TAREA 6

June 24, 2019 | Author: Carlos Rodriguez Vazquez | Category: Correlación y dependencia, Análisis estadístico, Estadística multivariada, Análisis de datos, Estadística
Share Embed Donate


Short Description

PROBLEMAS RESUELTOS DE SISTEMAS DE PRODUCCION, DIAGRAMAS DE DISPERSION...

Description

MATERIA: Sistemas de producción

TÍTULO: “Tarea 6”

PRESENTA

Carlos Emiliano Rodríguez Vázquez

Fecha de entrega: 02/12/2018



Problema 1 Un estadista desea saber si existe una correlación entre los resultados de la prueba matemática del PSAT y los resultados en las pruebas de Estudios Matemáticos del IB. Para esto recolectó los datos de 10 estudiantes seleccionados al azar.

Realizar:  A) Diagram a de di spersión.

B) Cálculo de coeficiente de correlación.

0.81953019 C) Análisis del coeficiente de correlación.

Como podemos determinar en el coeficiente de correlación existe una relación positiva y bastante cercana a 1. C) Cálcu lo de la ecuación de la recta de regresión .

(YI-Y)2

((XI-X))((YIY))

116.64

0.01

1.08

-0.1

4.84

0.01

-0.22

11.2

0.9

125.44

0.81

10.08

7

9.2

1.9

84.64

3.61

17.48

53

4

-9.8

-1.1

96.04

1.21

10.78

6

61

4

-1.8

-1.1

3.24

1.21

1.98

7

66

6

3.2

0.9

10.24

0.81

2.88

8

75

7

12.2

1.9

148.84

3.61

23.18

9

58

5

-4.8

-0.1

23.04

0.01

0.48

10

52

2

-10.8

-3.1

116.64

9.61

33.48

Total

628

51

0

0

729.6

20.9

101.2

I

(XI)

(YI)

(XI-X)

(YI-Y)

(XI-X)2

1

52

5

-10.8

-0.1

2

65

5

2.2

3

74

6

4

72

5

 

X=62.8 R=0.82563 a= -3.610745614 b= 0.13870614

E) Trazar la recta de regresió n



Problema 2

Un estudiante de Estudios Matemáticos recolectó datos para determinar si existe una correlación entre las edades de los estudiantes de colegio y las

horas que destinan, semanalmente, a realizar sus tareas. El resultado de 10 estudiantes aleatorios se encuentra en la siguiente tabla: Edad

13

16

18

14

17

18

16

17

14

14

Horas 14

12

4

9

9

9

7

6

13

10

Realizar:  A) Diagram a de di spersión.

B) Cálculo de coeficiente de correlación.

-0.720448112 C) Análisis del coeficiente de correlación .

En el gráfico de dispersión y con el cálculo del coeficiente de correlación se puede determinar que existe una “Correlación negativa” ya que el valor es menor 1. Lo cual nos da a comprender que a mayor edad le dedican una menor cantidad de horas de estudio.



Problema 3

El consejo de la ciudad de Pine Bluffs considera aumentar el número de policías en un esfuerzo para reducir los delitos. Antes de tomar una decisión final, el ayuntamiento pide al jefe de policía realizar una encuesta en otras ciudades de tamaño similar para determinar la relación entre el número de policías y el número de delitos reportados. El jefe de policía reunió la siguiente información muestral.

Realizar: a) ¿Cuál variabl e es dependi ente, y cuál ind ependiente? Sugerenci a: Si ust ed fuera el jefe de polic ía, ¿qué variable decid iría? ¿Qué variable es aleatoria?

R= Variable dependiente: Policías Variable independiente: El número de delitos realizados. Variable aleatoria: Ciudad Se determino ya que dependiendo del número de policías en esa ciudad se denota la cantidad de delitos realizados, A mayor número de policías en la zona se denota una menor cantidad de delitos. b) Trace un d iagrama de dispersión .

c) Determine el c oeficiente de corr elación .

-0.874395627 d) Interprete el c oeficiente de corr elación.

Como podemos observar en el diagrama de dispersión y la línea de regresión obtenemos un coeficiente de correlación negativo lo cual nos dice que a mayor cantidad de policías se dan menos delitos en la zona.



