TIWARI (EC - 99.38 %ile)

ANKUR GUPTA (EC - 99.00 %ile)

AMIT JAISWAL (EC - 98.83 %ile)

NARENDRA PATEL (EC - 98.28 %ile)

SURYAKANT (CS - 99.81 %ile)

SAURABH SINGH (CS - 98.43 %ile)

SUMIT CHAURASIA (CS - 98.43 %ile)

VARUN DAS (EC - 98.34 %ile)

SHAHRUKH KHAN (CS - 97.71 %ile)

Many more………….. (28 students qualified out of 45) NAVEEN YADAV (CS - 96.86 %ile)

PRAKASH PURI (EE - 93.95 %ile)

LAVLEEN DHALLA (EE - 89.25 %ile)

ISO 9001:2008 Certified Organisation

Place of Trust Since 2010

TARGATE EDUCATION

A team of scientist

TARGATE EDU; with larger Research Team & India’s Best Material

GATE +PSU’s -2014/15 EC, EE, MECH, COMP

NEW BATCH FROM 25th MAY (1&2 yr)

Only Saturday & Sunday Classes

WEEKLY TEST ON EACH FRIDAY

ALL FACULTIES M.TECH. (IIT/IIIT)

 HISTORY BREAKING PERFORMANCE in GATE -2013 by our students.  First TIME IN BILASPUR HISTORY, all faculties will be FLYING, from Mumbai for Mechanical classes.  We offer India’s “THE BEST MATERIALS”.  Summer Training & Certificate provided by TARGATE Edu.  High Appreciation to 2nd year Students for joining the Class. Note: Prior registration is must, before attending class. Below Old Arpa Bridge, Jabrapara Rd, SARKANDA BILASPUR (C.G.) 93004 - 32128, 07752 - 406380

Web Site: www.targate.org

Email: [email protected]

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF