Download Systems Operation Testing and Adjusting...
SENR6059-07 February 2001
Systems Operation Testing and Adjusting Vital Information Management System (VIMS) 9YF1-Up (Machine) 7TJ1-Up (Machine) 5RK1-Up (Machine) 6HK1-Up (Machine) 7EK1-Up (Machine) 1HL1-Up (Machine) 5ZL1-Up (Machine) 7LL1-Up (Machine) 4AR1-Up (Machine) 7HR1-Up (Machine) 4CS1-Up (Machine) 1HW1-Up (Machine) 2BW1-302 (Machine) 3TZ1-Up (Machine) 4GZ1-Up (Machine)
i01097883
Important Safety Information Most accidents that involve product operation, maintenance and repair are caused by failure to observe basic safety rules or precautions. An accident can often be avoided by recognizing potentially hazardous situations before an accident occurs. A person must be alert to potential hazards. This person should also have the necessary training, skills and tools to perform these functions properly. Improper operation, lubrication, maintenance or repair of this product can be dangerous and could result in injury or death. Do not operate or perform any lubrication, maintenance or repair on this product, until you have read and understood the operation, lubrication, maintenance and repair information. Safety precautions and warnings are provided in this manual and on the product. If these hazard warnings are not heeded, bodily injury or death could occur to you or to other persons. The hazards are identified by the “Safety Alert Symbol” and followed by a “Signal Word” such as “DANGER”, “WARNING” or “CAUTION”. The Safety Alert “WARNING” label is shown below.
The meaning of this safety alert symbol is as follows: Attention! Become Alert! Your Safety is Involved. The message that appears under the warning explains the hazard and can be either written or pictorially presented. Operations that may cause product damage are identified by “NOTICE” labels on the product and in this publication. Caterpillar cannot anticipate every possible circumstance that might involve a potential hazard. The warnings in this publication and on the product are, therefore, not all inclusive. If a tool, procedure, work method or operating technique that is not specifically recommended by Caterpillar is used, you must satisfy yourself that it is safe for you and for others. You should also ensure that the product will not be damaged or be made unsafe by the operation, lubrication, maintenance or repair procedures that you choose. The information, specifications, and illustrations in this publication are on the basis of information that was available at the time that the publication was written. The specifications, torques, pressures, measurements, adjustments, illustrations, and other items can change at any time. These changes can affect the service that is given to the product. Obtain the complete and most current information before you start any job. Caterpillar dealers have the most current information available. For a list of the most current publication form numbers available, see the Service Manual Contents Microfiche, REG1139F.
When replacement parts are required for this product Caterpillar recommends using Caterpillar replacement parts or parts with equivalent specifications including, but not limited to, physical dimensions, type, strength and material. Failure to heed this warning can lead to premature failures, product damage, personal injury or death.
3 Table of Contents
Table of Contents Systems Operation Section General Information ................................................ 9 VIMS History ......................................................... 16 Normal Operation ................................................. 18 Service Operations ............................................... 19 Attachment Code - Configure ............................... 20 Calibration Mode - Enter ....................................... 21 Data Logger - Reset ............................................. 21 Data Logger - Start/Stop ....................................... 22 Display Backlighting - Set ..................................... 22 Display Contrast - Set ........................................... 23 Display Language - Set ........................................ 23 Display Units - Set ................................................ 23 Event - Configure .................................................. 23 Event Acknowledged - Show ................................ 25 Event List - Show .................................................. 25 Event Recorder - Start .......................................... 26 Event Statistics - Show ......................................... 27 Lubrication Interval - Set ....................................... 27 Lubrication Manual - Start .................................... 28 Machine Status - Show ......................................... 28 Odometer - Set ..................................................... 29 Resettable Totals - Reset ...................................... 30 Resettable Totals - Show ...................................... 30 Service Lamp - Reset ........................................... 31 Service Lamp - Set ............................................... 31 Snapshot Trigger - Configure ................................ 34 System Self Test ................................................... 36 Truck Payload - Calibrate ...................................... 38 Truck Payload - Configure ..................................... 38 Warning Operation ................................................ 39 Loader Payload System (LPS) General Information .......................................................... 41 LPS Menu Functions Summary ............................ 42 LPS Calibration ..................................................... 43 Truck Payload System (TPS) General Information .......................................................... 53 TPS Component Function .................................... 54 TPS On-Board Features ....................................... 55 TPS Off-Board Features ....................................... 57 TPS Normal Operation ......................................... 57 TPS Service Operation ......................................... 60 TPS Maximum Payload Speed Manager .............. 62 TPS Accuracy ....................................................... 67 Component Descriptions ...................................... 68 Main Module ......................................................... 69 Interface Module ................................................... 74 Display Modules .................................................... 76 Quad Gauge Module ............................................ 77 Speedometer/Tachometer Module ........................ 78 Message Center Module ....................................... 79 Keypad .................................................................. 85 Switches ............................................................... 89 Sensors ................................................................. 92 Data Connectors ................................................... 96 Action Lamp .......................................................... 97 Action Alarm ......................................................... 97 Payload Lamps ..................................................... 98
Service Lamp ........................................................ 98 Related Components ............................................ 99 Parameters ......................................................... 100
Testing and Adjusting Section Testing and Adjusting General Information ............................................ 155 Service Tools ...................................................... 156 Troubleshooting Diagnostic Codes ..................... 157 Troubleshooting Diagnostic Codes Using Abbreviated Procedure ......................................................... 164 CID 0041 FMI 03 Sensor Power Supply (8 DCV) Voltage Above Normal - Test ............................. 209 CID 0041 FMI 04 Sensor Power Supply (8 DCV) Voltage Below Normal - Test ............................. 210 CID 0041 FMI 06 Sensor Power Supply (8 DCV) Current Above Normal - Test ............................ 211 CID 0075 FMI 03 Temperature Sensor (Steering Oil) Voltage Above Normal - Test ............................. 212 CID 0075 FMI 04 Temperature Sensor (Steering Oil) Voltage Below Normal - Test ............................. 214 CID 0075 FMI 06 Temperature Sensor (Steering Oil) Current Above Normal - Test ............................ 215 CID 0096 FMI 03 Level Sensor (Fuel) Voltage Above Normal - Test ..................................................... 217 CID 0096 FMI 04 Level Sensor (Fuel) Voltage Below Normal - Test ..................................................... 218 CID 0096 FMI 06 Level Sensor (Fuel) Current Above Normal - Test ..................................................... 220 CID 0100 FMI 03 Pressure Sensor (Engine Oil) Voltage Above Normal - Test ............................. 221 CID 0100 FMI 04 Pressure Sensor (Engine Oil) Voltage Below Normal - Test ............................. 223 CID 0100 FMI 06 Pressure Sensor (Engine Oil) Current Above Normal - Test ............................ 224 CID 0110 FMI 03 Temperature Sensor (Engine Coolant) Voltage Above Normal - Test .............. 225 CID 0110 FMI 04 Temperature Sensor (Engine Coolant) Voltage Below Normal - Test .............. 227 CID 0110 FMI 06 Temperature Sensor (Engine Coolant) Current Above Normal - Test .............. 228 CID 0127 FMI 03 Pressure Sensor (Transmission Oil) Voltage Above Normal - Test ............................. 229 CID 0127 FMI 04 Pressure Sensor (Transmission Oil) Voltage Below Normal - Test ............................. 231 CID 0127 FMI 06 Pressure Sensor (Transmission Oil) Current Above Normal - Test ............................ 232 CID 0171 FMI 03 Temperature Sensor (Ambient Air) Voltage Above Normal - Test ............................. 233 CID 0171 FMI 04 Temperature Sensor (Ambient Air) Voltage Below Normal - Test ............................. 235 CID 0171 FMI 06 Temperature Sensor (Ambient Air) Current Above Normal - Test ............................ 237 CID 0177 FMI 03 Temperature Sensor (Transmission Oil) Voltage Above Normal - Test ...................... 238 CID 0177 FMI 04 Temperature Sensor (Transmission Oil) Voltage Below Normal - Test ...................... 240 CID 0177 FMI 06 Temperature Sensor (Transmission Oil) Current Above Normal - Test ...................... 241 CID 0190 FMI 02 Speed Sensor (Engine) Incorrect Signal - Test ...................................................... 242
4 Table of Contents
CID 0190 FMI 03 Speed Sensor (Engine) Voltage Above Normal - Test ......................................... 244 CID 0190 FMI 04 Speed Sensor (Engine) Voltage Below Normal - Test .......................................... 245 CID 0190 FMI 08 Speed Sensor (Engine) Abnormal Signal - Test ...................................................... 246 CID 0248 FMI 09 CAT Data Link Abnormal Update Test ................................................................... 247 CID 0262 FMI 03 Sensor Power Supply (5 DCV) Voltage Above Normal - Test ............................. 249 CID 0262 FMI 04 Sensor Power Supply (5 DCV) Voltage Below Normal - Test ............................. 250 CID 0262 FMI 06 Sensor Power Supply (5 DCV) Current Above Normal - Test ............................ 251 CID 0263 FMI 03 Sensor Power Supply (8 or 12 DCV) Voltage Above Normal - Test ................... 251 CID 0263 FMI 04 Sensor Power Supply (8 or 12 DCV) Voltage Below Normal - Test ................... 252 CID 0263 FMI 06 Sensor Power Supply (8 or 12 DCV) Current Above Normal - Test ................... 253 CID 0271 FMI 03 Alarm (Action) Voltage Above Normal - Test ..................................................... 254 CID 0271 FMI 05 Alarm (Action) Current Below Normal - Test ..................................................... 255 CID 0271 FMI 06 Alarm (Action) Current Above Normal - Test ..................................................... 256 CID 0279 FMI 03 Temperature Sensor (Front Aftercooler Coolant) Voltage Above Normal Test ................................................................... 257 CID 0279 FMI 04 Temperature Sensor (Front Aftercooler Coolant) Voltage Below Normal Test ................................................................... 259 CID 0279 FMI 06 Temperature Sensor (Front Aftercooler Coolant) Current Above Normal Test ................................................................... 261 CID 0280 FMI 03 Temperature Sensor (Pump Drive) Voltage Above Normal - Test ............................. 262 CID 0280 FMI 04 Temperature Sensor (Pump Drive) Voltage Below Normal - Test ............................. 264 CID 0280 FMI 06 Temperature Sensor (Pump Drive) Current Above Normal - Test ............................ 265 CID 0295 FMI 02 Electronic Control Module (Machine) Incorrect Signal - Test ...................... 266 CID 0295 FMI 09 Electronic Control Module (Machine) Abnormal Update - Test ................... 268 CID 0295 FMI 12 Electronic Control Module (Machine) Failed - Test ...................................... 270 CID 0296 FMI 02 Power Train Electronic Control Module (Electronic Clutch Pressure Control) Incorrect Signal - Test ....................................... 272 CID 0296 FMI 09 Power Train Electronic Control Module (Electronic Clutch Pressure Control) Abnormal Update) - Test ................................... 274 CID 0296 FMI 12 Power Train Electronic Control Module (Electronic Clutch Pressure Control) Failed Test ................................................................... 276 CID 0324 FMI 03 Lamp (Action) Voltage Above Normal - Test ..................................................... 278 CID 0324 FMI 05 Lamp (Action) Current Below Normal - Test ..................................................... 278
CID 0324 FMI 06 Lamp (Action) Current Above Normal - Test ..................................................... 279 CID 0341 FMI 03 Solenoid Valve (No. 4) (Warm Up) Voltage Above Normal - Test ............................. 281 CID 0341 FMI 05 Solenoid Valve (No. 4) (Warm Up) Current Below Normal - Test ............................. 281 CID 0341 FMI 06 Solenoid Valve (No. 4) (Warm Up) Current Above Normal - Test ............................ 282 CID 0341 FMI 11 Solenoid Valve (No. 4) (Warm Up) Failure Mode Not Identifiable - Test .................. 282 CID 0350 FMI 00 Position Sensor (Lift Linkage) Above Normal Range - Test .............................. 283 CID 0350 FMI 01 Position Sensor (Lift Linkage) Below Normal Range - Test .............................. 283 CID 0350 FMI 02 Position Sensor (Lift Linkage) Incorrect Signal - Test ....................................... 284 CID 0350 FMI 03 Position Sensor (Lift Linkage) Voltage Above Normal - Test ............................. 284 CID 0350 FMI 04 Position Sensor (Lift Linkage) Voltage Below Normal - Test ............................. 285 CID 0350 FMI 06 Position Sensor (Lift Linkage) Current Above Normal - Test ............................ 285 CID 0350 FMI 08 Position Sensor (Lift Linkage) Abnormal Signal - Test ...................................... 286 CID 0350 FMI 11 Position Sensor (Lift Linkage) Failure Mode Not Identifiable - Test .................. 286 CID 0350 FMI 13 Position Sensor (Lift Linkage) Out of Calibration - Test ........................................... 287 CID 0364 FMI 03 Pressure Sensor (Lift Cylinder Head End) Voltage Below Normal - Test ........... 287 CID 0364 FMI 04 Pressure Sensor (Lift Cylinder Head End) Voltage Below Normal - Test ........... 287 CID 0364 FMI 06 Pressure Sensor (Lift Cylinder Head End) Current Above Normal - Test .......... 287 CID 0371 FMI 03 Solenoid Valve (Air Horn) Voltage Above Normal - Test ......................................... 287 CID 0371 FMI 05 Solenoid Valve (Air Horn) Current Below Normal - Test .......................................... 288 CID 0371 FMI 06 Solenoid Valve (Air Horn) Current Above Normal - Test ......................................... 289 CID 0371 FMI 11 Solenoid Valve (Air Horn) Failure Mode Not Identifiable - Test .............................. 289 CID 0378 FMI 03 Solenoid Valve (Automatic Lubrication) Voltage Above Normal - Test ......... 290 CID 0378 FMI 05 Solenoid Valve (Automatic Lubrication) Current Below Normal - Test ......... 291 CID 0378 FMI 06 Solenoid Valve (Automatic Lubrication) Current Above Normal - Test ......... 292 CID 0378 FMI 11 Solenoid Valve (Automatic Lubrication) Failure Mode Not Identifiable Test ................................................................... 293 CID 0379 FMI 03 Pressure Sensor (Automatic Lubrication) Voltage Above Normal - Test ......... 293 CID 0379 FMI 04 Pressure Sensor (Automatic Lubrication) Voltage Below Normal - Test ......... 295 CID 0379 FMI 06 Pressure Sensor (Automatic Lubrication) Current Above Normal - Test ......... 297 CID 0425 FMI 03 Pressure Sensor (Front Brake Oil) Voltage Above Normal - Test ............................. 298 CID 0425 FMI 04 Pressure Sensor (Front Brake Oil) Voltage Below Normal - Test ............................. 300
5 Table of Contents
CID 0425 FMI 06 Pressure Sensor (Front Brake Oil) Current Above Normal - Test ............................ 301 CID 0426 FMI 03 Pressure Sensor (Rear Brake Oil) Voltage Above Normal - Test ............................. 302 CID 0426 FMI 04 Pressure Sensor (Rear Brake Oil) Voltage Below Normal - Test ............................. 304 CID 0426 FMI 06 Pressure Sensor (Rear Brake Oil) Current Above Normal - Test ............................ 305 CID 0427 FMI 03 Temperature Sensor (Front Axle Oil) Voltage Above Normal - Test ...................... 306 CID 0427 FMI 04 Temperature Sensor (Front Axle Oil) Voltage Below Normal - Test ...................... 308 CID 0427 FMI 06 Temperature Sensor (Front Axle Oil) Current Above Normal - Test ...................... 309 CID 0428 FMI 03 Temperature Sensor (Rear Axle Oil) Voltage Above Normal - Test ...................... 310 CID 0428 FMI 04 Temperature Sensor (Rear Axle Oil) Voltage Below Normal - Test ...................... 312 CID 0428 FMI 06 Temperature Sensor (Rear Axle Oil) Current Above Normal - Test ...................... 313 CID 0429 FMI 03 Pressure Sensor (Steering Oil) Voltage Above Normal - Test ............................. 314 CID 0429 FMI 04 Pressure Sensor (Steering Oil) Voltage Below Normal - Test ............................. 316 CID 0429 FMI 06 Pressure Sensor (Steering Oil) Current Above Normal - Test ............................ 317 CID 0430 FMI 03 Pressure Sensor (Steering Pilot Oil) Voltage Above Normal - Test ...................... 318 CID 0430 FMI 04 Pressure Sensor (Steering Pilot Oil) Voltage Below Normal - Test ...................... 320 CID 0430 FMI 06 Pressure Sensor (Steering Pilot Oil) Current Above Normal - Test ...................... 321 CID 0434 FMI 03 Pressure Sensor (Hydraulic Pilot Oil) Voltage Above Normal - Test ...................... 322 CID 0434 FMI 04 Pressure Sensor (Hydraulic Pilot Oil) Voltage Below Normal - Test ...................... 324 CID 0434 FMI 06 Pressure Sensor (Hydraulic Pilot Oil) Current Above Normal - Test ...................... 325 CID 0436 FMI 03 Pressure Sensor (Torque Converter Oil) Voltage Above Normal - Test ...................... 326 CID 0436 FMI 04 Pressure Sensor (Torque Converter Oil) Voltage Below Normal - Test ...................... 328 CID 0436 FMI 06 Pressure Sensor (Torque Converter Oil) Current Above Normal - Test ...................... 329 CID 0438 FMI 03 Solenoid Valve (No. 1) (Warm Up) Voltage Above Normal - Test ............................. 330 CID 0438 FMI 05 Solenoid Valve (No. 1) (Warm Up) Current Below Normal - Test ............................. 331 CID 0438 FMI 06 Solenoid Valve (No. 1) (Warm Up) Current Above Normal - Test ............................ 331 CID 0438 FMI 11 Solenoid Valve (No. 1) (Warm Up) Failure Mode Not Identifiable - Test .................. 332 CID 0439 FMI 03 Solenoid Valve (No. 2) (Warm Up) Voltage Above Normal - Test ............................. 333 CID 0439 FMI 05 Solenoid Valve (No. 2) (Warm Up) Current Below Normal - Test ............................. 333 CID 0439 FMI 06 Solenoid Valve (No. 2) (Warm Up) Current Above Normal - Test ............................ 334 CID 0439 FMI 11 Solenoid Valve (No. 2) (Warm Up) Failure Mode Not Identifiable - Test .................. 334 CID 0440 FMI 03 Solenoid Valve (No. 3) (Warm Up) Voltage Above Normal - Test ............................. 335
CID 0440 FMI 05 Solenoid Valve (No. 3) (Warm Up) Current Below Normal - Test ............................. 336 CID 0440 FMI 06 Solenoid Valve (No. 3) (Warm Up) Current Above Normal - Test ............................ 336 CID 0440 FMI 11 Solenoid Valve (No. 3) (Warm Up) Failure Mode Not Identifiable - Test .................. 337 CID 0457 FMI 03 Temperature Sensor (Brake Oil) Voltage Above Normal - Test ............................. 338 CID 0457 FMI 04 Temperature Sensor (Brake Oil) Voltage Below Normal - Test ............................. 339 CID 0457 FMI 06 Temperature Sensor (Brake Oil) Current Above Normal - Test ............................ 340 CID 0458 FMI 03 Pressure Sensor (Tilt Cylinder Rod) Voltage Above Normal - Test ............................. 342 CID 0458 FMI 04 Pressure Sensor (Tilt Cylinder Rod) Voltage Below Normal - Test ............................. 342 CID 0458 FMI 06 Pressure Sensor (Tilt Cylinder Rod) Current Above Normal - Test ............................ 342 CID 0533 FMI 02 Machine Electronic Control Module (Integrated Brake) Incorrect Signal - Test ......... 342 CID 0533 FMI 09 Machine Electronic Control Module (Integrated Brake) Abnormal Update - Test ...... 344 CID 0533 FMI 12 Machine Electronic Control Module (Integrated Brake) Failed - Test ......................... 346 CID 0541 FMI 03 Pressure Sensor (Differential Oil) Voltage Above Normal - Test ............................. 348 CID 0541 FMI 04 Pressure Sensor (Differential Oil) Voltage Below Normal - Test ............................. 350 CID 0541 FMI 06 Pressure Sensor (Differential Oil) Current Above Normal - Test ............................ 351 CID 0562 FMI 02 Caterpillar Monitoring System Incorrect Signal - Test ....................................... 352 CID 0562 FMI 09 Caterpillar Monitoring System Abnormal Update - Test .................................... 354 CID 0562 FMI 12 Caterpillar Monitoring System Failed - Test ....................................................... 356 CID 0590 FMI 02 Electronic Control Module (Engine) Incorrect Signal - Test ....................................... 358 CID 0590 FMI 09 Electronic Control Module (Engine) Abnormal Update - Test .................................... 360 CID 0590 FMI 12 Electronic Control Module (Engine) Failed - Test ....................................................... 362 CID 0596 FMI 02 Electronic Control Module (Implement) Incorrect Signal - Test ................... 364 CID 0596 FMI 09 Electronic Control Module (Implement) Abnormal Update - Test ................ 366 CID 0596 FMI 12 Electronic Control Module (Implement) Failed - Test .................................. 368 CID 0600 FMI 03 Temperature Sensor (Hydraulic Oil) Voltage Above Normal - Test ............................. 370 CID 0600 FMI 04 Temperature Sensor (Hydraulic Oil) Voltage Below Normal - Test ............................. 372 CID 0600 FMI 06 Temperature Sensor (Hydraulic Oil) Current Above Normal - Test ............................ 374 CID 0650 FMI 02 Harness Code Incorrect Test ................................................................... 375 CID 0654 FMI 03 Temperature Sensor (Trailer Right Brake Oil) Voltage Above Normal - Test ............ 376 CID 0654 FMI 04 Temperature Sensor (Trailer Right Brake Oil) Voltage Below Normal - Test ............ 378 CID 0654 FMI 06 Temperature Sensor (Trailer Right Brake Oil) Current Above Normal - Test ............ 379
6 Table of Contents
CID 0655 FMI 03 Temperature Sensor (Trailer Left Brake Oil) Voltage Above Normal - Test ............ 380 CID 0655 FMI 04 Temperature Sensor (Trailer Left Brake Oil) Voltage Below Normal - Test ............ 381 CID 0655 FMI 06 Temperature Sensor (Trailer Left Brake Oil) Current Above Normal - Test ............ 382 CID 0656 FMI 03 Temperature Sensor (Trailer Brake Oil Cooler Inlet) Voltage Above Normal - Test ... 383 CID 0656 FMI 04 Temperature Sensor (Trailer Brake Oil Cooler Inlet) Voltage Below Normal - Test ... 385 CID 0656 FMI 06 Temperature Sensor (Trailer Brake Oil Cooler Inlet) Current Above Normal - Test ... 386 CID 0657 FMI 03 Temperature Sensor (Trailer Brake Oil Cooler Outlet) Voltage Above Normal Test ................................................................... 387 CID 0657 FMI 04 Temperature Sensor (Trailer Brake Oil Cooler Outlet) Voltage Below Normal Test ................................................................... 388 CID 0657 FMI 06 Temperature Sensor (Trailer Brake Oil Cooler Outlet) Current Above Normal Test ................................................................... 389 CID 0658 FMI 02 Pressure Sensor (Trailer Right Suspension Cylinder) Incorrect Signal - Test .... 390 CID 0658 FMI 03 Pressure Sensor (Trailer Right Suspension Cylinder) Voltage Above Normal Test ................................................................... 391 CID 0658 FMI 04 Pressure Sensor (Trailer Right Suspension Cylinder) Voltage Below Normal Test ................................................................... 391 CID 0658 FMI 06 Pressure Sensor (Trailer Right Suspension Cylinder) Current Above Normal Test ................................................................... 391 CID 0659 FMI 02 Pressure Sensor (Trailer Left Suspension Cylinder) Incorrect Signal - Test .... 391 CID 0659 FMI 03 Pressure Sensor (Trailer Left Suspension Cylinder) Voltage Above Normal Test ................................................................... 391 CID 0659 FMI 04 Pressure Sensor (Trailer Left Suspension Cylinder) Voltage Below Normal Test ................................................................... 391 CID 0659 FMI 06 Pressure Sensor (Trailer Left Suspension Cylinder) Current Above Normal Test ................................................................... 392 CID 0672 FMI 01 Speed Sensor (Torque Converter Output) Below Normal Range - Test ................. 392 CID 0672 FMI 02 Speed Sensor (Torque Converter Output) Incorrect Signal - Test .......................... 392 CID 0672 FMI 03 Speed Sensor (Torque Converter Output) Voltage Above Normal - Test ................ 394 CID 0672 FMI 04 Speed Sensor (Torque Converter Output) Voltage Below Normal - Test ................ 395 CID 0672 FMI 08 Speed Sensor (Torque Converter Output) Abnormal Signal - Test ......................... 396 CID 0767 FMI 03 Pressure Sensor (Fixed Displacement Pump Oil) Voltage Above Normal Test ................................................................... 397 CID 0767 FMI 04 Pressure Sensor (Fixed Displacement Pump Oil) Voltage Below Normal Test ................................................................... 399
CID 0767 FMI 06 Pressure Sensor (Fixed Displacement Pump Oil) Current Above Normal Test ................................................................... 400 CID 0801 FMI 09 Interface Module (No. 1) Abnormal Update - Test ..................................................... 401 CID 0802 FMI 09 Interface Module (No. 2) Abnormal Update - Test ..................................................... 401 CID 0803 FMI 09 Interface Module (No. 3) Abnormal Update - Test ..................................................... 402 CID 0804 FMI 09 Interface Module (No. 4) Abnormal Update - Test ..................................................... 402 CID 0805 FMI 09 Interface Module (No. 5) Abnormal Update - Test ..................................................... 402 CID 0806 FMI 09 Interface Module (No. 6) Abnormal Update - Test ..................................................... 402 CID 0807 FMI 09 Interface Module (No. 7) Abnormal Update - Test ..................................................... 402 CID 0808 FMI 09 Interface Module (No. 8) Abnormal Update - Test ..................................................... 402 CID 0809 FMI 02 Speedometer/Tachometer Module (No. 1) Incorrect Signal - Test ........................... 403 CID 0809 FMI 12 Speedometer/Tachometer Module (No. 1) Failed - Test ........................................... 403 CID 0810 FMI 02 Speedometer/Tachometer Module (No. 2) Incorrect Signal - Test ........................... 403 CID 0810 FMI 12 Speedometer/Tachometer Module (No. 2) Failed - Test ........................................... 403 CID 0811 FMI 02 Quad Gauge Module (No. 1) Incorrect Signal - Test ....................................... 403 CID 0811 FMI 12 Quad Gauge Module (No. 1) Failed - Test ................................................................. 403 CID 0812 FMI 02 Quad Gauge Module (No. 2) Incorrect Signal - Test ....................................... 403 CID 0812 FMI 12 Quad Gauge Module (No. 2) Failed - Test ................................................................. 403 CID 0813 FMI 02 Quad Gauge Module (No. 3) Incorrect Signal - Test ....................................... 404 CID 0813 FMI 12 Quad Gauge Module (No. 3) Failed - Test ................................................................. 404 CID 0814 FMI 02 Quad Gauge Module (No. 4) Incorrect Signal - Test ....................................... 404 CID 0814 FMI 12 Quad Gauge Module (No. 4) Failed - Test ................................................................. 404 CID 0815 FMI 02 Message Center Module (No. 1) Incorrect Signal - Test ....................................... 404 CID 0815 FMI 12 Message Center Module (No. 1) Failed - Test ....................................................... 404 CID 0816 FMI 02 Message Center Module (No. 2) Incorrect Signal - Test ....................................... 404 CID 0816 FMI 12 Message Center Module (No. 2) Failed - Test ....................................................... 404 CID 0817 FMI 02 Battery (Internal Backup) Incorrect - Test ................................................................. 405 CID 0817 FMI 12 Battery (Internal Backup) Failed Test ................................................................... 405 CID 0819 FMI 02 Display Data Link Incorrect Test ................................................................... 405 CID 0819 FMI 03 Display Data Link Voltage Above Normal - Test ..................................................... 405 CID 0819 FMI 06 Display Data Link Current Above Normal - Test ..................................................... 406
7 Table of Contents
CID 0819 FMI 12 Display Data Link Failed Test ................................................................... 406 CID 0820 FMI 02 Keypad Data Link Incorrect Test ................................................................... 406 CID 0820 FMI 03 Keypad Data Link Voltage Above Normal - Test ..................................................... 407 CID 0820 FMI 06 Keypad Data Link Current Above Normal - Test ..................................................... 407 CID 0820 FMI 12 Keypad Data Link Failed Test ................................................................... 408 CID 0821 FMI 03 Display Power Supply Voltage Above Normal - Test ......................................... 408 CID 0821 FMI 06 Display Power Supply Current Above Normal - Test ......................................... 409 CID 0822 FMI 03 Display Backlighting Voltage Above Normal - Test ..................................................... 409 CID 0822 FMI 05 Display Backlighting Current Below Normal - Test ..................................................... 410 CID 0822 FMI 06 Display Backlighting Current Above Normal - Test ..................................................... 410 CID 0823 FMI 03 Lamp (Service) Voltage Above Normal - Test ..................................................... 411 CID 0823 FMI 05 Lamp (Service) Current Below Normal - Test ..................................................... 412 CID 0823 FMI 06 Lamp (Service) Current Above Normal - Test ..................................................... 413 CID 0824 FMI 03 Lamp (Green Payload) Voltage Above Normal - Test ......................................... 414 CID 0824 FMI 05 Lamp (Green Payload) Current Below Normal - Test .......................................... 414 CID 0824 FMI 06 Lamp (Green Payload) Current Above Normal - Test ......................................... 415 CID 0825 FMI 03 Lamp (Red Payload) Voltage Above Normal - Test ..................................................... 416 CID 0825 FMI 05 Lamp (Red Payload) Current Below Normal - Test ..................................................... 417 CID 0825 FMI 06 Lamp (Red Payload) Current Above Normal - Test ..................................................... 418 CID 0826 FMI 03 Temperature Sensor (Torque Converter Oil) Voltage Above Normal - Test ..... 419 CID 0826 FMI 04 Temperature Sensor (Torque Converter Oil) Voltage Below Normal - Test ...... 421 CID 0826 FMI 06 Temperature Sensor (Torque Converter Oil) Current Above Normal - Test ..... 422 CID 0826 FMI 11 Temperature Sensor (Torque Converter Oil) Failure Mode Not Identifiable Test ................................................................... 424 CID 0827 FMI 03 Temperature Sensor (Left Exhaust) Voltage Above Normal - Test ............................. 424 CID 0827 FMI 04 Temperature Sensor (Left Exhaust) Voltage Below Normal - Test ............................. 426 CID 0827 FMI 06 Temperature Sensor (Left Exhaust) Current Above Normal - Test ............................ 427 CID 0827 FMI 08 Temperature Sensor (Left Exhaust) Abnormal Signal - Test ...................................... 428 CID 0828 FMI 03 Temperature Sensor (Right Exhaust) Voltage Above Normal - Test ............. 429 CID 0828 FMI 04 Temperature Sensor (Right Exhaust) Voltage Below Normal - Test .............. 431 CID 0828 FMI 06 Temperature Sensor (Right Exhaust) Current Above Normal - Test ............. 432 CID 0828 FMI 08 Temperature Sensor (Right Exhaust) - Test .................................................. 434
CID 0829 FMI 03 Temperature Sensor (Rear Aftercooler Coolant) Voltage Above Normal Test ................................................................... 435 CID 0829 FMI 04 Temperature Sensor (Rear Aftercooler Coolant) Voltage Below Normal Test ................................................................... 436 CID 0829 FMI 06 Temperature Sensor (Rear Aftercooler Coolant) Current Above Normal Test ................................................................... 437 CID 0830 FMI 03 Temperature Sensor (Front Brake Oil) Voltage Above Normal - Test ...................... 439 CID 0830 FMI 04 Temperature Sensor (Front Brake Oil) Voltage Below Normal - Test ...................... 440 CID 0830 FMI 06 Temperature Sensor (Front Brake Oil) Current Above Normal - Test ...................... 441 CID 0833 FMI 03 Temperature Sensor (Rear Brake Oil) Voltage Above Normal - Test ...................... 442 CID 0833 FMI 04 Temperature Sensor (Rear Brake Oil) Voltage Below Normal - Test ...................... 444 CID 0833 FMI 06 Temperature Sensor (Rear Brake Oil) Current Above Normal - Test ...................... 445 CID 0835 FMI 03 Temperature Sensor (Differential Oil) Voltage Above Normal - Test ...................... 446 CID 0835 FMI 04 Temperature Sensor (Differential Oil) Voltage Below Normal - Test ...................... 447 CID 0835 FMI 06 Temperature Sensor (Differential Oil) Current Above Normal - Test ...................... 449 CID 0838 FMI 02 Pressure Sensor (Left Front Suspension Cylinder) Incorrect Signal - Test .... 450 CID 0838 FMI 03 Pressure Sensor (Left Front Suspension Cylinder) Voltage Above Normal Test ................................................................... 450 CID 0838 FMI 04 Pressure Sensor (Left Front Suspension Cylinder) Voltage Below Normal Test ................................................................... 450 CID 0838 FMI 06 Pressure Sensor (Left Front Suspension Cylinder) Current Above Normal Test ................................................................... 450 CID 0838 FMI 08 Pressure Sensor (Left Front Suspension Cylinder) Abnormal Signal - Test ... 450 CID 0839 FMI 02 Pressure Sensor (Right Front Suspension Cylinder) Incorrect Signal - Test .... 451 CID 0839 FMI 03 Pressure Sensor (Right Front Suspension Cylinder) Voltage Above Normal Test ................................................................... 451 CID 0839 FMI 04 Pressure Sensor (Right Front Suspension Cylinder) Voltage Below Normal Test ................................................................... 451 CID 0839 FMI 06 Pressure Sensor (Right Front Suspension Cylinder) Current Above Normal Test ................................................................... 451 CID 0839 FMI 08 Pressure Sensor (Right Front Suspension Cylinder) Abnormal Signal - Test ... 451 CID 0840 FMI 02 Pressure Sensor (Left Rear Suspension Cylinder) Voltage Above Normal Test ................................................................... 451 CID 0840 FMI 03 Pressure Sensor (Left Rear Suspension Cylinder) Voltage Above Normal Test ................................................................... 452 CID 0840 FMI 04 Pressure Sensor (Left Rear Suspension Cylinder) Voltage Below Normal Test ................................................................... 452
8 Table of Contents
CID 0840 FMI 06 Pressure Sensor (Left Rear Suspension Cylinder) Current Above Normal Test ................................................................... 452 CID 0840 FMI 08 Pressure Sensor (Left Rear Suspension Cylinder) Abnormal Signal - Test ... 452 CID 0841 FMI 02 Pressure Sensor (Right Rear Suspension Cylinder) Incorrect Signal - Test .... 452 CID 0841 FMI 03 Pressure Sensor (Right Rear Suspension Cylinder) Voltage Above Normal Test ................................................................... 452 CID 0841 FMI 04 Pressure Sensor (Right Rear Suspension Cylinder) Voltage Below Normal Test ................................................................... 453 CID 0841 FMI 06 Pressure Sensor (Right Rear Suspension Cylinder) Current Above Normal Test ................................................................... 453 CID 0841 FMI 08 Pressure Sensor (Right Rear Suspension Cylinder) Abnormal Signal - Test ... 453 CID 0849 FMI 03 Pressure Sensor (Air System) Voltage Above Normal - Test ............................. 453 CID 0849 FMI 04 Pressure Sensor (Air System) Voltage Below Normal - Test ............................. 455 CID 0849 FMI 06 Pressure Sensor (Air System) Current Above Normal - Test ............................ 457 CID 0851 FMI 03 Pressure Sensor (Pump Drive) Voltage Above Normal - Test ............................. 458 CID 0851 FMI 04 Pressure Sensor (Pump Drive) Voltage Below Normal - Test ............................. 460 CID 0851 FMI 06 Pressure Sensor (Pump Drive) Current Above Normal - Test ............................ 462 CID 0852 FMI 03 Temperature Sensor (Right Front Brake Oil) Voltage Above Normal - Test ............ 463 CID 0852 FMI 04 Temperature Sensor (Right Front Brake Oil) Voltage Below Normal - Test ............ 465 CID 0852 FMI 06 Temperature Sensor (Right Front Brake Oil) Current Above Normal - Test ............ 466 CID 0853 FMI 03 Temperature Sensor (Left Front Brake Oil) Voltage Above Normal - Test ............ 467 CID 0853 FMI 04 Temperature Sensor (Left Front Brake Oil) Voltage Below Normal - Test ............ 469 CID 0853 FMI 06 Temperature Sensor (Left Front Brake Oil) Current Above Normal - Test ............ 470 CID 0854 FMI 03 Temperature Sensor (Right Rear Brake Oil) Voltage Above Normal - Test ............ 472 CID 0854 FMI 04 Temperature Sensor (Right Rear Brake Oil) Voltage Below Normal - Test ............ 473 CID 0854 FMI 06 Temperature Sensor (Right Rear Brake Oil) Current Above Normal - Test ............ 474 CID 0855 FMI 03 Temperature Sensor (Left Rear Brake Oil) Voltage Above Normal - Test ............ 476 CID 0855 FMI 04 Temperature Sensor (Left Rear Brake Oil) Voltage Below Normal - Test ............ 477 CID 0855 FMI 06 Temperature Sensor (Left Rear Brake Oil) Current Above Normal - Test ............ 478 CID 0890 FMI 09 Telemetry Data Link Abnormal Update - Test ..................................................... 480 CID 1089 FMI 02 Analysis Control Module Incorrect Signal - Test ...................................................... 481 CID 1089 FMI 09 Analysis Control Module Abnormal Update - Test ..................................................... 483
CID 1089 FMI 12 Analysis Control Module Failed Test ................................................................... 484 Alert Indicator - Troubleshoot .............................. 487 Chip Detector - Test ............................................ 490 Lift or Tilt Cylinder Sensor - Troubleshoot ........... 491 Suspension Cylinder Sensor - Troubleshoot ....... 495 Troubleshooting Electrical System Using Abbreviated Procedures ........................................................ 502 Charging System - Test ...................................... 503 Pulse Width Modulated (PWM) Sensor - Test .... 512 Sensor Signal Voltage - Test ............................... 513 Sensor Dynamic Test .......................................... 516 Diode Assembly - Test ........................................ 519 Position Sensor (Lift Arm) - Adjust ...................... 520 Speed Sensor (Engine) - Adjust ......................... 520 Module - Replace ................................................ 521 Battery - Replace ................................................ 521 Cable Connections ............................................. 522 Off-Board Service Tool ........................................ 524 Glossary of Terms ............................................... 535 System Schematic .............................................. 546
Index Section Index ................................................................... 573
9 Systems Operation Section
Systems Operation Section i01306165
General Information SMCS Code: 7601
Illustration 1 Typical Block diagram of the Vital Information Management System (VIMS)
g00480385
10 Systems Operation Section
Illustration 2
g00511864
Illustration 4
g00480392
VIMS display components.
The VIMS keypad module that is used on the Large Wheel Loaders
(1) Gauge cluster module (2) Speedometer/tachometer module (3) Message center module (4) Alert indicator (5) Data logging indicator (6) Gauges (7) Tachometer (8) Ground speed readout (9) Actual gear indicator (10) Message area (11) Universal gauge (12) Gauge warning area
(13) (14) (15) (16)
“Gauge” Key Key pressed indicator Backward arrow key Forward arrow Key
The Vital Information Management System (VIMS) is a state-of-the-art onboard system with the following features:
• Machine systems are monitored for the operator. • Payload productivity information is measured by
the system and stored in onboard memory. This information can be downloaded later for analysis.
• Abnormal machine conditions and/or incorrect operation of the machine are identified. The diagnosis of these abnormal conditions will allow the operator to modify the operation of the machine in order to correct the problem. The service technician is able to schedule maintenance for the machine if the condition is not related to the operation of the machine.
• Prognostic information that can help predict Illustration 3
g00511863
The VIMS keypad module that is used on the Off-Highway Trucks and the Large Hydraulic Excavators (13) (14) (15) (16)
“Gauge” Key Key pressed indicator Backward arrow key Forward arrow key
potential problems before failures can occur. This allows the maintenance of the machine to be scheduled during the preventive maintenance servicing interval. The components of the typical VIMS are listed here:
• Up to eight interface modules • The main module • VIMS keypad • Display components • Switches • Sensors
11 Systems Operation Section
• Solenoids
Table 1
VIMS EVENTS
• Warning lamps Data Event(1)
Maintenance Event(2)
• Warning alarms
Filters
Open Sensor Circuits, etc.
Data Links
Temperature
Calibration
All VIMS modules communicate with each other, with other electronic controls on the machine and with systems off the machine through data links. The five VIMS data links are listed here:
Possible Machine Damage Performance (Payload) Location (GPS) (1)
CAT Data Link – This two wire serial data link allows communication between the VIMS modules and other machine control systems. Display Data Link – This four wire data link allows communication between the VIMS main module and all display components except the keypad. Keypad Data Link – This two wire data link allows communication between the VIMS main module and the keypad. RS-232 Data Link (Service Tool) – This three wire serial data link allows communication between the VIMS main module and the service tool (laptop computer). RS-232 Data Link (Broadcast) – This three-wire serial data link allows communication between the VIMS main module and other off-board systems (non service tool). Onboard data can be passed from the machine hands free if a user supplied system such as radio telemetry is connected to this port. This port can be configured by the configuration software on the large wheel loaders as a payload printer port instead. Data The Vital Information Management System uses four types of data. The four types of data are listed here: Sensed – Data is read from the sensors and the switches. The sensors and the switches communicate with the interface modules. Internal – The data is generated within the VIMS main module. The date and time are examples of internal data.
(2)
This term was formerly referred to as a machine event. This term was formerly referred to as a system event.
The operator is alerted to the existence of all abnormal machine conditions by VIMS. All abnormal machine conditions are called data (machine) events. A high engine coolant temperature is an example of a data event. The operator is alerted to problems in the VIMS modules and other electronic modules on the machine. The electronic system failures are called a diagnostic type of maintenance (system) events. The signal voltage of the coolant temperature sensor that is above normal is an example of a maintenance event. Stored VIMS event (data and maintenance) information is used to assist service personnel with machine maintenance and troubleshooting. DATA (MACHINE) events are related to a machine system. The operator needs to RESPOND to this event in most cases. For example, the operator needs to modify operation in order to cool the converter oil temperature when the temperature is too high. When such an event is present, pressing the “F1” key will show more information. The operator is shown additional information on the second line of the message center. During temperature warnings, the “F1” key will cause the display to show the actual temperature of the machine system. MAINTENANCE (SYSTEM) events are related to an electrical system problem that requires a service technician to PERFORM SERVICE or MAKE A REPAIR. When a diagnostic code is present , pressing the “F1” key will display the diagnostic codes for the MID, the CID and the FMI. When a MID for a different system is displayed in place of a MID for VIMS, refer to the applicable Service Manual for that electronic control.
Communicated – The data is received through the CAT data link from other machine systems. For example, the engine speed is received through the CAT data link from the electronic engine control.
Note: Multiple events (data and maintenance) for a single machine condition may occur. The Vital Information Management System can determine if the actual cause of a stored event is due to a faulty component or a true abnormal condition.
Calculated – Data mathematically determined by the VIMS main module. For example, the event duration is calculated and stored in the event list.
Feature Variations
Events
12 Systems Operation Section
The same VIMS operates on a variety of different machines. All the possible VIMS functions are not performed on every machine. Configuration software is used in order to identify the type of VIMS machine. The configuration software also identifies the available VIMS functions. The number of VIMS modules and the type of VIMS modules may vary in different applications.
Diagnostic information is stored for all maintenance (system) events even if the event is not present at the time of troubleshooting. A lap top personal computer (PC) is used as the VIMS service tool. Refer to the Testing and Adjusting, “Off-Board Service Tool” section for more information.
The quantity of VIMS display components and the type of available indications are listed here:
The occurrence of certain VIMS events and real time machine conditions are recorded in on board VIMS memory. The information is organized into seven categories. This information is used to analyze machine problems and forecast machine problems. The information is typically used at a later date by service technicians or management. The seven categories of information are listed here:
• Quad gauge modules (1) are used in order
to show changing machine conditions. Speedometer/tachometer modules (2) are used to show changing machine conditions. Tachometer gauge (7) shows engine speed (RPM) information. Gauges (6) are used to display information such as temperature, pressure, and level.
• One two-digit gear readout (9) per speedometer/tachometer module shows the actual transmission gear and the direction information.
• One three-digit speed readout (8) per speedometer/tachometer module shows the ground speed information (“[MPH (km/h)]”).
• One alert indicator (4) per message center module shows that an event has been detected and the event is present.
• One data logging indicator (5) per message
center module shows that the data logging function is active. The data logging indicator indicates that the data logger was activated via the keypad.
• One universal gauge (11) per message center
module (3). The value of the parameter that is displayed on message area (10) will be indicated by the universal gauge.
• One message area (10) per message center module. The parameter name, status and operator instructions are information that is displayed on the message area. The type of indications and the quantity of indications that are used in the VIMS display area will vary according to the application. All the indications that are used in the VIMS display area may not be used on every machine. A machine may use one or two of the message center modules. In addition to the above indications, the action lamp and the action alarm indicate the severity (warning category) of a problem. The service indicator lamp alerts the service technician of an event that has occurred. The service indicator lamp indicates that the event is present.
Stored Data
Event List/Summary List – The event list is a record of stored events (what happened and when) that have occurred on the machine. Not all events are stored. The record contains the last 500 events (data or maintenance) that are listed in chronological order. This means that the events are listed in the order of occurrence. The newest events appear at the top of the list. The event list transfers the oldest data into the event summary list when the event list exceeds 500 records. The event summary list is composed of the first five occurrences, the last five occurrences and the worst five occurrences that are recorded for any of the data events. The event summary list is limited to storing only 500 records. Maintenance events can be identified by the diagnostic codes (MID, CID and FMI). All other events are data events. The event list is accessible from the message center or with the service tool. Note: All events that contain the MID, the CID and the FMI information are the diagnostic type of maintenance event. Not all events without the MID, the CID and the FMI information are data events. An example of a maintenance event without diagnostic codes is an open wire in the “hydraulic oil level circuit”. Remember that a “2-wire” switch circuit (open switch) can report a true condition that relates to a parameter. This same “2-wire” switch circuit can indicate a system failure (open wire) but the failure is reported as low hydraulic oil level.
13 Systems Operation Section
Snapshot (Event Recorder) – The Snapshot (event recorder) stores a segment of history in real time for all parameters (channels) at a one second interval. The snapshot relates to a set of “predefined events”. A snapshot is triggered automatically for a severe event. The snapshot is then stored in memory. The configuration software designates the events that are considered to be severe events. The keypad can be used to initiate a snapshot manually. A snapshot consists of a “flight recording” of all parameters that describe system conditions that happened from five minutes before the event to one minute after the event. This strategy is applied to snapshots that are triggered immediately after key ON. However, a portion of the five minutes of data that occurred prior to the event that triggered this snapshot was actually captured prior to turning the key start switch OFF. This data may have been stored hours or days before the event that triggered the snapshot. The VIMS has the capability of storing two sets of snapshot information. If a snapshot is in the process of being recorded and a second snapshot is triggered the second snapshot is ignored.
• Trend data that is collected during a period less
than one hour when the key start switch is turned to the OFF position is discarded.
• Trend points are the average of each trend that was captured during the past hour. Each trend must meet the conditions that are set for that trend. For example, a boost trend is captured each time that the coolant temperature and the engine load have exceeded the “trap ”conditions. A single trend point for the designated hour is calculated and stored when the measured trends are averaged over one hour. The trend data point or the responsible failure mode identifier are stored according to the guidelines that are listed below: 1. At least one Trend condition was met during at least one continuous hour. 2. FMI 19 conditions not met is stored or the actual FMI that was responsible for the conditions that were not met for the entire store. Trends are accessible only with the service tool.
The snapshot is accessible only with the service tool. Data Logger – The data logger captures all the machine parameters (channels) that are monitored by “VIMS”. The data logger is recorded in real time at “one second intervals”. The operation of the data logger is similar to the snapshot (event recorder). However, the data logger can not be triggered automatically. The manual triggering of the data logger can only be done by the service tool or the keypad. The logger can be started and stopped with a total recording time of 30 minutes. The data logger is accessible only with the service tool. The data logger can be reset by the service tool or the keypad. Note: Truck payload cycle data (time and date) can be used as data logger basic information in place of this data logger. Trends – Trend information consists of the minimums, maximums and averages of parameter data over time. Trend information is viewed with VIMS-PC software. The trend information is displayed as a graph or the trend information is tabulated as columns of data. An example of trend information is the average brake temperature per hour. Trend information is recorded for predefined parameters for each machine. Trend information is recorded under the specified guidelines that are listed here:
• All one hour continuous trends begin when the key start switch is turned to the ON position.
Note: Refer to table 2 for the recommended download information for trends and the recommended reset information for trends. This should help prevent the loss of data or the corruption of data. Machines that were built after June 1996 use the 9.X class of onboard configurations. The 9.X class of onboard configurations will not damage the data. The configuration simply drops off oldest data.
14 Systems Operation Section
Table 2
Recommended Service Meter Hour Download and Reset Times for Trends On Board Software
(1) (2)
“LWL”
“OHT”
“LHEX”
6.8X
Reset before 500 hours(1)
N/A
Reset before 500 hours(1)
7.0X
Reset before 500 hours(1)
N/A
N/A
9.0X
Reset before 1000 hours(2)
Reset before 500 hours(2)
N/A
9.3X
Reset before 1000 hours(2)
Reset before 500 hours(2)
Reset before 3500 hours(2)
9.4X
Reset before 1000 hours(2)
Reset before 500 hours(2)
N/A
9.5X
Reset before 1000
hours(2)
hours(2)
9.6X
Reset before 1000 hours(2)
Reset before 500
Reset before 3500 hours(2)
Reset before 3500 hours(2) N/A
The Trends are not correctly time stamped. The “Trend data” will be incorrect if the data is not downloaded and then reset in less than 500 hours. The roll over point is determined by the configuration software. The trends are time stamped while being collected onboard. This ensures that the trend is correct any time that the trends are downloaded. Roll over is determined by the configuration software. At roll over, the oldest Trends are covered up with new trend data.
Cumulative – Cumulative information is the number of occurrences (counts) of specific events. An example of cumulative information is total engine revolutions or total fuel consumption over the life of the machine or component. Cumulative information is recorded for a standard set of parameters. The parameters are defined in the configuration software for each machine. The “9.5X” class of source software uses the “configuration type” in order to determine that a new machine’s software has been flashed into memory. Stored cumulative information is retained during flashing of 9.5X or later classes of source and configuration software. The on board system collects life-time cumulatives with no need to reset. The situations that will cause an automatic resetting of the cumulatives are listed here:
• A new “configuration type” is flashed into the
onboard memory. A VIDS 992G configuration that is replaced by a VIMS 992G configuration is a typical example of changing the configuration type.
Note: The term configuration type describes the system (VIMS or VIDS) and the model of the machine.
• A configuration is loaded with any changes to the methods of calculating and storing cumulative data. The change indicates that a correction has actually been made to the configuration or the VIMS main module has just been installed from a different VIMS application. The new VIMS main module may not recognize the methods of calculating and storing cumulative data that is used by the configuration.
• The VIMS internal backup battery is removed while the disconnect switch is in the OPEN position.
Resetting of cumulatives manually is not required. If the user desires, the cumulatives may be reset manually. The reset process clears all cumulatives. Because there is only one choice, cumulatives can not be reset individually. If a reset of cumulatives is requested, all the cumulatives will be reset. Cumulatives are accessible only with the service tool.
15 Systems Operation Section
Table 3
Recommended Service Meter Hour Download and Reset Times for Cumulatives On board Software
(1) (2)
“LWL”
“OHT”
“LHEX”
6.8X
Reset before 750 hours(1)
N/A
Reset before 750 hours.(1)
7.0X
Reset before 750 hours.(1)
N/A
N/A
9.0X
Reset before 750 hours.(1)
Reset before 750 hours.(1)
N/A
9.3X
Reset before 750 hours.(1)
Reset before 750 hours.(1)
Reset before 750 hours.(1)
9.4X
Reset before 750 hours.(1)
Reset before 750 hours.(1)
N/A
necessary.(2)
9.5X
No reset is
9.6X
No reset is necessary.(2)
No reset is
necessary.(2)
No reset is necessary.(2)
No reset is necessary.(2) N/A
Cumulative data will begin to saturate at approximately 1000 hours. This means that a maximum number will be reached and then increase no further. The 9.5X or later on board software allows for the collection of lifetime cumulative records.
Histograms - Histogram information records the history of a parameter since last reset. For example, a histogram of the engine speed would indicate the percentage of time that the engine operated within a defined speed limit (example 0-699, 700-1299, 1300-1699, 1700-2199, 2200-up) and the time interval (example 25 to 475 SMH or 1 January 1996 to 2 February 1996) of the data gathered. Histograms can be used to evaluate the range of operation for a parameter. Histograms are accessible only with the service tool. Table 4
Recommended Service Meter Hour Download and Reset Times for Histograms On Board Software
(1) (2)
“OHT”
“LWL”
“HEX”
6.8X
DO NOT RESET.(1)
N/A
DO NOT RESET (1).
7.0X
Reset before 750 hours(2)
N/A
9.0X
Reset before 750
hours(2)
9.3X
Reset before 750
hours(2)
9.4X
Reset before 750 hours(2)
Reset before 750 hours(2)
N/A
9.5X
Reset before 750 hours(2)
Reset before 750 hours(2)
Reset before 750 hours(2)
9.6X
Reset before 750 hours(2)
Reset before 750 hours(2)
N/A
N/A
Reset before 750
hours(2)
N/A
Reset before 750
hours(2)
Reset before 750 hours(2)
Never Reset, the data will be permanently corrupted. Saturation could occur, meaning a maximum number will be reached and increase no further, between 1000 and 2000 hours for some parameters.
Payload - Payload information is recorded for the off-highway trucks and large wheel loaders, as required. Total payload data is accessible only with the service tool. Basic data is available through the message center by accessing resettable cumulatives.
16 Systems Operation Section
i01306231
Table 6
VIMS History
VIMS Hardware Part Numbers Version
SMCS Code: 7601
Interface
Battery
2.0
3E-3666 115-0648 118-9636 124-6134
3E-3667 118-9634 123-8164
9X-5402
3.0
130-5131 165-8682
138-1756 144-7172
101-1785
Hardware This manual describes the V2.0 and V3.0 versions of VIMS hardware. The original V2.0 VIMS hardware (main and interface modules) went into production in the third quarter of 1994. In the third quarter of 1996, V3.0 hardware began production. The interface modules have the same physical appearance. Part numbers are the only way to tell the difference. V2.0 main modules have the backup battery holder for stored data on the side of the module. In order to access the battery, a black “knob” needs to be unscrewed. V3.0 main modules have an “egg shaped” cover on the top of the module. In order to gain access to the battery, two screws must be removed. The battery is flat with four pin type contacts on the bottom. An L-shaped tool is required to pry the battery out.
Main
All modules are backward compatible. However, the modules are not usually forward compatible. Refer to the product support group of the business unit for more information. However, 9.X software must be used with V3.0 modules to gain full benefits and features. As an example, a V3.0 main module can be used on a machine that was built with the V2.0 module. This combination of hardware will work. However, not all of the features that are available with the V3.0 hardware will not work.
Software
VIMS onboard features are based on the hardware and the source software. This chart lists the combinations of the production hardware and the software classes.
The VIMS main module is a dedicated computer. The computer is dedicated to the task that is described in this manual. The main module must be loaded with two basic sets of software:
Table 5
• An operating system (similar to MS-DOS on a PC).
VIMS Hardwareand Software Class History Software Class
(1)
Model Usage
Hardware Version
6.X
LHEX/OHT
2.0
7.X
OHT
2.0
8.X(1)
LWL
3.0
9.X
LHEX/LWL
3.0
9.3X
LHEX/LWL/OHT
3.0
9.4X
LWL
3.0
9.5X
OHT/LHEX/LWL
3.0
9.6X
LWL/OHT
3.0
9.62X
LWL/OHT
3.0
8.X was used in a limited field test.
• An application program (similar to a word processing program on a PC)
The operating system software that is required by the main module is called source or source software. This software file may be identified on a PC with the file extension of “src”. Features are determined by the on board class. The version of source software is considered to be generic because the same version of source software will eventually be used for most applications of VIMS. The application program is called a configuration. Configuration software provides the main module with the specific parameters that are used by the machine. Some examples of the information that is provided in the configuration software are listed here: the engine speed which is considered as an overspeed, the system voltage that is considered too low, and the basic guidelines for operator warnings. VIMS Onboard Software Class History
17 Systems Operation Section
VIMS on board features are based upon hardware and source software. A complete history of the VIMS source software classes (“change levels”) that have been used are listed in Table 7. The 9.X class of software is the focus of this document. The 9.X class of software is also called later software (9.3X, 9.4X, ect.). The source software that was used prior to the 9.X class of source software is called earlier. THE CONFIGURATION SOFTWARE IS DESIGNED TO BE USED WITH A PARTICULAR PART NUMBER OF THE SOURCE SOFTWARE (CLASS) AND THE CONFIGURATION MUST BE USED WITH ONLY THAT PART NUMBER. VIMS Hardware, Software, and Service Tool History Total VIMS features are based upon onboard hardware, onboard software and the VIMS-PC software in the service tool. Table 7 lists the serviceable combinations of the hardware and software. Table 7
Approx. VIMS Source Production Software Class
Software Pt. No.
Model Usage
Hardware Version
VIMS-PC Version
ISB Version
6.X
7/93 9/94
122-4810
LHEX OHT
2.0/3.0
1.2/2.0/2.1/2.2/2.3/2.4
1.0/1.1
7.X
11/95
130-1345
OHT
2.0/3.0
1.2/2.0/2.1/2.2/2.3/2.4
1.0/1.1
8.X(1)
6/95
132-1968
LWL
3.0
2.0/2.1/2.2/2.3/2.4
1.0/1.1
9.X
7/96 3/96
133-4304
LHEX LWL
2.0/3.0
2.0/2.1/2.2/2.3/2.4
1.0/1.1
9.3X
12/96
140-9474
LHEX OHT LWL
2.0/3.0
2.1/2.2/2.3/2.4
1.0/1.1
9.4X
5/97
147-2046
LWL
2.0/3.0
2.3 or later
1.1
9.5X
3/98
151-1293
OHT LHEX LWL
2.0/3.0
2.3 or later
1.2
9.6X
3/99
157-2892
LWL OHT
2.0/3.0
VIMSpc99
N/A(4)
9.62X
12/00
199-6528
LWL OHT
2.0/3.0
VIMSpc99 (V2.0.3)
N/A(4)
(1) (4)
This version of software was used in limited field test only. VIMSpc99 is used to modify VIMS configuration software.
18 Systems Operation Section
i01351829
Normal Operation SMCS Code: 7601
Illustration 7
g00483761
Message Center Module
Illustration 5
g00302063
Gauge Cluster Module (1) Gauge warning area (2) Pictograph symbol
(9) Alert indicator (10) Data logging indicator (11) Message area (12) Universal gauge (13) Gauge warning area
During normal operation, the VIMS display components provide the operator and the service technician with the information that is listed here:
• The display components indicate whether
the Vital Information Management System is operating properly. Whenever the key start switch is turned to the ON position, some of the VIMS outputs (gauges and message center module) briefly operate. This is a system self-test of the display components. See the Systems Operation, “System Self Test” topic for the complete test of the VIMS outputs.
• The measured value of present system conditions Illustration 6 Speedometer/Tachometer Module (3) (4) (5) (6)
Tachometer Pictograph symbol Ground speed readout Transmission actual gear readout
g00485026
are shown on the display components. The machine systems are continuously monitored. The normal range value of the gauges in the quad gauge module are shown in the central region.
• The display components will indicate whether an abnormal machine system condition (data event) exists. The machine systems are continuously monitored. When an abnormal condition (problem) exists, alert indicator (9) FLASHES. Message area (11) shows the system parameter with the abnormal condition and the value of the parameter. Universal gauge (12) also shows the relative value of the abnormal parameter. The service indicator lamp is turned ON and the event may be stored in the memory of the main module. A problem that is more severe requires the action lamp to FLASH and the action alarm is required to SOUND. See the Systems Operation, “Warning Operation” section.
19 Systems Operation Section
• The display components will indicate when
a VIMS failure (maintenance event) exists. Continuous checks are made for the existence of electrical failures in the VIMS modules and in the other electronic control modules (engine, transmission, etc) installed on the machine. When the Vital Information Management System detects a diagnostic type of maintenance event (system event), the service indicator lamp is activated. The event is shown on the message area. The event is also stored in the main module memory. See the Systems Operation, “Service Operations” section.
The Vital Information Management System enters the normal mode when the key start switch is turned to the ON position. This is the mode of “normal” operation. The system will enter the normal mode after the installation of valid source software and configuration software. Refer to the Systems Operation, “Main Module” section of this manual for additional information on the modes of operation. i01382740
Service Operations SMCS Code: 7601 Numerous VIMS service operations can be initiated by the operator or a service technician. A unique service program code (SPC) is assigned to each of the service operations. The service program codes are entered through the VIMS keypad module. Entering the service program code starts the corresponding service operation. The service operations are listed in Table 8.
20 Systems Operation Section
Table 8
VIMS Service Operations Service Operation
Service Program Code
Service Program Code No.
“ATTACH”
288224
“SERV”
7378
Data Logger - Reset
“DLRES”
35737
Data Logger - Start/Stop
“DLOG”
3564
Display Backlighting - Set
“BLT”
258
Display Contrast - Set
“CON”
266
Display Language - Set
“LA”
52
Display Units - Set
UN
86
Event - Configure (9.6X or later)
“ESET”(1)
3738
Events Acknowledged - Show
“EACK”
3225
Event List - Show
“ELIST”
35478
Event Recorder - Start
“EREC”
3732
Events Statistics - Show
“ESTAT”
37828
Lubrication Cycle Times - Set
“LUBSET”
582738
Lubrication Manual - Start
“LUBMAN”
582626
Machine Status - Show
“MSTAT”
67828
Odometer - Set
“ODO”(1)
636
Resettable Totals - Reset (LHEX/OHT)
“RESET”
73738
Resettable Totals - Show (LHEX/OHT)
“TOT”
868
“SVCLIT”
782548
“SVCSET”(1)
782738
“ERSET”(1)
37738
“TEST”
8378
Truck Payload - Calibrate
“PAYCAL”(1)
729225
Truck Payload - Configure
“PAYCONF”(1)
7292663
Attachment Code - Configure Calibration Modes - Enter
Service Lamp - Reset Service Lamp - Set (9.5X or later) Snapshot Trigger- Configure (9.5X or later) System Self Test
(1)
The service tool is required to be connected and communicating with the machine before this SPC is active.
Each service program code is a unique number of one to ten digits that abbreviates this operation. The service program codes have a letter equivalent that describes the service operation. This letter equivalent makes remembering the service program code for each operation easier. The English letter equivalent for each service program code is shown in parentheses. The same service program codes are used regardless of the onboard language. After entering the service program code on the keypad, this request will begin after the “OK” key is pressed. This command must be activated within five seconds of entering the last SPC character. The maximum delay that is allowed between the entry of the SPC characters is five seconds.
i01351847
Attachment Code - Configure SMCS Code: 7601 The following information describes the service program code: 288224 (ATTACH)
21 Systems Operation Section
This service program allows the operator to configure the attachment code for large wheel loaders and the 5230 (S/N: 7LL99-Up) Large Hydraulic Excavators. The Attachment Code is the software version of the Harness Code. The harness code is a hard wired configuration of jumper wires that ground certain circuits in a harness code plug. The VIMS broadcasts the attachment code via the CAT data link to other electronic control modules on the machine that need this code. Note: Applicable attachment codes are listed on the back of machine Electrical Schematic and in the Operations and Maintenance Manual. After “ATTACH” is entered from the keypad, the operator presses the “OK” key. The message center will show:
i00952599
Calibration Mode - Enter SMCS Code: 7601 The following information describes the service program code: 7378 (SERV) The service program code (SERV) is used to enter the calibration modes and the calibration procedures. The Vital Information Management System’s configuration software defines the calibration modes and the calibration procedures. The arrow keys can be used to scroll through the various calibration modes. The message center will show:
Illustration 10 Illustration 8
g00485849
g00485847
Other calibration display messages are listed here:
The desired attachment code can then be entered from the keypad by entering the desired attachment code. Then press the “OK” key. If a valid attachment code has been entered, the message center will prompt the operator to re-enter the attachment code. The message center will show:
• LIFT ARM SNSR - CAL • IMPL RLF - VARIABLE PUMP • LINKAGE SENSORS - SET • TC PDL POS SENSORS - CAL • TC IMPLR SOL - CAL • TILT ARM SNSR - CAL • IMPL VALVE SOL - CAL
Illustration 9
g00485848
If the same code is entered again, this code will be accepted as the new attachment code. If the same code is not entered at the second prompt, the new attachment code will not be accepted. The old attachment code remains valid. A new attachment code will not be accepted, if an invalid code is entered at either prompt. The old attachment code remains valid. If the “OK” key was pressed at either prompt prior to entering a number, the old attachment code remains valid. Note: The Machine Status (MSTAT) (67828) code can be used to view the present, active attachment code.
• IMPL RLF - FIX PUMP • LEFT PEDAL - CAL • IC HOLD PRES - CAL • REDUCED RIMPULL - CAL Note: If the “[OK]” key is pressed, the message stays on the display for 15 seconds. The message will stay even if the “[OK]” key is pressed again. i00952586
Data Logger - Reset SMCS Code: 7601 The following information describes the service program code: 35737 (DLRES)
22 Systems Operation Section
This service program code resets the available data logger storage time to 30 minutes. Use the keypad to enter the service code 35737 (DLRES) and press the “OK” key in order to reset the data logger. Resetting the data logger erases any presently stored information. The message area will show:
The information that is shown in illustration 12 is displayed in the message area. The message area will display the remaining storage time prior to starting the data logger. When data logging is in operation a series of dots scroll in the upper right hand corner of the universal gauge. Note: The dots in the upper right corner of the universal gauge scroll only if data logging is started from the keypad. i00952589
Illustration 11
g00485813
Display Backlighting - Set SMCS Code: 7601
Note: The Data Logger is the only “downloadable on board file” that can be reset through the keypad (“VIMS-PC software is not needed”). i00952585
Data Logger - Start/Stop SMCS Code: 7601
The following information describes the service program code: 258 (BLT) This service program code allows the backlight intensity of the message area to be changed. After the service program code is entered, the actions that are listed here will occur in the following order:
• The intensity will automatically decrease from the
The following information describes the service program code: 3564 (DLOG) This service program code starts or stops data logging (storage of data) until 30 minutes of information is stored. (If the data logger data is being downloaded from the machine, the data logger can not be started.) The data logger can be started and the data logger can stopped any number of times over any period of time (minutes, hours or days) until the “data logging” time totals 30 minutes and eight seconds. The dots of the data logger indicator are in the upper right hand corner of the universal gauge. The dots of the data logger indicator will stop scrolling when the data logger is no longer recording data. The dots of the data logger do not scroll when the service tool starts the data logger. The remaining storage time of the data logger is shown on the message area for five seconds after entering this SPC on the keypad. The format of the time is shown in “minutes:seconds”. An example is shown here:
original setting to 0%.
• The setting will automatically jump from 0% to 100%. The intensity will then decrease to the original value.
• Pressing the arrow keys will manually scroll through the intensity settings.
As the message area scrolls in intensity, the corresponding percentage of backlight intensity is displayed in the message area. The arrow keys are used in the scrolling procedure in order to select a new backlight intensity setting. Press the “OK” key in order to accept the new setting. Backlight Intensity adjustment requires the use of VIMS V3.0 hardware and 9.X class or later on board software.
Illustration 13
Illustration 12
g00529116
g00485814
23 Systems Operation Section
i00952590
Display Contrast - Set SMCS Code: 7601 The following information describes the Service Program Code: 266 (CON) This service program code allows the contrast of the message center to be changed. After the service program code is entered, the actions that are listed here will occur in the following order:
• The contrast will automatically decrease from the original setting to 0%.
• The setting will automatically jump from 0% to 100%. The contrast will then decrease to the original value.
• Pressing the arrow keys will manually scroll through the intensity settings. As the message area scrolls in contrast, the corresponding percentage of contrast is displayed in the message area. The arrow keys are used in the scrolling procedure in order to select a new contrast setting. Press the“OK”key in order to accept the new selection. Message center contrast adjustment requires the use of VIMS: V3.0 hardware, 9.X class or later on board software, and the 133-1840 or later VIMS Message Center Module.
The primary language for a given VIMS configuration is the language that will be active after a new upload. English will always be one of the two available onboard languages. i00952587
Display Units - Set SMCS Code: 7601 The following information describes the service program code: 86 (UN) The service program code toggles the data that is shown on the display. The data is toggled between the “English” or “Metric” units of measurement. Data is shown in the selected unit until the other unit is selected. The new setting will remain until the setting is changed by repeating this procedure. The setting will not be changed when the key start switch is in the OFF position. i01306332
Event - Configure SMCS Code: 7601 The following information describes the service program code: 3738 (“ESET”) This service program code is available with the 9.6X class of source software or later. The event - configure (ESET) command allows the service technician to modify a configuration with the Information System Builder software program in order to turn off the functions that are listed here:
• Event Storage Illustration 14
g00485815
• Event Display • Service Lamp
i00952588
Display Language - Set SMCS Code: 7601 The following information describes the service program code: 52 (LA) This service program code toggles the information that is shown on the message area. The information is toggled between the two available languages. Information is shown in the selected language until the other language is selected. This setting may be performed when the key start switch is in the OFF position.
• Broadcast (Radio Telemetry System) Note: The “Event - Configure” command is not available for all events. The parameter must be designated as user configured in the configuration software. Security 1. The service program code only functions while the service tool (VIMS-PC) is connected. 2. After the service tool (VIMS-PC) is disconnected for 30 seconds, this service program code will no longer be active.
24 Systems Operation Section
Note: This command can only be viewed when VIMS-PC is not connected. Setup 1. Connect the service tool to the machine and establish communications with VIMS-PC. 2. The message center should be in the background mode. background mode displays the following items on the message center: time, date, service hours, and odometer reading (9.3X or later class of on board software). Use the keypad to enter the command “ESET” (3738). Then press the “OK” key. The message center will show the following message:
Illustration 16 (1) (2) (3) (4) (5) (6) (7) (8)
Illustration 15
g00510982
3. The service technician can select the desired “ESET” configured event by scrolling through the list of events. The service technician uses the “” arrow keys on the keypad in order to scroll. Note: The Master Event Number is a unique number that is assigned to an event. The “Master Event Number” is listed in the “Data Event Report” for a given configuration. The “Master Event Number” is viewed with the Information System Builder software application. This report can be generated by selecting the “data event report option” under the “Navigate Menu” of the Information System Builder software application. The numbers are listed in the “MST EVNT (Master Event)” column of the report.
g00511040
Master event number Event Storage function Event display function Service lamp function Telemetry (broadcast) function Factory default function Status of the function Name of event
4. The service technician can select the desired function from the following list by pressing the corresponding “number” key. The “X” indicates that the function has been enabled. The “-” indicates that the function has been disabled. The definitions of the functions are listed below: Event Storage Function (2) toggles the status of the function from an “X” to a “-” in order to indicate that the function has been disabled (OFF). The Event Display Function (3) toggles the status of the function from an “X” to a “-” in order to indicate that the function has been disabled (OFF). Service Lamp Function (4) toggles the status of the function from an “X” to a “-” in order to indicate that the function has been disabled (OFF). Telemetry (Broadcast)Function (5) toggles the status of the function from an “X” to a “-” in order to indicate that the Telemetry (Broadcast) function has been disabled (OFF). “Factory Default” function (6) toggles the status of the function. The status is either an “X” or a “-”. This is done in order to indicate that the “Factory Default” has been enabled (ON) or that the “Factory Default” has been disabled (OFF). See the Notes.
25 Systems Operation Section
Note: All configurable events are set to the factory defaults that are designated in the configuration software until the default is changed by performing this procedure. Note: The “ESET” command references the functions as the function has been setup in the configuration. The “ESET” command can turn OFF a function ONLY when the function is turned ON in the configuration software. The “ESET” command will NOT allow a function that is disabled from the factory in the configuration software to be turned ON.
This service program code shows all active events that have been acknowledged by the operator with the keypad.
Illustration 19
g00485490
Procedure i01306319
a. To set the “EVENT DISPLAY” function, press the “2” key. The following message will be displayed on the message center.
Event List - Show SMCS Code: 7601 The following information describes the service program code: 35478 (“ELIST”)
Illustration 17
g00511120
This service program code shows the event list in an abbreviated form. The entries of the event list are displayed: “last event in - first event out”. The “first event out” represents the INACTIVE time of the event. Some events may appear out of order based on the start times of the events. Use the “BACKWARD” and “FORWARD” arrow keys to scroll through the list. The message “END OF LIST” is shown when the oldest event in the list is reached.
• This list contains only inactive EVENTS. An Illustration 18
g00552273
b. The “>” arrow key is used to toggle the status (“ON or OFF”) of the “EVENT DISPLAY”. Press the “OK” key in order to accept the change. The message center will then display the current “Master Event Number message”. Refer to illustration 18. If the “X” is selected then the message center will display the event. If the “-” is selected the message center will NOT display the event. Use this procedure to modify the functions that are listed here: EVENT STORAGE, SERVICE LAMP, and RADIO TELEMETRY SYSTEM (BROADCAST).
inactive event has a defined “start time and end time”. Active events will not appear in this list.
• While the “ELIST” is displayed, any new event that becomes inactive will be added to the beginning of the “ELIST”. The new entry to the “ELIST” may be viewed by pressing the backward arrow key in order to move to the beginning of the new “ELIST”. Data (Machine) Events The following information is shown in the VIMS message area for each data (machine) event in the event list:
• The name of the parameter • The status of the parameter (“LO”, “HI”, etc.)
i00952454
Event Acknowledged - Show SMCS Code: 7601 The following information describes the service program code: 3225 (EACK)
• Service meter reading at the start of the event. • The event duration • The warning category An example of a machine event with sensor information is shown here:
26 Systems Operation Section
Illustration 20
g00485804
An example of a data event with switch information is shown here:
Illustration 21
g00569208
245.2 is the service meter reading at the start of the event. 000:04:13 is the duration of the event in HHH:MM:SS format. The 2 that follows the “event duration” represents the warning category 2. Press the “F1” key while you view a data event. This function will replace the information that is shown on the second line of the message area. The new information that is shown contains information about the maximum values that were measured for the parameter such as “2266 RPM” or “LO (switch)”. Pressing the “OK” key puts the message center back into the previous mode. See the Systems Operation, “Keypad” topic for additional information. Pressing the “OK” key puts the message center back into the original mode. Maintenance/Diagnostic (System) Events The following information is shown in the VIMS message area for each system event in the event list.
• The name of the parameter
Illustration 22
g00551525
245.2 is the service meter reading at the start of the event. 000:04:13 is the duration of the event in HHH:MM:SS format. The “2” is the warning category. When you view a diagnostic event, press the “F1” key in order to replace the information that is shown on the second line of the message area. The information in the message area is replaced with the “MID-CID-FMI”. The message center can be returned to the original mode by pressing the “OK” key. The FORWARD and BACKWARD arrow keys are used to scroll through the event list. See the Systems Operation, “Keypad” topic for additional information. i00952461
Event Recorder - Start SMCS Code: 7601 The following information describes the service program code: 3732 (EREC) This service program code manually latches a snapshot that stores all parameter values for the previous five minutes and the following one minute. Each machine has the capability of storing two sets of snapshot information. Automatic latching is determined by the specified event. The event is specified in the configuration software and/or the event is enabled with the “ERSET” command. When a manual snapshot is started, one of the following three messages will be shown on the message area.
• The status of the parameter (ERR, etc.) • Service meter reading at the start of the event. • The event duration • The event category An example of a maintenance type of service event with information about the sensor:
Illustration 23
g00485808
The above message indicates that the request was accepted and the snapshot is latched.
27 Systems Operation Section
i01372780
Lubrication Interval - Set SMCS Code: 7601 The following information describes the service program code: 582738 (LUBSET) Illustration 24
g00485809
The above message indicates that the request was denied. The request was denied because the memory was not available.
This service program code is used to set the time between each lubrication and the duration of each lubrication. The duration of lubrication for individual machines are listed here.
• The duration of lubrication for off-highway trucks
is adjustable from 30 to 120 seconds. The factory default is 75 seconds.
• The duration of lubrication for large hydraulic
Illustration 25
g00485810
excavators is adjustable from 90 to 120 seconds. The factory default for 9.5X configuration and later VIMS software is 90 seconds. The factory default was fixed at 75 seconds in the VIMS software that was released prior to 9.5X.
The above message indicates that the request was denied. The request was denied because the previous snapshot was still in the storage process.
• The duration of lubrication for large wheel
The Operations Manual contains an explanation of the five minute snapshot. See the Operation Manual, JERD2136, “VIMS User Procedure Manual”.
When this code is entered the display will first show:
loaders is set for 60 seconds. The duration is not adjustable.
i00952456
Event Statistics - Show SMCS Code: 7601 The following information describes the service program code: 37828 (ESTAT) This service program code shows the number of maintenance events and data events since the main module memory was last cleared of all events (event list). An example is shown here:
Illustration 27
g00485800
Use the arrow keys to adjust the time of the lubrication intraval. This is the time in minutes between the automatic lubrication interval.
• The time interval for the off-highway trucks is adjustable from 5 to 120 minutes. The factory default setting is 60 minutes.
• The time interval for the excavators is adjustable
from 5 to 30 minutes. The factory default setting is 10 minutes (9.5Xor later configuration software).
Illustration 26
g00485803
• The time interval for the wheel loaders is adjustable from 5 to 15 minutes. The factory default setting is 15 minutes. After the proper time is set press the “OK” key. Use the arrow keys to adjust the lubrication duration time. After the proper time is set press the “OK” key. The message center will now show:
28 Systems Operation Section
The following message will be shown:
Illustration 28
g00549540
Illustration 29
Press the “OK” key again to exit LUBSET. Off Highway Trucks – The elapsed time (minutes) between each of the lubrication intervals is counted only when the ground speed is greater than 2.0 mph. Idle time under the shovel will not be counted against the next lubrication interval.
g00485801
i01306305
Machine Status - Show SMCS Code: 7601
Lubrication will continue for the programmed duration, once the lubrication has begun.
The following information describes the Service program code: 67828 (“MSTAT”)
Large Hydraulic Excavators – The elapsed time (minutes) between the “lubrication interval” is counted only when the speed of the engine is operating at a speed that is greater than 1400 rpm. If engine speed decreases to less than 1400 rpm during a lubrication, lubrication (duration) stops and the “lube pending” state is begun. The lubrication (duration) is reset at this time to the full programmed period. The default duration is 90 minutes.
Note: All screens are English only.
When the engine speed returns to a value that is greater than 1400 rpm, the lubrication process restarts. The period of lubrication duration begins again.
• The version of the experimental source software
Large Wheel Loaders – The elapsed time (minutes) between each of the lubrication intervals is counted only when the engine speed is greater than 1000 rpm.
This service program code is used to view various sections of the machine status. The message area will show:
• The version of the source software • The version of the configuration software that is installed for factory development Note: The “change level” of the production software (source software and the configuration software) is always zero. The version number of the configuration software is changed when the configuration is revised by Information System Builder (ISB).
Lubrication will continue for the programmed duration, once the lubrication has begun. i00952453
Lubrication Manual - Start SMCS Code: 7601 The following information describes the service program code: 582626 (LUBMAN) This service program code is used to manually start lubrication. This operation overrides the OFF time set under the service program code of Lubrication Cycle Time (LUBSET). The duration of lubrication is the length of time that was programmed during “Autolube Cycle Time”.
Illustration 30
g00548354
Pressing the “>” key will allow other aspects of the machine status to be displayed in the following order. The machine status and corresponding message area display are shown here:
• The CAT part number and the Hardware Version (Main Module)
29 Systems Operation Section
Attachment codes are used on large wheel loaders. Attachment codes are also used on the 5230 7LL99-Up Excavators. The attachment code will be “00” for most applications.
Illustration 31
g00485816
Illustration 36
g00485841
• Choice of Language Illustration 32
g00485817
• Model Number This message will display the model number of the machine. Illustration 37
g00485842
• Configuration Type This message will display “VIMS” or “VIDS”:
Illustration 33
g00550459
• Serial Number (Product Identification Number) Illustration 38
g00485843
• Operator ID
Illustration 34
g00537449
The Operator ID will be used with all stored onboard information. The Operator ID may be up to 7 characters (numbers and letters) in length.
• Equipment Number Note: The Equipment Number is assigned by the customer.
Illustration 39
g00485844
i00952596
Illustration 35
• Attachment Code
g00485840
Odometer - Set SMCS Code: 7601 The following information describes the service program code: 636 (ODO)
30 Systems Operation Section
This service program code allows the service technician to alter the reading of the machine odometer. The following list describes aspects of this service program code: Security 1. This service program code will only function if the service tool (“VIMS-PC”) is connected. 2. If the service tool (“VIMS-PC”) becomes disconnected for 30 seconds or longer, this command will no longer be allowed to change the setting of the odometer . The following message is shown on the message area after “ODO” (636) and “OK” are entered from the keypad.
i00952598
Resettable Totals - Reset SMCS Code: 7601 The following information describes the service program code: 73738 (RESET) This service program code is applicable to all resettable totals in the off-highway trucks and the large hydraulic excavators. Enter the following service code: 73738 (“RESET”). Press the “OK” key in order to clear all the totals. Press the “OK” key again in order to return the message area to the previous mode. The RESET service program code is active only while the service program code TOT is being viewed. i00952595
Resettable Totals - Show SMCS Code: 7601 Illustration 40
g00553642
The desired setting of the machine odometer can be entered from the keypad.
Large Hydraulic Excavators The following information describes the service program code: 868 (TOT) This service program code allows the operator to view the following information:
• TRAVEL TIME • FUEL USED Illustration 41
g00553644
The operator can then reset all resettable totals since the last reset. The message area will show:
Press the “OK” key in order to accept the setting. The following list contains the functions of the Input keys: OK – This command accepts the setting of the machine odometer. F2 – This command cancels the operation without changing the present setting. Left Arrow – This command deletes the last character or characters that were entered.
Illustration 42
g00485845
Off-Highway Trucks The following information describes the service program code: 868 (TOT)
31 Systems Operation Section
This service program code allows the operator to view information. The operator can then reset the information of the total payload activity since the last reset. Refer to the Systems Operation, “TPS Service Operation” section of this manual for the procedure to show resettable totals. i01306355
Service Lamp - Reset
• The key start switch is turned to the OFF position and then back to the ON position.
• Events that are associated with the reset
procedure that are still active at the time that you turn the key start switch to the OFF position.
• Events that are still active when the key start switch is turned back to the ON position.
• There are no additional active events since the “SVCLIT” reset procedure.
SMCS Code: 7601 The following information describes the service program code: 782548 (“SVCLIT”) This service program code turns OFF the service indicator lamp for most active events (data or maintenance) that are presently shown on the display area.
With source software prior to 9.X, the service indicator lamp will turn ON again when the key start switch is turned to the OFF position and then back to the ON position. This is true provided that the “reset events” are still active. i00955778
Note: Not all active events can be acknowledged.
Service Lamp - Set
First, all of the active events must be turned OFF via the keypad. Enter the “EACK” command in order to show all the acknowledged events. Use the arrow keys in order to scroll through the event list. A “#” sign is located at the right of the display beside the warning category. The “#” sign indicates that the service indicator lamp is illuminated for the displayed event.
SMCS Code: 7601 The following information describes the service program code: 782738 (SVCSET) This service program code allows the service technician to choose the display mode that controls the service lamp. The service lamp setting can be selected for the entire system. This includes completely turning OFF the service lamp. Note: This feature is a characteristic of the 9.5X and later class of on board software. Security
Illustration 43
g00485490
The number 2 represents the category of event. Use the keypad to enter “SVCLIT”. Press the “OK” key in order to turn off the lamp. The “#” sign will disappear. The service indicator lamp will turn OFF after this procedure has been completed for ALL active events.
1. This service program code only functions while the service tool (VIMS-PC) is connected. 2. After the service tool (VIMS-PC) is disconnected for 30 seconds, this service program code will no longer be active. The service technician may choose from any of the five display modes of the service lamp: 1. 1-2 SNAPSHOTS FULL: The possible actions of the service lamp for this mode are listed below after either one or both of the snapshots are stored:
• The service lamp flashes at ten minutes Illustration 44
g00485491
With the 9.X and later classes of onboard software, the service indicator lamp will stay OFF under the following conditions:
intervals: “two seconds on and two seconds off”. The sequence repeats ten times when the memory of snapshot No. 1 is full.
• The service lamp flashes at five minute intervals: “four seconds on and two seconds off”. The sequence repeats ten times when the memory of both snapshots are full.
32 Systems Operation Section
• The service lamp is illuminated steadily when any event is present.
• The service lamp will flash at an interval: “one second on/one second off”. The service lamp will flash when an event that could cause damage to the machine is detected.
2. 2 SNAPSHOTS FULL: The possible actions of the service lamp for this mode are listed below only after the second snapshot is stored:
5. “NEVER ON”: The service lamp is disabled in this mode for all cases. The service lamp will never illuminate. Note: “Snapshot” is a new term that has replaced “Event Recorder”. Snapshot data that is collected by the on board system is viewed with VIMS-PC. Files with “.evr, ev1, ev2, etc.” extensions are the snapshot files. VIMS-PC uses these files in order to display snapshot data. Procedure
• The service lamp flashes at five minute
intervals: “four seconds on and two seconds off”. This sequence is repeated ten times. The sequence is then repeated after a five minute pause.
• The service lamp is illuminated steadily when any event is present.
• The service lamp will flash: “one second on
and one second off”. The service lamp will flash when an event that could cause damage to the machine is detected.
Note: This service program code is in a “view only mode” when VIMS-PC is not connected. 1. Connect the service tool (“VIMS-PC”) to the RS-232 connector. The message center should be in the background mode. The following items should be displayed on the message center: time, date, and service hours. Enter the SVCSET (782738) command via the keypad. The message center will show:
Note: The operator does not receive a notification in this mode if the memory for snapshot “No. 1” is full. 3. NO SNAPSHOT NOTICE: The possible actions of the service lamp in this mode are listed below:
• There is no indication of the number of snapshots that are stored in memory.
• The service lamp is illuminated steadily when an event is present.
• The service lamp will flash at an interval: “one second on and one second off”. The service lamp will flash when an event that could cause damage to the machine is detected. Note: The operator does not receive a notification in this mode if the memory for either snapshot is full.
Illustration 45
g00549442
Note: The display first shows the present setting. The default setting is displayed on the message center when a new source has been loaded or a new configuration has been loaded. The previous example reflects the default setting of “1.1-2 SNAPSHOT FULL”. 2. The arrow keys are used to move through the list of available settings. The “OK” key selects the desired setting.
4. DAMAGE EVENTS ONLY: The possible actions of the service lamp for this mode are listed below:
• The service lamp will flash at an interval: “one second on and one second off”. The service lamp will flash when any event that could cause damage to the machine is detected.
Illustration 46
g00487242
Press the right arrow key in order to advance to next setting.
• There is no indication regarding other events. Note: The operator does not receive a notification in this mode if the memory for either snapshot is full.
33 Systems Operation Section
• The user selects a new setting with VIMS-PC.
The service tool (VIMS-PC) must be connected to the machine.
The following table summarizes the service lamp behavior in the five lamp setting modes.
Illustration 47
g00487243
Press the right arrow key in order to advance to next setting.
Illustration 48
g00487244
Press the right arrow key in order to advance to next setting.
Illustration 49
g00487245
Note: If the right arrow key is pressed again the list remains at the last setting. Press the left arrow key in order to move back through the settings. 3. Press the “OK” key in order to accept the setting when the desired “Service Lamp Setting” is displayed on the message center. The option that was selected is now the new service lamp mode.
Illustration 50
g00487244
Note: The setting of the service lamp is set to option 4. The title of option 4 is “DAMAGE EVENTS ONLY”. This setting will be used for all operations until one of the following events occur:
• New source software is loaded. • New configuration software is loaded. • The backup battery is replaced while the disconnect switch is in the OFF position.
34 Systems Operation Section
Table 9
Service Lamp Behavior “Choice No.”
Lamp Setting Mode
“Damage Event”
“Active Event”
“2nd Snapsot Full”
“1st Snapshot Full”
1
“1-2 Snapshot Full”
Flashing
ON
“Flashes Every Five Minutes ”
“Flashes Every 10 Minutes”
2
“2 Snapshots Full”
Flashing
ON
“Flashes Every Five Minutes ”
OFF
3
“No Snapshot Notice”
Flashing
ON
OFF
OFF
4
“Damage Events Only”
Flashing
OFF
OFF
OFF
5
“Never On”
OFF
OFF
OFF
OFF
i00956097
Snapshot Trigger - Configure SMCS Code: 7601 The following information describes the service program code: 37738 (ERSET) This feature is a characteristic of the 9.5X or later class of on board software. This snapshot trigger (“or event recorder trigger”) allows the service technician to enter an event in order to program an “autotriggered” snapshot. This snapshot will be in addition to the snapshots that are already programmed into the configuration. The configured snapshot will remain active until the snapshot is cancelled by entering a different selection. The selection can be also cleared by reinstalling the configuration software. Security
Connect “VIMS-PC” to the machine. The message center should be in the background mode. This means that the following items should be displayed on the message center: time, date, service hours, and the odometer reading. Use the keypad in order to enter the command “ERSET” (37738). Then press “OK”. If a previous trigger has been set, the message center will show the following text in order to indicate the event that had been previously selected.
Illustration 51
g00488913
The message will then alternate to the “confirmation mode”.
1. This service program code only functions while the service tool (“VIMS-PC”) is connected. 2. After the service tool (“VIMS-PC”) is disconnected for 30 seconds, the service program code will no longer be allowed to change. Note: This command may only be viewed when the service tool is not connected to the machine. No changes will be allowed.
Illustration 52
g00488914
When a trigger has not been defined, the following message is shown on the message center:
Procedure: Service Tool Connection
Illustration 53
g00488915
35 Systems Operation Section
These messages will alternate at three second intervals. Press the “OK” key in order to exit the menu with no changes. Press the “right arrow” key in order to enter the snapshot trigger select mode. Procedure to Program Illustration 56
The “entry mode display” always begins with the trigger that was entered last. The “entry mode” is blank, if no “trigger event” was originally set. Data that was input incorrectly can be corrected in the “edit mode”. A “blinking cursor” indicates the “input position” for the data within the “entry field”.
g00567782
The left arrow key will back up the cursor in order to remove the “last digit” that was entered. The extra “5” that is shown in illustration 55 was erased with the left arrow key.
The following display is the “starting entry screen” with no “event trigger” set:
Illustration 57
Illustration 54
g00488916
The following display is the “starting entry screen” with a previously set “event trigger”:
Illustration 55
g00567781
The “Master Event trigger number” is entered from the keypad in the “entry mode”. Use the left arrow key in order to erase incorrect entries and press the “OK” key in order to set the trigger. Note: The Master Event Number ID is a unique number that is assigned to each event. The Master Event Number is listed in the “Data Event Report” for a given configuration. The Master Event Number is viewed with the “Information System Builder software application”. This report can be generated by selecting the “data event report option” under the “Navigate Menu” of the “Information System Builder software application”. The numbers are listed in the “MST EVNT (Master Event)” column of the report.
g00567782
Press the “OK” key in order to set the “trigger event” when the number is correct. The “confirmation” message is displayed when the trigger has been set. The display will then show the name and the “status message” for the selected event. This is done in order to confirm the choice.
Illustration 58
g00488913
The display will return to the “confirmation mode”. This allows the user to confirm the present entry or a new “trigger event” may be entered. The “event trigger” in this example is set to “Master Event 25” (“ENG COOL TEMP HI”). The setting is retained in “battery backed onboard memory”. This setting will be used for all operations until one of the following events occur:
• New source software is flashed. • New configuration software is flashed. • The backup battery is replaced. • The user selects a new trigger event or different
trigger event. VIMS-PC must be connected to the machine before any changes can be made.
36 Systems Operation Section
If an “undefined” number has been entered, any existing setting will be cleared and the following message will be displayed for three seconds prior to returning to the “confirmation” mode.
When “VIMS-PC” is disconnected during the “event ID” entry, this service program code is terminated. If “VIMS-PC” is disconnected during the “confirmation” prompt, the setting is not affected. If the prompt indicated “TRIGGER NOT SET”, then no trigger is set. The trigger will be set if VIMS was verifying the “event ID”. i00951757
Illustration 59
g00488919
System Self Test SMCS Code: 7601-532
When the “OK” key is pressed with a zero or the field is left blank, the following message will be displayed for three seconds prior to returning to the “confirmation” mode.
Illustration 60
The following information describes the service program code: 8378 (TEST)
g00488940
The message in illustration 61 is shown when no trigger has been set. The message will be displayed for any of the situations that are listed here: Illustration 62
• No trigger was originally set.
g00570104
VIMS Display Components
• The “event ID (Master Event Number)” that was entered was zero.
• An invalid “event ID (Master Event Number)” was entered.
• The “OK” key is pressed with a blank input line.
Illustration 61
g00488915
At this point, the trigger is not set. The service technician must press the “OK” key in order to confirm the desired setting.
Disconnecting “VIMS-PC”
(1) Gauge cluster module. (2) Speedometer/tachometer module. (3) Message center module. (4) Alert indicator. (5) Data logging indicator. (6) Gauges. (7) Tachometer. (8) Ground speed readout. (9) Transmission actual gear readout. (10) Message area. (11) Universal gauge. (12) Gauge warning area.
This service program code causes a self test of the outputs of VIMS. The outputs for the VIMS are listed here: display modules, the action lamp, service lamp, and the action alarm. This test is also initiated when the key start switch is turned from the OFF to the ON position. The length of time for a self test is approximately six seconds. This test will not prevent the operator from cranking and starting the engine. However, allowing the self-test to run completely is recommended prior to cranking the engine.
37 Systems Operation Section
Note: The only situation that can cause an internal calibration of the gauges (6) and the tachometer (7) is a Key ON self test. The Key ON self test is initiated by turning the key start switch from the OFF position to ON position. When the key start switch is turned ON the gauge indicators (6) and the tachometer indicator (7) jump to the mid-scale position. The gauges will then sweep to zero. The gauges are now ready for the system test to begin. Note: A better description of the self test is available for the serviced machine. Refer to the Operation and Maintenance Manual. The following items are indications of the system test.
Illustration 64
g00548354
• Tachometer indicator (7) drops to zero from the
present engine speed and the indicator sweeps to full scale. After the indicator reaches full scale, the tachometer indicator (7) returns to the present engine speed.
• Ground speed readout (8) turns ON every
• Alert indicator (4) FLASHES.
segment of the readout. The readout looks like 188.
• Data logging indicator (5) scrolls. • Universal gauge (11) sweeps from zero (left) to
full scale (right). The gauge sweeps back to the actual condition of the machine for the selected parameter or the parameter that is associated with an “active event”.
• Transmission gear readout (9) turns ON every segment of the readout.
• The action lamp illuminates. • The action alarm turns ON and OFF as if a “category 3 warning” is present.
• Gauge warning area (12) at each end of the universal gauge is turned ON.
• Gauge indicators (6) drop from the present
• Message area (10) illuminates every dot on the readout. Self test with the key ON shows the following items: the part number of the source software, the part number of the configuration software, and the version of configuration hardware. The following example is for early systems:
S – Source
reading to near zero. The indicators then sweep to full scale. The indicators return to the values that were shown prior to the test.
• “MPH” indicator and “KM/H” indicator turn ON. • The background mode shows the time of day and the machine hours are shown on the message area if there are no active events. The payload data is shown instead of the background display during the payload cycle.
C – Configuration
• The payload lamps flash (OHT)
H – Hardware
• The service lamp will flash. The following example is a message center display prior to the 9.X class of on board software.
Illustration 63
g00485524
• The following example is for later systems (9.X or later class of on board software):
Illustration 65
g00485539
The following example is a message center display for a off highway truck (9.3X or later class of on board software).
38 Systems Operation Section
Refer to the Systems Operation, “TPS Service Operation” section of this manual for the truck payload calibration procedure. i00951345
Truck Payload - Configure Illustration 66
g00485561
• The following display is shown on the message area if the VIMS main module has a missing source software and/or configuration software:
Note: These messages are the result of “limited mode operation”. Refer to the Systems Operation, “Main Module” section of this manual. The following message center display is for the V2.0 hardware.
SMCS Code: 7494; 7601 The following information describes the need for the service program code: 7292663 (PAYCONF) This service program code configures the truck payload monitoring system for maximum machine payload (weight) and the last pass indicator (ON/OFF). Note: The PAYCONF service program code is not applicable to large hydraulic excavators or large wheel loaders. Refer to the Systems Operation, “TPS Service Operation” section of this manual for the truck payload configuration procedure.
Illustration 67
g00485565
The following message center display is for the V3.0 hardware. The display includes a full category 3 warning.
Illustration 68
g00485567
i00951029
Truck Payload - Calibrate SMCS Code: 7494; 7601 The following information describes the need for using the service program code: 729225 (PAYCAL) Payload calibration is necessary when one or more of the following items are replaced: VIMS backup battery (“only if the disconnect switch is in the OPEN position”), VIMS main module, source software (“prior to 9.5X or later class of on board software”), configuration software (“prior to 9.5X or later class of on board software”), suspension cylinders, and suspension cylinder pressure sensors.
39 Systems Operation Section
i01306360
Warning Operation SMCS Code: 7601 Table 10
WARNING OPERATION Warning Indications Warning Category
“Alert Indicator Flashes ”(3)
1
X
2
X
X
(4)
2-S
X
X
(4)
X
3
X
X
(4)
X
(1) (2) (3) (4) (5) (6)
“Action Lamp Flashes”(4)
(1)
“Action Alarm Sounds ”
“Operator Action Required”
“Possible Result ”(2)
No immediate action is required. The system needs attention soon.
No harmful effects or no damaging effects.
Change machine operation or perform maintenance to the system.
Severe damage to components can occur.
(5)
Immediately change the machine operation.
Severe damage to machine components
(6)
Immediately perform a safe engine shutdown.
Injury to the operator or severe damage to components can occur.
The active warning indications are marked with an X. This is the possible result, if the operator takes no action. The alert indicator flashes at a 10 Hz rate. The action lamp will flash at a 1 Hz rate (1 second ON, 1 second Off). Steady The action alarm sounds at a 1 Hz rate (1 second ON, 1 second Off).
Illustration 69
g00302063
Illustration 70
Gauge Cluster Module
Speedometer/Tachometer Module
(1) Gauge warning area (2) Pictograph symbol
(3) (4) (5) (6)
Tachometer Pictograph symbol for engine speed Ground speed readout Readout of the actual Transmission gear
g00485026
40 Systems Operation Section
• The action alarm is SOUNDED. The action alarm is ON for one second and OFF for one second during a category 3. The action alarm is ON continuously for category 2-S.
Note: More than one input is required in order to activate some warning indications . The warning indications that are activated will be determined by the main module.
Illustration 71
g00515428
Message Center Module (7) Alert indicator. (8) Data logging indicator. (9) Message area. (10) Universal gauge (11) Gauge warning area
The operator will be warned of immediate problems with a machine system or impending problems with a machine system by VIMS. Warning operations are activated when the VIMS module detects a problem with a signal. The problem signal reflects an abnormal condition of the machine (machine events). Warning operations are also activated when the VIMS module detects a problem with the control system (system event). Switches, sensors, and other electronic control modules send electronic signals to the VIMS modules. The problem signals are listed here:
• When a condition exceeds the trip point of the switch, the switch opens.
• When a condition exceeds the trip point of the switch, the switch closes.
• Any abnormal sensor signal that is detected by the main module The main module analyzes the problem signals. The main module then notifies the operator by activating the appropriate warning indications on the display components. The warning indications are listed here:
• FLASHING of the alert indicator on the message center. (The alert indicator flashes approximately ten times per second.)
• The action lamp FLASHES. (The action lamp is ON for one second and OFF for one second.)
Data events and maintenance events are classified into multiple warning categories. There are four warning categories that are shown to the operator. The categories are based on the severity of the problem and this dictates the response that is required by the operator. Warning category 1 represents the least severe problem and warning category 3 represents the most severe problem. The warning categories are identified for the operator according to the combination of warning indications that are active. Refer to table 10 for additional information on Warning Operations. When multiple events are present, the message area will scroll through all the events in three second intervals. When a category 3 event is active, scrolling through the category 1 and 2 events is not permitted. The warning category of an event may be raised to a higher warning category automatically. Event duration is used in order to determine if a change in the category is necessary. An example of an event that would require a category change: The warning category 2 for the transmission lube temperature (off-highway truck) changes to a warning category 3 after 150 seconds. When a category 1 or category 2 event occurs, the operator may acknowledge the event. The operator acknowledges the events by pressing the “OK” key on the keypad. The following information is recorded in the event list for each event:
• The time of occurrence • The number of times that an event is acknowledged by the operator. After an event is acknowledged, the warning indications may disappear for a specified time period. The warning indications will reappear for an event that is still active after the time period elapses. These warnings may be acknowledged again.
41 Systems Operation Section
The Category 2-S is a conventional Category 2 with a continuous action alarm. A Category 2 that is considered to be a severe condition will cause a category 2-S to be logged. A Category 2 instructs the operator to change the operation of the machine in order to correct the condition that is responsible for the warning. The operator is instructed to IMMEDIATELY change operation of the machine that relates to certain Category 2-S events. Note: Most category 3 events cannot be acknowledged by the operator. i00999255
Loader Payload System (LPS) General Information SMCS Code: 7494; 7601
Illustration 72 Block Diagram of the VIMS Loader Payload System
g00511354
42 Systems Operation Section
The VIMS Loader Payload System (VIMS/LPS) is used on the large wheel loaders. The Loader Payload System is a subsystem of the standard VIMS. The keypad is used by the operator to interface with the system. The message center provides a visual display of payload system menus and functions. The main module receives lift cylinder pressure information over the CAT data link. The main module receives lift cylinder position information over the CAT data link. Additional hardware is a “Payload Store” button and an optional printer in the cab. The VIMS/LPS configurations are flashed to the onboard system from the service tool through a standard VIMS RS-232 interface. The standard VIMS RS-232 off board systems interface will also be used to download machine productivity information to the Service Tool (laptop computer) for later analysis. Note: The printer and broadcast interfaces share an output from the VIMS main module. This one output will have both a printer and broadcast port. Information System Builder is used to configure this port in the VIMS configuration software. Only one of the functions will be active, because both functions cannot be supported simultaneously. Reference the following publications for more information on the Loader Payload System:
• System Operation, RENR2517, “Large Wheel Loader VIMS Payload Users Manual”
• VIMS User Procedures Manual , JERD2136 • 992G, 994, and 994D Wheel Loader Operation and Maintenance Manuals
i00999364
LPS Menu Functions Summary
(Table 11, contd)
“F1/MENU” “1” “2”
Enter a new blast number.
“F1/MENU ” “1” “3”
Enter a new target truck weight.
“F1/MENU” “1” “4”
Enter a new truck counter value.
“F1/MENU” “1” “5”
Enter a new operator.
“F1/MENU” “1” “ 6”
This command allows the operator to toggle the payload horn ON and OFF via the keypad.
“F1/MENU” “2”
“Reweighs the current bucket load. ”
“F1/MENU” “3”
“Selects the display mode of the message center. ”
“F1/MENU ” “4”
View/print productivity report information
“F1/MENU” “5” “0”
“Executes a list viewer in order to check the calibration information.(Date,Time and etc.)”
“F1/MENU ” “5” “1”
“Executes a mode to check the weigh range.”
“F1/MENU ” “5” “2”
“Executes a mode to set the weigh range.”
“F1/MENU” “5” “3”
Enter a carryback weight.
“F1/MENU ” “5” “4”
Enter a calibration weight.
“F1/MENU” “5” “5”
“Executes a calibration mode for a new or revised calibration.”
“F1/MENU” “5” “6”
Enter the bucket volume.
“F1/MENU” “6”
“Executes a sub-menu used to turn Loader Payload ON or OFF.”
“STORE”
“Permanently stores truck/cycle/delay information for download, later.”
“F3/DELAY”
“Allows the selection of a new loader delay code.”
“F2/CLEAR”
“Clears the last non stored bucket load from memory.”
“GAUGE”
“Sets the virtual gauge to view a VIMS parameters.”
“ID”
Enter an operator ID.
SMCS Code: 7494; 7601 The following table is a summary of the VIMS/LPS supported functions. The keypad command is listed in the first column. The second column is a brief description. Table 11
Command
Description
“F1/Menu” “0”
Enter a new truck ID.
“F1/MENU” “1” “0”
Enter a new material.
“F1/MENU” “1” “1”
Enter a new load site. (continued)
43 Systems Operation Section
i00999497
LPS Calibration SMCS Code: 7494; 7601 The calibration functions are accessed through the VIMS/LPS menus. The calibration functions are grouped under a single sub-menu. This allows the operator to perform the following tasks:
The calibration information is shown as a scrollable list of items on the message center. The contents of the list are displayed one value at a time. The description of each item is shown on the first line. The present value is shown on the second line. Message center displays of calibration information are shown below.
• Check the calibration weight of the present calibration.
• Check the carryback weight in the present calibration.
• Check the date of the last modification.
Illustration 73
g00511663
Press the “>” key.
• Set the present weigh range. • Check the present weigh range. Pressures are sampled over a portion of the lift arc in order to calculate a payload weight.
• Enter the present carryback weight value or modify the present carryback weight value. Illustration 74
• Enter the present calibration weight value or modify the present calibration weight value.
g00511666
Press the “>” key.
• Start a new calibration. This calibration completely replaces any previous calibrations.
• Enter the present bucket volume value or modify the present bucket volume value.
Check Calibration Information Access to the calibration information is gained through the VIMS/LPS menus.
Illustration 75
g00511667
Press the “>” key.
The Check Calibration Information function allows the operator to check five pieces of information about the currently active calibration.
• The date and time of the last complete calibration was performed.
• The present calibration weight.
Illustration 76
• The date and time of the last modification to the
Press the “>” key.
g00511668
calibration weight.
• The present carryback weight. • The date and time of the last modification to the carryback weight. Performing a complete calibration also requires modifying the calibration values and the present carryback weight value. The values of the date/time clock stamp are reset with the same information.
Illustration 77
g00511669
44 Systems Operation Section
To view the first item again, press the “>” key. Note: The format of the time/date information is listed here: HH:MM – Hours:Minutes MM:DD:YY – Month/Day/Year Illustration 79
Check the Weigh Range Access to the check weigh range function is gained through the VIMS/LPS menus. The weighing range of the lift arc is adjustable. The operator can check the present weigh range setting. The operator can check the location of the lift arm relative to the present weigh range. All of the values are displayed as percentages in the range from 0 percent “bucket on the ground” to 100 percent “bucket at max lift”.
g00511803
The operator presses the “0” key in order to adjust the top of the weigh range or the operator presses the “1” key in order to adjust the bottom of the weigh range. Press the “OK” in order to return to the calibration menu. After choosing to adjust the top of the weigh range, the following three alternating message screens are displayed:
For example, the weighing range is currently set between 30 percent and 80 percent. The lift arm angle is currently at 65 percent. The message center shows the following information:
Illustration 78
Illustration 80
g00511811
Illustration 81
g00511812
Illustration 82
g00511815
g00511670
The “LIFT POS” percentage on the second line is updated automatically as the lift arm is moved. Pressing the “OK” key will return the message center to the calibration sub-menu.
Set the Weigh Range Access to the set weigh range function is gained through the VIMS/LPS menus. The weighing range of the lift arc is adjustable. If necessary, the operator can modify the present weigh range. The lift height is measured as a percentage in the range from 0 percent “bucket on the ground” to 100 percent “bucket at max lift”. The weigh range sub-menu gives the operator a choice of two options. The operator can choose to adjust the weigh range top or the operator can adjust the weigh range bottom:
The “LIFT POS” percentage on the second line is updated automatically as the lift arm is moved. The weigh range bottom adjustment procedure is identical with one exception. The word “TOP” is replaced by the word “BTM” in the messages. Press the “F2” key in order to return to the weigh range menu without any changes. Press the “OK” key in order to accept the new top/bottom weigh range. The system determines if the value is acceptable. The new weighing range will be temporarily displayed as percentages:
45 Systems Operation Section
Few limitations are placed on setting the weigh range. The person that adjusts the range setting must understand the possible effects of an improper setup. The weighing range must be set to an area of smooth operation in order to be effective.
Illustration 83
g00511817
Three rules govern the modification of the weigh range: 1. The top of the weigh range must fall between 50 and 80 percent. 2. The bottom of the weigh range must fall between 30 percent and 60 percent. 3. The difference between the weight range top and weight range bottom must be at least 20 percent. The weigh range must conform to the rules or one of three error messages are temporarily displayed after pressing the “OK” key:
Illustration 84
g00511818
Illustration 85
g00511819
Illustration 86
g00511820
Setting the range too low – The system may cause excessive reweigh indications. The system weighing accuracy may be degraded. Material breakout and rapid reverse transmission shifting to forward transmission shifting may cause the problem. Setting the range too high – Setting the weigh point at the maximum lift high causes excessive reweigh indication. Setting a narrow range – A narrow range limits the number of pressure sensor samples. Limited sample readings reduce the accuracy of the system.
Enter the Carryback Weight Carryback weight is a weight correction value that is subtracted from each subsequent bucket weight in order to account for material which is stuck in the bucket. Carryback material is weighed and the carryback is never placed into the truck. For example, if the load in the bucket was 30 tons and the carryback weight was currently set to two tons, the calculated bucket weight would be 28 tons. Note: The carryback weight cannot cause the calculated bucket weight to be a negative value. If the carryback weight were set to 10 tons and a weight of 6 tons were weighed, the calculated bucket weight would be zero tons. The value cannot be minus four tons. Access to the enter carryback weight function is gained through the VIMS/LPS menus. At the beginning of the enter carryback weight function, the operator is shown three alternating help messages that describe the function of the carryback weight value:
Illustration 87
g00512107
Illustration 88
g00512109
To exit the weigh range sub-menu, the operator must set the range to a value that does not violate any of the three rules. The operator may cancel the mode with no changes by pressing “F2”.
46 Systems Operation Section
Enter the Calibration Weight
Illustration 89
g00512110
The help messages display four times or the operator can stop the messages by pressing the “OK” key. A two line menu display appears after the help messages:
Illustration 90
g00512111
Press the “0” key in order to proceed with the calibration. To exit the VIMS/LPS menu mode, press the “1” key. To return to the calibration menu, press the “OK” key. Proceeding with the change prompts the operator to enter a new carryback weight:
The calibration weight is the weight of material in the bucket during the last calibration. The calibration weight is merely used as a multiplier. The load in the bucket during calibration relates mathematically to the calculated bucket weight and the displayed bucket weights. For example, increasing the present calibration weight by 10 percent increases all subsequent weight calculations by 10 percent and decreasing the present calibration weight by 10 percent decreases all subsequent weight calculations. The mathematical relationship makes fine tuning of the payload system possible. For example, the operator loads a truck with 110 tons of material “verified on a scale”. However, VIMS/LPS measures the truck weight as only 100 tons. This may be caused by an improper calibration. The measurement can be corrected by making the calibration weight 10 percent heavier. For example, the present calibration weight is 20 tons. Increase the calibration weight by 10 percent up to 22.0 tons. This will apply the desired correction. Access to the enter calibration weight mode is entered through the VIMS/LPS menus. A two line menu is displayed after selection of enter calibration weight:
Illustration 92 Illustration 91
g00512113
g00512112
The operator uses the standard LPS method for entering data to input the new carryback weight. The new carryback weight value is subtracted from all future calculations of the bucket weight.
Press the “0” key in order to proceed with the calibration. To exit the VIMS/LPS menu mode, press the “1” key. To return to the calibration menu, press the “OK” key. Proceeding with the change prompts the operator to enter a new cailbration weight:
Note: The value of the present carryback weight and the date/time of the last modification can be viewed on the message center. Refer to the System Operations, “Check the Calibration Information” section of this manual for details about viewing data. Illustration 93
g00512121
The operator uses the standard LPS method for entering data to input the new calibration weight. The new calibration weight value is used for all future calculations of thebucket weight.
47 Systems Operation Section
Note: The value of the present calibration weight and the date/time of the last modification can be viewed on the message center. Refer to the System Operations, “Check the Calibration Information” section of this manual for details about viewing data.
Press the “5” key for the “START NEW CALIB”:
Start a New Calibration VIMS/LPS requires calibration before accurate payload measurements can be made. Calibration involves lifting the empty bucket several times and lifting a calibration weight several times. Calibration instructions for the operator are displayed on the message center. The calibration can be broken into seven overall steps. The steps define seven pieces of information to VIMS/LPS:
Illustration 95
g00512541
Press the “0” key for the “START NEW CALB” sub-menu:
1. Define the lift range of the boom. 2. Empty bucket “10 point lift” 3. Empty bucket “continuous lift”.
Illustration 96
4. Enter the calibration weight.
1. Defining the Lift Range of the Boom
5. Loaded bucket “10 point lift”
g00512542
The following position points will be defined in Step 1:
6. Loaded bucket “continuous lift”
• Upper position of the boom during normal
7. Velocity compensation “5 lifts”
operation
Although the calibrated weight is not needed until Step 4 the calibrated weight should be readily available. Turning OFF the machine in the middle of the calibration routine cancels the calibration. The operator must start the calibration from the beginning, if the machine is shut OFF. The system will return to using the values from the previously completed calibration. There is no need to have a known calibration weight while the initial calibration is performed. However, the calibration weight will need to be measured after the initial calibration is completed. The measured weight of the calibration weight will need to be entered through the “update calibration menu” or inaccurate payloads will result. Press the “F1” key in order to bring up the payload menu. Use the “>” key to scroll forward through the menu items. Press the “5” key for the “CALIBRATE PAYLOAD” menu.
• Lower position of the boom during normal operation
The position points are used to determine a smaller range. The smaller range is defined as the lift zone. The initial calibration actually starts at this point. a. The calibration should begin with an empty bucket. The operator is instructed to empty the bucket of all materials. Then press the “OK” key.
Illustration 97
g00512543
b. The VIMS/LPS needs to verify the 0 percent “bucket on the ground” and 100 percent “bucket at max lift” points. The operator is instructed to lift the arm to the highest point in order to obtain the information. Then press the “OK” key. Illustration 94
g00512539
48 Systems Operation Section
Illustration 98
g00512544
c. The operator is then instructed to lower the lift arm to the ground. Then press the “OK” key.
Illustration 102
g00512569
d. Steps 2.a through 2.d will be repeated ten times at ten different lift heights. 3. Empty Bucket “Continuous Lift” In Step 3, a collection of empty bucket pressure samples are taken over the full lift in order to calculate the empty bucket lifting calibration curve.
Illustration 99
g00512545
a. The operator is instructed to lower the bucket fully to the ground:
2. Empty Bucket “10 Point Lift” During Step 2, the VIMS LPS collects data at 10 stationary empty bucket pressure position points that are required in order to calculate the empty bucket stationary calibration curve. The operator is asked to tilt the bucket back. The operator is then asked to slowly lift the bucket. The system will ask the operator to stop the bucket at ten different points. The procedure is listed here: a. The operator is instructed to tilt the bucket back fully:
Illustration 103
b. The operator is then instructed to tilt the bucket back fully:
Illustration 104 Illustration 100
g00512566
g00512566
b. Next, the operator is instructed to raise the bucket slowly:
Illustration 101
g00512570
c. Next, the operator is instructed to lift the load. The operator is then instructed to pull back the lift lever fully until the “STOP LIFTING” message appears. The procedure is listed here:
g00512567
c. The operator will be instructed to stop lifting:
Illustration 105
g00512571
49 Systems Operation Section
d. Maintain engine RPM at high idle. Throttle lock may be used to set the speed. Lift the load smoothly. Pull back the lift lever fully:
Table 12
Approximate Calibration Pipe Weights Model
Illustration 106
Diameter and Length
Weight
992G
“1.83 m Ø × 3.05 m (6 ft Ø × 10 ft)”
“18704 kg (41235 lb) 20.6 Ton”
994 994D
“1.83 Ø × 3.05 m (6 ft Ø × 16 ft)”
“28150 kg (62060 lb) 31 Ton”
g00512573
e. Stop lifting when the “STOP LIFTING” message appears. Note: Stop BEFORE the lift arm hits the physical stops.
Illustration 109 Illustration 107
g00512576
g00513089
Refer to the Approximate Calibration Weight Table for dimensions. (A)Diameter. (B)Length
f. Repeat Steps 3.a through 3.e until the following message is displayed:
Illustration 108
g00512577
4. Enter the Value Of the Calibrated Weight. In Step 4, the calibration weight is required to be in the bucket. The calibration weight may be fabricated from a concrete or a steel tube of the specified diameter for the given model and filled with concrete. The calibration weight must be weighed on a certified scale in order to determine the exact weight. Alternately, a load of dirt or rock of unknown weight may be used for the calibration.
Illustration 110
g00512687
Removing the calibration weight from the holder
a. The operator is instructed to load the calibration weight. Then press the “[OK]” key.
Illustration 111 Calibration weight in the bucket
g00512688
50 Systems Operation Section
Illustration 112
g00512578
b. VIMS/LPS will ask the operator if the calibration weight is known or unknown.
Illustration 113
g00512579
Illustration 115
c. When the value of the calibration weight is known the operator presses the “0” key. The operator uses the “Enter Calibration Weight” function in order to enter the known calibration weight value. In this example, the operator enters the value 217. Then press the “OK” key.
g00512582
Note: The VIMS/LPS calibration will be unaffected if an unknown calibration weight is used. 5. Loaded Bucket “10 Point Lift ” In Step 5, VIMS LPS will sample ten stationary pressure position points in order to calculate the loaded bucket calibration curve. a. The operator is asked to tilt the bucket back fully:
Illustration 114
g00512580
d. If the calibration weight value is unknown the operator presses the “1” key. A value of 20 English tons is assumed as the calibration weight. The operator is instructed to weigh the calibration load after the calibration is complete. The “Enter Calibration Weight” function is then used in order to enter the correct value of the calibration weight. A series of messages are used to inform the operator. The messages are repeated four times. The operator can also stop the messages by pressing the “OK” key. The messages are listed here:
Illustration 116
g00512566
b. The operator is then instructed to slowly raise the bucket:
Illustration 117
g00512567
c. The system will instruct the operator to stop lifting:
51 Systems Operation Section
Illustration 118
g00512569
d. Steps 5.a through 5.c will be repeated ten times.
Illustration 122
g00512573
e. Stop lifting when the “STOP LIFTING” message appears. Note: Stop BEFORE the lift arm hits the physical stops.
6. Loaded Bucket “Continuous Lift” In Step 6, VIMS/LPS collects bucket pressures samples over the full lift in order to calculate the loaded bucket lifting calibration curve. a. The operator is instructed to lower the bucket fully to the ground:
Illustration 123
g00512576
f. Repeat Step 6.a through Step 6.e until the following message is displayed.
Illustration 119
g00512570
b. The operator is then instructed to tilt the bucket back fully:
Illustration 124
g00512577
7. Velocity Compensation “5 lifts”
Illustration 120
g00512566
c. Next, the operator is instructed to lift the load. Then pull back the lift lever fully until the “STOP LIFTING” message appears. The load lift is repeated in order to ensure consistency. The process is listed here:
Illustration 121
In Step 7, the lifting velocity compensation calibration curve is calculated. The operator is instructed to perform five additional loaded lifts. The loaded lifts are performed at the following engine speeds: 1650 RPM, 1550 RPM, 1450 RPM, 1350 RPM, and 1250 RPM. Again, throttle lock may be used to set the engine speed. a. The operator is instructed to lower the bucket fully to the ground:
g00512606
Illustration 125
d. Maintain engine RPM at high idle. Lift the load smoothly. The operator is then instructed to pull back the lift lever fully.
g00512570
52 Systems Operation Section
b. Next, the operator is instructed to lift the load. The operator is then instructed to pull the lift lever fully until the “STOP LIFTING” message appears. In order to ensure consistency, the loaded lift is repeated. The process is listed here:
The following message will be shown on the message center after completing the five loaded lifts.
Illustration 130
Illustration 126
g00512608
c. Maintain the engine RPM at the specified value. lift the load smoothly. The operator is then instructed to pull back the lift lever fully.
g00512610
The calibration is now complete. The previous calibration has been replaced. The carryback weight is set to zero. The date/time stamps under the “Check Calibration Info” function are all set to the present time. The VIMS/LPS calibration sub-menu is displayed on the message center. Recalibration should not be required for 6 to 12 months. Recalibration is required when one of the following events occurs:
• Replacement of the VIMS main module Illustration 127
g00512609
• A position sensor is adjusted.
d. Stop lifting when the “STOP LIFTING” message appears. Note: Stop BEFORE the lift arm hits the physical stops.
• A position sensor is replaced. • A lift cylinder pressure sensor is replaced. • Replacement of the bucket • Replacement of the lift arms
Illustration 128
g00512576
e. Repeat Step 7.a through Step 7.d until the following message is displayed.
Illustration 129
g00512577
f. Repeat Step 7. Using the five previously stated engine speeds.
53 Systems Operation Section
i01488036
Truck Payload System (TPS) General Information SMCS Code: 7494; 7601
g00773228
Illustration 131 Block Diagram of the VIMS Off Highway Truck Payload System
The Truck Payload System is a subsystem of the Vital Information Management System (VIMS). The Truck Payload System performs the functions that are listed below:
The data that is stored by the Truck Payload System for each payload cycle is listed below:
• Calculate payload information.
• Start time of the cycle
• Store payload information.
• Start date of the cycle
• Display payload information.
• Payload weight
54 Systems Operation Section
Note: This data serves as a continuous data logger. The data can often be used to indicate the truck’s operation when a data logger file does not exist. This provides the information that is listed below:
• Loading time • Empty time • Loaded time • Loaded travel time
Whenever the “physical configuration” of the truck has been changed, the manual calibration procedure that represents an empty truck must be used. The replacement of the suspension cylinders is an example of a condition that would require the manual calibration procedure. “Automatic recalibration” of an empty truck occurs when an empty truck has stopped in order to compensate for a condition that affects the empty weight of the truck. Conditions that can affect the empty weight of a truck are listed here: carryback and the amount of fuel that is on board.
• Empty travel distance • Loaded travel distance
Some parameters can be modified with the service tool in order to support a wide range of machine configurations.
Onboard memory can store information from 2400 payload cycles (“9.0X or later classes of onboard software and 1200 cycles with onboard software prior to 9.0X”). The onboard payload data can be downloaded to the service tool with VIMS-PC for further analysis. After a successful download, the onboard payload data can be reset.
Information such as “total number of loads hauled” and “total weight hauled” can be displayed on the message center. The totals can be reset by the operator via the keypad. Resetting the totals prior to “shift change” is an example of this function.
Payload weight data can also be broadcast via a user supplied radio telemetry system. If telemetry has been enabled, the calculated payload weight will be broadcast under the following conditions:
• Each detected loader pass • A truck has travelled “loaded” for a distance that is greater than .16 km (0.1 miles) .
• Information about the complete cycle is also available to broadcast at the end of the “payload cycle”. Present load cycle information is displayed on the message center. The calculated payload weight is displayed automatically during loading. The operator is instructed via the message center to perform one of the following actions that is listed here:
• Continue loading loading the truck. (The loader operator should apply additional loader passes.)
• The truck is fully loaded. The operator can access various payload parameters via the “gauge” key on the keypad at any time during the load cycle. Payload status lamps provide feedback to the loader operator during the loading operation. The lamps indicate whether loading should continue, or that the truck is fully loaded. The payload status lamps tend to minimize the amount of under-loading and overloading that is done in the truck fleet.
i01488191
TPS Component Function SMCS Code: 7494; 7601 The VIMS Truck Payload System is composed of the following components. A functional description is included for each component. VIMS Main Module – The VIMS main module is the brain of the Truck Payload System. All computing and storage of the cycle data takes place in the VIMS main module. Message Center Module – The Truck Payload System uses the message center to display the calculated weight of the payload. Text messages on the message center tell the truck operator when the target payload weight has been reached. Keypad Module – The keypad is the operator interface with VIMS. The operator can perform the following VIMS Truck Payload System functions with the keypad:
• Change the display units. The payload information can be displayed in English units or Metric units.
• Modify the target payload weight of the truck. • Turn ON the last pass indication. • Turn OFF the last pass indication.
55 Systems Operation Section
• Enter an operator identification number or a pit identifier of the load.
• Calibrate the system. • Clear resettable totals. VIMS Interface Modules – The VIMS interface modules receive input signals and processes input signals from the four suspension cylinder pressure sensors. The interface module converts the payload signals into a digital equivalent value. The interface module then passes the information to the VIMS main module. The VIMS main module uses the information in the Truck Payload System. Suspension Cylinder Pressure Sensors – The four suspension cylinder pressure sensors converts the payload into a signal that is proportional to weight. This signal is then passed to the interface modules. Payload Status Lamps – The payload status lamps are located on both sides of the truck. The payload status lamps show the loader operator when the target payload weight has been reached. The VIMS Truck Payload System allows the operator to configure the payload status lamps to indicate the last pass. The payload status lamps will illuminate the following colors.
• A green lamp signals the “loading tool” to
External Payload Display – The external payload display is a 356 mm × 686 mm (14 inch × 27 inch) screen. The external payload display is mounted on the side of the truck. The external payload display provides the operator of the loading tool with the measured weight of the material that is currently in the body of the truck. The payload information is displayed in 254 mm (10 inch) red digital numbers. There are three configurations of the external payload display that are available. These configurations are listed below:
• Dual Displays (right hand and left hand displays) • Right Display (right hand display) • Left Display (left hand display) The external payload display receives data through the VIMS broadcast (system telemetry) port. There are two modes of operation. The modes of operation are listed below: Single Mode – This mode is for machines that are not equipped with a radio telemetry system. Passive Mode – This mode is for machines that are equipped with a radio telemetry system. This mode allows the display to access data for the payload weight without interfering with the operation of the radio telemetry system.
continue loading the truck.
• A flashing red lamp tells the “loader operator”
that one additional pass is required to load the truck to capacity.
• A steady red lamp signals that the target payload weight has been reached.
Transmission Control Module – The transmission control module converts the following conditions into a digital equivalent value: body position, ground speed, transmission gear, and parking brake. The transmission control module then passes the information to the VIMS main module over the CAT data link for use by the VIMS payload system. Engine Control Module – The engine control module calculates fuel flow. The control converts this data into a digital equivalent value. The engine control module then passes the information to the VIMS main module over the CAT data link for use by the VIMS payload system. i01488297
TPS On-Board Features SMCS Code: 7494; 7601 1. Calculate payload cycle information and store the payload cycle information. a. “Time stamp”: The “Date/time” that marks the start of the payload cycle.
Illustration 132
g00771922
b. “Payload”: The weight of the material that is being moved
56 Systems Operation Section
c. “Loading Time”: The amount of time that is required to load the truck
a. Set the maximum payload weight. b. Turn on/off last pass indicators.
d. “Loading Time”: The amount of time that is required to load the truck e. “Stopped Empty Time”: The “total time” that is recorded for a truck that is “stopped while empty”during the payload cycle f. “Traveling Empty Time”: The “total time” that is recorded for a truck that is “travelling while empty”during the payload cycle g. “Travel Empty Distance”: The “total distance” travelled by the truck while the truck was empty. h. “Stopped Loaded Time”: This is the time that is recorded when a truck with a full load is not moving during the payload cycle.
c. Turn on the Maximum Payload Speed Manager. Turn off the Maximum Payload Speed Manager. d. Set the event limits for the Road Analysis Control (RAC). 6. Display payload information on the message center as the truck is being loaded. a. Payload weight b. Loading status messages 7. Display loading status information with the payload status lamps as the truck is being loaded.
i. “Traveling Loaded Time”: This is the time that is recorded when a truck with a full load is moving during the payload cycle.
a. Loading
j. “Transmission Shifts”: This is the total number of transmission shifts “up or down” that were made during the payload cycle.
c. Fully loaded
k. “Fuel Used”: This is the total fuel that is used during the payload cycle. l. “Operator ID”: This is the identification number of the operator that had dumped the load for that payload cycle. The operator must enter this number into the VIMS via the VIMS keypad module. 2. Calculate resettable totals and store resettable totals.
b. Last pass
8. The following payload information is made available to broadcast: a. Loader pass count b. Last pass indicator c. Cycle data 9. Calculate the parameters (per payload cycle) and then display the parameters that are listed here: a. Payload weight
a. The total number of loads that were hauled since the last reset b. The total weight that was hauled since the last reset c. Total travel distance since the last reset d. Total travel time since the last reset 3. Provide a way to download onboard information to the off-board system for analysis. 4. Provide a way to calibrate the system via the VIMS keypad module. 5. Provide a way to configure the system to specific requirements of the user.
b. Payload status (“travelling, empty, etc.”) c. Haul distance. 10. Automatically adjust for the weight of an empty truck as operating conditions change. a. Fuel level b. Carryback that is in the body of the truck or carryback that is stuck to the underside of the machine 11. Detect incorrect suspension cylinder charge (collapse) and cause an appropriate event.
57 Systems Operation Section
i01488300
TPS Off-Board Features SMCS Code: 7494; 7601 The features that are listed here take place with VIMSpc99. 1. Provide a way to download the data that is stored in the onboard system. 2. Provide a way to calibrate the onboard system. 3. Provide a way to view “payload related information” in real time. 4. Provide a way to later analyze the data that is downloaded from the onboard system: a. VIMSpc99
4. When all of the loader passes have been applied, the truck pulls away from the loading area. When the truck reaches the speed of 5 km/h (2 mph) or travels 0.16 km (0.1 miles) the truck is considered to be in the “travelling loaded state”. 5. As the truck reaches the “dumping area” the truck may need to wait because the “dumping area” may be blocked by other trucks that are dumping loads. The truck is considered to be “stopped loaded” during this time. The “dumping area” will eventually be clear. The truck will then be positioned for dumping. The truck is again considered to be “travelling loaded” during this positioning. The truck is considered to be in the “dumping state” when the body is raised in order to start dumping. The truck stays in the “dumping state” until the truck body is completely lowered. During this phase of the “dumping cycle”, the VIMS considers the truck to be “stopped loaded”.
b. VIMS Supervisor
6. Once the body is lowered the present payload cycle ends and a new cycle begins.
c. Data may be exported to a commercial spreadsheet of the user’s choice.
Basic Loading and Weighing
i01488304
TPS Normal Operation SMCS Code: 7494; 7601
General Description of the Payload Cycle A new payload cycle starts when the truck finishes dumping the previous payload and the body is fully down. 1. After the previous payload has been dumped the truck travels back to the loading area. The truck is considered to be “travelling empty” during this time. The truck may need to wait if the “loading area” is blocked by other trucks that are being loaded. The truck is considered to be “stopped empty” in this case. When the loader is ready, the truck is positioned under the loader. The truck is still considered to be “travelling empty” during this positioning. 2. The truck is considered to be in the “Loading state” after the truck has come to a complete stop under the loader and the first load hits the body. The truck remains in the “Loading state” until the truck has shifted into second gear. 3. The loader will begin loading material onto the truck. As the loader passes are applied, the truck continues to be in the “loading state”.
Calculating the weight of the payload begins as material is being loaded onto the truck. The truck must be ready to load for the weighing process to begin. The following conditions must be met in order to provide optimum accuracy:
• The minimum weight of the loader pass must be greater than 10 tons.
• The truck must not be moving. • The transmission should be in neutral. • Setting the parking brake is recommended. The message center will be in the background mode and the external payload status lamps are off. The external payload display (if equipped) will display the current payload weight. When the loader dumps the first pass onto the truck body, the suspension cylinder pressure increases sharply. The sharp increase in pressure starts the “loading state”. The following information is shown on the message center which replaces the background mode:
• A payload weight of zero • The status of “LOADING” The external payload status lamps signal the loader operator with a green light to continue loading.
58 Systems Operation Section
Illustration 133
g00490540
The pressure within the suspension cylinders is not stable for a few seconds after the loader pass. The suspension cylinders are still recoiling from the sudden application of a large mass. After the pressure in the suspension cylinders has stabilized, the first pass weight is calculated. The pass weight is then displayed on the message center. The message is shown below. The external payload status lamps continue to signal the loader operator with a green light.
If the last pass indicator is enabled the VIMS Truck Payload System calculates a running total of the weight for all passes. The red payload status lampsbegin to flash in order to warn the loader operator when the system has determined that one additional pass will result in a payload of at least 95 percent of the target payload. This is the present payload weight plus the weight of the most recent pass. The following message is shown on the message center:
Illustration 136
g00490542
Note: NNN.N represents the present payload weight. After the final loader pass (the last pass) has been completed, the red payload status lamps are turned ON solid in order to inform the loader operator that the present payload weight is greater than 95% of the target payload weight. The following message is shown on the message center: Illustration 134
g00490541
Note: NNN.N represent the present payload weight. With each additional loader pass, more material is loaded onto the truck. This causes the suspension cylinder pressures to increase sharply. Each sharp increase in suspension cylinder pressure adds another loader pass. The pressure within the suspension cylinders must stabilize before the calculation of the payload weight is completed. The new payload weight is displayed on the message center. This message is shown below.
Illustration 137
g00490544
Note: NNN.N represents a value that is greater than 95% of the target payload weight that was programmed into VIMS with the service program code PAYCONF. When the truck begins to travel away from the loading site after being loaded the following message is shown on the message center:
Illustration 135
g00490541
Note: NNN.N represent the present payload weight.
Illustration 138
g00490546
Note: NNN.N represents the last calculated payload weight.
59 Systems Operation Section
The payload measurement system measures the weight of the load again once the truck has exited the load site. The measurement is made when the truck has shifted into second gear. The payload information automatically disappears from the message center after the load has been measured. The message center then returns to the background mode. This indicates that the “loading state” is complete. The truck is now “travelling loaded”.
Automatic Payload Communication When the VIMS RS-232 Broadcast port is connected to a telemetry system, the VIMS Truck Payload System will send the payload weight via wireless communications to an off-board site. The payload weight is sent at the following key points in the payload cycle:
• Immediately after the VIMS has successfully
Automatic Calibration Adjustment Whenever the truck is “stopped empty” the VIMS truck Payload System will automatically adjust the calibration. The calibration is adjusted for weight variations such as fuel load and carryback weight that may affect accuracy. The Carryback weight includes any material that is stuck to the body and under the body. The amount of adjustment that can take place is limited to a relatively small range around the original calibration value that was established with the service program code PAYCAL.
Collapsed Suspension Cylinder Detection Whenever the truck is “travelling empty” at a speed less than 12 km/h (7 mph) the system will continuously monitor the suspension cylinder pressure. The front and rear suspension cylinders are monitored in pairs. An event is displayed when the pair of suspension cylinders do not respond to the changes in pressure equally for an accumulated time of two minutes. The event indicates that the suspension cylinder may be charged incorrectly or the suspension cylinder is collapsed. For example, when the VIMS detects a problem with the left front suspension cylinder, the following message is shown:
weighed each loader pass. This is true only if the last pass indicator is on.
• Immediately after the VIMS has estimated the weight of each loader pass.
• The truck travels in the loaded state for a distance that is greater than .16 km (0.1 miles) or the truck has shifted to “2nd” gear.
• Immediately after the truck has finished the loading cycle.
Off-Board Communication The payload information is stored in the VIMS electronic control module during operation of the truck. The payload information that is stored in the on board memory can be analyzed after the information is downloaded. The process of moving data from the onboard memory to the off-board service tool is called downloading. A service tool (laptop computer) that is running the VIMSpc99 off-board software is used in order to download the payload information. The service tool is connected to the onboard system via a RS-232 service port. The downloaded payload information can be analyzed with the VIMSpc99 off-board software. Note: Refer to the VIMSpc99 User Manual, FEBJ0047 for additional information on the VIMSpc99 off-board software.
Illustration 139
g00490547
Press the “F1” key for more information. For example, the second line of the message center will display additional diagnostic information:
While the service tool is connected to the onboard system, VIMSpc99 can display payload information in real-time. Payload information such as payload weight, suspension cylinder pressures, payload status and more can be displayed at the same time. The payload information is updated once per second. Additionally, VIMSpc99 can be used to initiate a calibration (the service program code PAYCAL) of the VIMS Truck Payload System while the service tool is connected.
Illustration 140
g00490548
60 Systems Operation Section
i01382827
TPS Service Operation SMCS Code: 7494; 7601
The following information describes the service program code 729225 (PAYCAL). The PAYCAL service program code uses the following procedure in order to calibrate the VIMS Truck Payload System: 1. Ensure that the truck body is empty. Carryback will affect payload measurement.
Payload Calibration The payload system must be calibrated if the “VIMS-PC” software is used to assign a new serial number to the main module. The payload system must also be calibrated after the replacement of the VIMS backup battery (disconnect switch open), the VIMS main module, the interface module, the suspension cylinders, the suspension cylinder pressure sensors, etc. Security 1. This service program code only functions while the service tool (VIMSpc99) is connected.
2. Operate the empty truck to a minimum ground speed of four mph on hard level ground. 3. Move the transmission gear selector to the neutral position and allow the truck to coast to a stop. DO NOT use the service brakes or the retarder. 4. Manually calibrate the payload system by entering the service program code 729225 (PAYCAL). One of the following two messages will now show on the message area:
2. After the service tool (VIMSpc99) is disconnected for 30 seconds, this service program code will no longer be active. Calibrate the pre-9.5X onboard software after replacing the VIMS main module software. The 9.5X and/or later onboard software will alert the user through the message center if the software loses the calibration data for any reason. The following message display is shown on the message center.
Illustration 141
g00490352
Press the “F1” key in order to access additional information.
Illustration 143
g00490356
If the above message is shown, put the truck back into service.
Illustration 144
g00490360
If the above message is shown, repeat the procedure again. Begin at Step 1. Make sure that the ground speed is at a minimum of four mph. DO NOT use the service brakes and/or the retarder.
Payload Configuration The following information describes the service program code: 7292663 (PAYCONF) Illustration 142
g00490354
The VIMS Truck Payload System will not operate until a successful payload calibration has been completed.
The service program code 7292663 (PAYCONF) is used in order to configure the maximum weight of the truck payload and the last pass indicator. Security 1. This service program code only functions while the service tool (VIMSpc99) is connected.
61 Systems Operation Section
2. After the service tool (VIMSpc99) is disconnected for 30 seconds, this service program code will no longer be active.
This service program code 868 (TOT) allows the operator to view information. The service program code allows the operator to reset the total payload activity information since the last reset.
Procedure Procedure 1. Stop the truck and verify that the body is empty. Then, enter 7292663 (PAYCONF) and press the “OK” key. The message area will show the target payload weight.
1. Enter the service program code 868. Press the “OK” key. The message area will show:
Illustration 147 Illustration 145
g00490429
g00583038
Note: NNN is the maximum payload weight. The weight is displayed in the selected units of measure (“English/Metric”).
Note: NNNNN represents the number of loads that were hauled since the previous reset. 2. Press the right arrow key. The message area will show:
2. Use the right/left arrows keys in order to set the desired weight. 3. Press the “OK” key in order to accept the value that is shown on the message center. The message area will now show:
Illustration 148
g00490430
Note: NNNNN is the total weight of all loads that were hauled since the previous reset.
Illustration 146
g00490392
Note: “YES” might also show as a “NO”. To enable the LAST PASS indication, use the left/right arrow keys to toggle the LAST PASS indicator to “YES”. The continuous flashing of the RED payload status lamps indicates that the truck is waiting for the last pass of the loading tool. The last pass indicates that the VIMS loader payload system has estimated that the next pass is greater than 90 percent of the selected target weight. 4. Press the “OK” key in order to accept the selection. This returns the message center to the previous mode.
Payload Show/Reset Resettable Totals The following information describes the service program code: 868 (TOT)
3. Press the right arrow key. The message area will show:
Illustration 149
g00583043
Note: NNNNN.N is the total miles (kilometers) that were travelled since the previous reset. 4. Press the right arrow key. The message area will show:
62 Systems Operation Section
Operation of the Maximum Payload Speed Manager
Illustration 150
g00583040
Note: NNN.N represents the total travel time that has accumulated since the last reset. Travel time accumulates when the truck has been travelling at a speed that is greater than 5 km/h (3 mph). 5. Press the left arrow key in order to scroll back through the previous screens or press the “OK” key in order to return the message area to the previous mode without clearing the totals. Proceed to Step 6 to clear the totals. 6. Enter the service program code 73738 (RESET). Press the “OK” key in order to clear all the totals. Press the “OK” key again in order to return the message area to the previous mode. i01382793
TPS Maximum Payload Speed Manager SMCS Code: 7494; 7601 Caterpillar’s 10/10/20 rule states “that no more than 10 percent of the payloads may exceed 1.1 times the target payload of the truck and no single payload shall exceed 1.2 times the target payload of the truck”. The Maximum Payload Speed Manager provides the customer with a way to comply with the 10/10/20 rule. This method limits the performance of the machine. The performance of the machine is limited when the weight of the payload is greater than 1.2 times the target payload. When the weight of the payload is 1.2 times the target payload, the brakes and steering are at the maximum certifiable levels. Limiting the performance of a machine that is overload protects the machine and the operator. The operator of the loading tool is also forced to load the machine correctly.
The Maximum Payload Speed Manager compares the actual payload weight on the machine to an overload setting. When the VIMS has determined that the machine is overloaded, the machine is slowed down by limiting the shift range of the transmission and the engine speed is reduced at the limited gear. The payload weight is monitored as the machine shifts to second gear.
63 Systems Operation Section
Machine Response to the Weight of the Payload Table 13
Conditions and the Corresponding Response of the Machine Condition
Response
The weight of the payload is within the specified limit for the target payload.
No action is taken. The machine will continue normal operation.
The weight of the payload is greater than the specified Target Payload Setting but less than the specified Percent Above Payload target.
A machine overload event is recorded. A machine overload event is broadcast via a radio telemetry system. The VIMS displays messages to the operator. These messages warn the operator that the machine is overloaded and the messages instruct the operator to proceed carefully.
Weight of the payload is greater than the specified Percent Above Payload Overload Limit .
An event is recorded for the machine overload limit. The event for the machine overload limit is broadcast via a radio telemetry system.
The Maximum Payload Speed Manager will activate the overload events when the weight of the payload exceeds the set limit regardless of the location of the truck. The speed limiting of the machine is activated when the weight of the payload exceeds the set limit regardless of the location of the truck. This behavior will remain active until the payload is dumped and the weight of the payload is cleared. The limiting of the machine speed and the VIMS messages cease automatically after the payload has been dumped. The machine is then returned to normal operation. The weight of the payload is calculated when the truck is shifted into second gear (second gear weighing). The new weight of the payload that is determined during the second gear weighing is then used to determine if limiting the speed of the machine is necessary. Once the Maximum Payload Speed Manager has determined that the truck is overload, the following actions are initiated:
• The shift range of the transmission is limited to second gear.
• High idle of the engine is limited to 1750 rpm. • The point for automatic retarding is reduced to 1750 rpm. The settings that are listed above are not adjustable.
The VIMS displays warning messages to the operator that the machine is overloaded.
Example of the Operation of the Maximum Payload Speed Manager
A category 2-S warning sounds if the operator proceeds without correcting the overload condition.
The Project Manager of a site has decided that the normal haul weight for a 793C is 240 tons. The Project Manager has decided that the 793C should never exceed a limit of 288 tons. In order to achieve these objectives the Project Manager would set the parameters of Maximum Payload Speed Manager to the values that are listed below:
The VIMS displays warning messages to the operator that machine operation has been limited and the VIMS instructs the operator to resolve the overload condition.
Target Payload Setting – 240 tons Payload Overload Limit Setting – 120% (288/240=120%)
The shift range of the transmission is limited.
With these settings the Maximum Payload Speed Manager will function in the manner that is listed below:
High idle of the engine is limited.
• The payload loading lamps will load to 240 tons.
The point for automatic retarding is reduced.
• The overload warnings will occur above 264 tons. • The engine speed will be limited to 1750 rpm in second gear above 288 tons.
• The external payload display will show the current payload weight.
64 Systems Operation Section
g00739639
Illustration 151 Maximum Payload Speed Manager setup for a 793C Off-Highway Truck
Setup of the Maximum Payload Speed Manager The Maximum Payload Speed Manager requires the user to enter information into the system. This information is used to define the system behaviors that are listed below:
• Overload speed limiting • Overload events • Overload warnings
Target payload The “target payload setting” is used during payload operations in order to control the operation of the external payload lamps. The “target payload setting” is adjustable from zero to the target weight of the truck that is being setup. The target weight is the maximum weight of payload that is determined from the GMW of the machine. The “target payload setting” is stored in the onboard memory of the VIMS ECM. The “target payload setting” is programmed via the keypad. The service operation of Payload Configuration (PAYCONF) is used to set this value. Refer to the Systems Operation, “Truck Payload - Configure” section of this manual for instruction on entering this information into the system.
65 Systems Operation Section
Payload Overload Limit The “payload overload limit” is the maximum payload weight that is allowed before the VIMS will display warning messages to the operator. The VIMS will also limit the speed of the machine, if the payload weight is too high. The “payload overload limit” is adjustable from 105 percent to 120 percent in increments of one percent. The “payload overload limit” is stored in the onboard memory of the VIMS ECM. The “payload overload limit” will allow the user to set the percentage to zero. The system will be disabled when the percentage is set to zero. The default setting is zero percent. The service operation of Payload Configuration (PAYCONF) is used to set this value. Refer to the Systems Operation, “Truck Payload - Configure” section of this manual for instruction on entering this information into the system.
Illustration 152
g00742484
5. Click on the “Connect” icon (1) in the tool bar of ET. This will establish communication with the machine and the ET as shown in Illustration 152.
Setup Of The System There are two methods available to enter the values for the Target Payload Weight and the Payload Overload Limit. The first method utilizes the Service Program Code (SPC) of PAYCONF (7292663). Refer to the Systems Operation, “Truck Payload - Configure” section of this manual for instruction on entering this information into the system. The second method is to use the Electronic Technician software. Use the procedure that is listed below to enter the desire values. Electronic Technician (ET) Procedure 1. Connect the 160-0142 Data Link Cable between the 7X-4401 Communication Adapter and the Service Tool (ET). 2. Connect the 139-4166 Data Link Cable between the 7X-4401 Communication Adapter and the diagnostic connector on the machine. 3. Turn ON the service tool and open the Electronic Technician application. 4. Turn the disconnect switch and the key start switch to the ON position.
Illustration 153
g00742500
6. Select “VIMS main” from the “ECM Selector” dialog box and click on the OK button. This is shown in Illustration 153. This will display the “ECM Summary” screen.
66 Systems Operation Section
Illustration 154
g00742540
1. Select the “Service” menu. 2. Select “Configuration” from the “Service” menu. This will display the “Configuration” screen.
Illustration 155
3. Double click on the parameter that you want to change. This will display the “Change Parameter Value” dialog box.
g00742543
67 Systems Operation Section
g00742546
Illustration 156
4. Enter the new value of the parameter into the “New Value” text box and then click on the “OK” button. ET will prompt the user with a confirmation message that asks “Are you sure you want to program this parameter?”. Click the “Yes” button if you wish to accept the change. Note: Repeat this procedure for both Maximum Payload Speed Manager Parameters.
Event - Configure (ESET) The Service program Code ESET (3738) allows the user to modify the behavior of the payload data events that are listed below.
i00962462
TPS Accuracy SMCS Code: 7494; 7601
Weight Measurements The accuracy of the data that is stored by the VIMS Truck Payload System will be within “± 5% on 95% of the payloads”. There are some conditions that could affect the accuracy of the VIMS truck payload system weighing process. Some of these conditions are listed here:
• A truck is loaded on a sloped surface that is • 2916
greater than “5 percent”. Accuracy will become progressively worse as the slope becomes greater.
• 2917
• A suspension cylinder is not properly charged.
• 2915
Refer to the Systems Operation, “Event - Configure” section of this manual for instruction on modifying the payload data events.
The suspension cylinders may not cause an event even if the charge is incorrect. However, the “weighing accuracy” will be affected. Note: Refer to the Special Instruction, SEHS9411-01, “Suspension Cylinder Servicing” for information on servicing the suspension cylinders.
• Pushing down on the load with the “loading tool” during the “weighing process” (packing the load)
68 Systems Operation Section
• Moving the truck more than a distance of “.16 km (0.1 miles)” in any direction between “loader passes”
i01112805
Component Descriptions
• Actuating the “body raise lever” during loading
SMCS Code: 7601
• A failure to have the VIMS Truck Payload System
The Vital Information Management System (VIMS) operates on a variety of different machines. Some of the following electrical components may not be installed on every machine. Configuration software provides the VIMS main module with the following information: type of machine and installed onboard components. Refer to the Electrical System Schematic in the machine Service Manual for component locations. The Electrical System Schematic may be used to verify the components that are used by VIMS.
calibrated after replacing system components.
• A failure to have the VIMS Truck Payload System calibrated after any “substantial changes” to the empty weight of the truck.
• Using a conveyor or a “continuous feed system” for loading
• A truck leaves the loading site before cylinder pressures have stabilized and the final weight has been displayed. This will cause the VIMS Truck Payload System to estimate the payload weight instead of weighing the payload.
• Failures that are detected by VIMS may cause the payload weight to become inaccurate. These failed events will be shown in the “VIMS event list”. Note: TPS accuracy is not affected by placing the first loader pass into the truck body before the truck comes to a complete stop under the loading tool. This relates to the 9.3X or later classes of on board software. The truck can be repositioned during loading. The truck must not travel a distance that is greater than .16 km (0.1 miles). The VIMS Truck Payload System will consider the loading phase of the cycle complete, when the truck has moved a distance that is greater than .16 km (0.1 miles) in any direction.
Time Measurements The smallest increment of the real time clock measurements are 1 second. The recorded times and dates of the real time clock will aid in identifying the causes of any unusual cycle data.
Distance Measurements The accuracy of the “distance measurement” will depend on the actual effective rolling radius of the tires. The VIMS Truck Payload System does not distinguish between tires of different sizes, manufacturers or tread depth. The VIMS Truck Payload System distance measurements are calculated on the average tire size for each model of truck. Distance measurements are recorded to the nearest .16 km (0.1 miles).
Hardware This manual describes the version 2.0 and version 3.0 of VIMS hardware. The version 2.0 hardware relates to the original VIMS modules (main module and interface modules) that went into production in the third quarter1994. In the third quarter of 1996, version 3.0 hardware began production. The version 2.0 Interface modules and version 3.0 interface modules have the same physical appearance. Part numbers are the only way to tell the difference. The backup battery holder for the V2.0 main modules are located on the side of the module. In order to access the battery, a black “knob” needs to be unscrewed. V3.0 main modules have an “egg shaped” cover on the top of the module. In order to gain access to the battery, two screws must be removed. This battery is flat with four pin-type contacts on the bottom. An L-shaped tool is required to pry the battery out. All modules can be mixed and matched with the exception of the 144-7172 VIMS Interface Module. The 9.X or later class of onboard software must be used with version 3.0 modules to gain all benefits and features. The new interface modules should not be mixed with the former interface modules on machines that use 9.X or later class of onboard configuration software. If an 144-7172 VIMS Interface Module is replaced by a older version of interface module, the interface module will function. However, this interface module could also cause the diagnostic type of maintenance events to be incorrectly displayed by using old diagnostic codes or incorrect diagnostic codes.
69 Systems Operation Section
i01306364
Main Module SMCS Code: 7601-EK2; 7610
The VIMS operates in the LIMITED MODE when no source software and/or configuration software is installed in the VIMS main module. VIMS functionality is limited until the installation of all necessary software. Any error messages in this mode come from a list that is contained in the main module (ROM) regardless of software. The main module is programmed to recognize internal problems before installing the software. The main module generates the error messages in order to aid the service technician in troubleshooting problems with the software installation process. APPLICATION MODE is operation of the main module after installing the source software and configuration software. APPLICATION MODE is the normal VIMS operating mode which follows the self test after the key start switch is turned to the ON position.
Illustration 157
g00568328
Machine Information Stored in the Main Module (V3.0) The version 3.0 main module stores the following basic machine information in a semi-permanent (EEPROM) type of memory. The semi-permanent (EEPROM) memory is unchanged by flashing the CONFIGURATION software with the exceptions that are noted in Table 14. The configuration software will allow some keypad commands and the service tool to change this information.
• Product Identification Number (PIN) or Serial Number
• Machine equipment or unit number • Machine hours (SMH) • Attachment code (Large Wheel Loaders and 5230 Excavator7LL99-UP)
Illustration 158
g00568367
• Type of configuration
Limited Mode/Application Mode (V3.0 Hardware)
• Odometer
The VIMS main module operates in one of two modes:
Note: Refer to Table 14 for the status of machine information after installing new onboard software.
• limited
The following items are stored in battery-backed memory:
• application • Date • Time • Payload calibration (OHT and Large Wheel Loaders)
• All data files that can be downloaded • Setting of the display unit
70 Systems Operation Section
• Setting of the desired language • Active events (when the key start switch is turned to the OFF position) Table 14
VIMS Machine Information that is Changed by the Installation of New Source Software or New Configuration Software Machine Information
Information that is Changed by the Installation of the Source Software (.SRC).
Information that is Changed by the Installation of the Configuration Software (.CNF).
Machine Serial Number (Product Identification Number PIN)
NO
NO
Machine Equipment Number (Unit Number)
NO
NO
Machine Hours (SMH)
NO
NO
Attachment Code (Large Wheel loader and 5230 Excavator7LL99-UP)
NO
NO(1)
YES(2)
YES(3)
Odometer
NO
NO
Date
NO
NO
Time
NO
NO
Payload Calibration
NO(4)
NO(4) (YES for OHT)
Data Files Available for Download
YES
YES(5)
Language Setting
YES
YES
Unit Setting
YES
YES
Active Events At The Time The Key Start Switch is turned To The OFF Position.
YES
YES
Autolube Setting
YES
YES
Configuration Type
(1) (2) (3) (4) (5)
Installation of a new configuration does not change the attachment code unless there is a special code given in a configuration that is required by that configuration. Installation of configuration software (new or the same one) clears the configuration type. First configuration installation after a new source software update determines the the configuration type for future uploads. Valid with 9.5X or later classes of onboard software Except cumulative data in 9.5X or later classes of onboard software
71 Systems Operation Section
• VIMS keypad module
Table 15
Component Description of Main Module No.
Connector(1)
Function
• Other electronic control modules
Type
• Internal calculations
1
+Battery - Unswitched (+24 DCV)(2)
Power Input (Memory)
2
Frame Ground
Ground(3)
3
Display Back Light Return
Output
4
CAT Data Link (Left) +
Input/Ouput
5
CAT Data Link (Left) -
Input/Ouput
6
CAT Data Link (Right) +
Input/Ouput
7
CAT Data Link (Right) −
Input/Ouput
8
+Battery - Key Switch (+24 DCV)
Input(4)
• Quad gauge module
9
Dash Light Sensor
Sensor(5)
• Speedometer/tachometer module
16
RS-232 Data Link 1 - Trans. (Broadcast)
Output
17
RS-232 Data Link 1 - Rec. (Broadcast)
Input
18
RS-232 Data Link 2 - Rec. (Service)
Input
• Service lamp
19
RS-232 Data Link 2 - Trans. (Service)
Output
20
Action Lamp
Output
21
Service Lamp
Output
22
Payload Lamp (Green)
Output
23
Payload Lamp (Red)
Output
24
Action Alarm
Output
The service indicator lamp is used by the service technician and on-site maintenance personnel. The service indicator lamp is not visible from the cab. The main module uses two RS-232 data link outputs to communicate data to off-board systems. A 37 contact connector is located on the VIMS main module. The connector is used to connect the necessary harness wiring to all the system components. The module identifier (MID) for the VIMS main module is listed here:
25
Display Power (9 DCV)
Output
26
Display Clock
Output
27
Display Data
Output
Input/Output
28
Display Load
Output
CAT Data Link
29
Keypad Data
Input
37
Display Modules Ground
Ground(6)
(1) (2) (3) (4) (5) (6)
• Message center module • Action lamp
The Main Module connector is a 37 contact connector. Contacts not listed are unused. This voltage is turned OFF only when the disconnect switch is in the OFF position. (+battery return) This input turns ON the main module. The power is provided via contact 1. This is the input that is used for backlight dimming. Return for 9 volt power.
The VIMS main module monitors the status of the machine systems continuously. The main module makes decisions based upon the input from the following components:
• VIMS interface modules
The main module sends information to VIMS interface modules and other electronic control modules on the machine. The input and output of this information takes place over the CAT data link. The outputs of the main module notify the operator and the service technician of the status of the machine systems. The VIMS machine system information is shown on the display modules that are listed here:
• Action alarm
49 – VIMS Main Module
The connector contacts of the CAT data link 4, 5, 6, and 7 on the VIMS main module, provide a communication link with the other electronic control modules on the machine. The CAT data link is bidirectional. This bidirectional functionality allows the input/output of data between electronic control modules. The CAT data link permits the sharing of information such as engine oil pressure, machine codes and diagnostics. The VIMS main module can communicate with two identical CAT data links. The two data links are identified as the right or the left CAT data link. The identical data links work independently of each other. This connects the main module in a loop with the other VIMS modules. The loop allows the VIMS modules two possible paths of communication. Two communication paths allow the VIMS modules to communicate even if the loop is broken by harness failures.
72 Systems Operation Section
RS-232 Data Link The connector contacts of the VIMS main module (16, 17, 18 and 19) provide two RS-232 serial ports. The two serial ports allow the VIMS main module to communicate with the off-board systems. The RS-232 data links are bidirectional. The bidirectional function allows the main module to input/output information. One port is used to communicate with an off-board service tool. The second port is used in order to broadcast data to off-board systems, as required.
The sensing input for lighting (connector contact 9) tells the main module when the machine panel dash lamps are ON. Harness wiring connects the panel lamp circuits to the sensing input for lighting. The sensing input for lighting is used to determine when the back lighting of the message center module should be dimmed in V2.0 hardware. The V3.0 hardware allows the operator to control backlighting through the keypad. 9.X class of on board software is required to adjust backlighting through the keypad. Refer to the Systems Operation, “Service Operations” section of this manual for additional information.
Display Data Link Keypad Input The VIMS main module contacts 26, 27, 28 and 37 provide a serial port for the Display Data Link. The main module uses the display data link to communicate with the display modules. Power for these modules (connector contact 25) is 9 Volts relative to ground (connector 37). The 6-contact connectors in the machine harness for any of the display modules can be interchanged with any other display module. This is especially helpful for troubleshooting. Keypad Data Link The keypad data link (connector contact 29 and 37) is used to provide a serial port for communicating keypad data to the VIMS main module. Inputs Switch Input - Key Start Switch The input from the key start switch (connector contact 8) provides information about the status of the key start switch (ON or OFF). The input signal from the key start switch is used to turn on the main module. When the key start switch is in the ON position, this input is connected to +battery. When the key start switch is in the OFF position, the input is open (floating). Sensing Input - System Voltage The sensing input for system voltage (connector contact 1) tells the main module the voltage of the machine electrical system. harness wiring connects the VIMS circuit breaker to this input (connector contact 1). This voltage information helps determine the condition of the electrical system. This input is also the +battery supply for the VIMS main module. This input provides power to the battery backed up memory in the event of a failure to the internal backup battery (3 volt) or the internal backup battery is removed. Sensing Input - Lighting
The keypad input (connector contact 29) receives information from the keypad. Outputs Service Lamp When a VIMS event is detected, the main module activates the service lamp output (connector contact 21) and the service lamp is turned ON. The service lamp remains ON whenever the event is active. If an event could be damaging to the machine, the service lamp is FLASHED. The service lamp can be turned OFF with the keypad. Events are not cleared from the main module memory when the service lamp is turned OFF. If the event becomes inactive, the service lamp is turned OFF. When power is applied to the Vital Information Management System, the main module memory is checked for any inactive events that have not been cleared. If any inactive events are found, the service lamp is FLASHED three times. If no events are found, the service lamp is FLASHED once as a lamp test during the VIMS self test. If an event is acknowledged via the keypad, the service lamp will not turn OFF. Refer to the Systems Operation, “Service Operations” section of this manual for additional information on turning off the service lamp with the service program code “SVCLIT”. Action Lamp The action lamp output of the main module (connector contact 20) is activated when a category 2 or 3 warning is present and this will cause the action lamp to FLASH. For more information, see the Systems Operation, “Warning Operation” section. Action Alarm
73 Systems Operation Section
The action alarm output of the main module (connector contact 24) is activated when a critical abnormal condition category 3 is present and this will cause the action alarm to SOUND. For more information, see the Systems Operation, “Warning Operation” section. Display Power Supply The display power output of the main module (connector contact 25) provides 9 volts DC power to the following display modules:the quad gauge module, the message center module , and the speedometer/tachometer module. The other display outputs of the main module connector contacts 26 through 28 provide the information that is shown on the display modules via the Display Data Link. These outputs are connected to all display modules. VIMS Internal Battery
All on board stored data in V3.0 hardware (not source or configuration software) is retained in battery-backed memory (volatile). This type of memory will lose data if power is removed. When the disconnect switch is in the ON position, the machine electrical system will power the main module. This allows the stored data to be retained. The backup battery takes over when the disconnect switch is open. The backup battery retains only the stored data. The backup battery also powers the date/time function in the main module when the key start switch is in the OFF position. This is true whether the disconnect switch is ON or OFF. For machines in service, the backup battery is expected to have a life of approximately two years V2.0 hardware and the V3.0 hardware has an expected life of approximately 5 years. Refer to the following table for the recommended battery replacement interval. Table 16
Internal Battery Replacement Hardware Version Illustration 159
g00481904
V2.0
Every two years(1)
V3.0
Every five years(2)
(1)
(2)
Illustration 160
g00481903
VIMS Internal Memory Backup Battery
A long life three volt lithium battery is contained in the VIMS main module. The battery allows the memory of the main module to hold data when power is removed from the main module (OPEN disconnect switch). The time/date functions are also powered by the battery.
Recommended Battery Replacement
Battery replacement should be performed annually in climates with ambient temperatures in the range of 0 to −40 C (32 to −40 F). Battery replacement should be performed at a 2 to 3 year interval in climates with ambient temperatures of 0 to −40 C (32 to −40 F).
The failure of the backup battery causes an operator warning and a resulting diagnostic code to be stored in the event list. After the event for the failure of the battery, if the key start switch is put in the OFF position and the disconnect switch is OPEN, loss of the stored data can occur within several hours or less. When this warning occurs, download the stored data immediately. Then replace the backup battery. DO NOT turn the key start switch to the OFF position. DO NOT turn the disconnect switch to the OFF position. The reason that the potential loss of data is so sudden after the initial operator warning is due to the discharge characteristics of the lithium battery. The lithium battery holds a constant voltage throughout the life of the battery. Then due to the chemical breakdown (maturing) of the battery, the battery dies very quickly. This is in contrast to the discharge characteristics of the average flashlight battery. The flashlight battery discharges slowly over time, until the battery is dead.
74 Systems Operation Section
Note: When the 9X-5402 Battery is being replaced, ensure that the insulating sleeve is removed from the battery (if present). See the Testing and Adjusting, “Battery Replace” section of this manual for more information. Note: The 9X-5402 Battery is used in V2.0 main modules (3E-3666 Electronic Control, 115-0648 Electronic Control, 118-9636 Electronic Control and 124-6134 VIMS Electronic Control Group). The 101-1785 Battery is used in V3.0 main modules (130-5131 VIDS/VIMS Electronic Control Group 165-8682 VIDS/VIMS Electronic Control Group). i01329228
Interface Module SMCS Code: 7601
g00568237
Illustration 161 Table 17
(Table 17, contd)
Contact Description of Interface Module Connector(1) No.
Function
5
PWM 3
Sensor Input (PWM)
6
Switch 1
Uncommitted Switch Input
8
Switch 2
Uncommitted Switch Input
9
Unused
-
10
PWM 4
Sensor Input (PWM)
11
PWM 5
Sensor Input (PWM)
12
Switch 3
Uncommitted Switch Input
13
Frequency 3 Programmable
Sensor Input (Frequency)
14
PWM 6
Sensor Input (PWM)
15
PWM 7
Sensor Input (PWM)
16
PWM 8
Sensor Input (PWM)
17
Switch 4
Uncommitted Switch Input
18
Switch 5
Uncommitted Switch Input
19
Switch 6
Uncommitted Switch Input
20
Switch 7
Uncommitted Switch Input
21
CAT Data Link Left +
Input/Output
22
CAT Data Link Left -
Input /Output
23
CAT Data Link Right +
Input/Output
24
CAT Data Link Right -
Input/Output
25
Switch 8
Uncommitted Switch Input
26
Sensor Power (8 DCV)
Output
27
Sensor Power (5 DCV)
Output
28
Frequency 1
Sensor Input (Frequency)
29
Frequency 2 Programmable
Sensor Input (Frequency)
31
Solenoid 1
Driver Output
32
Switch 9
Switch Input 24 VDC
Contact Description of Interface Module Connector(1) No.
Function
Type
1
+Battery (+24 DCV)
Power Input
2
Ground
Ground
3
PWM 1
Sensor Input (PWM)
4
PWM 2
Sensor Input (PWM) (continued)
Type
(continued)
75 Systems Operation Section
(Table 17, contd)
Contact Description of Interface Module
Connector(1)
No.
Type
Function
33
Solenoid 2
Driver Output
37
Harness Code 0
Switch Input (programming)
38
Harness Code 1
Switch Input (programming)
39
Harness Code 2
Switch Input (programming)
40
Harness Code 3
Switch Input (programming)
(1)
This connector is a 40 contact connector. Contacts not listed are unused.
The connector contacts of the CAT data link 21, 22, 23, and 24 provide a communication link with the other electronic control modules on the machine. The CAT data link is bidirectional. The bidirectional functionality allows the input/output of data between electronic control modules. The CAT data link permits the sharing of information such as engine oil pressure, machine codes and diagnostics. The interface module contains two identical CAT data links. The identical data links work independently of each other. The two data links are identified as the right or the left CAT data link. The interface module is connected in a loop with the VIMS main module. The loop provides two paths of communication for the VIMS modules. Two communication paths allow the VIMS modules to communicate even if the loop is broken by harness failures. Inputs
There may be several interface modules on one machine. Each of these modules operate in a similar way. Different Module Identifiers (MID) are assigned to each module. This code is determined by the harness code connections. The Module Identifier (MID) for each interface module is listed here: 57 – VIMS Interface Module No. 1
The inputs describe the status of the machine systems. Switch inputs and sensor inputs are used by the interface module. Switches and harness wiring provide an open or ground to the switch inputs of the interface module. Sensors (frequency or PWM) and harness wiring provide a changing signal to the sensor inputs of the interface module.
58 – VIMS Interface Module No. 2
Switch Input (+24 DCV)
59 – VIMS Interface Module No. 3
The +24 DCV switch input (connector contact 32) monitors a +24 DCV circuit. The switch input will be either +24 DCV or the switch input will be open or floating. If the input is floating, a pull-down resistor in the interface module will pull this input to ground and the voltage will be at 0 volts.
60 – VIMS Interface Module No. 4 65 – VIMS Interface Module No. 5 66 – VIMS Interface Module No. 6
Uncommitted Switch Inputs
67 – VIMS Interface Module No. 7 68 – VIMS Interface Module No. 8 Note: The Module Identifier (MID) for the VIMS main module is No. 49. Inputs/Outputs CAT Data Link
The uncommitted switch inputs (connector contacts 6, 8, 12, 17, 18, 19, 20 and 25) provide the information about the machine systems. These inputs become dedicated to a specific function by the configuration software. The machine’s Electrical System Schematic may be used to verify the function. The status of the switch input indicates a normal or abnormal system condition. The switch inputs receive machine system information from the following types of switches:
• Pressure Switches • Temperature Switches • Flow Switches • Level Switches • Position Switches The input of the interface module is either open (floating) or the input is connected to ground through the switch.
76 Systems Operation Section
Switch Inputs (Harness Code)
Solenoid Output
The connector contacts 37 through 40 are the harness code inputs. The Harness code inputs can be used to assign a unique module identification code to the individual interface modules. This is necessary because there can be multiple interface modules on one machine. The module identification code identifies the interface module that is currently communicating with the VIMS main module. The combination of grounded harness code inputs and open harness code inputsdetermine the unique module identification code for the interface module.
The solenoid (driver) outputs connector contacts 31 and 33 allow the interface module to cause action. An example of this action could be energizing a solenoid or sounding the action alarm. Voltage Output (Sensor Power) This output provides a regulated power source to the PWM sensors. There are two voltage outputs on this module. A regulated +8 DCV sensor power source connector contact 26 and a regulated +5 DCV sensor power source connector contact 27.
Sensor Inputs (Frequency) An AC signal that usually represents the rotational speed of a machine component is present at each frequency sensor input, connector contacts 13, 28 and 29. The suspension cylinder pressure sensor is the exception. The suspension cylinder pressure sensor generates a frequency that is proportional to the pressure in the suspension cylinder. For example, the ground speed , the engine speed sensor and the suspension cylinder pressure sensors provide an AC signal of varying frequency to the interface module. The interface module measures the frequency (Hz) of the AC signals. The resulting speeds are sent to the main module over the CAT data link. The main module shows this information on the speedometer/tachometer module. The main module may also show this information on the message center display. Connector contact 28 (frequency 1) is used only with a magnetic type sensor. The pull-up voltage is zero. The functionality of connector contacts 29 (“frequency 2”) and 13 (“frequency 3”) are programmable in the VIMS configuration software. The configuration software can be programmed for either magnetic sensors (sine wave) or powered sensors (square wave). The pull-up voltage is 7 ± 1 DCV on frequency inputs that are used with suspension cylinder pressure sensors. Sensor Inputs (PWM) The PWM sensor inputs at connector contacts 3, 4, 5, 10, 11, 14, 15, and 16 receive PWM signals that are representing the present condition of a machine system. PWM sensors provide temperature, pressure and level information of machine systems. The interface module measures the duty cycle of the PWM signal, which represents the measured information. This PWM information can be sent to the main module over the CAT data link. The main module uses this information to monitor machine systems. Then alert the operator of any abnormal conditions. Outputs
i00947611
Display Modules SMCS Code: 7450 The contact description for all display modules are listed in the following table. Table 18
Contact Description of Display Module Connector No.
(1)
Function
Type
1
+9 DCV
Input - Power
2
Ground
Ground Power/Signal
3
Display Clock
Input - Signal
4
Display Data
Input - Signal
5
Display Load
Input - Signal
6
Harness Code
Input(1)
The harness code is used to give two display modules of the same type a unique component number. This is needed so the VIMS main module can send unique information to each identical module. The module number 1 is assigned to the component with a grounded harness code input. The module number 2 is assigned to the component with an ungrounded harness code input.
The display modules receive information from the main module. The operator and the service technician are notified of machine system status by the display modules. The display modules are listed here:
• Quad gauge module • Speedometer/tachometer module • Message center module
77 Systems Operation Section
Note: The Electrical Schematic in the machine Service Manual and the Operation and Maintenance Manuals are helpful in identifying the display modules that are used on a given machine. i01324609
Quad Gauge Module SMCS Code: 7450
g00701010
Illustration 162 Quad Gauge Module (1) Harness Connector
(2) Gauge warning area
This module contains four gauges. The gauge receives the information from sensor inputs from The VIMS or other electronic controls over the CAT data link. The VIMS main module uses the information from the sensor inputs in order to calculate the values that are shown on the gauges. Each gauge is dedicated to a parameter within a machine system. Some examples of the possible machine system parameters are listed here: engine oil pressure, power train oil temperature, brake oil temperature, brake air pressure, system air pressure, hydraulic oil temperature, and fuel level. Pictograph symbol (3) identifies the machine system parameter which is shown on each gauge. Abnormal range values are shown by the gauge warning area (2).
(3) Pictograph symbol
78 Systems Operation Section
i01324686
Speedometer/Tachometer Module SMCS Code: 7450
g00701138
Illustration 163 Speedometer/Tachometer module (1) Tachometer (2) Pictograph symbol
(3) Ground speed readout (4) Actual gear readout
Ground speed readout (3) consists of three digits that may be used in order to show the machine ground speed in “MPH (km/h)”. The service program code of “UN” is used to change the unit of measure. The unit of measure is English or metric. The VIMS calculates speed by using the information from the output of a frequency sensor. The VIMS may also calculate speed by using information that is obtained from a different electronic control over the CAT data link. Actual gear readout (4) consists of two digits that show the transmission actual gear which is engaged. The left digit shows the actual gear that is selected, “1”, “2”, “3”, etc. The right digit shows the direction that is selected, “F”, “N” or “R”. Tachometer (1) shows the engine speed in RPM. The VIMS calculates speed by using the information from the output of a frequency sensor. The VIMS may also calculate speed by using information that is obtained from a different electronic control over the CAT data link.
(5) Harness Connector
79 Systems Operation Section
i01324730
Message Center Module SMCS Code: 7450
g00701180
Illustration 164 Message Center Module (7) Alert Indicator (8) Data logging indicator (9) Message area
(10) Universal gauge (11) Gauge warning area (12) Harness connector
Alert indicator (7) notifies the operator of an abnormal condition in a machine system. The main module uses information from the interface modules and any other electronic control modules on the machine to determine when an abnormal condition is present. The main module then FLASHES alert indicator (7). When alert indicator (7) FLASHES, an abnormal condition exists. For more information, refer to the Systems Operation, “Warning Operation” section in this manual.
(13) Backlight harness connector
The system default information is shown on the message area during normal operation. The default information is referred to as the background mode. Information that is shown in the background mode is listed here:
• Time of day • Odometer (9.3X class of software or later) • Total machine hours. The total machine hours are
Data logging indicator (8) is a series of dots that scroll when data logging is turned on. The dots only scroll when data logging is turned on from the keypad. Message area (9) identifies the machine system parameter with an abnormal condition. The first line shows the parameter and the parameter status. The second line prompts the operator for a reaction. When alert indicator (7) is FLASHED, the machine system parameter with the abnormal condition is shown in the message area. For more information, refer to the Systems Operation, “Warning Operation” section in this manual. Message area (9) is also used to show the event lists, active diagnostic events (MID, CID, and FMI format) and other requested information.
based on engine running time.
• On trucks, the payload weight is the information that is shown in the background mode when the truck is being loaded.
• On loaders, the payload weight is also the information that is shown in the background mode when the payload system is ON.
80 Systems Operation Section
Universal gauge (10) shows a relative value of the parameter in message area (9). For sensor type parameters, universal gauge (10) shows the relative value of the event parameter. Switch type parameters are not shown on universal gauge (10). Universal gauge (10) can also show the RELATIVE value of any valid machine system parameter. The ACTUAL value can be viewed by entering the desired parameter number on the keypad and pressing the “GAUGE” key or pressing the “F1” key while the event is present.
(Table 20, contd)
Message Center Abbreviations Basic Word
Abbreviation
AESC
AESC
Absolute
AB
Accept
ACCEPT
Accumulator
ACUM
Action
ACTION
Gauge warning area (1) is a bar that can be located at either end of universal gauge (10). The bar that is used is determined by the parameter that is being displayed. Gauge warning areas (11) may be illuminated in order to indicate an abnormal condition. In illustration 164, gauge warning area (11) is illuminated in order to show the abnormal condition: “TRN TEMP HI”. The lower end of the gauge would have illuminated if there was an abnormal condition: “ENG OIL PRES LO”
Actuator
ACTR
Actual
ACT
Adv Diesel Eng Mmgt
ADEM
After
AFTR
Aftercooler
AFTCLR
Air
AIR
Air Horn
AIR HORN
The 133-1840 VIMS Message Center Module or later can be adjusted for the best viewing angle and the best backlighting intensity. However, the machine must be equipped with the V3.0 hardware and the 9.X class or later of onboard software to use these advanced features. Message centers prior to the 133-1840 VIMS Message Center Modules allow backlight adjustment. However, 9.X software is required. The viewing angle (contrast) cannot be adjusted. Refer to Table 19 for additional information on features of the message center module.
Alarm
ALARM
Ambient
AMB
Amperes
AMPS
And
AND
Angle
ANGLE
Arm
ARM
Attachment
ATTACH
Atmospheric
ATMOS
Table 19
Automatic
AUTO
Auto Lube
AUTO LUBE
AUTO Retarder Control
ARC
Auxiliary
AUX
Available
AVAILABLE
Average
AVG
Average No. 1
AVG1
Average No. 3
AVG3
Average No. 5
AVG5
Axle
AXLE
Bevel
BVL
The Message Center Abbreviations Table provides the abbreviation for VIMS basic words.
Back
BACK
Backup
BKUP
Table 20
Battery
BATT
Between
BETWEEN
Body
BODY
Boom
BM
Features of the Message Center Hardware
V2.0
V3.0
Onboard Software Prior to 9.X
9.X or Later Onboard Software
No contrast or backlight adjustment
Adjustable backlighting only
No contrast or backlight adjustment
Adjustable backlighting and contrast
Message Center Abbreviations
Message Center Abbreviations Basic Word
Abbreviation
A
A (continued)
(continued)
81 Systems Operation Section
(Table 20, contd)
(Table 20, contd)
Message Center Abbreviations
Message Center Abbreviations
Basic Word
Abbreviation
Basic Word
Abbreviation
Boost
BOOST
Component ID
CIDs
Bottom
BTM
Conditions
CONDITIONS
Bottom-Front
BTM F
Console
CONSOLE
Bottom-Right
BTM R
Continue
CONTINUE
Box
BOX
Control
CTRL
Brake
BRK
Coolant
COOL
Brake Cooler
BRKC
Cooler
COOLR
Broadcast
BROADCAST
Count
COUNT
Blocker
BLKR
Cumulative
CUM
Bucket
BKT
Current
CUR
Cab
CAB
Crank
CRANK
Calibrate
CAL
Crankcase
CNKCASE
Calibrated
CALIBRATED
Cylinder
CYL
Calibration
CAL
Cylinder Rod
CYLRD
Call
CALL
Data
DATA
Cancel
CNCL
Data Link
DATA LINK
Carry Back
CARRYBK
Data Logger
DLOGR
Case
CASE
Dead
DEAD
Case Drain
CDRN
Decelerator
DECEL
CAT
CAT
Degress Celcius
DEG C
Center
CTR
Degrees Fahrenheit
DEG F
Change
CHNG
Derate
DERATE
Channel
CHNL
Deviation
DEV
Charge
CHRG
Differ
DIFFER
Chassis Control
CC
Differential
DIFF
Check
CHECK
Digital
DIGITAL
Chip
CHIP
Direction
DIR
Circuit
CRT
Directional
DIRECTIONAL
Clear
CLR
Disabled
DISABLD
Close
CLOSE
Display
DISP
Closed
CLSD
Distance
DISTANCE
Cluster
CLUSTR
Down
DWN
Clutch
CLTCH
Downshift
DOWNSHIFT
Code
CODE
Drain
DRN
Collapsed
CLPSD
Drag
DRAG
Command
CMD
Drive
DRIVE
Communicate
COMM
Dual
DUAL
Completed
COMPLETED
Dump
DUMP
(continued)
(continued)
82 Systems Operation Section
(Table 20, contd)
(Table 20, contd)
Message Center Abbreviations
Message Center Abbreviations
Basic Word
Abbreviation
Basic Word
Abbreviation
Electric Horn
ELEC HORN
Haul
HAUL
Electronic
ELEK
Head
HD
Electronic Control Module
ECM
High
HI
Elect Trans Control
EPTC
High Pressure
HIPRES
Empty
EMPTY
High Pilot (pressure)
HIPLT
Enable
ENABL
Hoist
HOIST
Engine
ENG
Hold
HOLD
English
ENGLISH
Hour
HOUR
Enter
ENTER
Hydraulic
HYD
Error
ERR
Identification
ID
Event Recorder
EREC
Impeller
IMPLR
Ether
ETHER
Idle
IDLE
Event
EVENT
Implement
IMPL
Event Configure
ESET
Incorrect
INCORRECT
Exhaust
EXH
Indicator
INDICATOR
Exit
EXIT
Inhibit
INHIB
Factor
FACTOR
Injector
INJ
Fan
FAN
Injection
INJEC
Filter
FLTR
Inlet
IN
Filtered
FLTRD
Inputs
INPUTS
Final
FNL
Interface Module
I/M
Fixed
FIXED
Intermittent
INTM
Float
FLOAT
Invalid
INVALID
Flow
FLOW
Junk
JUNK
Front
F
Key
KEY
Frame Equivalent Life Average
FELA
Keypad
KPAD
From
FROM
Kickout
KO
Fuel
FUEL
Known
KNOWN
Fully
FULLY
Ladder
LADDER
Function
FUNCTION
Latch
LATCH
Gauge
GAUGE
Lamp
LAMP
Gate
GATE
Last
LAST
Gear
GEAR
Left
LT
Good
GOOD
Left - Front
LTF
Green
GN
Left - Rear
LTR
Ground
GND
Level
LVL
Harness
HRNES
Lever
LVR
(continued)
(continued)
83 Systems Operation Section
(Table 20, contd)
(Table 20, contd)
Message Center Abbreviations
Message Center Abbreviations
Basic Word
Abbreviation
Basic Word
Abbreviation
Lift
LFT
No
NO
Lighting
LIGHTING
Nominal
NOM
Limit
LIMIT
Not
NOT
Limited
LIMITED
Off
OFF
Link
LINK
Oil
OIL
Linkage
LNKG
On
ON
List
LIST
Open
OPEN
Load
LOAD
Operator
OPERATOR
Loaded
LOADED
Operating
OPRG
Loading
LOADING
Out
OUT
Lock
LCK
Outlet
OUT
Lockout
LCKOUT
Output
OUTPUT
Lockdown
LOCKDN
Over
OVER
Lockup
LCKUP
Overstroke
STROKE
Loss
LOSS
Parameters
PARAMETERS
Low
LO
Park
PRK
Lower
LOWER
Parking
PRKG
Lubrication
LUBE
Parking Brake
PARKBK
Machine
MACH
Pass
PASS
Machine Control
M/C
Payload
PAYLOAD
Main
MAIN
Peak
PEAK
Manual
MANUAL
Pedal
PDL
Maximum
MAX
Percent
%
Measure
MEASURE
Perform
PERFORM
Message
MSG
Personality
PRSNALTY
Mile
MILE
Pilot
PLT
Mismatch
MISMATCH
Pitch
PITCH
Mode
MODE
Pitch Per Second
PITCH/SEC
Modified
MODIFIED
Plugged
PLGD
Modulate
MODULATE
Port
PORT
Module
MODUL
Position
POS
Motor
MTR
Power
POWER
Moving
MOV
Power Shift
PS
Movement
MVMT
Power train
PT
Must
MUST
Prepare
PREPARE
Neutral
NTRL
Press
PRESS
Neutralizer
NTLRZR
Pressure
PRES
New
NEW
Pressure-Front
PRESF
(continued)
(continued)
84 Systems Operation Section
(Table 20, contd)
(Table 20, contd)
Message Center Abbreviations
Message Center Abbreviations
Basic Word
Abbreviation
Basic Word
Abbreviation
Pressure-Rear
PRESR
Review
REVIEW
Previous
PREVIOUS
Ride
RIDE
Primary
PRI
Right
RT
Print
PRINT
Right-Front
RTF
Programmable
PROG
Right-Rear
RTR
Proportional
PROP
Rimpull
RIMPULL
Pull
PULL
Rod
RO
Pump
PMP
Run
RUN
Purge
PURGE
Scale
SCALE
Quickshift
QUICKSHIFT
Screen
SCREEN
RPM
SPD
Second
SEC
Rack
RACK
Secondary
SEC
Rack Per Second
RACK/SEC
Select
SELECT
Rackback
RKBCK
Sensor
SNSR
Raise
RAISE
Service
SERV
Range
RANGE
Set
SET
Rate
RATE
Shift
SHIFT
Rated
RATED
Shop
SHOP
Rear
R
Short
SHORT
Rear Inside
RI
Shorted
SHORTED
Recorder
RECORDER
Shutdown
SHUTDN
Red
RD
Signal
SIG
Reel
REEL
Slip
SLIP
Relay
RELAY
Slowly
SLOWLY
Relief
RLF
Snapshot
SNAPSHOT
Renewal
RENEWAL
Solenoid
SOL
Remote
REMOTE
Speed
SPD
Report
REPORT
Speedometer/Tachometer
SPDOM/TACH
Request
REQ
Start
START
Required
REQD
Starter
STARTER
Resolver
RESOLVER
Status
STATUS
Response
RESPONSE
Steer
STR
Restart
RESTART
Steering
STRG
Restrictor
RESTR
Steering Pump
STRPMP
Retarder
RETRDR
Stop
STOP
Retarder
RETARDER
Stroke
STROKE
Return
RTN
Subtracted
SUBTRACTED
(continued)
(continued)
85 Systems Operation Section
(Table 20, contd)
(Table 20, contd)
Message Center Abbreviations
Message Center Abbreviations
Basic Word
Abbreviation
Basic Word
Abbreviation
Supply
SUPPLY
User
USER
Suspension
SUSP
Valve
VLV
Swing/Implement
SWG/IMP
Variable
VAR
Swing
SWG
Vital Info Dsply System
VIDS
Switch
SW
Vital Info Mgmt System
VIMS
System
SYS
Voltage
VOLTAGE
TPMS
TPMS
Wastegate
WASTEGATE
Tank
TANK
Weigh
WT
Temperature
TEMP
Weight
WT
This
THIS
Without
W/O
The
THE
Yes
YES
Then
THEN
Throttle
THROTTL
Tilt
TLT
Time
TIME
Timing
TIMING
Tire
TIRE
Ton
TON
To
TO
Too
TOO
Top
TOP
Top - Front
TOP F
Top - Left
TOP LT
Top - Rear
TOP R
Top - Right
TOP RT
Torque Converter
TC
Torque
TORQ
Trailer
TRL
Trailer Brake Cooler
TRLBRKC
Transmission
TRN
Travel
TRVL
Truck Payload Meas Sys
TPMS
Turbo
TRBO
Uncalibrated
UNCALIBRATED
Unfiltered
UF
Unknown
UNKNOWN
Update
UPD
Upshift
UPSHIFT
i01324776
Keypad SMCS Code: 7450 Table 21
Contact Description of the Keypad Connector No.
(continued)
Function
Type
1
+9 DCV
Input
2
Ground
Ground
3
Keypad Data
Output
4
Unused
-
86 Systems Operation Section
g00701204
Illustration 165 Keypad (1) Gauge key (2) Key pressed indicator
(3) Backward arrow key (4) Forward arrow key
The keypad allows the operator or the service technician to communicate with the VIMS main module. The user can select the information that will be shown on the message center display. The operator or the service technician can initiate service procedures. The keypad also allows the operator to enter an identification number and the keypad also allows the operator to acknowledge events.
(5) F1 key (6) Harness connector
OK Key The OK key is used to complete keypad entries and the “OK” key is used to acknowledge events. Examples of the operations of the “OK” key are listed below:
• Responses to system prompts • Entering an operator identification number
Pressing any key on the keypad causes key pressed Indicator (2) to FLASH once. This tells the operator or the service technician that the keystroke was accepted.
• Stopping the requested gauge parameter • Return the message center to the background display.
When a series of related keystrokes (operator ID or service program code) must be entered, each keystroke must be completed in less than five seconds. Periods that last longer than five seconds will cancel any previous keystroke (s). The message center will then return to the previous display mode.
Numeric Keys (0 - 9) These keys are used to enter numeric information. Some example of numeric information is listed here: operator identification number, service program codes, requested operator responses, and selection of individual gauge parameters.
“ID” Key This key is used by the operator to enter a identification number. This number is stored with all event information that may follow, until a new identification number is entered. Printed reports show this number with each event. The “Operator ID” is not required to operate the machine. This is the same “Operator ID” that may be entered via the menu of the loader payload system. Refer to the Systems Operation, “LPS Menu Functions Summary” section of this manual for additional information. The following message is displayed on the message area after the ID key is first pressed.
87 Systems Operation Section
Illustration 166
g00484268
The operator enters an identification number up to seven digits. Then press the OK key. The numbers that are entered are shown on the second line of the message area.
Illustration 168
g00484272
This information is shown for one parameter at a time. The FORWARD and BACKWARD arrow keys are used to scroll through the available parameters. Second method: Enter the number of the parameter via the keypad. Then press the “GAUGE”key. This method saves time by accessing a specific parameter directly. Otherwise scrolling through the entire parameter list would be necessary.
Illustration 167
g00484271
Input Key Functions OK – Accept the desired operator ID. ID – Clear the entry line in order to enter an additional operator ID. GAUGE – Abort the entry mode. LEFT ARROW – Delete the last character. Press the “OK” key within five seconds of entering the last keystroke of the operator ID. Otherwise, the operator ID function will be aborted and the message center will return to the previous display mode.
Requested data remains on the message center module until the OK key is pressed. The background information (time of day and total machine hours) then reappears. During the loading cycle, payload weight is shown for off-highway trucks and large wheel loaders. Any previously selected gauge function or default data is overridden when an abnormal condition exists. The occurrence of an abnormal condition will cause the event information to be displayed on the message area. After the abnormal condition is corrected or the abnormal condition is acknowledged, the original gauge parameter information will be displayed on the message area. Use the Parameter Table for a complete list of VIMS parameter names and corresponding numbers. Not all the parameters in the table are used with every machine. If an invalid parameter number (XXX) is entered, the message area shows:
Note: If an event occurs during the operator ID function, the operator ID function is aborted and replaced with event information.
“GAUGE” Key The “GAUGE” key is used to request parameter information. The information will be displayed on the universal gauge and the message area of the message center module. The key may be used in two different ways.
Illustration 169
g00484275
An example of the message area display for a requested parameter with a failure is shown here:
First method: Press the “GAUGE” key once in order to display the first available gauge parameter on the first line of the message area. The second line of the message area displays the values of the gauge parameter. The parameter’s relative values are displayed on the universal gauge. An example of the message area is shown here: Illustration 170
g00484276
88 Systems Operation Section
Pressing the “F1” key toggles the message center display in order to show service information. This mode replaces the ERR text with a meaningful description of the problem. An example of the message center is shown here:
Illustration 173
g00484278
Pressing the “F1” key again would show the information that was previously shown on the second line. Illustration 171
g00484277
• DATA EVENTS
Note: For a listing of message center text and FMI codes, refer to the Testing and Adjusting, “Failure Mode Identifier” section of this manual.
When a data event is displayed on the message center, pressing the “F1” key will access additional parameter information.
FORWARD and BACKWARD Arrow Keys The arrow keys gives the operator a way to scroll through message area information.
“F1” Key
Illustration 174
The “F1” key (5) is used by the operator to request additional information about maintenance (system) and data (machine) events. The “F1” key also has special use with LWL payload. Refer to the Systems Operation, “LPS Operating Functions Summary” section of this manual.
g00569889
The parameter value and units will be displayed on the second line of the message center. An example of the parameter information is shown here:
• DIAGNOSTIC EVENTS When a diagnostic type of maintenance event is displayed on the message center, pressing the “F1” key will access additional diagnostic information. The diagnostic information is shown on the second line of the message area.
Illustration 175
g00569901
Pressing the “F1” key again would show the information that was previously shown on the second line of the message area.
Illustration 172
g00569871
The additional diagnostic information is listed here: MID, CID, and FMI. An example of the diagnostic information is shown here:
Note: Single Pole Single Throw (SPST) switches are either OPEN or switches are CLOSED, so these switches do not have CID or FMI diagnostic information. Diagnostics for switches will be displayed as the switch status: OK, OPEN, NEUTRAL, UP, etc. An example of the status display is shown here:
89 Systems Operation Section
Oil Level Switch
Illustration 176
g00484280
Note: Double Pole Single Throw (DPST) switches can have diagnostic codes.
“F2” Key The “F2” key is not used with applications prior to 9.X software on any VIMS machines. The “F2” key is used with wheel loader payload. Refer to the Systems Operation, “LPS Menu Function Summary” section of this manual.
“F3” Key The “F3” key is not used with applications prior to 9.X software on any VIMS machines. For 9.X or later class of on board software and LWL payload, refer to the Systems Operation, “LPS Menu Function Summary” section of this manual.
Illustration 177
g00482124
Oil Level Switch (“Engine, Hydraulic”) (1) Switch (2) Schematic symbol
Oil level switch (1) is closed to ground during normal operation. The switch opens when the oil level is less than the minimum level. When the switch opens the VIMS module warns the machine operator of the low oil level. When the switch is tested on the bench, the switch is open. The float is in the DOWN position.
Pump Inlet Valve Switch (LHEX) i01382844
Switches SMCS Code: 1435; 7332 Note: The switches that are listed in this section may NOT be used on all machines. Switches provide an open, a ground or a +battery signal to the switch inputs of the VIMS modules. A switch can be open or a switch can be closed.
• When a switch is open, no signal is provided to the corresponding input of the VIMS modules. The condition of no signal is also called “floating”.
• When a switch is closed, the ground or +battery
signals are provided to the corresponding inputs of the VIMS modules.
Illustration 178 Pump Inlet Valve Limit Switch (1) Switch (2) Schematic symbol
g00482127
90 Systems Operation Section
Switch (1) is attached to the control handle of the inlet suction line valve for each pump. The valves are located at the hydraulic tank. When the inlet valve of the pump is open the switch is closed. The closed switch grounds the signal circuit. When the inlet valve of the pump is closed, the switch opens the signal circuit. A machine could use multiple pump inlet valve switches that are wired in series. If any of the pump inlet valve switches are open, the VIMS module warns the operator that the inlet valve of the pump is closed. When the switch is tested on the bench, the switch is open. The normally closed contacts are not used in this application.
Steering Flow Switches
Chip Detector Switch (LHEX) Illustration 180
g00482137
Steering Flow Switches (1) Schematic symbol (2) Switch
During normal operation, steering flow switch (2) is closed to ground. The switch opens when the oil flow in the steering system is less than the specified limit. The VIMS module warns the operator that the oil flow of the steering systems is low when the switch is open. Switch (2) is used in the primary steering systems and the supplemental steering systems. When the switch is tested on the bench, the switch is open.
Filter Indicator Switches Plunger Type Illustration 179
g00482136
Chip Detector Switch (1) Schematic symbol. (2) Switch.
During normal operation, switch (2) is open. The switch contacts are magnetic in order to attract metal particles. The switch closes the signal circuit to ground, when enough metal chips cover the switch contacts in order to complete the circuit. The VIMS module warns the operator that chips have been detected when the switch is closed. When the switch is tested on the bench, the switch is open. No metal objects are covering the contacts of the switch. The switch is considered closed, when the resistance is between approximately 0 and 2000 ohms.
Illustration 181 Filter Bypass Switch (1) Switch (2) Schematic symbol
g00482139
91 Systems Operation Section
Filter bypass switch (1) has a plunger within the switch that closes the contacts with an acceptable pressure drop across the filter. The switch closes the signal circuit to ground during normal operation. When the pressure across the filter is greater than the specified limit the switch plunger moves in order to allow the switch contacts to open. The VIMS module will warn the operator that the filter is restricted when the switch is open. When the switch is tested on the bench, the switch is open. Note: The VIMS module takes the fluid temperature into consideration before warning the operator. Cold fluid has a higher viscosity which causes a higher differential pressure across the filter than fluid at normal operating temperature. When the fluid temperature is below a specified limit, the filter bypass event is ignored by the VIMS module. The temperature inhibit is not used with the fuel filter.
Differential Pressure Type
Coolant Flow Switch
Illustration 183
g00482162
Coolant Flow Switch (1) Switch (2) Schematic symbol
During normal operation, coolant flow switch (1) is closed to ground as coolant flows against the paddle. The switch opens when coolant flow is less than the specified limit. The VIMS module warns the operator of the low coolant flow in the engine cooling system when the switch is open. When the switch is tested on the bench, the switch is open.
Steering Pressure Switch
Illustration 182
g00482160
Differential Pressure Switch (1) (2) (3) (4)
Switch Typical schematic symbol Filter inlet port Filter outlet port
Differential pressure switch (1) is activated by a pressure difference between the filter inlet port (3) and filter outlet port (4). The switch contacts are held closed by a spring inside the switch during normal operation. When the pressure at filter inlet port (3) exceeds the pressure at filter outlet port (4) by a specified amount, the force of the spring is overcome and the switch contacts are opened. The VIMS module will warn the operator that the filter is restricted when the switch is open. When the switch is tested on the bench, the switch is closed because there is no pressure difference between ports (3) and (4).
Illustration 184
g00482164
Steering Pressure Switch (1) Schematic symbol (2) Switch
During normal operation, steering pressure switch (1) is closed to ground. When the pressure of the steering system is less than the specified limit, the switch is open. When the pressure of the steering system is greater than the specified limit, the switch is closed. When the switch is being tested on the bench, contact B and contact C of the switch are closed. When the switch is tested on the bench, the switch contacts A and Bare open. The normally closed contacts (B and C) are not used in this application.
92 Systems Operation Section
Automatic Lubrication Grease Level Switch (LWL)
Pulse width modulated (PWM) – The sensor produces a digital signal with a duty cycle that varies as the condition changes. The frequency of this signal is relatively constant and the frequency contains no information.
Frequency Sensors Frequency sensors produce a sine wave signal or square wave signal that varies in frequency (Hz) as the condition changes.
Suspension Cylinder Pressure Sensor
Illustration 186 Illustration 185
g00527779
g00482617
Suspension Cylinder Pressure Sensor (1) Schematic symbol (2) Sensor
Automatic Lubrication Grease Level Switch (1) Switch (2) Schematic Symbol
The level of the auto lube lubricant is monitored by the VIMS on the 994D. When the level of lubricant in the tank becomes low, level switch (1) will open. This causes the VIMS to display a warning on the message center. i01385531
Sensors SMCS Code: 1408-NS Note: The sensors that are listed in this section may NOT be used on all machines. Sensors provide the VIMS modules with input information about changing conditions. The sensors provide information such as speed and temperature. The sensor signal changes in a proportional manner in order to reflect the changing condition. The types of sensor signals that are recognized by the VIMS modules are listed here: Frequency – The sensor produces an AC signal that varies in frequency (Hz) as the condition changes.
Suspension cylinder pressure sensor (2) reacts to the pressure in a suspension cylinder. The sensor receives operating power from the machine electrical system. The sensor sends a square wave signal that increases in frequency as the suspension cylinder pressure increase to the VIMS interface module. The signal voltage is relatively constant and the voltage contains no information. In order to determine the suspension cylinder pressure, the VIMS module measures the frequency of the signal. Calibration of the VIMS truck payload system is required after replacement of the suspension cylinder pressure sensor.
93 Systems Operation Section
Resistive Sensors
Speed Sensor
Fuel Level Sensor - Resistive Type
Illustration 187
g00482515
Speed Sensor Illustration 189
The speed sensor sends a signal that is proportional to the engine speed of the 994 to the VIMS module. Because this is a powered sensor, the output voltage is relatively constant and the output voltage does not contain information.
g00482519
Fuel Level Sender (1) Sender (2) Schematic symbol (3) Pictograph symbol
Lift and Tilt Cylinder Oil Pressure Sensor
Illustration 190
g00482523
Buffer (Fuel Level) Illustration 188
g00482517
Lift and Tilt Cylinder Oil Pressure Sensor (1) Schematic symbol (2) Sensor
Lift and tilt cylinders oil pressure sensor (2) reacts to the pressure that is in the lift cylinder or tilt cylinder. One Lift and tilt cylinders oil pressure sensor is used in each oil circuit. The sensor receives operating power from the machine electrical system. The sensor sends a square wave signal to the VIMS. The square wave signal increases in frequency as the pressure in the suspension cylinders increases. The signal voltage is relatively constant and the voltage does not contain information. The VIMS measures the frequency in order to determine the pressure in the lift cylinders or tilt cylinders. Calibration of the VIMS loader payload system is required after replacement of the lift cylinder oil pressure sensor and tilt cylinder oil pressure sensor.
(4) Schematic symbol (5) Buffer
Fuel level sender (1) and buffer (5) provide a way of sensing the level of the fuel. A resistive signal which corresponds to the depth of the fuel within the fuel tank is sent from sender (1) to buffer (5). Buffer (5) receives operating power from the machine electrical system. The buffer converts the resistive sender signal into a PWM signal which is sent to the VIMS. The VIMS measures the duty cycle of the signal from the buffer in order to determine the level of fuel on large wheel loaders (LWL).
94 Systems Operation Section
Pulse Width Modulated Sensors (PWM)
Temperature Sensor - Fluids And Ambient Air
Illustration 193
g00482655
Fluid Temperature Sensor (1) Schematic symbol (2) Sensor
Temperature sensor (2) reacts to the temperature of fluids such as hydraulic oil, power train oil, or engine coolant. The sensor receives operating power from the VIMS interface module. The sensor sends a signal that changes as the fluid temperature changes to the main module. The VIMS measures the duty cycle of the sensor signal in order to determine the fluid temperature. Illustration 191
g00482644
Temperature Sensor - Engine Exhaust Gas
Pulse Width Modulated Signal
Illustration 194 Engine Exhaust Gas Temperature Sensor (1) Schematic symbol (2) Sensor
Illustration 192
g00482601
Typical Schematic of a PWM Sensor
Pulse width modulated sensors (PWM) produce a digital signal with a duty cycle that varies as the condition changes. The frequency remains constant.
g00482659
95 Systems Operation Section
Temperature sensor (2) reacts to the temperature of engine exhaust gas. The sensor receives operating power from the VIMS interface module. The sensor sends a PWM signal which changes as the temperature of the engine exhaust gas changes to the main module. The control measures the duty cycle of the sensor signal in order to determine the temperature.
Pressure Sensor
The coolant loss sensor is an electronic switch that is activated by coolant. During normal operation, coolant loss sensor (1) is closed to ground. The switch opens when the coolant level is too low. The VIMS module warns the operator of a very low coolant condition in the cooling system when the switch opens. The sensor has a connector with three contacts. Contact “A” connects to the +8 DCV sensor power from the interface module. Contact “B” connects to ground and contact “C” (switch output) connects to the input of the interface module. When the sensor is tested on the bench, the switch is open when power and ground are disconnected. The sensor cannot be tested in this state. Note: DO NOT remove plastic sleeve (3) from the probe. This plastic sleeve is required for proper switch operation.
Illustration 195
g00482680
Pressure Sensor (1) Schematic symbol (2) Sensor
Pressure sensor (2) reacts to system pressure such as system air pressure. The sensor receives operating power from the appropriate interface module. The sensor sends a PWM signal to the VIMS that changes in proportion to the air pressure. The VIMS measures the duty cycle of the sensor signal in order to determine the pressure.
The internal electronic switch that is in this sensor functions as a mechanical switch. The switch is either open or the switch is closed to ground. Contact C is closed to contact B. This sensor works with ONLY water or water/glycol solutions (antifreeze). The sensor will not work with oils, fuels, etc. A pull-up voltage must be present at the signal lead. The pull-up voltage is used in order to pull up the open circuit voltage, when a loss of coolant has caused the switch to open. This pull-up voltage (5 VDC) is supplied by the interface module. The pull-up voltage can only be measured with a multimeter when the switch is open. When 5 volts are present on the signal lead during normal operation, the switch is open.
Lift Arm Angle Position Sensor
Coolant Loss Sensor
Illustration 197 Illustration 196 Coolant Loss Sensor (1) Sensor (2) Schematic symbol (3) Plastic sleeve
g00482683
Lift Arm Angle Position Sensor (1) Schematic symbol (2) Sensor
g00482241
96 Systems Operation Section
The angle position sensor of the lift arm is an input to an interface module (994). The position sensor is mounted near the pivot center of the machines lift arm. This is a Pulse Width Modulated Sensor (PWM). The sensor receives operating power from the machine electrical system. The sensor has an output frequency of 600 Hz. The frequency will remain constant. This sensor continuously generates a PWM signal. The duty cycle varies in proportion to the angle of the lift arm. The interface module receives the duty cycle of the PWM signal. The interface module then measures the duty cycle of the PWM signal in order to determine the angle of the lift arm. the VIMS module uses this information in order to determine the location of the lift arms for use with the loader payload system. Note: The position angle sensor of the lift arm must be calibrated after replacement. See the Testing and Adjusting, “LPS Calibration” section of this manual for the calibration procedure and see the Testing and Adjusting, “Position Sensor (Lift Arm) Adjust” section for the adjustment procedure. Be careful not to force rotation of the sensor beyond the mechanical limits. Forcing the rotation of the sensor may cause permanent damage.
Fuel Level Sensor - Ultrasonic Type
Fuel level sensor (4) reacts to the level of the fuel in the fuel tank. Sensor (4) emits an ultrasonic signal up guide tube (3). The ultrasonic signal is reflected off a metal disk on the bottom of float (2) and the signal returns to the sensor. The sensor measures the travel time of the ultrasonic signal. The travel time includes the time to the float and the time back to the sensor. The sensor also measures the temperature of the fuel in order to compensate accordingly. The status of contact 3of the sensor indicates whether the sensor is used in a deep tank or a shallow tank. Contact 3 should be open for a deep tank that has a maximum depth of 2300 mm (90 inch). Contact 3 should be grounded for a shallow tank that has a maximum depth of 1150 mm (45 inch). The sensor receives operating power from the machine electrical system. The VIMS interface module receives a PWM signal from the sensor that changes as the fuel level changes. The VIMS module measures the duty cycle of the sensor signal in order to determine the fuel level. Note: The fuel level sensor cannot be bench tested. The sensor must have fuel in guide tube (3) in order to operate properly. The sensor can be tested only while the sensor is installed on a machine. For specifications and test procedures, see the Testing and Adjusting, “PWM Sensor Tests” section. i00946127
Data Connectors SMCS Code: 1408-CY; 7553
Illustration 198
g00482602
Fuel Level Sensor - Ultrasonic Type (1) (2) (3) (4)
Schematic symbol Float Guide tube Sensor Illustration 199 RS-232 Port For Downloading 9D-3374 Connector
g00482691
97 Systems Operation Section
i01385587
Action Alarm SMCS Code: 7407
Illustration 200
g00482692
Mating Connector For Downloading Cable 8C-6313 Connector Illustration 203
g00583116
Action Alarm (1) Schematic symbol (2) Action alarm
The action alarm always connects to connector contact 24 of the VIMS main module. The intermittent SOUNDING of the action alarm (category 3) tells the operator to shutdown the machine immediately. The VIMS main module will SOUND the action alarm, whenever a category 3 warning exists.
Illustration 201
g00482693
8D-9537 Cap
i00946469
Action Lamp SMCS Code: 7431
Illustration 202
g00304970
Action Lamp Symbol
The action lamp connects to connector contact 20 of the VIMS main module. The action lamp is an incandescent lamp (“most C-series OHT use an LED”) that is located within the operator’s viewing area. The FLASHING of the action lamp tells the operator that a condition exists. The condition will require changing the operation of the machine. The main module FLASHES the action lamp whenever a warning category 2, 2S or 3 problem exists.
A category 2 special warning will sound this alarm continuously. This indicates an urgent need to modify machine operation. The action alarm does not operate when the engine is stopped. The VIMS main module gets information from the engine control in order to determine that the engine is running. The action alarm SOUNDS, as required. The action alarm SOUNDS when the engine is running and a category 2 special warning or a category 3 warning is present.
98 Systems Operation Section
i01385592
i01385600
Payload Lamps
Service Lamp
SMCS Code: 1430-LMP; 7494-LMP
SMCS Code: 7431-LMP
Illustration 204
g00551434
Truck Payload Lamp (1) Truck Payload Lamp (2) Schematic
The red payload lamp output connector contact 22 and green payload lamp output connector contact 23 of the VIMS main module are connected to the truck payload lamps. The payload lamps are located outside of the cab. The lamps are in an area that is easily seen by the loader operator that is loading the truck. The payload lamps can be turned ON by the VIMS module at various stages of the truck loading process.
Illustration 205
g00551483
Service Lamp (1) Service Lamp (2) Schematic
The service indicator lamp connects to the output of the service indicator lamp (contact 21) of the VIMS main module. The service indicator lamp has a blue lens. The service indicator lamp is located outside the cab in an area that is easily seen by someone that is a distance away from the machine. The service indicator lamp is turned ON in order to warn the service personnel that the VIMS module has detected an active event (data or machine). A flashing service indicator lamp indicates that the event could be damaging to the machine. If the event becomes inactive, the service indicator lamp is turned OFF. However, the event is stored in the main module memory. When power is applied to the VIMS module (key start switch to the ON position), the main module memory is checked for any inactive events. If any events are found, the service indicator lamp is FLASHED three times. If no events are found, the service indicator lamp is FLASHED once. The service indicator lamp can be reset via the keypad or the off-board service tool even if the event is still active. For more information, see the Systems Operation, “Service Operations” section of this manual.
99 Systems Operation Section
i01385611
Related Components SMCS Code: 1408 Machine Batteries, Alternator And Electrical System The main module monitors the voltage of the machine electrical system. The control measures the system voltage. The control then determines whether the system voltage is within specified limits. The voltage is measured at contact 1 (+battery) of the main module.
Warm up solenoid valves are used by the large hydraulic excavators in order to ensure that the hydraulic controls work smoothly. Hydraulic oil is allowed to flow through the main control valve spool for each implement during periods of hydraulic inactivity. The solenoid is de-energized during this time. When hydraulic activity is resumed the VIMS module energizes the solenoid in order to close the warm up valve. This stops the warm up oil flow through the main control valves. The VIMS module uses the information that is received from the electronic engine control in order to regulate the operation of the solenoids.