Problema 4

Se selecciona una muestra de 12 casas que se vendieron la semana pasada en St. Paul, Minnesota. ¿Se puede concluir que, conforme aumenta el tamaño de la casa (reportado en la siguiente tabla en miles de pies cuadrados), también aumenta el precio de venta (reportado en miles de dólares)?}

EMBARQUE

DISTANCIA (MILLAS)

TIEMPO DE ENVIO (DIAS)

1

656

5

2

853

14

3

646

6

4

783

11

5

610

8

6

841

10

7

785

9

8

639

9

9

762

10

10

762

9

11

862

7

12

679

5

13

835

13

14

607

3

15

665

8

16

647

7

17

685

10

18

720

8

19

652

6

20

828

10

a) El diagrama de dis persió n.

b) La ecuación de la recta de mejor ajus te.

y=25.641x+67.179 c) El Coeficiente de correlación.

Coeficiente de correlación= 0.307220025 d) Analizar el valor de r.

r= Con este valor podemos determinar que existe una relación pero es baja, ya que es de 0.3 y está bastante alejada a 1. e) ¿Exist e una asoci ación posi tiva entre el tamaño de la casa y su precio de venta? Utilice el nivel de s ignif icancia 0.05.

Usando esa significancia, si existe una asociación positiva ya que va muy relacionada el tamaño de la casa con respecto a su precio.



Problema 5

Bardi Trucking Co., ubicada en Cleveland, Ohio, hace entregas en la región de los Grandes Lagos, en el lado sur y en el lado norte. Jim Bardi, el presidente, estudia la relación entre la distancia de recorrido de un embarque y el tiempo, en días, que dura en llegar a su destino. Para investigar esta cuestión, el señor Bardi seleccionó una muestra aleatoria de 20 embarques

del mes pasado. La distancia de envío es la variable independiente y el tiempo de envío es la variable dependiente. Los resultados son los siguientes: EMBARQUE

DISTANCIA (MILLAS)

TIEMPO DE ENVIO (DIAS)

1

656

5

2

853

14

3

646

6

4

783

11

5

610

8

6

841

10

7

785

9

8

639

9

9

762

10

10

762

9

11

862

7

12

679

5

13

835

13

14

607

3

15

665

8

16

647

7

17

685

10

18

720

8

19

652

6

20

828

10

• a)Trace un di agrama de dispers ión. Con base en estos datos , ¿parece

haber una relación entre la cantidad de mill as que debe recorrer el embarque y el ti empo que tarda en llegar a su d estino?

Como se puede observar en la línea de tendencia a mayor cantidad de millas requeridas por el envió mayor es el tiempo de entrega en cuestión de días, por lo tanto existe una relación. • b) Determin e el coefic iente de correlación. ¿Es posibl e conclui r qu e

hay una correlación posi tiva entre la distancia y el tiempo? Utilice el nivel de significancia 0.05.

Coeficiente de correlación= 0.692104427 Existe una correlación positiva entre el campo de la distancia y el tiempo que requiere un envío. • c) Establezca e el coe fici ente de determinación.

Coeficiente de determinación= 48% • d) Determine el error estándar de estim ación.

Error estándar de estimación= 0.223453 • e) ¿Recomendaría aplicar la ecuación de regresión para predecir el

tiempo de envío? Diga por qu é sí o por qué no.

Si seria recomendable ya que en base a ella se podría calcular si el envío tardara más con respecto a la distancia.



Problema 6

La Bradford Electric iluminating Company estudia la relación entre kilowatts-hora (miles) consumidos y el número de habitaciones de una residencia privada familiar. Una muestra aleatoria de 10 casas revelo: No.habitaciones

Determinar: •

Diagrama de dis persión.



Ecuación de la recta.

y = 0.6667x + 1.3333

Kilowatts-hora (miles)

12

9

9

7

14

10

6

5

10

8

8

6

10

8

10

10

5

4

7

7



Coefici ente de corr elación .

0.90476516 •

 Análisi s.

Podemos determinar que existe una relación bastante estrecha entre el valor de r y 1, por lo cual se determinó que con relación al numero de habitaciones que existen esta dado el consumo de kilowatts-hora.

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF