Tablas de Kurt Beyer
April 7, 2017 | Author: Victor | Category: N/A
Short Description
Download Tablas de Kurt Beyer...
Description
Facultad de Ingeniería Universidad Nacional de La Plata
ESTRUCTURAS III Para alumnos de la carrera de Ingeniería Aeronáutica y Mecánica de la UNLP
TABLAS DE KURT – BEYER para el cálculo de solicitaciones en placas circulares y anulares simétricamente cargadas
Reeditadas por: Sr. Leonardo J. Marta Sr. Diego A. Massimino Srta. María de la Paz Alonso Sr. Julio. A. Guimmarra Revisado por: Ing. Juan P. Durruty
-2008-
Estructuras III
PLACAS CIRCULARES: Placa circular y placa anular sometidas a cargas con simetría central resultan según H. Marcus, las dos ecuaciones simultáneas de segundo orden: r ⎡ ⎤ d2M 1 = − − p p ⋅ r ⋅ dr ⎥ ⎢ 2 2 ∫ dr r 0 ⎣ ⎦
⎡M 1 r M ⎤ d 2ω = − ⎢ − 2 ⋅ ∫ r ⋅ dr ⎥ 2 dr ⎣N r 0 N ⎦
que nuevamente son análogas a las ecuaciones diferenciales de la curva funicular y a la elástica de la barra con rigidez a la flexión y que se prestan para el cálculo de los estados de tensión y deformación de la placa circular.
Tabla 63. Deformaciones y características de placas circulares y anulares simétricamente cargadas. Las siguientes igualdades y funciones son las que se utilizaran en la tabla. ρ=
φ0 = 1 − ρ4
r a
β=
b a
φ1 = 1 − ρ 2
N
E ⋅ h3 12 ⋅ (1 − μ )
φ 2 = ρ 2 ln ρ
ω' =
dω dr
φ 3 = ln ρ
φ4 =
1 −1 ρ2
Ahora se presentaran distintos casos con sus soluciones. 1) p
ω=
2a p⋅a2 (3 + μ ) ⋅ φ1 ; Mr = 16
p ⋅ a4 ⋅ [2 ⋅ (3 + μ ) ⋅ φ1 − (1 + μ ) ⋅ φ0 ] 64 N(1 + μ )
p⋅a2 Mt = [2(1 − μ ) + (1 + 3 ⋅ μ ) ⋅ φ1 ] ; 16
p⋅a4 5 + μ ⋅ ; 64 ⋅ N 1 + μ
Para ρ = 0
ω=
Para ρ = 1
ω' = −
p ⋅ a3 ; 8 ⋅ N(1 + μ )
Mr = Mt = Mt =
Qr = −
p⋅a ρ 2
Qr = −
p⋅a 2
p⋅a2 (3 + μ ) 16
p⋅a2 (1 − μ ) ; 8
Página 2 de 15
Estructuras III
2)
[ [
](
)
χ1 = (5 + μ ) − (7 + 3 ⋅ μ ) ⋅ β 2 ⋅ 1 − β 2 − 4(1 + μ ) ⋅ β 4 ⋅ ln β χ 2 = (3 + μ ) − (1 − μ ) ⋅ β 2 ⋅ 1 − β 2 + 4(1 + μ ) ⋅ β 2 ⋅ ln β
p 2b-2βa
](
)
2a
p⋅a4 (χ1 − 2χ 2 + 2χ 2 ⋅ φ1 ) ; ω= 64 N(1 + μ )
Para ρ ≤ β
p ⋅ a2 χ2 ; 16
Mr = Mt =
Qr = 0
Para ρ ≥ β
{[
]
p⋅a4 ω= 2 (3 + μ ) ⋅ 1 − 2β 2 + (1 − μ ) ⋅ β 4 ⋅ φ1 − (1 + μ ) ⋅ φ 0 − 4(1 + μ ) ⋅ β 4 φ 3 − 8(1 + μ ) ⋅ β 2 φ 2 64 N(1 + μ )
(
)
[
β2 ⎞ p⋅a ⎛ ⎜ ρ − ⎟⎟ Qr = − ρ⎠ 2 ⎜⎝
]
p⋅a2 (3 + μ )φ1 − (1 − μ ) ⋅ β 4 φ 4 + 4(1 + μ ) ⋅ β 2 φ 3 ; Mr = 16 Mt = Para ρ = 0
[
p⋅a2 (1 + 3μ ) ⋅ φ1 + (1 − μ ) ⋅β 4 φ 4 + 4(1 + μ ) ⋅ β 2 φ 3 + 2(1 − μ ) ⋅ 1 − β 2 16 p ⋅ a4 ω= χ1 64 N(1 + μ )
ω' = −
Para ρ = 1
3)
(
2 p ⋅ a3 1 − β2 ; 8N(1 + μ )
(
p
2a
Para ρ ≥ β
Mt =
p⋅a2 (1 − μ ) 1 − β 2 2 ; 8
(
)
2
Qr = −
p⋅a 1 − β2 2
(
)
[
]
χ2 ⎫ p⋅a4 ⎧ 2 2 2 ω= φ1 − φ 0 ⎬ ⎨1 + 4 − 5β + 4 2 + β ⋅ ln β ⋅ β + 2 64 N ⎩ 1+ μ ⎭ p⋅a Qr = − ρ 2 p⋅a2 p ⋅ a2 Mr = [χ 2 − (3 + μ ) + (3 + μ ) ⋅ φ1 ] ; Mt = [χ 2 − (1 + 3μ ) + (1 + 3μ ) ⋅ φ1 ] 16 16
ω=
(
)
⎤ p ⋅ a 4 2 ⎡ 2(3 + μ ) − (1 − μ )β2 2β ⎢ φ1 + 4φ2 + 2β2φ3 ⎥ 64 N 1+ μ ⎦ ⎣
[
]
p ⋅ a2 (1 − μ ) ⋅ β4φ4 − 4(1 + μ ) ⋅ β2φ3 ; Mr = 16 Mt =
Para ρ = 0
)]
χ1 = 4 − (1 − μ ) ⋅ β 2 ; χ 2 = [χ1 − 4(1 + μ ) ⋅ ln β] ⋅ β 2 ; χ 3 = 4(3 + μ ) − (7 + 3μ ) ⋅ β 2 + 4(1 + μ ) ⋅ β 2 ln β
2b-2βa
Para ρ ≤ β
)
}
ω=
Qr = −
[
p⋅b β 2 ρ
)]
p⋅a2 − (1 − μ ) ⋅ β 4 φ 4 − 4(1 + μ ) ⋅ β 2 φ 3 + 2(1 − μ ) ⋅ β 2 2 − β 2 ; 16
p ⋅ a 2 ⋅ b2 ⋅ χ3 ; 64 N(1 + μ )
(
Mt = Mr =
p ⋅ a2 χ2 16
Página 3 de 15
Estructuras III
Para ρ = β
[
]
p⋅a2 p⋅a2 χ 2 − (3 + μ ) ⋅ β 2 ; Mt = [χ 2 − (1 + 3μ ) ⋅ β] ; Q r = − p ⋅ b 2 16 16 2 2 p⋅a ⋅b p⋅b ω′ = − 2 − β2 ; (1 − μ ) 2 − β 2 ; Q r = − p ⋅ b β Mt = 8 N(1 + μ ) 2 8 Mr =
(
Para ρ = 1
)
(
)
4) P
(
)
(
)
χ1 = (3 + μ ) 1 − β2 + 2(1 + μ )β 2 ln β
2b-2βa
χ 2 = (1 − μ ) 1 − β2 − 2(1 + μ )ln β
2a Para ρ ≤ β
ω=
Para ρ ≥ β
ω=
P ⋅ a 2b [(χ1 − χ 2 ) + χ 2 φ1 ] ; 8 N(1 + μ )
[
Mr = Mt =
P⋅b χ2 ; 4
]
P ⋅ a2 ⋅ b (3 + μ ) − (1 − μ ) ⋅ β2 ⋅ φ1 + 2(1 + μ ) ⋅ β2φ3 + 2(1 + μ ) ⋅ φ2 } { 8 N(1 + μ ) β P⋅b (1 − μ ) ⋅ β2φ4 − 2(1 + μ ) ⋅ φ3 ; Q r = −P Mr = ρ 4 P⋅b Mt = − (1 − μ ) ⋅ β 2φ4 − 2(1 + μ ) ⋅ φ3 + 2(1 − μ )(1 − β 2 ) 4 P ⋅ a2 ⋅ b ω= χ1 8 N(1 + μ ) P⋅a ⋅b P⋅b Q r = −P ⋅ β ( ω′ = − 1 − β2 ); (1 − μ )(1 − β2 ) ; Mt = 2 N(1 + μ ) 2
[
]
[
Para ρ = 0 Para ρ = 1
Qr = 0
]
5) P a
ω= a
⎤ P ⋅ a2 ⎡3 + μ φ1 + 2φ2 ⎥ ⎢ 16πN ⎣ 1 + μ ⎦
2a Mr = −
Para ρ = 0 Para ρ = 1
P (1 + μ ) ⋅ φ3 ; 4π
Mt =
P [(1 − μ ) − (1 + μ ) ⋅ φ3 ] ; 4π
P ⋅ a2 3 + μ 16πN 1 + μ P⋅a P ω′ = − ; Mt = (1 − μ ) ; 4πN(1 + μ ) 4π
Qr = −
P 2πaρ
ω=
Qr = −
P 2πa
Página 4 de 15
Estructuras III
6) M
ω=
M ⋅ a2 φ1 ; 2 N(1 + μ )
Mr = Mt = M ;
Qr = 0
2a ω′ = −
Para ρ = 1
M⋅a N(1 + μ )
7) P
a
a ω=
⎞ P ⋅ a2 ⎛ 3 + μ ⋅ φ1 + φ0 + 8φ2 ⎟⎟ ⎜⎜ 2 ⋅ 64πN ⎝ 1 + μ ⎠
2a Observación: la carga P en este caso es:
P = ρ ⋅ π ⋅ a2 Para ρ = 0 Para ρ = 1
P [(3 + μ ) ⋅ φ1 + 4(1 + μ ) ⋅ φ3 ] ; 16π P Mt = − [(1 + 3μ ) ⋅ φ1 + 4(1 + μ ) ⋅ φ3 − 2(1 − μ )] ; 16π
Mr = −
P ⋅ a 2 7 + 3μ 64πN 1 + μ P⋅a ω′ = − ; 8πN(1 + μ )
Qr = −
⎞ P ⎛1 ⎜⎜ − ρ ⎟⎟ 2πa ⎝ ρ ⎠
ω=
Mt =
P (1 − μ ) 8π
8) p
p ⋅ a4 p ⋅ a2 (2 ⋅ φ1 − φ0 ) ; ω= Mr = [(3 + μ ) ⋅ φ1 − 2] 64 N 16 p ⋅ a2 2a Mt = [(1 + 3μ ) ⋅ φ1 − 2μ] ; Q r = − p ⋅ a ρ 16 2 4 2 p⋅a p⋅a (1 + μ ) Para ρ = 0 ω= ; Mr = Mt = 64 N 16 p ⋅ a2 p⋅a Para ρ = 1 M t = μM r = − μ; Qr = − 8 2
9) p
2b − 2βa 2a
χ1 = 1 − 4β 2 + β 4 (3 − 4 ⋅ ln β ) ; χ 2 = 1 − β2 β2 − 4 ⋅ ln β
(
)
Página 5 de 15
Estructuras III
Para ρ ≤ β Para ρ ≥ β
p ⋅ a4 p ⋅ a2 (1 + μ ) ⋅ χ 2 ; [(χ1 − 2χ 2 ) + 2χ 2φ1 ] ; Mr = Mt = 64 N 16 p ⋅ a4 ω= 2(1 − 2β2 − β4 )⋅ φ1 − φ0 − 4β4φ3 − 8β2φ2 ; 64 N 2 p ⋅ a2 Mr = − 2(1 − β2 ) + (3 + μ ) ⋅ φ1 − (1 − μ ) ⋅ β4φ4 + 4(1 + μ ) ⋅ β2φ3 ; 16 2 p ⋅ a2 Mt = − 2μ(1 − β 2 ) + (1 + 3μ ) ⋅ φ1 + (1 − μ ) ⋅ β4φ4 + 4(1 + μ ) ⋅ β2φ3 ; 16 β2 ⎞ p⋅a ⎛ ⎜⎜ ρ − ⎟⎟ ; Qr = − ρ⎠ 2 ⎝
ω=
[
]
[ [
Para ρ = 0 Para ρ = 1
Qr = 0
]
]
p ⋅ a4 χ1 64 N 2 p ⋅ a2 M t = μM r = − μ(1 − β2 ) ; 8 ω=
Qr = −
p⋅a 1 − β2 2
(
)
10) p
[
2b − 2β a 2a Para ρ ≤ β
Para ρ ≥ β
p ⋅ a4 [(χ1 − 2χ 2 + 1) + 2χ 2φ1 − φ0 ]; 64 N p ⋅ a2 {[(1 + μ ) ⋅ χ 2 − (3 + μ )] + (3 + μ ) ⋅ φ1} Mr = 16 p ⋅ a2 {[(1 + μ ) ⋅ χ 2 − (1 + 3μ )] + (1 + 3μ ) ⋅ φ1} Mt = 16 p ⋅ a 2 ⋅ b2 ω= ( 2 + β2 ) ⋅ φ1 + 2β2φ3 + 4φ2 ; 32 N p ⋅ b2 Mr = − 2(2 − β 2 ) + (1 − μ ) ⋅ β2φ4 − 4(1 + μ ) ⋅ φ3 ; 16 ω=
[
]
[
Para ρ = β
Para ρ = 1
]
[
Qr = −
p⋅b β 2 ρ
]
p ⋅ b2 − 2μ(2 − β 2 ) − (1 − μ ) ⋅ β2φ4 − 4(1 + μ ) ⋅ φ3 16 p ⋅ a2 p ⋅ a4 (1 + μ ) ⋅ χ 2 Mr = Mt = ω= χ1 ; 16 64 N p ⋅ a2 p ⋅ a2 (1 + μ ) ⋅ χ 2 − (3 + μ ) ⋅ β2 ; (1 + μ ) ⋅ χ 2 − (1 + 3μ ) ⋅ β2 ; Mr = Mt = 16 16 p⋅b Qr = − 2 p ⋅ b2 p⋅b M t = μM r = − μ(2 − β2 ); Qr = − β 8 2 Mt =
Para ρ = 0
]
χ1 = β2 4 − β2 (3 − 4 ⋅ ln β ) ; χ 2 = β2 (β2 − 4 ⋅ ln β) ;
[
]
[
]
Página 6 de 15
Estructuras III
11) P
χ1 = 1 − β2 (1 − 2 ⋅ ln β ) ; χ 2 = β2 − 1 − 2 ⋅ ln β ;
2b − 2βa 2a
P ⋅ a 2b P⋅b [(χ1 − χ 2 ) + χ 2φ1 ] ; (1 + μ ) ⋅ χ 2 ; Mr = Mt = 8N 4 P ⋅ a 2b ω= (1 + β2 )⋅ φ1 + 2β2φ3 + 2φ2 ; 8N P⋅b Mr = − 2(1 − β 2 ) − (1 − μ ) ⋅ β 2φ 4 + 2(1 + μ ) ⋅ φ3 ; 4 β P⋅b Q r = −P Mt = − 2μ(1 − β 2 ) + (1 − μ ) ⋅ β 2φ4 + 2(1 + μ ) ⋅ φ3 ; ρ 4
ω=
Para ρ ≤ β
[
Para ρ ≥ β
Qr = 0
]
[
]
[
]
P ⋅ a 2b χ1 8N P⋅b M t = μM r = − μ(1 − β 2 ) ; 2 ω=
Para ρ = 0 Para ρ = 1
Q r = −P ⋅ β
12) P
ω=
a
a 2a
Mr = −
P ⋅ a2 (φ1 + 2φ2 ) 16πN
P [1 + (1 + μ ) ⋅ φ3 ]; 4π
Para ρ = 0
P ⋅ a2 ω= 16πN
Para ρ = 1
M t = μM r = −
P μ; 4π
Mt = −
P [μ + (1 + μ ) ⋅ φ3 ] ; 4π
Qr = −
P 2πa
Qr = −
P 2πaρ
13) p
p
2b=2βa 2a 2b=2βa
χ1 = (3 + μ ) + 4(1 + μ ) ⋅
β2 ⋅ ln β , 1 − β2
χ 2 = (3 + μ ) − 4(1 + μ ) ⋅
β2 ⋅ ln β , 1 − β2
2a
Página 7 de 15
Estructuras III
ω=
[
]
p ⋅ a4 ⎧ 2 (3 + μ ) − β2χ 2 ⋅ φ1 − φ0 − 4 ⋅ β2χ1φ3 − 8 ⋅ β2φ2 ⎫⎬ , ⎨ 64 N ⎩1 + μ 1− μ ⎭
[
]
p⋅a ⎛ β2 ⎞ ⎜⎜ ρ − ⎟⎟ , 2 ⎝ ρ⎠
Mr =
p ⋅ a2 (3 + μ ) ⋅ φ1 − β2χ1φ4 + 4(1 + μ ) ⋅ β2φ3 , 16
Mt =
p ⋅ a2 (1 + 3μ ) ⋅ φ1 + β2χ1φ4 + 4(1 + μ ) ⋅ β2φ3 + 2(1 − μ ) − 2β2 [2(1 − μ ) − χ1 ]} { 16
Qr = −
2 ⎫ p⋅a2 ⎧ 4 2 1− β ( ) ( ) 5 + μ − 7 + 3 μ ⋅ β ⋅ − ⋅ β 2 χ1 ⋅ ln β⎬ ⎨ 64 N ⎩ 1+ μ 1− μ ⎭ 2 2 ⎞ p⋅a p ⋅ a b ⎛ χ1 ω′ = − − β2 ⎟⎟ , Mt = χ1 − (1 − μ ) ⋅ β2 ⎜⎜ 8 8N(1 + μ ) ⎝ 1 − μ ⎠
[
ω=
Para ρ = β
]
[
ω′ = −
Para ρ = 1
Mt =
]
p ⋅ a3 ⎡ χ1 ⎞⎤ 2⎛ ⎟⎥ ; ⎢1 − β ⎜⎜ 2 − 8 N(1 + μ ) ⎣ 1 − μ ⎟⎠⎦ ⎝
p ⋅ a2 (1 − μ ) − β2 [2(1 − μ ) − χ1 ]}; { 8
Qr = −
p⋅a 1 − β2 2
(
)
14) P
χ=
2b=2βa 2a 2b=2βa
P
β2 ⋅ ln β 1 − β2
⎤ ⎞ P ⋅ a 2 b ⎡⎛ 3 + μ 1+ μ ω= − 2χ ⎟⎟ ⋅ φ1 + 4 χφ3 + 2 ⋅ φ2 ⎥ ⎢⎜⎜ 8N ⎣⎝ 1 + μ 1− μ ⎠ ⎦
Mr = −
P⋅b (1 + μ )(− χφ4 + φ3 ) ; 2
Mt = −
⎡ ⎤ P⋅b (1 + μ ) ⋅ ⎢χφ4 + φ3 + ⎛⎜⎜ 2χ − 1 − μ ⎞⎟⎟⎥ 2 1 + μ ⎠⎦ ⎝ ⎣
Para ρ = β
ω=
β ρ
⎤ P ⋅ a 2b ⎡ 3 + μ 1+ μ 1 − β2 ) + 4 ⋅ χ ⋅ ln β⎥ ; ( ⎢ 8N ⎣ 1 + μ 1− μ ⎦
ω′ = −
P ⋅ a2 ⎛ 2 1+ μ ⎞ ⎜⎜ β − 2χ ⎟; 2 N(1 + μ ) ⎝ 1 − μ ⎟⎠
Mt = − Para ρ = 1
Q r = −P
ω′ = −
⎞ ⎛ P⋅b (1 + μ ) ⋅ ⎜⎜ 2 χ2 − 1 − μ ⎟⎟ ; Qr = −P ; 2 1+ μ ⎠ ⎝ β
P⋅a ⋅b ⎛ 1+ μ ⎞ ⎜⎜1 − 2χ ⎟; 2 N(1 + μ ) ⎝ 1 − μ ⎟⎠
Mt = −
Q r = −P ⋅ β ;
P⋅b (1 + μ ) ⋅ ⎛⎜⎜ 2χ − 1 − μ ⎞⎟⎟ 2 1+ μ ⎠ ⎝
Página 8 de 15
Estructuras III
15) M 2b=2βa 2a 2b=2βa
M
Mr = M
Para ρ = β
β2 ⋅ φ4 ; 1 − β2
ω=− ω′ =
Para ρ = 1
ω=−
M t = −M
M ⋅ b2 1 ⋅ 2 N(1 + μ ) 1 − β 2
β2 ⋅ (φ4 + 2) ; 1 − β2
⎛ ⎞ 1+ μ ⎜⎜ φ1 − 2 ⋅ φ 3 ⎟⎟ ; 1− μ ⎝ ⎠
Qr = 0 ;
M ⋅ b2 ⎛ 1 + μ ln β ⎞ ⋅ ⎜⎜1 − 2 ⋅ ⎟; 2 N(1 + μ ) ⎝ 1 − μ 1 − β2 ⎟⎠
M⋅b 1 ⋅ N(1 + μ ) 1 − β2
ω′ = 2
1 + β2 M t = −M ; 1 − β2
⎛ 1+ μ ⎞ ⋅ ⎜⎜ β2 + ⎟; 1 − μ ⎟⎠ ⎝
M⋅b β ; ⋅ 2 N (1 − μ ) 1 − β2
M t = −2M
β2 1 − β2
16) M 2b=2βa 2a 2b=2βa
ω=
M
⎞ ⎛ β2 M r = M⎜⎜1 − ⋅ φ4 ⎟⎟ ; 2 ⎠ ⎝ 1− β Para ρ = β
Para ρ = 1
ω=
⎛ M ⋅ a2 1+ μ 2 ⎞ ⋅ ⎜⎜ φ1 − 2 ⋅ β φ3 ⎟⎟ 2 2 N(1 + μ ) ⋅ (1 − β ) ⎝ 1− μ ⎠
⎞ ⎛ 1 + β2 β2 M t = M⎜⎜ + ⋅ φ4 ⎟⎟ ; 2 2 ⎠ ⎝1− β 1− β
Qr = 0
⎞ M ⋅ a2 ⎛ 1 + μ β2 ⋅ ⎜⎜1 − 2 ⋅ ⋅ ln β ⎟⎟ 2 2 N(1 + μ ) ⎝ 1− μ 1− β ⎠
ω′ = −
M⋅b 2 ; ⋅ 2 N (1 − μ ) 1 − β 2
ω′ = −
⎛ 1+ μ 2 ⎞ M⋅a ⋅ ⎜⎜1 + ⋅ β ⎟⎟ ; 2 N(1 + μ ) ⋅ (1 − β ) ⎝ 1 − μ ⎠
Mt = M
2 1 − β2
Mt = M
1 + β2 1 − β2
Página 9 de 15
Estructuras III
17) p 2b=2βa 2a 2b=2βa
p
χ1 = (1 + μ ) + (1 − μ ) ⋅ β2 ;
ψ1 = 4(1 + μ ) ⋅ β 2 ⋅ ln β ;
χ 2 = (1 − μ ) + (1 + μ ) ⋅ β2 ;
ψ=
ω=
2a
χ1 + ψ 1 2 ⋅β χ2
[
]
p ⋅ a4 2(1 − 2β 2 − ψ )⋅ φ1 − φ0 − 4ψφ3 − 8β 2φ2 ; 64 N
[
]
p ⋅ a2 2(1 − 2β2 + ψ ) − (3 + μ ) ⋅ φ1 + (1 − μ ) ⋅ ψφ 4 − 4(1 + μ ) ⋅ β2φ3 ; 16 p ⋅ a2 Mt = − 2μ(1 − 2β2 + ψ ) − (1 + 3μ ) ⋅ φ1 − (1 − μ ) ⋅ ψφ 4 − 4(1 + μ ) ⋅ β2φ3 ; 16 p⋅a ⎛ β2 ⎞ ⎜ ρ − ⎟⎟ ; Qr = − 2 ⎜⎝ ρ⎠ Mr = −
[
Para ρ = β
Para ρ = 1
]
[
]
2 p ⋅ a4 ( 1 − β2 ) − 2(1 − β2 ) ⋅ (ψ + 2β2 ) − 4(ψ + 2β4 ) ⋅ ln β ; 64 N p ⋅ a3 ψ − β4 p ⋅ a 2 1 − μ2 ω′ = − ⋅ ; Mt = ⋅ ⋅ (1 − β4 + 4β2 ⋅ ln β ) ; 8 N(1 + μ ) β 8 χ2
ω=
Mt = μ ⋅ Mr = −
p ⋅ a2 ⋅ μ ⋅ (1 − 2β2 + ψ ) ; 8
Qr = −
p⋅a ⋅ 1 − β2 2
(
)
18) P
χ = (1 + μ ) + (1 + μ ) ⋅ β 2 ;
2b=2βa 2a 2b=2βa
ψ = [1 + (1 + μ ) ⋅ ln β]⋅
2a
P
P ⋅ a 2b ω= [(1 + 2ψ ) ⋅ φ1 + 4ψφ 3 + 2φ 2 ] ; 8N
P⋅b [(1 − 2ψ ) − (1 − μ ) ⋅ φ 4 + (1 + μ ) ⋅ φ 3 ] , 2 P⋅b Mt = − [μ(1 − 2ψ ) − (1 − μ ) ⋅ φ 4 + (1 + μ ) ⋅ φ 3 ] . 2
Mr = −
Para ρ = β
ω=
[
β2 ; χ
β Q r = −P , ρ
]
P ⋅ a 2b (1 + 2ψ ) ⋅ 1 − β 2 + 2 β 2 + 2ψ ⋅ ln β , 8N
(
) (
)
Página 10 de 15
Estructuras III
ω′ =
Para ρ = 1
P ⋅ b2 1 − β 2 + 2 ⋅ ln β , 2 Nχ
(
)
Mt = μ ⋅ Mr = −
Mt = −
P ⋅ b 1− μ2 ⋅ 1 − β 2 + 2 ⋅ ln β , 2 χ
(
)
P⋅b μ(1 − 2ψ ) . 2
19) M
χ = (1 − μ ) + (1 + μ ) ⋅ β 2 ,
2b=2βa 2a 2b=2βa
ω=
Mr =
M ⋅ β2 [2 + (1 − μ ) ⋅ φ 4 ], χ
M ⋅ b2 1 − β 2 + 2 ⋅ ln β ; 2 Nχ M (1 − μ ) − (1 + μ ) ⋅ β 2 Mt = − χ
(
ω=
Mt = μ ⋅ Mr =
Mt =
)
[
Para ρ = 1
Qr = 0 ,
M
2a
Para ρ = β
M ⋅ b2 (φ1 + 2φ 3 ) , 2 Nχ
ω′ =
M ⋅ b2 [2μ − (1 − μ ) ⋅ φ 4 ] 2
M⋅b (1 − β 2 ) . Nχ
]
2M ⋅ β 2 μ. χ
20) p
χ1 = 2(1 − μ ) + (1 + 3μ ) ⋅ β 2 − 4(1 + μ ) ⋅ β 2 ln β , χ 2 = 2(1 − μ ) − (3 + μ ) ⋅ β 2 − 4(1 + μ ) ⋅ β 2 ln β ,
2a 2b=2βa Para ρ ≤ 1
ω=
p⋅a4 64 N
⎞ ⎛ 2χ 1 ⎜⎜ φ1 + φ 0 ⎟⎟ , ⎠ ⎝1 + μ
p⋅a2 [χ1 − (3 + μ ) + (3 + μ ) ⋅ φ1 ] , 16 p⋅a2 Mt = [χ1 − (1 + 3μ ) + (1 + 3μ ) ⋅ φ1 ], 16
Mr =
Para ρ ≥ 1
p⋅a4 ω= 64 N Mr =
Qr = −
p⋅a ρ 2
⎞ ⎞ ⎛ 2χ1 p ⋅ a ⎛ β2 2 2 ⎜⎜ − ρ ⎟⎟ , ⎜⎜ φ1 + φ 0 − 8β φ 3 − 8β φ 2 ⎟⎟ , Q r = 2 ⎝ ρ ⎠ ⎝1 + μ ⎠
[
]
p⋅a2 χ1 − (3 + μ ) + (3 + μ ) ⋅ φ1 − 2(1 − μ ) ⋅ β 2 φ 4 + 4(1 + μ ) ⋅ β 2 φ 3 , 16
Página 11 de 15
Estructuras III
[
Para ρ = 0
p⋅a4 ω= 64 N
Para ρ = 1
ω′ = −
Para ρ = β
]
p⋅a2 χ1 − (1 + 3μ ) + (1 + 3μ ) ⋅ φ1 + 2(1 − μ ) ⋅ β 2 φ 4 + 4(1 + μ ) ⋅ β 2 φ 3 , 16
Mt =
⎛ 2χ1 ⎞ ⎜⎜ − 1⎟⎟ , ⎝1+ μ ⎠
p ⋅a3 16 N
p⋅a2 Mr = Mt = χ1 , 16
⎛ χ1 ⎞ ⎜⎜ − 1⎟⎟ , ⎝1+ μ ⎠
Q r a =
p⋅a 2 β −1 2
(
)
Mr =
p⋅a2 [χ1 − (3 + μ )] ; 16
ω=−
p⋅a4 (3 − 5μ ) − (7 + 3μ ) ⋅ β 2 ⋅ β 2 − 1 + 16(1 + μ ) ⋅ β 2 ln β 64 N(1 + μ )
Mt =
{[
ω′ = −
p⋅a2 [χ1 − (1 + 3μ )]. 16
](
p ⋅ a 2b 2 − β2 ; 8 N(1 + μ )
(
)
Mt =
)
}
p⋅a (1 − μ ) ⋅ 2 − β 2 8
(
)
21)
[
]
1 (1 − μ ) + 4μβ 2 − (1 + 3μ ) ⋅ β 4 + 4(1 + μ ) ⋅ β 4 ln β 2 β 1 χ 2 = 2 (1 − μ ) ⋅ (1 − 2β 2 ) + (3 + μ ) ⋅ β 4 + 4(1 + μ ) ⋅ β 4 ln β β
p
χ1 =
[
2a 2b=2βa
]
Para ρ ≤ 1
ω=−
p⋅a4 χ 1 φ1 ; 32 N(1 + μ )
Para ρ ≥ 1
ω=−
p⋅a4 2χ 2 φ1 + (1 + μ ) ⋅ φ 0 + 4(1 + μ ) ⋅ 2β 2 − 1 ⋅ φ 3 + 8(1 + μ ) ⋅ β 2 φ 2 ; 64 N(1 + μ )
Mr = Mt = −
p ⋅a2 χ1 ; 16
[
(
[
]
)
]
p⋅a2 χ1 − (3 + μ ) ⋅ φ1 + (1 − μ ) ⋅ (2β 2 − 1) ⋅ φ 4 − 4(1 + μ ) ⋅ β 2 φ 3 ; 16 p⋅a2 Mt = − χ1 − (1 + 3μ ) ⋅ φ1 − (1 − μ ) ⋅ (2β 2 − 1)⋅ φ 4 − 4(1 + μ ) ⋅ β 2 φ 3 ; 16 Mr = −
Qr = 0 .
[
]
Para ρ = 0
ω=−
Para ρ = 1
ω′ =
Para ρ = β
ω=
p⋅a4 χ1 ; 32 N(1 + μ )
p ⋅ a3 χ1 ; 16 N(1 + μ )
Mr = Mt = −
⎞ p ⋅ a ⎛ β2 ⎜⎜ − ρ ⎟⎟ . Qr = 2 ⎝ ρ ⎠
p ⋅a2 χ1 . 16
p ⋅a2 Mr = Mt = − χ1 ; 16
Q r a =
p⋅a 2 β −1 . 2
(
)
2 ⎫ p⋅a4 ⎧ 2 4 β −1 ( ) ( ) ( ) − 4(1 + μ ) ⋅ 4β 2 − 1 ⋅ ln β⎬ 2 1 − μ − 3 − 5 μ ⋅ β + 7 + 3 μ ⋅ β ⎨ 2 64 N(1 + μ ) ⎩ β ⎭
[
]
(
)
Página 12 de 15
Estructuras III
22) p 2a 2b=2βa
Para ρ ≤ 1
ω=
p⋅a4 64 N
Mt =
Para ρ ≥ 1
⎛ χ ⎞ ⎜⎜ 2 φ1 − φ 0 ⎟⎟ ; ⎝ 1+ μ ⎠
ω=
Para ρ = 1
ω´=
Mr =
β
2
+ 2(1 + μ )
p⋅a2 [χ − (3 + μ ) + (3 + μ ) ⋅ φ1 ] 16 Qr = −
p⋅a4 32 N
p⋅a4 64 N
⎛ χ ⎞ ⎜⎜ 2 − 1⎟⎟ ; ⎝ 1+ μ ⎠
⎞ p ⋅a3 ⎛ χ ⎜⎜ − 1⎟⎟ ; 64 N ⎝ 1 + μ ⎠ 2 2 p⋅a (1 − μ ) β +2 1 ; Mt = 16 β
ω=−
1− μ
p⋅a2 [χ − (1 + 3μ ) + (1 + 3μ ) ⋅ φ1 ] ; 16
⎞ ⎛ 1− μ ⎜⎜ φ − 2φ 3 ⎟⎟ ; 2 1 ⎠ ⎝ (1 + μ) ⋅ β 2 2 ⎞ ⎛ p⋅a (1 − μ )⎜⎜ β 2− 1 + φ 4 ⎟⎟ ; Mr = − 16 ⎠ ⎝ β
ω=
Para ρ = 0
Para ρ = β
χ=
p⋅a4 32 N
⎡1 − μ β 2 − 1 ⎤ ⋅ 2 + 2 ⋅ ln β⎥ ; ⎢ ⎣1 + μ β ⎦
p⋅a ρ 2
Qr = 0 ⎡ β2 −1 ⎤ p⋅a2 (1 − μ )⎢− 2 − φ 4 ⎥ Mt = − 16 ⎣ β ⎦ Mr = Mt =
Mr = − Qr = −
p⋅a4 χ 16
2 p⋅a2 (1 − μ ) β −2 1 16 β
p⋅a 2
ω´= −
p ⋅a3 ; 8 N(1 + μ )β
Mt =
p ⋅ a 2 (1 − μ ) 8 β2
23) P 2a
⎛ 1⎞ χ = (1 − μ )⎜⎜ β − ⎟⎟ + 2(1 + μ) ⋅ β ⋅ ln β β⎠ ⎝
2b=2βa
Para ρ ≤ 1 Para ρ ≥ 1
P ⋅ a3 χ P⋅a Qr = 0 φ1 ; Mt = Mr = − χ; 8N 1 + μ 4 ⎫ ⎤ Pa 3 ⎧ ⎡ χ P ⋅ a3 2 2 2 ω= − + β φ − βφ − βφ ; M = − [χ + (1 − μ ) ⋅ βφ 4 − 2(1 + μ ) ⋅ βφ 3 ]; ⎨ 3 2⎬ r ⎥ 1 8 N ⎩ ⎢⎣1 + μ 4 ⎦ ⎭ β Qr = P ρ ω=−
Página 13 de 15
Estructuras III
Mt = −
P⋅a [χ − (1 − μ ) ⋅ βφ 4 − 2(1 + μ ) ⋅ βφ 3 ] . 4
P ⋅a3 χ 8 N(1 + μ )
Para ρ = 0
ω=−
Para ρ = 1
P⋅a2 ω´= χ; 4 N(1 + μ )
Para ρ = β
ω=
Mr = Mt = −
P ⋅ a3 ⎧ 2 ⎨ (1 − μ ) + (3 + μ ) ⋅ β 8N(1 + μ ) ⎩
[
Pa χ 4
]⋅ ⎛⎜⎜ β − β1 ⎞⎟⎟ − 2χ⎫⎬ ;
P⋅a2 ω´= (β 2 − 1) ; 2 N(1 + μ)
⎝
⎠
Mt =
P⋅a (1 − μ )(1 − β 2 ) 2β
⎭
24) P
χ = 2(1 + μ ) ⋅ β 2
2a 2b=2βa Para ρ ≤ 1
ω=
P⋅a2 8πN
⎡⎛ 1 − μ ⎞ ⎤ + 1⎟⎟ ⋅ φ1 + φ 2 ⎥ ; ⎢⎜⎜ ⎠ ⎣⎝ χ ⎦
[
]
P (1 − μ ) ⋅ (β 2 − 1) + χφ 3 ; 2 8πβ P Mt = − − (1 − μ ) ⋅ β 2 + 1 + χφ 3 ; 2 8πβ
Mr = −
[
Para ρ ≥ 1
(
)
]
Qr = −
P ; 2π.aδ
[
]
⎛1− μ ⎞ P ⎜⎜ φ1 − φ 3 ⎟⎟ ; M r = − (1 − μ ) ⋅ (β 2 − 1) + β 2 φ 4 ; 2 χ 8 πβ ⎝ ⎠ P Qr = 0 (1 − μ ) ⋅ − (β 2 − 1) − β 2 φ 4 ; Mr = − 2 8πβ
ω=
P⋅a2 8πN
[
]
⎛1− μ ⎞ ⎜⎜ + 1⎟⎟ ⎝ χ ⎠
Para ρ = 0
P⋅a2 ω= 8πN
Para ρ = 1
ω´= −
P ⋅ a ⎛ 1− μ ⎞ ⎜2 + 1⎟⎟ ; 8πN ⎜⎝ χ ⎠
Para ρ = β
ω=−
P⋅a2 8πN
Mr = −
⎡1 − μ 2 ⎤ ⎢ χ (β − 1) + ln β⎥ ; ⎣ ⎦
P (1 − μ ) ⋅ (β 2 − 1); 8πβ 2
ω´= −
P⋅a ; 4πN(1 + μ ) ⋅ β
Mt =
P (1 − μ ) ⋅ (β 2 + 1) 8πβ 2
Mt =
P (1 − μ ) 4πβ 2 Página 14 de 15
Estructuras III
25) M
ω= 2a
M ⋅a2 φ1 ; 2 N(1 + μ )
Mr = Mt = M ;
Qr = 0
2b=2βa
M ⋅a2 2 N(1 + μ )
Para ρ = 0
ω=
Para ρ = 1
ω´= −
M⋅a N(1 + μ )
Para ρ = β
ω=−
M ⋅a2 β2 − 1 ; 2 N(1 + μ )
(
)
ω´= −
M⋅b N(1 + μ )
26) M 2a
ψ=
2b=2βa Para ρ ≤ 1
Para ρ ≥ 1
Para ρ = 0
Para ρ = 1
ω=
M ⋅a2 χ φ1 ; 4N 1 + μ
Mr = Mt =
⎛ ψ ⎞ ⎜⎜ φ1 − 2φ 3 ⎟⎟ ; ⎝1+ μ ⎠ ⎡⎛ 1 ⎤ ⎞ M M r = (1 − μ ) ⋅ ⎢⎜⎜ 2 − 1⎟⎟ − φ 4 ⎥ ; 2 ⎠ ⎣⎝ β ⎦ 2 M⋅a χ ω= 4N 1 + μ M ⋅a2 ω= 4N
ω´= −
M⋅a ⎛ ψ ⎞ ⎜⎜1 + ⎟; 2 N ⎝ 1 + μ ⎟⎠
Para ρ = β
ω=−
M ⋅a2 4N
1− μ ; β2
M χ; 2
χ = (1 + μ ) + ψ
Qr = 0
Qr = 0
M χ; 2 M = χ; 2
Mr =
⎡ ⎤ M (1 − μ ) ⋅ ⎢⎛⎜⎜ 12 + 1⎞⎟⎟ − φ 4 ⎥ ; 2 ⎠ ⎣⎝ β ⎦
M (2 − χ ) ; 2 M = ψ (β 2 + 1) 2
M r a = −
M t a
⎡ ψ ⎤ M⋅a 2 ⎢1 + μ (β − 1) + 2 ⋅ ln β⎥ ; ω´= − N(1 + μ ) ⋅ β ; ⎣ ⎦
Mt = M ⋅ψ
Página 15 de 15
View more...
Comments