Diode Assemblies
Other Electrical Components Some machines have electronic control modules that are not part of the VIMS, but the electronic control modules communicate with the VIMS. The CAT data link connects these electronic controls together. This allows the sharing of information such as engine oil pressure, engine speed, harness codes and diagnostic information. For example, an engine control sends engine speed information to the main module over the CAT data link. In this situation, the engine speed sensor is not part of the VIMS.
Solenoids
Illustration 207
g00482941
(1) Schematic symbol of the type A diode assembly (2) Schematic symbol of the type B diode assembly (3) Diode assembly
Illustration 206
g00482940
(1) Solenoid (2) Schematic symbol
The solenoid is used in order to allow “VIMS” to cause action. This action could be activating a lube system or stopping the engine. Warm Up Solenoid Valves
Diode assembly (3) is installed at all solenoids that are NOT activated by an electronic control module. The assembly is installed between the machine harness and the solenoid. These solenoids could include various hydraulic solenoid valves and the horn solenoid. Using the diode assemblies reduces the amount of electrical noise that is created by the operation of these solenoids. Electrical noise can cause erratic operation of the VIMS. The type A diode assembly is used on most solenoids. The type B diode assembly is used on the air conditioner clutch solenoid.
100 Systems Operation Section
Service Key Switch
g00482942
Illustration 208 Service Key Switch (1) Key switch (2) Schematic symbol
The service key switch is used in order to access the VIMS without turning the key start switch of the machine to the ON position. i01488834
Parameters SMCS Code: 7601-NQ Table 22
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
99
“THROTTL LCK ENABL”
100
101
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
Throttle Lock Enable Switch
36
Calculated
This indicates the position of the throttle lock enable switch. The switch is either ON or OFF.
“ENG SPD”
Engine Speed
36/57/58
Frequency
This is the actual rotational speed of the crankshaft. The sensor is mounted on the flywheel housing (994) or on the camshaft (engine ECM). The sensor generates a signal that varies in frequency as the teeth on the gear pass. The signal is sent to an ECM. The ECM uses the signal in order to determine the speed of the engine.
“TRBO IN PRES”
Turbo Inlet Pressure
36
Analog
The pressure sensor for the turbocharger air inlet sends a signal that varies in voltage to the engine ECM. The engine ECM then calculates the pressure according to the voltage that is received. (continued)
101 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
102
“LT TRBO IN PRES”
Left Turbocharger Inlet Pressure
36
Analog
The left turbocharger inlet pressure sensor sends a signal that varies in voltage to the engine ECM. The engine ECM then calculates the pressure according to the voltage that is received.
103
“RT TRBO IN PRES”
Right Turbocharger Inlet Pressure
36
Analog
The right turbocharger inlet pressure sensor sends a signal that varies in voltage to the engine ECM. The engine ECM then calculates the pressure according to the voltage that is received.
104
“PEAK AIR FLTR”
Peak Air Filter (Restriction)
36
Calculated
This is used to show the peak or maximum air filter restriction for a given period of time. The engine ECM calculates this value by subtracting the value of the atmospheric pressure from the value of the turbocharger inlet pressure.
104
“AIR FLTR”
Air Filter (Restriction)
36
Calculated
This indicates the degree of restriction of the engine air filter. The engine ECM uses the atmospheric air pressure and the turbocharger air inlet pressure in order to calculate the amount of restriction across the engine air filter. The engine power is derated 2 percent per kPa of pressure difference above 6.5 kPa, up to a maximum total engine derate of 20 percent. The engine power is derated up to 20 percent, if the engine ECM senses a malfunction of either of these pressure sensors.
105
“BOOST PRES”
Boost Pressure
36
Analog
The turbocharger outlet pressure sensor sends a signal that varies in voltage to the engine ECM. The engine ECM then calculates boost according to the voltage that is received by subtracting atmospheric pressure.
106
“LT EXH TEMP”
Left Exhaust Temperature
36/57/58
PWM
This is the temperature within the left exhaust manifold of the engine. An ECM receives a signal that changes in pulse width as the exhaust within the left exhaust manifold changes temperature. The ECM uses the pulse width that is received in order to determine the temperature.
107
“RT-LT EXH TEMP”
Right Minus Left Exhaust Temperature
49
Calculated
The VIMS calculates this value by subtracting the left manifold exhaust temperature from the right manifold exhaust temperature. (continued)
102 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
108
“RT EXH TEMP”
Right Exhaust Temperature
36/57/58
PWM
This is the temperature within the right exhaust manifold of the engine. An ECM receives a signal that changes in pulse width as the exhaust within the right exhaust manifold changes temperature. The ECM then uses the pulse width that is received to determine the temperature.
109
“TRBO OUT PRES”
Turbocharger Outlet Pressure
36
Analog
The turbocharger outlet pressure sensor sends a signal that varies in voltage to the engine ECM. The engine ECM then calculates the pressure according to the voltage that is received.
110
“AFTCLR TEMP”
Aftercooler Temperature (Coolant)
36/57
PWM
This is the temperature of the coolant outlet of the engine aftercooler. The sensor sends a signal that changes in pulse width to an ECM. The ECM then uses the pulse width that is received to determine the temperature.
111
“F AFTRCLR TEMP”
Front Aftercooler Temperature (Coolant)
36/57
PWM
This is the temperature in the front section of the engine aftercooler. The sensor sends a signal that changes in pulse width to an ECM. The ECM uses the pulse width that is received to determine the temperature.
112
“R AFTRCLR TEMP”
Rear Aftercooler Temperature (Coolant)
36/57
PWM or Analog
This is the temperature in the rear section of the engine aftercooler. The sensor sends a signal that changes in pulse width to an ECM. The ECM uses the pulse width that is received to determine the temperature.
113
“START AID SW”
Start Aid Switch
36
Switch
This indicates the status of the start aid switch. The start aid switch is either ON or OFF.
114
“WASTEGATE POS”
Position of the Wastegate Valve
36
Analog
This is the position of the wastegate valve on the outlet of the turbocharger. The position sensor for the wastegate has an output that changes in voltage as the position of the wastegate valve changes. The engine ECM calculates the position of the wastegate from the voltage that is received.
Source Module(s)
Signal Type
Parameter Description
(continued)
103 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
115
“COOL FAN SPD”
Speed of the Cooling Fan
36
Frequency
This is the speed of the shaft of the engine cooling fan. The sensor that is mounted on this shaft generates a signal that varies in frequency. The signal changes as the speed of the cooling fan changes. The engine ECM calculates the speed of the engine cooling fan from the signal that is received.
116
“ENG COLD MODE”
Cold Mode Status
36
Calculated
This indicates the cold mode status. The status is calculated by the engine ECM. The status is either ON or OFF.
117
“ENG DERATE”
Engine Power Derate Percentage
36
Calculated
This is used to read the present engine power derate percentage. Zero indicates that the engine power is NOT derated.
118
“AIR FLTR”
Peak Air Filter Restriction
36
Calculated
This indicates the restriction of the peak air filter. The amount of restriction is calculated by the engine ECM.
119
“ETHER INJEC”
Ether Injection
36
Calculated
This indicates when ether is being injected into an engine as a starting aid.
120
“FUEL POS”
Fuel Position
36
Calculated
This is calculated by the engine ECM after considering the desired engine speed, fuel ratio control (FRC), and actual engine speed.
121
“ENG LOAD”
Engine Load
36
Calculated
This is calculated by the engine ECM. The engine ECM considers the data that is listed below for this calculation: Engine speed Position of the throttle switch Throttle position Boost pressure Atmospheric pressure This is shown as a percent of a full load.
122
“FUEL FLTR”
Fuel Filter (Bypass)
36/57/58
Switch
This is the status of the fuel filter. The status is PLUGGED or OK. When the pressure across the filter is greater than the specified pressure, the plunger of the switch moves. This allows the switch contacts to open. This tells the ECM that the filter is PLUGGED. With normal operation, the switch is closed to ground. (continued)
104 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
123
“FUEL LVL”
Fuel Level
57/58/50
PWM
This is the level of fuel in the fuel tank. The fuel level is measured by a fuel level sensor that is mounted in the bottom of the fuel tank (Off-highway trucks/Large excavators). This sensor sends an ECM a pulse that varies in width as the fuel level changes. The fuel level is then calculated according to the pulse width that is received. The sensor also takes the temperature of the fuel into consideration, and changes the pulse width accordingly. Large wheel loaders use a resistive sensor and float that connects to a PWM buffer.
124
“THROTTL SW POS”
Throttle Switch Position
36
Switch
This is the present setting of the ten position throttle switch. (Large excavtors only)
125
“THROTTL POS”
Throttle Position
36
PWM
The is the position of the throttle foot pedal. The throttle position sensor has a pulse output that changes in width as the foot position of the pedal changes. The engine ECM uses the pulse width that is received to determine the position of the throttle.
126
“FUEL FLOW”
Fuel Flow
36
Calculated
This is calculated by the VIMS from the Fuel Flow Engl parameter received from the engine ECM. The Fuel Flow Engl value (parameter 127, in gal/sec), is converted to this fuel flow (parameter 126). This represents the rate at which fuel is used by the engine. The units for this parameter are gallons per hour.
127
“FUEL FLOW ENGL”
Fuel Flow (English Units)
36
Calculated
This value is calculated by the engine ECM. The value is used to show the rate at which fuel is used by the engine (English units). This value is used on older machines. The units are gallons per second.
128
“FUEL PRES”
Fuel Pressure Filtered (Primary)
57/58
PWM
This is the fuel pressure that is present after the fuel filter.
129
“ENG FUEL RATE”
Engine Fuel Rate
36
Calculated
This value is calculated by the engine ECM This is the rate at which fuel is used by the engine. The units are liters per hour.
130
“ENG OIL LVL”
Engine Oil Level
36/57/58
Switch
This is used to tell the engine ECM when the engine oil level is less than the minimum level that is desired. , The switch is open when the oil level is low. In normal operation, the switch is closed to ground. (continued)
105 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
131
“ENG OIL PRES”
Engine Oil Pressure
36/58
Analog
This is the oil pressure inside of the the engine after the oil filter. The sensor sends a signal that varies in voltage to an ECM. The ECM then calculates the pressure according to the voltage that is received. Actual warning pressure depends upon the engine speed.
132
“ENG OIL PRES AB”
Engine Oil Pressure (Absolute)
36
Analog
The oil pressure (absolute) inside the engine. The sensor sends to an ECM an voltage that varies as the pressure changes. The ECM then calculates the pressure according to the voltage that it receives. Actual warning pressure depends upon the engine speed. Atmospheric pressure is taken into account for this calculation.
133
“CNKCASE PRES”
Crankcase Pressure
36
Analog
The pressure inside the crankcase. The sensor sends the engine ECM a voltage that varies as the pressure changes. The engine ECM then calculates the pressure according to the voltage that it receives.
134
“ENG COOL FLOW”
Engine Coolant Flow
57/58
Switch
This switch notifies the VIMS of the status of coolant flow in the engine cooling system (water jacket). During normal operation, the coolant flow switch is closed to ground. The switch opens when coolant flow is less than specified.
135
“ENG COOL TEMP”
Engine Coolant Temperature
36/58
PWM
This is the coolant temperature in the engine cooling system. An ECM receives a signal that changes in voltage or pulse width as the engine coolant temperature changes. The ECM then determines the temperature from the signal that is received.
136
“HYD COOLR BLKR”
Hydraulic Cooler Blocker
49
Switch
This is the state of the Hydraulic Oil Cooler Blocker. The status is either ON or OFF. ON means that the hydraulic oil is blocked from passing through the oil cooler assembly while the machine is warming up.
137
“AFTRCLR LVL”
Aftercooler (Coolant) Level
57/58/50
Switch
This switch notifies the VIMS of the status of the coolant level of the aftercooler. The switch (sensor) opens when the coolant level is low. During normal operation the switch is closed to ground. This switch (sensor) is an capacitive type switch that is activated only by water or anti-freeze.
Source Module(s)
Signal Type
Parameter Description
(continued)
106 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
138
“ENG COOL LVL”
Engine Coolant Level
57/58
Switch
This switch notifies the VIMS of the status of the engine coolant level. The switch (sensor) opens when the coolant level is low. During normal operation the switch is closed to ground. This switch (sensor) is an capacitive type switch that is activated only by water or anti-freeze.
140
“SYS VOLTAGE”
System Voltage
49
Calculated
This is the actual voltage that exists between the positive battery terminal of the machine and frame ground measured at the main module.
141
“MAIN PILOT PRES”
Main Pilot Pressure
49
PWM
This is the main pilot pressure of the hydraulic system. This pilot pressure includes the swing, implement and travel pilot pressures. An ECM receives a signal that varies in pulse width as the pressure changes.
142
“IMPL PRES”
Implement Pilot Oil Pressure
58
PWM
This indicates that the pressure of the pilot oil for the implements. An ECM receives a signal that varies in pulse width as the pressure changes.
143
“IMPL PRES SW”
Implement Pressure Switch
58
Switch
This is the implement pressure switch status. The status of this switch indicates when the boom, bucket or stick function are active or inactive.
144
“UNFLTR OIL PRES”
Unfiltered Oil Pressure
36
Analog
This is the absolute pressure (inlcudes atmospheric pressure) of the engine oil before the engine oil filter. The engine ECM receives a voltage that changes as the pressure changes.
145
“HI BOOST PRES ”
Boost Pressure Front or Rear High
49
Calculated
This parameter monitors the warning status from the engine ECM to determine if the front or rear boost pressure is high.
146
“LO BOOST PRES”
Boost Pressure Front or Rear Low
49
Calculated
This parameter monitors the warning status parameter from the engine ECM to determine if the front boost pressure is low or the rear boost pressure is low.
147
“CNKCASE PRES”
Crankcase Air Pressure (Gauge)
36
PWM
The air pressure that is present inside of the crankcase.
149
“COLD CYL CUTOUT”
Cold Cylinder Cutout
36
Calculated
This is used to read and program the Cold Cylinder Cutout Strategy status.
150
“AVE CYL TEMP”
Engine Cylinder No. 1 Exhaust Temperature
36
Analog
The temperature of the exhaust of the No. 1 engine cylinder. (continued)
107 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
151
“INJ-CYL 1 TEMP”
Engine Cylinder No. 1 Exhaust Temperature
36
Analog
The temperature of the exhaust of the No. 1 engine cylinder.
152
“INJ-CYL 2 TEMP”
Engine Cylinder No. 2 Exhaust Temperature
36
Analog
The temperature of the exhaust of the No. 2 engine cylinder.
153
“INJ-CYL 3 TEMP”
Engine Cylinder No. 3 Exhaust Temperature
36
Analog
The temperature of the exhaust of the No. 3 engine cylinder.
154
“INJ-CYL 4 TEMP”
Engine Cylinder No. 4 Exhaust Temperature
36
Analog
The temperature of the exhaust of the No. 4 engine cylinder.
155
“INJ-CYL 5 TEMP”
Engine Cylinder No. 5 Exhaust Temperature
36
Analog
The temperature of the exhaust of the No. 5 engine cylinder.
156
“INJ-CYL 6 TEMP”
Engine Cylinder No. 6 Exhaust Temperature
36
Analog
The temperature of the exhaust of the No. 6 engine cylinder.
157
“INJ-CYL 7 TEMP”
Engine Cylinder No. 7 Exhaust Temperature
36
Analog
The temperature of the exhaust of the No. 7 engine cylinder.
158
“INJ-CYL 8 TEMP”
Engine Cylinder No. 8 Exhaust Temperature
36
Analog
The temperature of the exhaust of the No. 8 engine cylinder.
159
“INJ-CYL 9 TEMP”
Engine Cylinder No. 9 Exhaust Temperature
36
Analog
The temperature of the No. 9 engine cylinder.
160
“INJ-CYL 10 TEMP”
Engine Cylinder No. 10 Exhaust Temperature
36
Analog
The temperature of the exhaust of the No. 10 engine cylinder.
161
“INJ-CYL 11 TEMP”
Engine Cylinder No. 11 Exhaust Temperature
36
Analog
The temperature of the exhaust of the No. 11 engine cylinder.
162
“INJ-CYL 12 TEMP”
Engine Cylinder No. 12 Exhaust Temperature
36
Analog
The temperature of the exhaust of the No. 12 engine cylinder.
163
“INJ-CYL 13 TEMP”
Engine Cylinder No. 13 Exhaust Temperature
36
Analog
TThe temperature of the exhaust of the No. 13 engine cylinder.
164
“INJ-CYL 14 TEMP”
Engine Cylinder No. 14 Exhaust Temperature
36
Analog
The temperature of the exhaust of the No. 14 engine cylinder.
165
“INJ-CYL 15 TEMP”
Engine Cylinder No. 15 Exhaust Temperature
36
Analog
The temperature of the exhaust of the No. 15 engine cylinder.
166
“INJ-CYL 16 TEMP”
Engine Cylinder No. 16 Exhaust Temperature
36
Analog
The temperature of the exhaust of the No. 16 engine cylinder. (continued)
108 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
167
“ENG PRELUBE”
Engine PreLube Mode
36
Calculated
This indicates the current mode of the engine pre-lube system. The engine prelube modes are as follows: Pre-Lube is OFF Pre-Lube is ON Pre-Lube is DISABLED Pre-Lube is COMPLETED
168
“LT AIR FLTR RES”
Left Air Filter Restriction
36
Calculated
This is the pressure drop across the left air filter. The pressure is calculated by subtracting the left turbocharger inlet pressure from the atmospheric pressure.
169
“RT AIR FLTR RES”
Right Air Filter Restriction
36
Calculated
This is the pressure drop across the right air filter. The pressure is calculated by subtracting the right turbocharger inlet pressure from the atmospheric pressure.
171
“ENG OIL PRES ST”
Engine Oil Pressure Status
36/34/33
Calculated
This is the status of the engine oil pressure. The status of the engine oil pressure is OK, LO or HI.
172
“CRNK WO INJ ST”
Crank Without Injection Status
36/34/33
Switch
This reads the crank without injection status. The crank without injection status is either ON or OFF.
173
“THROTTL SW1 ST”
Throttle Switch No. 1 Status
36
Switch
This indicates the status of the No. 1 throttle switch. The switch contacts are closed (grounded) when the the status switch is ON.
174
“THROTTL SW2 ST”
Throttle Switch No. 2 Status
36
Switch
This indicates the status of the No. 2 throttle switch. The switch contacts are closed (grounded) when the the status switch is ON.
175
“THROTTL SW3 ST”
Throttle Switch No. 3 Status
36
Switch
This indicates the status of the No. 3 throttle switch. The switch contacts are closed (grounded) when the the status switch is ON.
176
“THROTTL SW4 ST”
Throttle Switch No. 4 Status
36
Switch
This indicates the status of the No. 4 throttle switch. The switch contacts are closed (grounded) when the the status switch is ON.
177
“RT AIR FLTR”
Right Air Filter Restriction
36
Switch
This is the pressure drop across the right air filter. An open switch means a plugged filter.
178
“LT AIR FLTR”
Left Air Filter Restriction
36
Switch
This is the pressure drop across the left air filter. An open switch means a plugged filter. (continued)
109 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
179
“AIR FLTR STATUS”
Air Filter Restriction Status
36
Switch
This is the status of the air filter. The air filter is either PLUGGED or OK. When the pressure across the filter is greater than the specified pressure, the plunger of the switch moves and allows the switch contacts to open telling the ECM that the filter is PLUGGED. With normal operation the switch is closed to ground.
180
“ENG STATUS”
Overall Truck Engine Status.
36
Calculated
This indicates the status of the engine. This parameter provides the status (enabled or disabled) of the features that are listed below: Altitude Derate Cold Mode Cell Throttle Elevated Idle Engine Derate Engine Speed Cold Cylinder Cutout Low FUel Pressure Emergency Stop Shutdown Fuel Injection High Hydraulic Oil Temperature High Coolant Temperature Low Oil Pressure
181
“ALTERNATOR #1”
Alternator No.1
50
Frequency
This is the speed as indicated by the signal from the alternator R terminal. The R terminal signal is affected by belt slip and the health of the alternator.
182
“ALTERNATOR #2”
Alternator No.2
87
Frequency
This is the speed as indicated by the signal from the alternator R terminal. The R terminal signal is affected by belt slip and tthe health of the alternator.
184
“THROTTL BYPASS”
Throttle Bypass
36
Switch
This is the throttle override status. The status is either OFF or ON.
188
“TURBO INLET TEMP”
Turbo Inlet Temperature
36
Analog
The temperature of the turbo inlet air to the engine.
230
“FNL LUBE PRES”
Final Drive Lube Low Pressure
116
Switch
The status (OK, LOW or HIGH) of the final drive (differential) pump pressure, as indicated by a switch or sensor.
231
“BVL DIFF FLTR”
Diferential (Bevel Gear) Filter Status
116
Switch
The status of the differential (bevel gear) filter as indicataed by a switch or sensor. The status is either PLUGGED or OK.
232
“BVL PMP PRES”
Differential (Bevel Gear) Lube Pressure
116
PWM
This is the differential (bevel gear) lube pressure. The ECM reads the pulse width of the signal and determines the pressure from the signal that is received. (continued)
110 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
233
“FNL LUBE FLTR”
Final Drive Filter Switch
116
Switch
This is the status of the final drive (differential) filter switch. The status is either PLUGGED or OK.
234
“DIFF OIL LVL”
Differential Oil Level
116
Switch
This is the position of the differential (drive axle) oil level switch.
235
“DIFF TEMP”
Differential Oil Temperature
116
PWM
This is the temperature of the oil in the differential (axle). The ECM reads the pulse width of the signal and determines the pressure from the signal that is received.
240
“GND LVL SHUTDN R”
Ground Level Shutdown Signal Rear
36
Switch
This is the status of the rear ground level shutdown switch. The status is either ON or OFF.
250
“GND LVL SHUTDN F”
Ground Level Shutdown Signal Front
33
Switch
This is the status of the front ground level shutdown switch. The status is either ON or OFF.
251
“ENG DERATE F”
Engine Derate Percentage Front
33
Analog
This indicates the present front engine power percentage. Zero indicates the engine is not derated
252
“GOV STATUS F”
Slave Governing Status Front Engine
34
Calculated
This indicates the governing status (ALONE or SLAVE) of the front engine slave ECM.
253
“F AFTRCLR TEMP”
Front Aftercooler Temperature (Coolant)
33
PWM
This is the temperature of the coolant in the engine front aftercooler system. ON MACHINES WITH TWO ENGINE AFTERCOOLER COOLANT TEMPERATURE SENSORS THIS REFERS TO THE FRONT ENGINE AFTERCOOLER COOLANT TEMPERATURE.
255
“BOOST PRES F”
Engine Outlet (Boost) Pressure Front
33
Analog
This is the pressure downstream on the compressor discharge side of the turbocharger on the front engine.
256
“CNKCASE PRES F”
Engine Crankcase Pressure Front
33
PWM
This is the pressure inside the crankcase of the front engine.
258
“F ENG LOAD”
Engine Load Front
33
Analog
This is the actual percentage of engine load.
259
“ENG OIL FLTR F”
Engine Oil Filter Differential Pressure (Gauge) Front
33
PWM
This is the pressure drop across the engine oil filter for the front engine.
260
“ENG OIL LVL F”
Engine Oil Level Front
33
Switch
This is the level of the oil in the crankcase for the front engine. (continued)
111 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
261
“ENG OIL PRES F”
Engine Oil Pressure Front
33
Analog
This is the oil pressure inside the front engine. The sensor sends to an ECM a voltage that varies as the pressure changes. The ECM then calculates the pressure according to the voltage that it receives. Actual warning pressure depends upon the engine speed.
262
“F ENG STATUS”
Engine Status Front
33
Calculated
This is the front engine status. This parameter provides the status (enabled or disabled) of the features that are listed below: Altitude Derate Cold Mode Cell Throttle Elevated Idle Engine Derate Engine Speed Cold Cylinder Cutout Low FUel Pressure Emergency Stop Shutdown Fuel Injection High Hydraulic Oil Temperature High Coolant Temperature Low Oil Pressure
263
“F WASTEGATE POS”
Front Wastegate Position
33
Analog
This is the position of the wastegate valve on the front engine turbocharger (outlet). The wastegate position sensor has an output that changes in voltage as the wastegate valve position changes From this voltage the front eng ECM calculates the waste gate position.
264
“F FUEL FLTR”
Engine Fuel Filter Status Front
33
Switch
This is the status of the front engine fuel filter. The status is PLUGGED or OK. When the pressure across the filter is greater than the specified pressure, the plunger of the switch moves and allows the switch contacts to open telling the ECM that the filter is PLUGGED. With normal operation, the switch is closed to ground.
265
“BOOST PRES HI F”
High Boost Pressure Front
49
Analog
This is the front turbocharger outlet pressure. The sensor sends a voltage that varies as the pressure changes to the engine ECM. The engine ECM then calculates boost according to the voltage that is received by subtracting atmospheric pressure.
266
“OIL PRES F LO”
Low Oil Pressure Front
49
Calculated
This parameter monitors the engine status parameter to see if the front engine oil pressure is low.
267
“EXH TEMP LTF”
Engine Left Front Turbo Exhaust Temperature
33
PWM
This is the temperature of the exhaust on the left bank of the front engine.
(continued)
112 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
268
“EXH TEMP RTF”
Engine Right Front Turbo Exhaust Temperature
33
PWM
This is the temperature of the exhaust on the right bank of the front engine.
269
“F RT- F LT EXH TEMP”
Front Right Minus Front Left Exhaust Temperature
49,50
Calculated
This is calculated by an ECM, The ECM subtracts the front engine right manifold exhaust temperature from the front engine left manifold exhaust temperature.
270
“ENG FUEL RATE F”
Engine Fuel Rate Front
33
Calculated
This is the rate at which fuel is being used by the front engine.
271
“ENG SPD F”
Engine Speed Front
33
Frequency
The actual rotational speed of the crankshaft on the front engine.
273
“F TRBO IN PRES”
Engine Turbo Inlet Pressure Front
33
Analog
This is the pressure (absolute) of the air coming into the right turbocharger for the front engine.
274
“F LO BOOST PRES ”
Low Boost Pressure Front
49
Calculated
This parameter monitors the warning status parameter of the engine ECM to see if the boost pressure is low.
275
“ENG DERATE R”
Rear Engine Power Derate percentage
34
Analog
This indicates the percentage of the present derate of the rear engine. Zero indicates the engine is not derated.
276
“GOV STAT R”
Slave Governing Status Rear Engine
34
Calculated
Indicates the governing status (ALONE or SLAVE) of the rear engine slave ECM.
277
“R AFTRCLR TEMP”
Rear Aftercooler Temperature
34
PWM
This is the temperature of the coolant in the rear engine aftercooler system.
278
“BOOST PRES R”
Engine Turbo Outlet (Boost) Pressure Rear
34
Analog
This is the pressure on the compressor discharge side of the turbocharger of the rear engine.
279
“ENG LOAD R”
Engine Load Rear
34
Analog
This is the actual percentage value of rear engine load.
280
“ENG OIL PRES R”
Engine Oil Pressure Rear
34
Analog
This is the oil pressure in the rear engine lubrication system.
281
“ENG STATUS R”
Engine Status Rear
34
Calculated
This is the rear engine status. This determines the priority of engine status messages displayed on service tools.
282
“WASTEGATE POS R”
Wastegate Position Rear
34
Analog
This is the position of the wastegate valve on the rear engine turbocharger (outlet). The wastegate position sensor has an output that changes in voltage as the wastegate valve position changes. From this voltage, the engine ECM calculates the position of he wastegate valve. (continued)
113 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
283
“FUEL FLTR R ”
Engine Fuel Filter Status Rear
34
Switch
This is the status of the rear engine fuel filter. The status is either PLUGGED or OK.
300
“GEAR BOX TEMP”
Gear Box Temperature
36/58
PWM
This is the oil temperature in the machine (large excavators) gearbox. An ECM receives a signal that changes in pulse width as the gear box oil temperature changes. The ECM then determines the temperature from the pulse width that is received.
301
“GEAR BOX PRES”
Gear Box Pressure
57/58
PWM
This is the oil pressure measured in the gear box. The sensor sends the VIMS a pulse that varies in width as the oil pressure changes. The VIMS then calculates the pressure according to the pulse width that is received.
302
“GEAR BOX CHIP”
Gear Box Chip (Detector)
58
Switch
This switch notifies the VIMS if chips have been detected in the gearbox oil. As metal chips collect on the magnetic contacts of the switch, a short circuit is made from one terminal to the other causing the switch to close, and thus making a short circuit to ground. During normal operation, the switch is in the open position. The switch is considered closed when the resistance between the two switch terminals is between zero and approximately 2K ohms.
303
“PT OIL FLTR”
Power Train Oil Filter
57/58
Switch
This is the status of the Power Train Oil Filter. The status is either PLUGGED or OK. When the pressure across the filter is greater than the specified pressure, the switch plunger moves and allows the switch contacts to open telling the VIMS that the filter is PLUGGED. With normal operation, meaning acceptable pressure drop, the switch contacts are closed and the circuit is grounded. Cold oils often cause a known filter restriction, so the VIMS ignores warnings (open switch) when oil temperature is below approximately 125 degrees F.
305
“TRN GEAR”
Transmission Gear
81
Switch
This is calculated by the transmission ECM and indicates the actual gear that the transmission is in.Indicates the actual transmission gear of the machine.
306
“GEAR SELECT”
Transmission Cane Select
81
Calculated
This is the gear that the operator has selected in the machine cab. A switch on the gear select lever converts lever position into digital code for use by the transmission ECM.
Source Module(s)
Signal Type
Parameter Description
(continued)
114 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
310
“TC FLTR”
Torque Converter Filter (Bypass)
58/81
Switch
This is the status of the torque converter inlet oil filter. The status is PLUGGED or OK. When the pressure across the filter is greater than the specified pressure, the switch plunger moves and allows the switch contacts to open telling the VIMS that the filter is plugged. With normal operation, the switch contacts are closed and the circuit is grounded. Cold oils often cause a known filter restriction, so the VIMS ignores warnings (open switch) when oil temperature is below approximately 125 degrees F.
311
“TC OUT SPD”
Torque Converter Output Speed
27/57/81
Frequency
This is the speed of the torque converter output shaft. The sensor sends a signal to an ECM that is proportional in frequency depending on the torque converter output shaft speed. The ECM then calculates the speed based upon the frequency that is received.
312
“TC SCREEN”
Torque Converter Screen
57/58/ 81
Switch
This is the status of the torque converter outlet screen (filter). The status is PLUGGED or OK. As the torque converter screen becomes PLUGGED, the pressure across the screen causes the torque converter screen to be bypassed. When this bypass occurs, this switch opens telling the VIMS that the torque converter screen needs to be replaced or cleaned.
313
“TC OUT TEMP”
Torque Converter Outlet Temperature
57/81
PWM
This is the oil temperature on the outlet side of the torque converter. The VIMS receives a signal that changes in pulse width as the torque converter outlet oil temperature changes. The VIMS then determines the temperature from the pulse width that is received.
314
“TC TEMP”
Torque Converter Temperature
57
PWM
This is the oil temperature on the outlet of the torque converter. The VIMS receives a signal that varies in pulse width as the torque converter oil temperature changes. The VIMS then determines the temperature from the pulse width that is received. (continued)
115 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
315
“TC OUT PRES”
Torque Converter Outlet Pressure
58
PWM
This is the oil pressure on the outlet side of the torque converter. The VIMS receives a signal that changes in pulse width as the pressure changes. The VIMS then calculates the pressure according to the pulse width that is received.
316
“TC PDL POS”
Torque Converter Pedal Position
81
Calculated
This is the position of the torque converter foot pedal (large wheel loaders). The torque converter position sensor has an pulse output that changes in width as the torque converter foot pedal position changes. The ECM then uses this signal to determine the torque converter position. As the torque converter pedal is depressed, torque converter power to the wheels is decreased. After an approximate half way point, the brakes begin to be applied.
320
“TC CTRL”
Torque Converter Control
58
CDL
This indicates if the torque converter has detected a failure. Refer to the torque converter ECM service manual for further information (994).
322
“QUICKSHIFT SW”
Quickshift Switch Position
81
Calculated
This is the position of the quickshift switch. The switch is either ON or OFF.
323
“LUC ENABLE”
Lockup Clutch Enable Switch Position
81
Switch
This is the position of the lockup clutch enable switch. The switch is either ON or OFF.
324
“PMP DRIVE TEMP”
Pump Drive Oil Temperature
81
PWM
This is the actual temperature of the implement pump oil. The VIMS receives a signal that varies in pulse width as the pump oil temperature changes. The VIMS then determines the temperature from the pulse width that is received.
325
“DIFF TEMP”
Differential Temperature (Oil)
58
PWM
This is the oil temperature inside of the differential axle. The VIMS receives a signal that varies in pulse width as the differential oil temperature changes. The VIMS then determines the temperature from the pulse width that is received.
Source Module(s)
Signal Type
Parameter Description
(continued)
116 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
326
“DIFF CHIP”
Differential Chip (Detector)
59
Switch
This switch notifies the VIMS if chips have been detected in the differential. As metal chips collect on the magnetic contacts of the switch, a short circuit is made from one terminal to the other causing a closed circuit to ground. During normal operation, the switch is in the open position. The switch is considered closed when the resistance between the two switch terminals is between zero and approximately 2K ohms.
327
“DIFF FLTR SW”
Differential Filter Switch (Bypass)
30/58/116
Switch
This is the status of the differential axle oil filter. The status is either PLUGGED or OK. When the pressure across the filter is greater than the specified pressure, the switch plunger moves and allows the switch contacts to open telling the VIMS that the differential filter is PLUGGED. With normal operation, meaning acceptable pressure drop, the switch contacts are closed to ground.
328
“DIFF LUBE PRES”
Differential Lube Pressure
30/58/116
PWM
This is the lubrication pressure within the differential axle housing. The sensor sends an ECM a pulse that varies in width as pressure changes. The ECM then calculates the pressure according to the pulse width that is received.
329
“TRN P1 PRES”
Transmission Pressure P1
81
PWM
This is the transmission P1 (control system) pressure.
330
“TRN P2 PRES”
Transmission Pressure P2
81
PWM
This is the transmission P2 (clutch-fill) pressure.
331
“IMPLR CLTCH PRES”
Impeller Clutch Pressure
81
PWM
This is the impeller clutch pressure. The sensor sends an ECM a pulse that varies in width as the pressure changes. The ECM then calculates the pressure according to the pulse width that is received.
332
“LUC SOL CMD”
Lockup Clutch Current (Amp) Percentage
81
Calculated
This is the solenoid command (or current) as a percentage of maximum that is being delivered to the lockup clutch solenoid.
333
“RIMPULL STATUS”
Reduced Rimpull Status
81
Switch
This is the status of the reduced rimpull feature. The status is either ACTIVE or INACTIVE.
337
“TRN IN SPD”
Transmission Input Speed
81
Frequency
This is the actual rotational speed of the output shaft of the torque converter which is the input to the transmission. (continued)
117 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
338
“TRN INTRMED SPD”
Transmission Intermediate Speed
81
Frequency
This is the actual rotational speed of the intermediate shaft of the transmission as seen by speed sensor No.1.
339
“TRN LATCH PRES”
Transmission Latching Pressure
81
Frequency
This is th etransmission latching pressure. The transmission ECM receives a signal to determine if the transmission is latched or unlatced.
340
“TRN LCKOUT ST”
Transmission Lockout Status
81
Calculated
This is the status of the transmission lock. The transmission lock inhibits the transmission from going into gear while the service technician is working on the machine.
341
“TRN OIL LVL”
Transmission Oil Level
81
PWM
This is the status of the transmission oil level.
342
“TRN OIL PRES”
Transmission Oil Pressure
81
PWM
This is the transmission lube oil pressure.
343
“TRN LCKOUT SW”
Transmission Lockout Switch
81
Calculated
This is the position of the transmission control lever in the cab: REVERSE FORWARD NEUTRAL NOT-IN-REVERSE
346
“TRN COLD MODE”
Transmission Cold Mode
81
Calculated
This indicates the cold mode status as calculated by the transmission ECM. The status is either active or inactive.
347
“TRN OUT SPD 2”
Transmission Output Speed 2
81
Frequency
This is the speed of the transmission output shaft. This signal comes through the transmission speed distributor and is sent to the transmission ECM. The transmission output speed is directly proportional to ground speed.
349
“TRN GEAR”
Transmission Gear
27/81
Switch
This is calculated by EPTC (electronic programmable transmission ECM) or transmission ECM and indicates the actual gear that the transmission is in.
350
“TRN LUBE TEMP”
Transmission Lube Temperature
58/81
PWM
This is the temperature of the transmission lubrication oil. The VIMS receives a signal that changes in pulse width as the temperature of the transmission lubrication oil changes. The VIMS uses the pulse width that it receives to determine the oil temperature.
351
“GEAR SELECT”
Gear Select (By Operator)
27/81
Switch
This is the gear that the operator has selected in the machine cab. A switch on the gear select lever converts lever position into digital code for use by the transmission ECM. (continued)
118 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
352
“ACT GEAR”
Gear Code Actual Gear (Transmission)
31
Calculated
This is the actual gear that the transmission is in at the present time. This is being phased out and replaced with parameter 349 in 9.X or later class of onboard software.
353
“GEAR CODE”
Transmission Gear
27/81
Switch
This is calculated by EPTC (electronic programmable transmission ECM) or transmission ECM and indicates the actual gear that the transmission is in. Being phased out and replaced with parameter 349 in 9.X or later of onboard software.
354
“PREVIOUS GEAR”
Previous Gear
27
Calculated
No longer used.
355
“TRN OUT SPD”
Transmission Out Speed
81
Frequency
This is the speed of the transmission output shaft. This signal goes through the transmission speed distributor (OHT) and is sent to the transmission ECM. The transmission output speed is directly proportional to ground speed.
355
“TRN OUT SPD1”
Transmission Output Speed 1
81
Frequency
This is the speed of the transmission output shaft. This signal goes through the transmission speed distributor (OHT) and is sent to the transmission ECM. The transmission output speed is directly proportional to ground speed.
356
“TRN CHRG FLTR”
Transmission Charge Filter (Bypass)
57/58/81
Switch
This is the status of the transmission charge filter. the status is either PLUGGED or OK. The transmission charge line supplies oil to the hydraulic control valves of the transmission. When the pressure across the filter is greater than the specified pressure, the switch plunger moves and allows the switch contacts to open, telling the VIMS that the filter is PLUGGED.
357
“TRN LUBE FLTR”
Transmission Lube Filter (Bypass)
58
Switch
This is the status of the transmission lubrication filter. The status is either PLUGGED or OK. When the pressure across the filter is greater than the specified pressure, the switch plunger moves and allows the switch contacts to open telling the VIMS that the filter is plugged. With normal operation, meaning acceptable pressure drop, the switch contacts are closed to ground. The transmission lube circuit provides lubrication to the clutch disks, bearings, etc. (continued)
119 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
358
“TRN SLIP”
Transmission Slip (OHT)
27
Calculated
The degree to which the transmission is slipping at the completion of a shift. This is calculated by the transmission ECM. In this calculation, the transmission input and output speeds are compared. This time is the summation of time for the transmission control solenoids (up/dowm), actuator the up/down solenoid control, clutch fill, and actual slippage of the transmission plates/disk.
359
“LCKUP SLIP”
Lockup Slip
27
Calculated
This is the degree to which the torque converter lockup clutch is slipping when entering the lockup state. This is calculated by the transmission ECM. In this calculation, the torque converter input speeds and the output speeds are compared. Total sliptime is made up of the individual actuation times much like parameter 358.
360
“GEAR CHNG CODE”
Gear Change Code
31
Calculated
No longer used in 9.X-up except in trends. Reads the gear change code of the slip packet. Calibrated by the transmission control.
361
“GEAR MVMT TIME”
Gear Movement Time
31
Calculated
This is no longer used in 9.X-up except in trends. This reads the gear movement time of the slip packet. Calibrated is done throught the transmission ECMl.
362
“TRN LUBE TEMP”
Transmission Lube Temperature
58
PWM
This is the temperature of the transmission lubrication oil. The VIMS receives a signal that changes in pulse width as the transmission lubrication oil temperature changes. The VIMS then uses the pulse width that is received to determine the temperature of the transmission lubrication oil.
364
“TRN PMP PRES”
Transmission (Oil) Pump Pressure
58
PWM
This is the lube oil pressure within the transmission. The pressure sensor sends the VIMS a pulse that varies in width as the pressure changes. The VIMS then calculates the pressure according to the pulse width that is received. (continued)
120 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
365
“TRN FLTR”
Transmission Filter (Bypass)
58
Switch
This is the status of the transmission oil filter. The status is either PLUGGED or OK. When the pressure across the filter is greater than the specified pressure, the switch plunger moves allowing the switch contacts to open telling the VIMS that the filter is PLUGGED. With normal operation the switch contacts are closed and the circuit is grounded. Cold oils often cause a known filter restriction, so the VIMS ignores warnings (open switch) when oil temperature is below approximately 125 degrees F.
366
“NTRL SW”
Neutral Switch
57
Switch
This tells the transmission ECM whether the transmission shift linkage is in the neutral position. When the switch is in the neutral position, the operator is allowed to crank the engine.
369
“NTLRZR SW”
Neutralizer Pressure Switch Position
81
Switch
This reads the position of the neutralizer pressure switch. The switch is either in the RUN or NEUTRAL position.
370
“RIMPULL %”
Controlled Rimpull Percentage
81
Calculated
This is used to read percent of maximum rimpull that is controlled by the transmission ECM. This is based on the reduced rimpull setting and the torque converter pedal modulation. This is not the actual or available rimpull, which is affected by the operation of the equipment.
371
“IMPLR CLCH CUR”
Impeller Clutch Current (Amp) Percentage
81
Calculated
This is the current as a percentage of maximum that is delivered to the impeller clutch solenoid from the transmission ECM.
372
“RIMPULL SELECT2”
Reduced Rimpull Selection Switch Position
81
Switch
ThIs is the position of the reduced rimpull selection switch. LOW MEDIUM LOW MEDIUM HIGH HIGH
373
“RIMPULL STATUS 2”
Reduced Rimpull ON/OFF Switch Position
81
Switch
This is the position of the reduced rimpull ON/OFF switch.
374
“PARKBK”
Parking Brake Pressure Switch Status
81
Switch
This is used to read the status of the parking brake pressure switch. The parking brake is engaged when the pressure is LOW (open). The parking brake is disengaged when the pressure is HIGH (closed). (continued)
121 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
376
“BRK PRES SW”
Braking System Pressure Switch
116
Switch
This is the present state of the service brake. ON (switch is closed) or OFF (switch is open).
377
“BRK PUMP SPD”
Braking Cooling Pump Speed
116
Sensor
This is the speed of the brake cooling pump. The speed is from 0 to 2000 RPM.
378
“BRK COOL FLTR F”
Front Brake Cooling Filter Bypass
87
Switch
This is the status of the front brake cooling filter. The status is either OK or PLUGGED.
379
“PARKBK DR STATUS”
Parking Brake Dragging Status
116
Calculated
This is the dragging status of the parking brakes. Dragging brake means the brake pressure sensor indicates the the the parking brake is engaged, however the operator is not asking to engage the brake and the brake ECM is not trying to engage the brake.
380
“RETRDR”
Retarder
83/116
Switch
This is the status of the retarder system. This parameter will display either an ON or OFF state.
381
“BRK COOL FLTR R”
Brake Cooling Filter Bypass Rear
116
Switch
This is the status of the rear brake cooling filter. The status is either OK or PLUGGED.
382
“BRK LOCKDN”
Remote Park Brake Set
116
Switch
This is the status of the parking brake lock. The active (ON) status indicates the parking brake is engaged. The inactive (OFF) status indicates the parking brake is disengaged.
400
“LT DRIVE CHIP”
Left Drive Chip (Detector)
59
Switch
This switch notifies the VIMS if chips have been detected in the left drive motor. As metal chips collect on the magnetic contacts of the switch, a short circuit is made from one terminal to the other causing a closed circuit to ground. During normal operation, the switch is in the open position. The switch is considered closed when the resistance between the two switch terminals is between zero and approximately 2K Ohms.
401
“RT DRIVE CHIP”
Right Drive Chip (Detector)
58
Switch
This switch notifies VIMS if chips have been detected in the right drive motor. As metal chips collect on the magnetic contacts of the switch, a short circuit is made from one terminal to the other causing a closed circuit to ground. During normal operation, the switch is in the open position. The switch is considered closed when the resistance between the two switch terminals is between zero and approximately 2K ohms.
415
“SERV BRK PEDAL”
Service Brake Pedal Position Status
36
Switch
This reads the position of the service brake pedal as released (OFF) or depressed (ON).
Source Module(s)
Signal Type
Parameter Description
(continued)
122 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
416
“PARKBK PRES LTR”
Left Rear Parking Brake Oil Pressure
116
PWM
This is the oil pressure for the left rear parking brake. The sensor sends the VIMS a pulse that varies in width as the pressure changes. the VIMS then calculates the pressure according to the pulse width that is received.
417
“PARKBK PRES RTR”
Right Rear Parking Brake Oil Pressure
116
PWM
The oil pressure for the right rear parking brake. The pressure sensor sends to VIMS a pulse that varies in width as the pressure changes. VIMS then calculates the pressure according to the pulse width that it receives.
418
“LTR WHEEL SPD”
Left Rear Wheel Speed
27/116
Frequency
This is used to read the actual rotational speed of the left rear axle in RPM.
419
“RTR WHEEL SPD”
Right Rear Wheel Speed
27/116
Frequency
This is used to read the actual rotational speed of the right rear axle in RPM.
436
“RTR-RTF BRK TEMP”
Right Rear Minus Right Front Brake Temperature
49
Calculated
This is calculated by the VIMS. The value is determined by subtracting the temperature of the right front brake from the temperature of the right rear brake.
437
“LTR-LTF BRK TEMP”
Left Rear Minus Left Front Brake Temperature
49
Calculated
This is calculated by the VIMS. The value is determined by subtracting the temperature of the the left front brake from the temperatur of the left rear brake.
438
“STRG OIL PRES”
Steering Pump Oil Pressure Sensor
58
PWM
This is the steering oil pressure at the pump outlet. The VIMS receives a signal that changes in pulse width as the steering oil pressure changes. The VIMS then determines the pressure from the pulse width that is received.
440
“STRG OIL PRES”
Steering Pump Pressure
57
Switch
Notifies VIMS of low steering oil pressure. With low pressure the switch would be open. In normal operation, the switch is closed to ground.
441
“LO STRG PRES”
Low Steering Pressure
50/57/58
Switch
This notifies the VIMS of a conditon of low oil pressure at the pump outlet in the steering system. With low pressure, the switch will be open. In normal operation, the switch is closed to ground.
442
“HI STRG PRES”
High Steering Pressure
57/50
Switch
This notifies the VIMS that a condition of low oil pressure in the steering system. With low pressure, the switch should be open to ground. In normal operation, the switch is closed to ground. (continued)
123 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
444
“STRG OIL TEMP”
Steering Oil Temperature
50/57
PWM
This is the temperature of the main steering system oil. The VIMS receives a signal that varies in pulse width as the temperature of the main steering system oil changes. The VIMS then determines the oil temperature from the pulse width that is received.
445
“STRG OIL FLTR”
Steering Oil Filter
57
Switch
This is the status of the main steering system oil filter. The status is either PLUGGED or OK. When the pressure across the filter is greater than the specified pressure, the switch plunger moves and allows the switch contacts to open telling the VIMS that the filter is plugged. With normal operation, the switch contacts are closed and the circuit is grounded. Cold oils often cause a known filter restriction, so the VIMS ignores warnings (open switch) when oil temperature is below approxinately 125 degrees F.
446
“STRG PILOT PRES”
Steering Pilot Pressure
39
PWM
This is the oil pressure in the steering pilot oil system. An ECM receives a signal that varies in pulse width as the steering pilot pressure changes. The ECM then determines the pressure from the pulse width that is received.
447
“STRG OIL LEVEL”
Steering Oil Level
58/50
Switch
This switch notifies the VIMS of the status of oil level in the main steering system. The status is either LO or OK. The switch opens when steering oil level is less than the specified. During normal operation, the switch is closed to ground.
448
“STRG/TRN LCK”
Steering/ Transmission Lock
51
Switch
This is the status of the steering and transmission lockout systems. A switch with two outputs (normally closed and normally open) is used as inputs to notify the transmission ECM of the lockout condition. At any given time one input must always be connected to ground and the other must be open. If this case is not so, the transmission ECM knows that there is a failure in the system. When steering/transmission lockout is active, the steering and transmission systems are not allowed to function. (continued)
124 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
449
“PRI STRG PRES”
Primary Steering Pressure
57
Switch
This is the status of the oil pressure on the primary side of the steering system. The status is either LO or OK. This pressure switch is normally connected to ground. When the pressure becomes lower than a specified level, the switch opens notifying the VIMS that there is low oil pressure.
450
“F BRK OIL TEMP”
Front Brake Oil Temperature
58
PWM
This is the temperature of the cooling oil from both front brakes. The VIMS receives a signal that varies in pulse width as the front brake system cooling oil changes temperature. The VIMS then determines the temperature from the pulse width that is received.
451
“R BRK OIL TEMP”
Rear Brake Oil Temperature
58
PWM
This is the temperature of the cooling oil from both rear brakes. The VIMS receives a signal that changes in pulse width as the rear brake system cooling oil changes temperature. The VIMS then determines the temperature from the pulse width that is received.
452
“BRK/AIR PRES”
Brake Air Pressure
39
PWM
This is the air pressure in the braking system. The pressure sensor sends the VIMS a signal that varies in width as the brake air system pressure changes. VIMS then calculates the pressure according to the pulse width that is received.
453
“PARKBK”
Parking Brake
57/59/81/ 116
Switch
This is the status of the parking brake. The status is either ON or OFF. With the parking brake off, the switch is open, but when the parking brake is on, a ground signal is sent to an ECM. A warning message will be generated if the parking brake is engaged while the machine is not in neutral.
454
“BRK FLTR”
Brake Filter
57
Switch
This is the status of the filter in the oil cooling line for the brakes. The status is either OK or PLUGGED. When the pressure across the filter is greater than the specified pressure, the switch plunger moves and allows the switch contacts to open telling the VIMS that the filter is PLUGGED.
455
“BRK TEMP”
Brake Temperature
58
PWM
This is the temperature of the brake oil. The VIMS receives a signal that varies in pulse width as the brake oil temperature changes. The VIMS then determines the temperature from the pulse width that is received. (continued)
125 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
456
“BRK STROKE”
Brake Stroke
58
Switch
This is a switch(s) that tells VIMS if the brake master oil line pressure is too low or if one of the master brake cylinders (there can be more than one brake stroke switch, in which case they would be wired in a series circuit) has overstroked. In a failed state, the normal switch path to ground will be opened, notifying VIMS that there is a problem with at least one of the brake master cylinders.
457
“PRI BRK PRES”
Primary Brake Pressure
57/58
Switch
This is the status of the primary brake pressure switch. In normal operation the switch is closed to ground, but when the brake is applied the switch is open.
458
“SEC BRK PRES”
Secondary Brake Pressure
57/58
Switch
This is the status of the secondary brake lever pressure switch. The status of the secondary brake pressure switch is closed when the secondary brake lever has been applied (parking brake).
460
“LTF BRK TEMP”
Left Front Brake Temperature
58/116
PWM
This is the temperature of the cooling oil from the left front brake. The VIMS receives a signal that changes in pulse width as the temperature of the oil coming from the left front brake changes. The VIMS then determines the temperature from the pulse width that is received.
461
“LTR BRK TEMP”
Left Rear Brake Temperature
58/116
PWM
This is the temperature of the cooling oil from the left rear brake. The VIMS receives a signal that varies in pulse width as the temperature of the oil coming from the left rear brake changes. The VIMS then determines the temperature from the pulse width that is received.
462
“RTF BRK TEMP”
Right Front Brake Temperature
58/116
PWM
This is oil temperature from the right front brake. The VIMS receives a signal that varies in pulse width as the temperature of the oil coming from the right front brake changes. The VIMS then determines the temperature from the pulse width that is received.
463
“RTR BRK TEMP”
Right Rear Brake Temperature
58/116
PWM
This is the temperature of the cooling oil from the right rear brake. The VIMS receives a signal that varies in pulse width as the temperature of the oil coming from the right rear brake changes. The VIMS then determines the temperature from the pulse width that is received.
Source Module(s)
Signal Type
Parameter Description
(continued)
126 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
464
“RTF-LTF BRK TEMP”
Right Front Minus Left Front Brake Temperature
49
Calculated
This is calculated by VIMS. The value is determined by subtracting the temperature of the left front brake from the temperature of the right front brake.
465
“RTR-LTR BRK TEMP”
Right Rear Minus Left Rear Brake Temperature
49
Calculated
This calculated by the VIMS. The value determined by subtracting the tempeature of the left rear brake from the temperature of the right rear brake.
466
“PARKBK PRES SW”
Parking Brake Filter Switch
57
Switch
ThIs the status of the parking brake filter. The status is either OK or PLUGGED. When the pressure across the filter is greater than the specified pressure, the switch plunger moves and allows the switch contacts to open telling the VIMS that the filter is PLUGGED. With normal operation, the switch contacts are closed and the circuit is grounded.
467
“BRK COOL FLTR F”
Front Brake Cooling Filter Status
59
Switch
This is the status of the front brake cooling filter. The status is either OK or PLUGGED. When the pressure across the filter is greater than the specified pressure, the switch plunger moves and allows the switch contacts to open telling the VIMS that the filter is PLUGGED. With normal operation, the switch contacts are closed and the circuit is grounded.
468
“BRK COOL FLTR R ”
Rear Brake Cooling Filter Status
59
Switch
This is the status of the rear brake cooling filter. The status is either OK or PLUGGED. When the pressure across the filter is greater than the specified pressure, the switch plunger moves and allows the switch contacts to open telling VIMS that the filter is PLUGGED. With normal operation, the switch contacts are closed and the circuit is grounded.
470
“F BRK OIL PRES”
Front Brake Oil Pressure
58
PWM
This is the oil pressure at the inlet of the front brakes. The sensor sends the VIMS a pulse that varies in width as the pressure changes. The VIMS then calculates the pressure according to the pulse width that is received.
471
“R BRK OIL PRES”
Rear Brake Oil Pressure
58
PWM
This sis the oil pressure at the inlet of the rear brakes. The sensor sends the VIMS a pulse that varies in width as the pressure changes. The VIMS then calculates the pressure according to the pulse width that is received. (continued)
127 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
472
“F BRK ACUM PRES”
Front Brake Accumulator Pressure
57
Switch
This is the pressure of the front brake accumulator. This pressure switch is normally connected to ground. When the pressure becomes lower than the desired level, the pressure switch opens, notifying the VIMS that there is low pressure in the front brake accumulator system.
473
R BRK ACUM PRES
Rear Brake Accumulator Pressure
57
Switch
This is the pressure of the rear brake accumulator. This pressure switch is normally connected to ground. When the pressure becomes lower than the desired level, the pressure switch opens, notifying the VIMS that there is low pressure in the rear brake accumulator system.
474
“F AXLE OIL TEMP”
Front Axle Oil Temperature
57
PWM
This sis the temperature of the oil within the front axle. The VIMS receives a signal that varies in pulse width as the front axle oil temperature changes. The VIMS then determines the temperature from the pulse width that is received.
475
“R AXLE OIL TEMP”
Rear Axle Oil Temperature
57
PWM
This is the temperature of the oil within the rear axle. The VIMS receives a signal that changes in pulse width as the rear axle oil temperature changes. The VIMS then determines the temperature from the pulse width that is received.
476
“PARKBK CAB SW”
Parking Brake Cab Switch
81
Switch
This is the status of the switch in the cab that is used to engage or disengage the parking brake. The switch is either in the parking brake engaged position (OPEN) or the parking brake disengaged position (CLOSED).
477
“BRK ACUM PRES”
Brake Accumulator Pressure
57
Switch
This is thepressure of the brake accumulator. This pressure switch is normally closed to ground. When the pressure becomes lower than the desired level, the switch opens notifying the VIMS that there is low pressure in the brake accumulator system.
478
“RT TRL BRK TEMP”
Right Trailer Brake (Oil) Temperture
59
PWM
This is the temperature within the right trailer brake oil. The sensor sends the VIMS a pulse that varies in width as the temperature changes. The VIMS then calculates the temperature according to the pulse width that is received. (continued)
128 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
479
“LT TRL BRK TEMP”
Left Trailer Brake (Oil) Temperature
59
PWM
This is the temperature of the left trailer brake oil. The sensor sends the VIMS a pulse that varies in width as the temperature changes. The VIMS then calculates the temperature according to the pulse width that is received.
480
“TRLBRKC IN TEMP”
Trailer Brake Cooler (Oil) Inlet Temperature
59
PWM
This is the temperature of the trailer brake oil at the inlet side of the trailer brake oil cooler. The VIMS receives a signal that changes in pulse width as the cooler inlet oil temperature changes. VIMS then determines the temperature from the pulse width that iis received.
481
“TRLBRKC OUT TEMP”
Trailer Brake Cooler (Oil) Outlet Temperature
59
PWM
This is the temperature of the trailer brake oil at the outlet side of the trailer brake oil cooler. The VIMS receives a signal that changes in pulse width as the cooler outlet oil temperature changes. The VIMS then determines the temperature from the pulse width that is received.
482
“TRL FLTR”
Trailer Filter Plug
59
Switch
The status of the trailer brake oil filter. The switch will open in the case of a plugged filter.
483
“TRL BRK STROKE”
Trailer Brake Stroke
59
Switch
This is a switch(s) that tells the VIMS if the trailer brake master oil line pressure is to low, or if one of the trailer brake master cylinders (There can be more than one brake stroke switch, in which case they would be wired in a series circuit) has overstroked. If one of these conditions are met the VIMS would be notified that there is a problem with at least one of the master trailer brake cylinders.
484
“STRG TEMP SW”
Steering Oil Temperature Switch
58
Switch
The steering oil temperature status. If the temperature gets above a predetermined level, the switch will open to indicate steering oil temperature is too high.
485
“ENG OIL FLTR”
Engine Oil Filter Differential Pressure
36
Switch
This is the status of the pressure drop across the engine oil filter. The status is either OK or PLUGGED. When the pressure across the filter is greater than the specified pressure, the switch plunger moves and allows the switch contacts to open telling the VIMS that the filter is PLUGGED. With normal operation, the switch contacts are closed and the circuit is grounded. (continued)
129 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
486
“RT STRPMP PRES”
Right Steering Pump Pressure
58
PWM
This indicates the right steering pump oil pressure.
487
“LT STRPMP PRES”
Left Steering Pump Pressure
58
PWM
This indicates the left steering pump oil pressure.
488
“STG COOL FLTR”
Steering Cooling Filter Status
57
Switch
This is the status of the steering cooling filter. The status is either OK or PLUGGED. When the pressure across the filter is greater than the specified pressure, the switch plunger moves and allows the switch contacts to open telling the VIMS that the filter is PLUGGED. With normal operation, the switch contacts are closed and the circuit is grounded.
490
“STRG RTRN FLTR”
Steering Return to Tank Filter Status
58
Switch
The status of the steering return to tank filter (OK or PLUGGED). When the pressure across the filter is greater than the specified pressure, the switch plunger moves and allows the switch contacts to open telling VIMS that the filter is PLUGGED. With normal operation, the switch contacts are closed and the circuit is grounded.
491
“LT STRG CASEDRN”
Left Steering Case Drain Pump Temperature
58
PWM
This is the temperature of the oil within the left steering case drain pump. The VIMS receives a signal that varies in pulse width as the oil temperature of the left steering case drain pump changes. The VIMS then determines the temperature from the pulse width that is received.
492
“RT STRG CDRN”
Right Steering Case Drain Pump Temperature
58
PWM
This is the temperature of the right steering case drain oil.
493
“PARKBK FLTR”
Parking Brake Oil Filter Status
116
Switch
This is the status of the parking brake oil filter. The status is either OK or PLUGGED. When the pressure across the filter is greater than the specified pressure, the switch plunger moves and allows the switch contacts to open telling the VIMS that the filter is PLUGGED. With normal operation, the switch contacts are closed and the circuit is grounded. (continued)
130 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
494
“LT STRG CDRN”
Left Steering Case Drain Oil Filter Status
58
Switch
This is the status of the oil filter on the left steering case drain.The status is either OK or PLUGGED. When the pressure across the filter is greater than the specified pressure, the switch plunger moves and allows the switch contacts to open telling the VIMS that the filter is PLUGGED. With normal operation, the switch contacts are closed and the circuit is grounded.
495
“RT STRG CDRN”
Right Steering Case Drain Oil Filter Status
58
Switch
This is the status of the oil filter on the right steering case drain. The status is either OK or PLUGGED. When the pressure across the filter is greater than the specified pressure, the switch plunger moves and allows the switch contacts to open telling the VIMS that the filter is PLUGGED. With normal operation, the switch contacts are closed and the circuit is grounded.
496
PARKBK DRAG
Park Brake Drag
27
Switch
This indicates which of the parking brakes are dragging. The switch statuses are listed below: OK LT R RT R BOTH R
498
“F HI PRES FLTR”
Front High Pressure Filter
58
Switch
The status of the front implement high pressure hydraulic oil filter. When the pressure across the filter is greater than the specified pressure, the switch plunger moves and allows the switch contacts to open telling VIMS that the filter is PLUGGED. With normal operation, the switch contacts are closed and the circuit is grounded.
499
“R HI PRES FLTR”
Rear High Pressure Switch
58
Switch
This is the status of the rear implement high pressure hydraulic oil filter. The status is either PLUGGED or OK. When the pressure across the filter is greater than the specified pressure, the switch plunger moves and allows the switch contacts to open telling the VIMS that the filter is PLUGGED. With normal operation, the switch contacts are closed and the circuit is grounded. (continued)
131 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
500
“HYD OIL TEMP”
Hydraulic Oil Temperature
36/39/58
PWM
The hydraulic oil temperature. An ECM receives a signal that changes in pulse width as the hydraulic oil temperature changes. The ECM then determines the temperature from the pulse width that is received.
501
“PMP IN VALVE”
Pump Inlet Valve
57
Switch
These switches are attached to the inlet suction line for each hydraulic oil pump. They are located at the hydraulic oil tank. When the pump inlet valve is open, meaning that oil can flow, the switch is closed, and the circuit is grounded. There could be multiple switches wired in series on one particular machine, after which a switch(s) opens (meaning no oil flow), the ECM would know there is no oil flow in one or more circuits.
502
“HYD OIL LVL”
Hydraulic Oil Level
57
Switch
This is the status of the hydraulic oil level. The status is either LO or OK. With low hydraulic oil level, the switch will open. In normal operation, the switch is closed to ground.
503
“CASE DRN FLTR”
Case Drain Filter
57
Switch
This is the status of the case drain filter. The status is either PLUGGED or OK. As the case drain filter becomes PLUGGED, the machine mechanically bypasses the oil filter. When this filter is bypassed, the flow of oil in the bypass route opens a switch that tells the VIMS that the filter is plugged. In normal operation the switch is closed to ground.
504
“HI PRES FLTR”
High Pressure Filter
58
Switch
This is a result obtained from up to eight high pressure filters. These high pressure filters are wired in a series circuit to ground. If any one of the filters becomes PLUGGED, the corresponding switch (circuit) opens, indicating that at least one of the high pressure filters is PLUGGED.
505
“HOIST SCREEN”
Hoist Screen
58
Switch
This is the status of the hoist screen. The status is PLUGGED or OK. As the hoist screen becomes PLUGGED, the machine mechanically bypasses the hoist screen. When the bypass occurs, the flow of oil in the bypass route opens a switch that tells the VIMS that the hoist screen needs to be replaced or cleaned. In normal operation the switch is closed to ground.
Source Module(s)
Signal Type
Parameter Description
(continued)
132 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
506
“HYD RTN FLTR”
Hydraulic Return Filter
57
Switch
This is the status of the hydraulic oil return line filter (PLUGGED or OK). As the hydraulic oil return line filter becomes PLUGGED, mechanically the machine causes the hydraulic oil return line filter to be bypassed. When this bypass occurs, the flow of oil in the bypass route opens a switch that tells VIMS that the hydraulic oil return filter needs to be replaced or cleaned.
507
“LT F PMP CHIP”
Left Front Pump Chip
58
Switch
This switch notifies the VIMS if chips have been detected in the left front pump. As metal chips collect on the magnetic contacts of the switch, a short circuit is made from one terminal to the other causing a closed circuit to ground. During normal operation, the switch is in the open position. The switch is considered closed when the resistance between the two switch terminals is between zero and approximately 2K ohms.
508
“LT R PMP CHIP”
Left Rear Pump Chip
58
Switch
This switch notifies VIMS if chips have been detected in the left rear pump. As metal chips collect on the magnetic contacts of the switch, a short circuit is made from one terminal to the other causing a closed circuit to ground. During normal operation, the switch is in the open position. The switch is considered closed when the resistance between the two switch terminals is between zero and approximately 2K ohms.
509
“RT F PMP CHIP”
Right Front Pump Chip
58
Switch
This switch notifies the VIMS if chips have been detected in the right front pump. As metal chips collect on the magnetic contacts of the switch, a short circuit is made from one terminal to the other causing a closed circuit to ground. During normal operation, the switch is in the open position. The switch is considered closed when the resistance between the two switch terminals is between zero and approximately 2K ohms. (continued)
133 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
510
“RT R PMP CHIP”
Right Rear Pump Chip
58
Switch
This switch notifies VIMS if chips have been detected in the right rear pump. As a large number of metal chips collect on the magnetic contacts of the switch, a short circuit is made from one terminal to the other causing a closed circuit to ground. During normal operation, the switch is in the open position. The switch is considered closed when the resistance between the two switch terminals is between zero and approximately 2K ohms.
511
“HYD SYS PRES”
Hydraulic System Pressure
58
Switch
This is the present pressure of the hydraulic system.
513
“DIFF OIL LVL”
Differential Oil Level
58
Switch
This is the status of the differential oil level. The status is either LO or OK. With a low oil level the switch will open. In normal operation the switch is closed to ground.
515
“HYD OIL LVL”
Hydraulic Oil Level
58
Switch
This is the status of the hydraulic oil level. The status is either LO or OK. With a low oil level, the switch will open. In normal operation, the switch is closed to ground.
516
“HYD OIL TEMP”
Hydraulic Oil Temperature
36/57
PWM
This is the temperature of the hydraulic oil. An ECM receives a signal that varies in pulse width as the hydraulic oil temperature changes. The ECM then determines the temperature from the pulse width that is received.
517
“HYD OIL FLTR”
Hydraulic Oil Filter
57/58
Switch
This is the status of the hydraulic oil filter. The status is either PLUGGED or OK. When the pressure across the filter is greater than the specified pressure, the switches plunger moves and allows the switch contacts to open telling the VIMS that the filter is plugged. With normal operation, the switch contacts are closed and the circuit is grounded. Cold oils often cause a known filter restriction, so the VIMS ignores warnings (open switch) when the temperature of the oil is below approximately 125 degrees F.
518
“HYD PILOT PRES”
Hydraulic Oil Pilot Pressure
58
PWM
This is the oil pressure in the hydraulic pilot oil line. The machine ECM receives a signal that varies in pulse width as the hydraulic pilot oil pressure changes. The machine ECM then determines the pressure from the pulse width that is received. (continued)
134 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
519
“ENG FAN BYPASS”
Engine Fan Bypass
36/49
Calculated
This is used to read and override the bypass valve position of the engine cooling fan. Override is accomplished through a PC that is running the Electronic Technician software only.
520
“ENG FAN SPD”
Engine Fan Speed
36/39
Frequency
This is the speed of the engine cooling fan shaft. The sensor mounted on the engine fan shaft generates an signal that varies in frequency as the cooling fan shaft varies in speed.This signal is sent to an ECM that uses the signal to determine the speed of the engine cooling fan.
521
“HYD FAN SPD”
Hydraulic Fan Speed
36/39
Frequency
This is the speed of the hydraulic oil cooling fan shaft. The sensor mounted on the hydraulic oil cooling fan shaft generates a signal that varies in frequency. This signal is sent to an ECM that uses the signal to determine the speed of the hydraulic oil cooling fan.
524
“DIFF FAN”
Differential Fan
30
Calculated
This is the status of the fan that is used to cool the differential axle oil. The status is either ON or OFF. This value is received from the Caterpillar Monitoring System over the CAT Data Link.
525
“HYD FAN BYPASS”
Hydraulic Fan Bypass
36/49
Calculated
This is used to read and override the bypass valve position of the cooling fan for the hydraulic oil. Override is accomplished through a PC that is running the Electronic Technician software only.
526
“LT HYD CDRN”
Left Hydraulic Case Drain Temperature
59
PWM
This is the oil temperature from the case drain of the left hydraulic pump.
527
“CTR HYD CDRN”
Center Hydraulic Case Drain Temperature
59
PWM
This is the oil temperature from the case drain of the center hydraulic pump.
528
“RT HYD CDRN”
Right Hydraulic Case Drain Temperature
59
PWM
This is the oil temperature from the case drain of the right hydraulic pump.
529
“HYD LUBE FLTR”
Hydraulic Lube Pump Filter
59
Switch
This is the status of the hydraulic lube pump filter. The status is either OK or PLUGGED. (continued)
135 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
530
“F SWG OIL LVL”
Front Swing Oil Level
39
Switch
This indicates the status of the oil level of the front swing motor. The status is either LO or OK. In a situation of low oil level the switch is in the open state, whereas in normal operation the switch is closed to ground.
531
“LT R SWG OIL LVL”
Left Rear Swing Oil Level
39
Switch
This indicates the status of the oil level of the left rear swing motor. The status is either LO or OK. In the situation of low oil level the switch should be in the open state, whereas in normal operation the switch is closed to ground.
532
“RT R SWG OIL LVL”
Right Rear Swing Oil Level
39
Switch
This indicates the status of the right rear swing motor.The status is either LO or OK. In a situation of low oil level the switch should be in the open state, whereas in normal operation the switch is closed to ground.
533
“LT SWG OIL LVL”
Left Swing Oil Level
57
Switch
This is the oil level in the left swing drive motor.
534
“RT SWG OIL LVL”
Right Swing Oil Level
57
Switch
This is used to read the oil level in the right swing drive motor.
535
“DUAL PRES RLF”
Dual Pressure Relief Solenoid
39
Switch
This is used to read the status of the dual pressure relief function. This status reflects the status based on the command from the ECM.
540
“SWG OIL LVL”
Swing Drive Motor Oil Level
39
Switch
This indicates the status of the swing oil level. The status is either LO or OK. In a situation of low oil level the switch is in the open state, whereas in normal operation the switch is closed to ground.
541
“SWG PMP CHIP”
Swing Pump Chip
58
Switch
This switch notifies the VIMS if chips have been detected in the swing pump. As a large number of metal chips collect on the magnetic contacts of the switch, a short circuit is made from one terminal to the other causing a closed circuit to ground. During normal operation, the switch is in the open position. The switch is considered closed when the resistance between the two switch terminals is between zero and approximately 2K ohms. (continued)
136 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List VIMS Abbreviated Name
VIMS Full Name
542
“LT SWG MTR CHIP”
Left Swing Motor Chip
57
Switch
This switch notifies VIMS if chips have been detected in the left swing motor. As a large number of metal chips collect on the magnetic contacts of the switch, a short circuit is made from one terminal to the other causing a closed circuit to ground. During normal operation, the switch is in the open position. The switch is considered closed when the resistance between the two switch terminals is between zero and approximately 2K ohms.
543
“RT SWG MTR CHIP”
Right Swing Motor Chip
57
Switch
This switch notifies the VIMS if chips have been detected in the right swing motor. As a large number of metal chips collect on the magnetic contacts of the switch, a short circuit is made from one terminal to the other causing a closed circuit to ground. During normal operation, the switch is in the open position. The switch is considered closed when the resistance between the two switch terminals is between zero and approximately 2K Ohms.
544
“IMPL PILOT FLTR”
Implement Pilot Filter
39
Switch
This is the status of a switch that is open when the implement pilot filter becomes PLUGGED. As the implement pilot filter becomes PLUGGED, mechanically the machine causes the oil filter to be bypassed. Which opens a switch that tells an ECM that the filter is PLUGGED. Over the CAT data link, VIMS is made aware of the condition.
545
“LT HYD CDRN ST”
Left Hydraulic Case Drain Oil Filter Status
58
Switch
This is the status of the oil filter on the left hydraulic case drain. The status is either OK or PLUGGED.
546
“CTR HYD CDRN ST”
Center Hydraulic Case Drain Oil Filter Status
58
Switch
This is the status of the oil filter on the center hydraulic case drain. The status is either OK or PLUGGED.
547
“HYD CDRN ST RT ”
Right Hydraulic Case Drain Oil Filter Status
58
Switch
This is the status of the oil filter on the right hydraulic case drain. The status is either OK or PLUGGED.
550
“SYS AIR PRES”
System Air Pressure
50/57/58
PWM
This is a measure of the air pressure in the main supply line for the machine. The sensor sends the VIMS a pulse that varies in width as the pressure changes. The VIMS then calculates the pressure according to the signal that is received.
Parameter Number
Source Module(s)
Signal Type
Parameter Description
(continued)
137 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
555
“HYD LOOP FLTR”
Hydraulic Circuit Filter Status
58
Switch
This is used to read the status of the hydraulic circuit filter. The staus is either OK or PLUGGED.
560
“LT LADDER POS”
Left Ladder Position
39
Switch
This is the position of the left ladder (or the only ladder) that is used for access to the machine. The two states of the ladder position are up or down. The switch is closed with the ladder up.
561
“SWG BRK”
Swing Brake
39
Solenoid
The status of the swing brake command (output from ECM). The status is either ON (solenoid energized) or OFF (solenoid de-energized).
562
“TRVL BRK”
Travel Brake
39
Solenoid
This is the status of the travel brake command (output from ECM). The status is either ON (solenoid energized) or OFF (solenoid de-energized).
563
“AUTO LUBE (CDL)”
Auto Lube CAT data link
39
Calculated
This reads the status of auto lube system and is used to turn auto lube ON or OFF. Auto lube is used to apply grease to the joints of the machine.
564
“HYD PMP CDRN”
Hydraulic Pump Case Drain Filter Switch
58
Switch
This is the status of the case drain hydraulic oil filter. The status is either PLUGGED or OK. The switch is open whe the status is plugged.
565
“RT LADDER POS”
Right Ladder Position
39
Switch
This is the position of the right ladder that is used for access to the machine. The two states of the ladder position are up or down. The switch is closed when the ladder is in the up position.
570
“LFT CYLHD PRES”
Lift Cylinder Head Pressure
57
Frequency
This is the oil pressure on the head end of the hydraulic lift cylinder. The VIMS receives a square wave signal that varies in frequency as the oil pressure of the hydraulic lift cylinder head end changes. The VIMS then determines the pressure by the frequency that is received from the sensor and uses this to calculate payload. Only positive pressures will display.
571
“TLT CYLRD PRES”
Tilt Cylinder Rod Pressure
58
Frequency
The oil pressure on the rod end of the hydraulic tilt cylinder. VIMS receives an square wave signal from the sensor that changes in frequency as the hydraulic tilt cylinder rod end oil pressure changes. VIMS then determines the pressure by the frequency that it receives from the sensor. Only positive pressures will display. (continued)
138 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
572
“LFT LINK POS”
Lift Linkage Position
57/58/82
PWM
This is an angle in degrees that represents the position of the bucket lift arms (LINKAGE). An ECM receives a signal that varies in pulse width as the position of the lift arms change. The ECM then calculates the position from the pulse width that is received.
573
“TLT LINK POS”
Tilt Linkage Position
57/82
PWM
An angle in degrees that represents the position of the bucket tilt (LINKAGE). An ECM receives a signal that changes in pulse width as the bucket changes position. The ECM then calculates the position from the pulse width that it receives.
574
“LFT LVR POS”
Lift Lever Position
82
PWM
Thsi is a percentage value that represents the position of the bucket hydraulic lift lever within the cab (within the full calibrated range of the lever). This should be a value from 0% to 100%. An ECM receives this signal that changes in pulse width as the lift lever position changes. The ECM then calculates the lift lever position from the pulse width that it receives.
575
“TLT LVR POS”
Tilt Lever Position,
82
PWM
A percentage value that represents the position of the bucket hydraulic tilt lever within the cab (within the full calibrated range of the lever). This should be a value from 0% to 100%. An ECM receives this signal that changes in pulse width as the lift lever position changes. The ECM then calculates the tilt lever position from the pulse width that is received.
576
“LFT RAISE SOL1”
Lift Raise Solenoid Number 1
82
Solenoid
Thsi is the status of the number one pilot lift-raise solenoid that is used to control the lift cylinders. The two states for this solenoid are ON or OFF.
577
“LFT LOWER SOL1”
Lift Lower Solenoid Number 1
82
Solenoid
This is the status of the number one pilot lift-lower solenoid that is used to control the lift cylinders. The two states for this solenoid are ON or OFF.
578
“TLT DMP SOL1 ”
Tilt Dump Solenoid Number 1
82
Solenoid
This is the status of the number one pilot tilt-dump solenoid that is used to control the tilt cylinders. The two states for this solenoid are ON or OFF.
Source Module(s)
Signal Type
Parameter Description
(continued)
139 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
579
“TLT RACK SOL1”
Tilt Rack Solenoid Number 1
82
Solenoid
This is the status of the number one pilot tilt-rack solenoid that is used to rack backthe bucket cylinders. The two states for this solenoid are ON or OFF.
580
“VAR PMP TORQ”
Variable Pump Torque
82
Calculated
This value is calculated by the implement ECM, and represents the variable pump torque.
581
“HYD LCK”
Hydraulic Lock
82
Switch
This is the status of the hydraulic lock function. When this is active, no hydraulic functions will operate.
582
“VAR PMP PRES”
Variable Hydraulic Pump Pressure
82
PWM
This is the oil pressure at the outlet of the variable hydraulic oil pump. The implement ECM receives a signal that varies in pulse width as the pressure of the variable pump changes. The ECM then determines the variable pump pressure from the pulse width that is received.
583
“FIXED PMP PRES”
Hydraulic Pump Pressure
57/82
PWM
This is the hydraulic oil pressure at the outlet of the hydraulic oil pump. An ECM receives a signal that varies in frequency as the hydraulic oil pressure changes. From this signal, the ECM then calculates the hydraulic oil pump outlet pressure.
584
“LFT LINK SNSR”
Lift Linkage Sensor
82
PWM
This a percentage value that represents the duty cycle of the lift arm (linkage) sensor of the bucket. This number may or may not go from 0% to 100% depending on the allowable lift range for the machine. An ECM receives a signal that changes in pulse width as the bucket lift arms moves.
585
“TLT LINK SNSR”
Tilt Linkage Sensor
82
PWM
This is a percentage value that represents the duty cycle of the tilt (linkage) sensor for the bucket. This number may or may not go from 0% to 100% depending on the allowable tilt movement of the bucket. An ECM receives a signal that varies in pulse width as the bucket tilt linkage moves.
586
“LFT LVR SNSR”
Lift Lever Sensor
82
PWM
This is a percentage value that represents the duty cycle of the hydraulic lift lever sensor for the bucket that is located in the cab. This number may or may not go from 0% to 100% depending on where the stops for the lever are set. An ECM receives a signal that changes in pulse width (within the PWM limits of the sensor) as the bucket hydraulic lift lever is moved. (continued)
140 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
587
“TLT LVR SNSR”
Tilt Lever Sensor
82
PWM
This is a percentage value that represents the duty cycle of the hydraulic tilt lever sensor for the bucket located in the cab. This number may or may not go from 0% to 100% depending on where the stops for the lever are set. An ECM receives a signal that varies in pulse width (within the PWM limits of the sensor) as the hydraulic tilt lever for the bucket is moved.
588
“TOP F PMP CHIP”
Top Front Pump Chip
59
Switch
This switch notifies VIMS if chips have been detected in the top front pump. As metal chips collect on the magnetic contacts of the switch, a short circuit is made from one terminal to the other causing a closed circuit to ground. During normal operation, the switch is in the open position. The switch is considered closed when the resistance between the two switch terminals is between zero and approximately 2K ohms.
589
“TOP R PMP CHIP”
Top Rear Pump Chip
59
Switch
This switch notifies VIMS if chips have been detected in the top rear pump. As metal chips collect on the magnetic contacts of the switch, a short circuit is made from one terminal to the other causing a closed circuit to ground. During normal operation, the switch is in the open position. The switch is considered closed when the resistance between the two switch terminals is between zero and approximately 2K ohms.
590
“RTF SWG CHIP”
Right Front Swing (Motor) Chip
59
Switch
This switch notifies VIMS if chips have been detected in the right front swing motor. As metal chips collect on the magnetic contacts of the switch, a short circuit is made from one terminal to the other causing a closed circuit to ground. During normal operation, the switch is in the open position. The switch is considered closed when the resistance between the two switch terminals is between zero and approximately 2K ohms.
Source Module(s)
Signal Type
Parameter Description
(continued)
141 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
591
“RTR SWG CHIP”
Right Rear Swing (Motor) Chip
59
Switch
This switch notifies VIMS if chips have been detected in the right rear swing motor. As metal chips collect on the magnetic contacts of the switch, a short circuit is made from one terminal to the other causing a closed circuit to ground. During normal operation, the switch is in the open position. The switch is considered closed when the resistance between the two switch terminals is between zero and approximately 2K ohms.
592
“BTM F PMP CHIP”
Bottom Front Pump Chip
59
Switch
This switch notifies VIMS if chips have been detected in the bottom front pump. As metal chips collect on the magnetic contacts of the switch, a short circuit is made from one terminal to the other causing a closed circuit to ground. During normal operation, the switch is in the open position. The switch is considered closed when the resistance between the two switch terminals is between zero and approximately 2K ohms.
593
“BTM R PMP CHIP”
Bottom Rear Pump Chip
59
Switch
This switch notifies VIMS if chips have been detected in the bottom rear pump. As metal chips collect on the magnetic contacts of the switch, a short circuit is made from one terminal to the other causing a closed circuit to ground. During normal operation, the switch is in the open position. The switch is considered closed when the resistance between the two switch terminals is between zero and approximately 2K ohms.
595
“LFT CYLHD PRES”
Lift Cylinder Head Pressure
57/58
Frequency
This is the oil pressure on the head end of the hydraulic lift cylinder. An ECM receives a signal from the sensor that changes in frequency as the hydraulic lift cylinder head end oil pressure changes. The ECM then calculates the pressure from the frequency that it receives. Negative pressures cannot be displayed.
596
“TLT CYLRD PRES”
Tilt Cylinder Rod Pressure
58
Frequency
This is the oil pressure on the rod end of the hydraulic tilt cylinder. An ECM receives a signal from the sensor that varies in frequency as the tilt cylinder rod end oil pressure changes. The ECM then calculates the pressure from the frequency that is received. Negative pressures cannot be displayed.
598
“BOOM UP PLT”
Boom Raise Pilot Pressure Switch
49
Switch
This is the status of the boom raise pilot pressure based on the pressure switch. The status is either HI or LO. (continued)
142 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
599
“SWG HIPLT”
Swing High Pilot Pressure
39
Switch
This is used to read the status of the swing high pilot pressure. The status is either HI or LO.
600
“IMPL HIPRES FLTR”
Implement High Pressure Filter
58
Switch
This is the status of the implement high pressure hydraulic oil filter. The status is either PLUGGED or OK.
601
“PMP DRIVE FLTR”
Front Pump Drive Filter
57
Switch
This is the status of the front pump drive filter. The status is either OK or PLUGGED.
704
DIF FAN RELAY
Differential Fan Relay
49
Switch
The status of the relay that is used to drive the fan that cools the defferential axle oil. The status is either ON or OFF.
705
“ATMOS PRES R”
Atmospheric Pressure Rear Engine
34
Analog
This is the atmospheric (barometric) pressure on the outside of the machine. The atmospheric pressure sensor sends to the engine ECM a voltage that varies as the pressure changes. The engine ECM then calculates the pressure according to the voltage that is received.
706
“HOIST ROD PRES”
Hoist Rod End Pressure
87
PWM
The oil pressure on the rod end of the hydraulic tilt cylinder. An ECM receives a square wave signal from the sensor that changes in frequency as the hydraulic tilt cylinder rod end oil pressure changes. The ECM then calculates the pressure from the frequency that is received.
707
“HOIST HD PRES”
Hoist Head End Pressure
87
PWM
This is the oil pressure on the head end of the hydraulic tilt cylinder. An ECM receives a square wave signal from the sensor that varies in frequency as the hydraulic tilt cylinder head end oil pressure changes. The ECM then calculates the pressure from the frequency that is received.
708
“BODY ANGLE”
Body Position Sensor
87
PWM
This is the angle that represents the body position. The angle is measured in reference from the down position (on the rail).
709
“TLT CYLHD PRES”
Tilt Cylinder Head Pressure
58
Frequency
The oil pressure on the head end of the hydraulic tilt cylinder. An ECM receives a square wave signal from the sensor that changes in frequency as the hydraulic tilt cylinder head end oil pressure changes. The ECM then calculates the pressure from the frequency that is received.
710
“RTF-LTF SUSP CYL”
Right Front Minus Left Front Suspension Cylinder
49
Calculated
The VIMS calculates this value by subtracting the left front suspension cylinder pressure from the right front suspension cylinder pressure. (continued)
143 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List VIMS Abbreviated Name
VIMS Full Name
711
“RTR-LTR SUSP CYL”
Right Rear Minus Left Rear Suspension Cylinder
49
Calculated
The VIMS calculates this value by subtracting the left rear suspension cylinder pressure from the right rear suspension cylinder pressure.
712
“HOIST SCREEN”
Hoist Screen Bypass
87
Switch
This is the status of the hydraulic hoist screen filter. The status is either PLUGGED or OK.
720
“LTF SUSP CYL”
Left Front Suspension Cylinder
57
Frequency
This is the pressure in the left front suspension cylinder. The VIMS receives a square wave signal from the sensor that varies in frequency with respect to the change in pressure within the suspension cylinder. The VIMS then determines the pressure in the cylinder from the frequency that is received.
721
“LTR SUSP CYL”
Left Rear Suspension Cylinder
58
Frequency
This is the pressure in the left rear suspension cylinder. The VIMS receives a square wave signal from the sensor that varies in frequency with respect to the change in pressure within the suspension cylinder. The VIMS then determines the pressure in the cylinder from the frequency that is received.
722
“RTF SUSP CYL”
Right Front Suspension Cylinder
50/57
Frequency
This is the pressure in the right front suspension cylinder. The VIMS receives a square wave signal from the sensor that varies in frequency with respect to the change in pressure within the suspension cylinder. The VIMS then determines the pressure in the cylinder from the frequency that is received.
723
“RTR SUSP CYL”
Right Rear Suspension Cylinder
58/50
Frequency
This is the pressure in the right rear suspension cylinder. The VIMS receives a square wave signal from the sensor that varies in frequency with respect to the change in pressure within the suspension cylinder. The VIMS then determines the pressure in the cylinder from the frequency that is received.
724
“BODY ANGLE”
Body Position Angle
27
PWM
Used to read the angle of the body position. The angle is measured in reference from the down position (on the rail).
725
“GND SPD”
Ground Speed
27/81
Frequency
The speed of the machine relative to the ground. The sensor sends a signal to the transmission ECM that varies in frequency depending on the transmission output shaft speed. Then based on the frequency that the transmission ECM receives, the ground speed is determined.
Parameter Number
Source Module(s)
Signal Type
Parameter Description
(continued)
144 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
726
“BODY POS”
Body Position
27
Switch
This is the position of the body (up or down). One use of this sensor (switch) is to relay the position of the body to the transmission ECM. This information is used to limit the ground speed when the body is in the up position.
727
“BODY LVR”
Body Lever
27
Switch
This is the status of the body raise/lower lever within the cab. The state of the body lever is UP, DOWN OR FLOAT.
728
“PAYLOAD”
Payload
49
Calculated
The payload weight is calculated by the VIMS. The weight is based on the pressures that are measured by the four suspension cylinders pressure sensors. The payload can change throughout a cycle, but the payload value returns to zero at the end of the payload cycle when the body raise/lower routine is performed (dumping of the load). (Off-higway trucks)
729
“PAYLOAD STATUS”
Payload Status
49
Calculated
This is the status of the truck in a payload cycle. Examples of payload status are listed below: STOPPED EMPTY STOPPED LOADING TRAVELING LOADED DUMPING TRAVELING EMPTY
730
“HAUL DISTANCE”
Haul Distance
49
Calculated
This is the distance that has been traveled by the truck up to a present point in a payload cycle. Haul distance is calculated based on ground speed and travel time.
731
“RT TRL SUSP CYL”
Right Trailer Suspension Cylinder Pressure
59
Frequency
This is the oil pressure within the right trailer suspension cylinder. The VIMS receives a square wave signal from the sensor that changes in frequency as the the pressure in the left trailer suspension cylinder changes. The VIMS then determines the pressure in the cylinder from the frequency that is received.
732
“LT TRL SUSP CYL”
Left Trailer Suspension Cylinder Pressure
59
Frequency
This is the oil pressure at the left trailer suspension cylinder. The VIMS receives a square wave signal from the sensor that changes in frequency as the the pressure in the left trailer suspension cylinder changes. The VIMS then determines the pressure in the cylinder from the frequency that is received. (continued)
145 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
733
“TRL DOOR POS”
Trailer Door Position
59
PWM
This is the status of the trailer door. The status is ether open or closed. This is the door that is loacated on the bottom of the trailer that is used for dumping. The VIMS receives a signal that changes in pulse width as the trailer door position changes. The VIMS then determines the position from the pulse width that is received.
734
“TLT CYLHD PRES”
Tilt Cylinder Head Pressure
58
Frequency
This is the oil pressure on the head end of the bucket tilt cylinder. The sensor sends a ECM a square wave signal that varies in frequency in respect to the change in the cylinder pressure. The ECM then determines the pressure within the cylinder from the frequency that iis received. Negative pressures are not displayed.
737
“GND SPD”
Ground Speed
81
Calculated
This is used to read the ground speed of the machine with a directional indication. The signed data indicates the direction of travel: Negative (-) is reverse Positve (+) is forward
742
“USER SHUTDN”
User Shutdown
36
Switch
This tells the status of the user shutdown input. There are two states, on and off. When in the shutdown (ON) position (resulting from grounding this input) the engine ECM stops the engine.
743
“SHUTDN SW”
Shutdown Switch
36
Switch
This is the status of the machine remote shutdown switch. To activate this switch the red guard on the machine must be lifted and the switch placed in the ON position. The engine ECM reads the switch, and after one second fuel injection will be stopped if the engine is running, or the engine will not be allowed to start if not running. Once the switch has been on, the key start switch must be turned OFF momentarily and then back on before the engine ECM will allow the engine to run again.
747
“SWG HIPRES FLTR ”
Swing High Pressure Filter
58
Switch
This is the status of the swing high pressure hydraulic oil filter. The status is either PLUGGED or OK.
749
“AUTO LUBE PRES”
Auto Lube Pressure
57/58
PWM
This is the pressure in the lubrication line that feeds grease to the grease injectors of the lubrication system. The sensor that measures the pressure sends a pulse to VIMS that varies in width depending on the line pressure. The VIMS then uses this signal to calculate the lube pressure. (Large wheel loaders) (continued)
146 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
750
“AUTO LUBE PRES”
Auto Lube Pressure
39/57/58
PWM
This is the pressure in the lubrication line that feeds grease to the grease injectors of the lubrication system. The sensor that measures the pressure sends a pulse that varies in width depending on the line pressure to the VIMS. The VIMS then uses this signal to calculate the lube pressure. (large hydraulic excavators)
751
“AUTO LUBE”
Auto Lube (Status)
49
Calculated
This is the operating status of the auto lube solenoid. There are several possible states. The possible states are listed below: ACTIVE, PENDING WARNING INACTIVE TERMINATE (Off-highway trucks and Large excavators)
752
“ENG FAN PMP PRES”
Engine Fan Pump Pressure
36
Analog
This is the oil pressure in the hydraulic oil line to the engine cooling fan hydraulic motor. The sensor sensd a signal that varies in voltage as the oil pressure cahanges to the engine ECM. The engine ECM then determines the pressure from the voltage that is received.
753
“HORN SW”
Horn Switch
39
Switch
This is the status of the forward warning horn switch. The status is either ON or OFF.
754
“SYS VOLTAGE”
System Voltage
49
Calculated
This the actual voltage that exists between the positive side of the electrical system and frame ground.
755
“BUCKET WT”
Bucket Weight
49
Calculated
This is the weight of the payload in the loader bucket. The pressure in the lift cylinder and the position of the lift arm are used to calculate this value.
756
“TRUCK WT”
Truck Weight
49
Calculated
This is the accumulated weight of the material that was loaded into the truck during the present loading cycle. This value continues to accumulate until the loader store bottom is pressed. At this point, the value would be stored and cleared to zero. (Large wheel loaders)
757
“SWG PLT PRES”
Swing Pilot Pressure
39
Switch
This is the status of the swing pressure switch.
758
“SWG PMP PRES”
Swing Pump Pressure
39
PWM
This is the outlet pressure from the swing pump. (continued)
147 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
759
“HYD OIL PRES”
Hydraulic Oil Pressure
39/57
PWM
This is the oil pressure in the outlet line of the hydraulic oil pump. This sensor sends a signal that varies in pulse width that to an ECM. This signal depends on the hydraulic oil pump outlet line pressure. The ECM then uses this signal to calculate the hydraulic oil pressure.
760
“SWG/IMP PRES SW”
Swing/ Implement Pilot Pressure
39
Switch
This is the status of the swing/implement pilot oil pressure switch. The status is high when swinging or moving an implement and low when not swinging and not moving an implement. The switch is open or closed depending on the pressure.
761
“TRVL PLT PRES”
Travel Pilot Pressure
39
Switch
This is the status of the travel pilot oil pressure switch. Status is high when traveling and low when not traveling.
763
“TRVL ALRM CNCL”
Travel Alarm Cancel
39
Switch
This is the status of the travel alarm cancel switch. The switch is normally open.
764
“BOOM FLOAT PRES”
Boom Float Pressure
39
Switch
This is the status of the boom float oil pressure switch. The status is either low or high.
765
“BOOM FLOAT SW”
Boom Float Switch
39
Switch
This is the status of the cab switch used to enable or disable the boom float function.
766
“BKT OPEN SW”
Bucket Open Switch
39
Switch
This is the status of the cab switch (trigger switch) used to open the bucket.
767
“BKT CLOSE SW”
Bucket Close Switch
39
Switch
This is the status of the cab switch (trigger switch) used to close the bucket.
768
“HORN SW”
Horn Switch
39
Switch
This is the status of the horn switch. The status is either ON or OFF.
770
“SERVICE CONSOLE”
Service Console
39
Switch
This is the status of the service console door. When the service console door is closed, the switch is closed to ground. The service console door is an option and is not standard on all of the shovels. The state is either open or closed. (large excavator)
771
“HORN”
Horn
39
Solenoid
This is the status of the horn command (output from ECM). The status is either ON or OFF.
772
“BOOM FLOAT”
Boom Float
39
Solenoid
This is the status of the boom float command (output from ECM). The status is either ON or OFF.
773
“BKT OPEN”
Bucket Open
39
Solenoid
This is the status of the bucket open command (output from ECM). The status is either ON or OFF.
Source Module(s)
Signal Type
Parameter Description
(continued)
148 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
774
“BKT CLOSE”
Bucket Close
39
Solenoid
This is the status of the bucket close command (output from ECM). The status is either ON or OFF.
775
“TRVL ALARM”
Travel Alarm
39
Switch
This is the status of the travel alarm. The status is either ON or OFF.
776
“BOOM LOWER”
Boom Lower
39
Solenoid
This is the status of the engine off lower command (output from ECM). The status is either ON or OFF.
777
“BOOM LOWER SW”
Boom Lower Switch
39
Switch
This is the status of the cab switch that is used to lower the boom when the engine is not running.
778
“ETHER INJECT SW”
Ether Injection Switch
36
Switch
The position of the ether injection switch in the cab. This is the switch which the operator uses to manually inject ether for starting. The switch is either OFF or ON (manual injection).
779
“AESC”
Automatic Engine Speed Control
36
Switch
This is the status of the AESC pressure switch. If the engine ECM receives an signal from AESC pressure switch notifying that the hydraulics are being used, then no action is taken. But, if the hydraulics are not being used, the engine ECM idles the engine down to a specified speed to save fuel and reduce engine wear. As soon as the hydraulics begin to be used again, the engine speed is again elevated. AESC state is either ON or OFF.
780
“START RELAY”
Start Relay
51
Switch
This is the status of the start relay. When the engine is cranking, the start relay is engaged.
781
“KEY START SW”
Key Start Switch
51
Switch
The status of the key start switch. The status is either ON, OFF or CRANK.
782
“AESC ENABL SW” “AESC ENABLE SW”(HEX)
Automatic Engine Speed Control Enable Switch
36/49
Switch
This is the status (ACTIVE or INACTIVE) of the Engine Speed Control Automatic Enable switch.
783
“AESC CTRL LINE”
Automatic Engine Speed Control Line
36/39
Switch
This is the status of the AESC output line from the macine ECM to the engine ECM.
785
“PAYLOAD SW”
Payload Switch
39
Switch
This is the status of the payload store switch. The switch is normally in the open position. When the switch is pressed, a grounded signal is received, telling the VIMS to store the payload data that has been collected since the last store and to clear the present payload data. The switch is either ON or OFF. (continued)
149 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List VIMS Abbreviated Name
VIMS Full Name
786
“HOIST OVER CTR”
Hoist Over center
87
Calculated
This the status of the hoist overrunning load control. This indicates when the ECM is trying to control the body so an overrunning load will not damage the machine.
787
“HOIST POS CC”
Hoist Lever Position from Chassis Control
87
Analog
This is used to read the hoist lever mode and the mode drive command percentage. The drive percentage, used by the RAISE, FLOAT, and LOWER modes, indicates the position of the lever within the range of travel for the particular mode.
788
“HOIST STATUS CC”
Hoist Status from Chassis Control
87
Analog
Used to read the actual hoist output status and drive command percentage. The drive percentage, used by the RAISE, FLOAT, LOWER and SNUB modes, indicates the position of the lever within the range of travel for the particular mode.
790
“ATMOS PRES”
Atmospheric Pressure
36
Analog
This is the atmospheric (barometric) pressure on the outside of the machine. The atmospheric pressure sensor sends a voltage that varies as the pressure changes to the engine ECM. The engine ECM then calculates the pressure according to the voltage that is received.
791
“AMB AIR TEMP”
Ambient Air Temperature
57
PWM
This is the temperature of the air outside the machine. The VIMS receives a signal that changes in pulse width as the outside or ambient air temperature changes. The VIMS then uses the pulse width that is received to determine the ambient air temperature.
792
“MACHINE PITCH”
Machine Pitch
49
Calculated
This is calculated from the pressures that are measured by the four machine suspension cylinder pressure sensors. The VIMS takes the sum of the two front suspension cylinder pressures minus the sum of the two rear suspension cylinder pressures.
793
“MACHINE RACK”
Machine Rack
49
Calculated
This is calculated from the pressures that are measured by the four machine suspension cylinder pressure sensors. The VIMS takes the sum of the two diagonal suspension cylinder pressures (left front plus right rear or right front plus left rear) minus the sum of the two other diagonal suspension cylinder pressures.
794
“ATMOS PRES F”
Engine Atmospheric Pressure Front
33
Analog
This is the air pressure at the inlet to the intake manifold of the front engine. (see parameter 790)
Parameter Number
Source Module(s)
Signal Type
Parameter Description
(continued)
150 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
795
“REEL LUBE SW”
Reel Lube Switch
57
Switch
The status of the reel lube switch (ON or OFF). The reel lube switch will turn the lubrication system on to actuate the manual lube reel.This is an alternate lubrication system from the auto lube system. This system overrides the auto lube system. While this switch is on, the auto lube status will be pending.
798
HOIST LVR POS
Hoist Level Position
49
Calculated
This indicates the hoist lever modes. The hoist lever modes are listed below: RAISE LOWER HOLD FLOAT
799
“HOIST STATUS”
Desired Hoist Status
27
Calculated
The desired mode and drive percentage of the hoist for operation. The drive percentage, used by the RAISE, FLOAT, and LOWER modes, indicates the desired lever position within the range of travel for the particular mode.
800
“VIMS EVENT LIST”
VIMS Event List
49
Calculated
This is a percentage value that represents the amount of memory space (out of the total) that is left for the VIMS Event List.
801
“PAYLOAD DATA”
Payload Data
49
Calculated
This is a percentage value that represents the amount of memory space (out of the total) that is left for storing of payload data. This is calculated by VIMS on off highway trucks.
802
“VIMS SNAPSHOT”
VIMS Snapshot
49
Calculated
This is a percentage value that represents the amount of memory space (out of the total) that is left for storing of the VIMS Snapshot data (previously named event recorder data). This value will either be 100, 50, or 0 percent. Every time a snapshot is activated (manually or automatically), the VIMS snapshot value should be reduced by 50 percent. This value can only be reset by downloading the VIMS snapshot data.
803
“PAYLOAD MEMORY”
Payload Memory
49
Calculated
This is a percentage value that represents the amount of memory space (out of the total) that is left for storing of the payload data. This is calculated by VIMS on large wheel loaders. (continued)
151 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
804
“PWR SHIFT PRES”
Power Shift Pressure
36
PWM
This is the power shift pressure that is used to control the swash plates on the hydraulic oil pumps. The engine ECM receives a signal that changes in pulse width as the power shift pressure changes. The engine ECM then uses the pulse width that is received to determine the power shift pressure.
805
“VIDS EVENT LIST”
VIDS Event List
49
Calculated
This is a percentage value that represents the amount of memory space (out of the total) that is left for the VIDS Event List data.
806
“PWR SHIFT”
Power Shift
36
Calculated
This is the current as a percentage of maximum that is delivered to the power shift solenoid.
850
“MAX PITCH/ SEC”
Maximum Pitch Per Second
49
Calculated
This is used with Chassis electronic control module.
851
“MAX RACK/ SEC”
Maximum Rack Per Second
49
Calculated
This is used with Chassis electronic control module.
852
“CURRENT FELA”
Current FELA
49
Calculated
This is used with Chassis electronic control module.
853
“MOV AVG1 FELA”
Moving Average Number 1 FELA
49
Calculated
This is used with Chassis electronic control module.
854
“MOV AVG2 FELA”
Moving Average Number 2 FELA
49
Calculated
This is used with Chassis electronic control module.
855
“MOV AVG 3 FELA”
Moving Average Number 3 FELA
49
Calculated
This is used with Chassis electronic control module.
856
“RUN AVG FELA”
Running Average FELA
49
Calculated
This is used with Chassis electronic control module.
857
“CUM FELA UPD”
Cumulative FELA Update
49
Calculated
This is used with Chassis electronic control module.
860
“MANUAL EREC”
Manual Event Recorder
49
Switch
This is the status of the manual event recorder. The status is either OFF or RECORDING.
862
“CUR R FELA”
Current Rear FELA
87
Calculated
This is used with Chassis electronic control module.
863
“MOV AVG1 R FELA”
Moving Average Number 1 Rear FELA
87
Calculated
This is used with Chassis electronic control module.
864
“MOV AVG3 R FELA”
Moving Average Number 3 Rear FELA
87
Calculated
This is used with Chassis electronic control module.
865
“MOV AVG5 R FELA”
Moving Average Number 5 Rear FELA
87
Calculated
This is used with Chassis electronic control module.
866
“RUN AVG R FELA”
Running Average Rear FELA
87
Calculated
This is used with Chassis electronic control module. (continued)
152 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
875
“ATTACH CODE”
Attachment Code
39
Calculated
This reads the machine attachment code.
876
“EXH TEMP DEV LTF”
Exhaust Temperature Deviation Left Front
49
Calculated
This is the difference between the left front exhaust and the three remaning exhaust banks.
877
“EXH TEMP DEV LTR”
Exhaust Temperature Deviation Left Rear
49
Calculated
The difference between left rear exhaust and the three remaning exhaust banks.
878
“EXH TEMP DEV RTF”
Exhaust Temperature Deviation Right Front
49
calculated
The difference between right front exhaust and the three remaning exhaust banks.
879
“EXH TEMP DEV RTR”
Exhaust Temperature Deviation Right Rear
49
Calculated
The difference between right rear exhaust and the three remaning exhaust banks.
900
“LOADING TIME”
Loading Time
49
Calculated
This is the total time that the machine has spent loading in a given payload cycle.
901
“STOP EMPTY TIME”
Stopped Empty Time
49
Calculated
This is the total time that the machine has been stopped while empty in a given payload cycle.
902
“TRVL EMPTY TIME”
Travel Empty Time
49
Calculated
This is the total time that the machine has been traveling while empty in a given payload cycle.
903
“STOP LOADED TIME”
Stop Loaded Time
49
Calculated
This is the total time that the machine has been stopped while loaded in a given payload cycle.
904
“TRVL LOADED TIME”
Travel Loaded Time
49
Calculated
This is the total amount of time that a machine has been traveling while loaded in a given payload cycle.
905
“THROTTL LCK SPD”
Throttle Lock Speed
36
Calculated
This is the throttle lock speed that was set by the operator with the throttle lock set switch. This is only valid if the throttle lock ON/OFF switch is in the ON position.
907
“LOW OIL PRES”
Low Oil Pressure
36
Switch
This notifies the VIMS when engine oil pressure is low. The switch is isolated from ground when the oil pressure is low. In normal operation, the switch is grounded. (continued)
153 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
910
“LT FNL DRV CHIP”
Left Final Drive Chip Detector Level
50
Switch
This switch notifies the VIMS if chips have been detected in the left final drive. As metal chips collect on the magnetic contacts of the switch, a short circuit is made from one terminal to the other causing a closed circuit to ground. During normal operation, the switch is in the open position. The switch is considered closed when the resistance between the two switch terminals is between zero and approximately 2K ohms.
912
“RT FNL DR CHIP”
Right Final Drive Chip Detector Level
50
Switch
This switch notifies VIMS if chips have been detected in the right final drive. As metal chips collect on the magnetic contacts of the switch, a short circuit is made from one terminal to the other causing a closed circuit to ground. During normal operation, the switch is in the open position. The switch is considered closed when the resistance between the two switch terminals is between zero and approximately 2K ohms.
913
“LT FNL DRV TEMP”
Left Final Drive Oil Temperature
49/50
PWM
This is the temperature in the left final drive.
914
“RT FNL DRV TEMP”
Right Final Drive Temperature
49/50
PWM
This is the temperature in the right final drive.
7107
“INJ DISABLD”
Engine Injection Disalbled
36
Calculated
The engine status parameter is monitored in order to see if the injectors have been disabled.
7108
“OIL PRES F SHTDN”
Oil Pressure Front Shutdown Status
33
Calculated
This parameter senses if the front engine has been shutdown due to low oil pressure. The engine ECM will turn off the Rear Low Oil Pressure status immediatly when the rear engine is shutdown. This parameter looks for a change of state in the low oil pressure status from LO to OK and the injection disabled from OFF to ON.
7109
“TRN OIL PRES LO”
Transmission Oil Pressure Low
116
Calculated
Monoitors the low region of the transmission oil pressure.
7110
“TRN OIL PRES HI”
Transmission Oil Pressure High
116
Calculated
This monitors the region of high transmission oil pressure. (continued)
154 Systems Operation Section
(Table 22, contd)
VIMS Parameter Description List Parameter Number
VIMS Abbreviated Name
VIMS Full Name
Source Module(s)
Signal Type
Parameter Description
7112
“OIL PRES R SHUTDN”
Oil Pressure Rear Shutdown Status
34
Calculated
This parameter senses if the rear engine has been shutdown due to low oil pressure. The engine ECM will turn off the Rear Low Oil Pressure status immediatly when the rear engine is shutdown. This parameter looks for a change of state in the low oil pressure status from LO to OK and the status of injection disabled from OFF to ON.
7701
“RETRDR LVR”
Retarder Lever Position
116
PWM
This reads the position of the auto retarder lever. This signal is a percentage of full travel.
7738
“AUTO RETRDR SW”
Automatic Retarder Pressure Switch Status
116
Switch
This shows the state of the ARC pressure switch. The ARC pressure is either HI or LO.
155 Testing and Adjusting Section
Testing and Adjusting Section
During troubleshooting, inspect all component and harness connections before any component is replaced. Electrical problems can be caused if harness connections are not clean and tight. The electrical problem can be permanent or the electrical problem can be intermittent. Make sure that the connections are tight before other tests are made.
Testing and Adjusting i00962728
General Information SMCS Code: 7601 Troubleshooting the Vital Information Management System requires additional information from the machine Service Manual, the Electrical System Schematic, and the Operation and Maintenance Manual. As a guide, typical VIMS schematics are located at the end of this manual. Refer to the Electrical System Schematic that is located in the machine Service Manual for a complete representation of the machine that is being diagnosed. When the troubleshooting procedure instructs the service personnel to REPAIR THE HARNESS, always use the Electrical System Schematic that is located in the machine Service Manual to trace the circuit. Perform continuity checks at the connectors in order to locate the harness failures. At component connectors, always check the ground circuit. Control power circuits require less than 2 ohms of resistance between the connector ground contacts and frame ground. Signal circuits (“sensors, switches, solenoids etc.”) require less than 5 ohms of resistance for normal operation. Resistance that is greater than 5 ohms can cause incorrect diagnosing of problems. Repairs of the machine harness should be performed with the wire of the same gauge. All joints should be soldered. All joints should be taped tightly. Use the 1P-0810 Vinyl Tape or shrink sleeving for all repairs to the harness. Repairs to the data link circuit in the harness must maintain the same “twist” ratio in the wiring that was provided in the original harness. The “two wires” of the CAT data link must maintain a twist rate of 2 ±1 turns per inch. Wiring of the Display data link must maintain the twist rate of 2 ±1 turns per inch. The wires of the Display data link are listed here: E972-BU (ground), C414-BU (Load), C413-YL (Data), and E708-PK (clock). Twisting is VERY IMPORTANT! Twisting will minimize the electrical interference to other circuits that is caused by the data link. Interference to the data link from other circuits will also be minimized.
The failure of an electrical component can cause the failure of one or more related components. Always attempt to find the cause of the electrical system failure and then correct the cause of the electrical system failure before replacing a component. Some machine functions that use solenoid valves require a suppressor diode across the valve coil. If the suppressor diode is faulty, electronic noise that is generated by the solenoids turning ON and OFF can cause erratic operation of the display components. If the erratic operation of the display components appears to be associated with an activity such as bucket operation (LHEX), check the appropriate suppressor diode for proper operation. Data events and maintenance events are defined by the machine’s configuration software. Diagnostics functions for a given event are also defined in the configuration software. The “event definitions” were improved in the 9.X and later configuration software in order to reduce the number of nuisance warnings for both machine and system conditions. An important change that was made to the configuration software is the addition of a longer evaluation time. The longer evaluation time allows VIMS to display an event only if an actual electrical failure exists. VIMS may wait up to 8 SECONDS before displaying a system event on the message center or VIMS may wait up to 8 SECONDS before storing a system event. During this time period, the gauges that are located on the “VIMS display components” may fall to the “red zone”. The message area will show “ERR”. During troubleshooting, allow an adequate amount of time for VIMS to report that a new condition exists. For example, unplug a sensor from the machine harness. VIMS may wait up to 8 seconds before reporting this condition as an “ERR”. Some “machine events” for filters may require SEVERAL MINUTES or HOURS before VIMS reports the condition. Likewise, when the condition is corrected, several minutes may be required before the event ceases to be reported. When VIMS has received an event from an electronic control via the CAT data link VIMS adds zero time to these events. VIMS displays the events immediately. The “event delay” is defined in the software of the control. Repairs are considered complete when the system event is no longer present and the parameter appears to read the condition of the machine correctly.
156 Testing and Adjusting Section
Quick Reference • See the Testing and Adjusting, “Troubleshooting Diagnostic Codes” section for failures that have diagnostics (MID/CID/FMI).
• See the Testing and Adjusting, “ Troubleshooting Alert Indicators” section for failures in the operation of the alert indicator.
• For the “experienced service technician”, see the Testing and Adjusting, “Troubleshooting Diagnostic Codes Using Abbreviated Procedures” section for troubleshooting failures that have diagnostics (MID/CID/FMI).
Use the digital multimeter for making continuity checks or for measuring voltage. For instructions about the use of the 6V-7070 Digital Multimeter, see Special Instruction, SEHS7734. Service personnel can use the 7X-1710 Probe Cable Group to measure the voltage of a circuit without breaking the connection. The probe cables are pushed into the back of the connector along the wire. The 8T-8726 Adapter Cable has a 3 pin breakout. The adapter cable is used for measurements in the sensor circuits. Note: Except for harness tests, using continuity testers such as the 8T-0500 Continuity Tester or voltage testers such as the 5P-7277 Voltage Tester is not recommended for today’s Caterpillar electrical circuits.
i00962778
Service Tools SMCS Code: 0785 The following service tools should be used to aid in the troubleshooting of VIMS and other electrical systems. Table 23
Service Tools Part Number
Part
6V-7070 9U-7330
Digital Multimeter
8T-3224
Needle Tip Group
7X-1710
Multimeter Probe Group
6V-2150
Starting and Charging Analyizer
8T-8697
Electronic Control Analyzer Programmer
JEBD3003
Caterpillar Electronic Technician Software
127-9797
Cable Assembly
Service Tool
Laptop Computer (recomended requirements): 166 MHz Pentium processor 64 megabytes of RAM Mouse (“pointing device”) Microsoft Windows 98 Additional RS-232 serial port Caterpillar Common Services Software, JERD2095 Vital Information Management System Software, JERD2132
For instructions on servicing Sure Seal connectors, see Special Instruction, SMHS7531. For instructions on servicing the Deutsch DT type connectors, see Special Instruction, SEHS9615.
The off-board service tool connector provides access to VIMS by way of the RS-232 data link. This connector is a military type connector. The service connector of the Electronic Control Analyzer Programmer provides access to the electronic engine control by way of the CAT data link. This connector is a HD type connector. These service connectors are usually located both in the cab and at ground level. The service connector for the off-highway trucks is located on the “left front bumper area”. The service connector for the large hydraulic excavators and large wheel loaders are located near the ground level access ladder. Later hydraulic excavators will not have a service connector at this location. Use the machine Electrical System Schematic in order to locate the position of the service connector.
157 Testing and Adjusting Section
i01489008
Troubleshooting Diagnostic Codes SMCS Code: 7601-038 Illustration 210
g00490765
Pressing the “F1” key will display the diagnostic information (MID, CID, and FMI codes) for the event on the second line of the message area. An example is shown here:
Illustration 209
g00490762
VIMS Display Components (1) Gauge cluster (2) Speedometer/tachometer module (3) Message center (4) Alert indicator (5) Data logging indicator (6) Gauges (7) Tachometer (8) Ground speed readout (9) Actual gear readout (10) Message area (11) Universal gauge (12) Gauge warning areas
The display of most maintenance events is delayed with the 9.X class of configuration software or later versions. The VIMS may wait up to eight seconds from the start of an event before the event is displayed. This delay is called debounce. This eight second delay is included in the total duration time of the events that are recorded in the event list. When the VIMS has received an event from an electronic control via the CAT data link the VIMS adds zero time to these events. the VIMS displays the events immediately. Debounce is applied to many parameters in order to prevent false tripping of events or debounce is applied to many parameters in order to reduce false tripping of events. ACTIVE maintenance events are shown in message area (10). A maintenance event is specified by showing that a parameter has an “ERR” and instructions for the operator such as “CALL SHOP”. When multiple ACTIVE maintenance events are present each event will be displayed on the message area. The message area scrolls through the events at three second intervals. The following display is shown when the engine oil pressure circuit has an error:
Illustration 211
g00490768
When the VIMS is in the gauge mode pressing the “F1” key will display the failure on the message area. Pressing the “F1” key again will display the FMI code definition. An example of the message is “SHORTED LO”.
Module Identifier (MID) The VIMS displays maintenance events that originate from electronic controls. The events are shown on the message area. Other electronic control modules transfer this diagnostic information by way of the CAT data link to the VIMS main module. The electronic control module that has detected a failure is identified by the Module Identifier (MID). Each electronic control module on the machine has a unique MID. Use table 24 to match the MID for each failure to an electronic control module. Refer to the “Module Identifier table” on the machine’s Electrical System Schematic if the MID that is shown does not appear in table 24. After the electronic control module that detected the failure has been identified, refer to the failed controls Service Manual for troubleshooting information (CID/FMI). The Service Manual modules for each control are part of the machine Service Manual. If the Module Identifier is for a VIMS module use this Service Manual, SENR6059 module to troubleshoot the failure. This Service Manual, SENR6059 module contains troubleshooting procedures for VIMS electronic control modules only. Refer to the Testing and Adjusting, “Troubleshooting Procedures” section of this manual for the CID/FMI troubleshooting procedures.
158 Testing and Adjusting Section
Note: Maintenance events that originate in other electronic controls may be automatically cleared from the control when the event is transferred to the VIMS. The data events are not affected. Table 24
Descriptions of the Module Identifiers (MID) MID No.
Description
(Table 25, contd)
Component Identifier (CID) For VIMS CID No.(1)
Component
0127
Transmission Oil Pressure Sensor
0171
Ambient Air Temperature Sensor
0177
Transmission Oil Temperature Sensor
27
Transmission Control (only EPTC II)
0190
Engine Speed Sensor
30
Caterpillar Monitor System Electronic Control
0248
CAT Data Link
0262
5 Volt Sensor Power Supply
36
Engine Control
0263
Sensor Power (8 or 12 Volt)
39
Machine Control
0267
Switch (Remote Engine Shutdown)
49
VIMS Main Module
0271
Action Alarm
57
VIMS Interface Module (No. 1)
0272
58
VIMS Interface Module (No. 2)
Turbocharger Outlet Overboost Pressure Sensor (High)
59
VIMS Interface Module (No. 3)
0279
Aftercooler Coolant Temperature Sensor
60
VIMS Interface Module (No. 4)
0280
Gear Box Temperature Sensor
65
VIMS Interface Module (No. 5)
0295
HEX Electronic Control Module
66
VIMS Interface Module (No. 6)
0296
67
VIMS Interface Module (No. 7)
Transmission Electronic Control Module
68
VIMS Interface Module (No. 8)
0324
Action Lamp (Warning)
81
Transmission Control
0341
82
Implement Control
Solenoid (Hydraulic Control Valve Warm Up) (No. 4)
83
Automatic Retarder Control
0350
Lift Linkage Position Sensor
87
Chassis Control Module
0364
Pressure Sensor (Lift Cylinder Head)
116
Brake Control
0371
Horn Solenoid (Forward)
173
Unknown Fault or MID
0379
Machine Autolube Pressure Sensor
0425
Pressure Sensor (Front Brake Oil)
0426
Pressure Sensor (Rear Brake Oil)
0427
Front Axle Oil Temperature Sensor
0428
Rear Axle Oil Temperature Sensor
0429
Pressure Sensor (Steering Pump Oil)
0430
Pressure Sensor (Steering Pilot)
0434
Hydraulic Pilot Oil Pressure Sensor
0436
Torque Converter Oil Pressure Sensor
0438
Solenoid (Hydraulic Control Valve Warm Up) (No. 1)
0439
Solenoid (Hydraulic Control Valve Warm Up) (No. 2)
0440
Solenoid (Hydraulic Control Valve Warm Up) (No. 3)
0533
Auto Retarder Control (ARC)
Component Identifier (CID) The Component Identifier (CID) is a code that describes the component that is believed to have caused the failure. The MID/CID/FMI can be used to see the whole story. Table 25
Component Identifier (CID) For VIMS CID No.(1)
Component
0041
8 Volt Sensor Power Supply
0075
Steering Oil Temperature Sensor
0096
Fuel Level Sensor
0100
Engine Oil Pressure Sensor
0110
Engine Coolant Temperature Sensor (continued)
(continued)
159 Testing and Adjusting Section
(Table 25, contd)
(Table 25, contd)
Component Identifier (CID) For VIMS No.(1)
Component Identifier (CID) For VIMS
Component
CID No.(1)
0541
Pressure Sensor (Differential Oil)(Axle)
0817
ECM Internal Backup Battery
0558
Autolube Relay
0819
Display Data Link
0562
Caterpillar Monitoring System
0820
Keypad Data Link
0590
Engine Electronic Control Module
0821
Display Power Supply (9 Volt)
0596
Implement Electronic Control Module
0822
Power Supply (Display Lighting)
0600
Hydraulic Oil Temperature Sensor
0823
Lamp (VIMS Service)
0650
Harness Code
0824
Green Truck Payload Lamp (No. 1)
0654
Trailer Right Brake Oil Temperature Sensor
0825
Red Truck Payload Lamp (No. 2)
0826
0655
Trailer Left Brake Oil Temperature Sensor
Torque Converter Oil Temperature Sensor
0827
0656
Temperature Sensor (Trailer Brake Oil Cooler Inlet)
Temperature Sensor (Bank) (Left Exhaust )
0828
0657
Temperature Sensor (Trailer Brake Oil Cooler)
Temperature Sensor (Bank) (Right Exhaust)
0829
0658
Pressure Sensor (Trailer) (Right Suspension Cylinder)
Rear Aftercooler Coolant Temperature Sensor
0830
Front Brake Oil Temperature Sensor
0659
Pressure Sensor (Trailer) (Left Suspension Cylinder)
0833
Rear Brake Oil Temperature Sensor
0672
Torque Converter Output Speed Sensor
0835
Temperature Sensor (Differential Oil) (Axle)
0767
Fixed Displacement Pump Oil Pressure Sensor
0838
Left Front Suspension Cylinder Pressure Sensor
0800
VIMS Main Module
0839
Right Front Suspension Cylinder Pressure Sensor
0801
VIMS Interface Module (No. 1)
0840
0802
VIMS Interface Module (No. 2)
Left Rear Suspension Cylinder Pressure Sensor
0803
VIMS Interface Module (No. 3)
0841
0804
VIMS Interface Module (No. 4)
Right Rear Suspension Cylinder Pressure Sensor
0805
VIMS Interface Module (No. 5)
0849
System Air Pressure Sensor
0806
VIMS Interface Module (No. 6)
0851
Gear Box Pressure Sensor
0807
VIMS Interface Module (No. 7)
0852
Brake Oil Temperature Sensor (Right Front)
0808
VIMS Interface Module (No. 8)
0853
0809
Speedometer/Tachometer Display (No. 1)
Brake Oil Temperature Sensor (Left Front)
0854
0810
Speedometer/Tachometer Display (No. 2)
Brake Oil Temperature Sensor (Right Rear)
0855
Brake Oil Temperature Sensor (Left Rear)
CID
Component
0811
Gauge (Quad Cluster) (No. 1)
0812
Gauge (Quad Cluster) (No. 2)
0890
Broadcast Port (Data Link)
0813
Gauge (Quad Cluster)(No. 3)
1089
Road Analysis Control (RAC) Module
0814
Gauge (Quad Cluster) (No. 4)
0815
Message Center (No. 1)
0816
Message Center (No. 2)
(1)
(continued)
The current Component Identifiers provided in the table, apply to any machine that was equipped with the VIMS after 08 January 1994. These Component Identifiers also apply to machines that were updated with new software after 08 January 1994.
160 Testing and Adjusting Section
Failure Mode Identifier (FMI) Failure Mode Identifier (FMI) codes are defined by SAE standards. The Caterpillar definitions that are listed here are applied to Caterpillar products. The relationship between sensors and FMI’s is shown in Illustration 212. The type of sensors are listed here: frequency sensors (Suspension Cylinder), analog sensors (engine control), and digital sensors (PWM).
Illustration 212
g00490995
161 Testing and Adjusting Section
Table 26
Descriptions of the Failure Mode Identifiers And the Associated Message Center Displays FMI No.
Description of Failure
Message Center Display
00
“Data Valid But Above Normal Operating Range”
N/A
01
“Data Valid But Below Normal Operating Range”
N/A
02
“Data Erratic, Intermittent Or Incorrect”
“INTERMITTENT”
03
“Voltage Above Normal Or Shorted High”
“SHORTED HI”
04
“Voltage Below Normal Or Shorted Low”
“SHORTED LO”
05
“Current Below Normal Or Open Circuit”
“LO AMPS OPEN”
06
“Current Above Normal Or Grounded Circuit”
“HI AMPS GROUNDED”
07
“Mechanical System Not Responding Properly”
N/A
08
“Abnormal Frequency, Pulse Width Or Period”
“OUT OF RANGE”
09
“Abnormal Update”
“NO RESPONSE”
10
“Abnormal Rate Of Change”
N/A
11
“Failure Mode Not Identifiable”
“UNKNOWN ERROR”
12
“Bad Device Or Component”
“NO RESPONSE”
13
“Out Of Calibration”
“UNCALIBRATED”
14
“Not Used”
N/A
15
“Not Used”
N/A
16
“Parameter Not Available”
“NOT AVAILABLE”
17
“Module Not Responding”
“NO RESPONSE”
18
“Sensor Supply Failure”
“SNSR SUPPLY FAULT”
19
“Condition Not Met”
N/A
20
“Not Used”
N/A
Detailed FMI Explanation FMI 00 – “Data Valid But Above Normal Operating Range” Every electronic control system sets a high limit for the expected operating range of the signal. The limit includes over range signals such as high converter temperatures. A sensor that is still working but sending a signal above the expected limit will cause an FMI 00 to be stored.
FMI 01 – “Data Valid But Below Normal Operating Range” Every electronic control system sets a low limit for the expected operating range of the signal. The limit includes under range signals, such as a low engine oil pressure signal from a sensor that is functioning normally. A sensor that is still working but sending a signal below the expected limit will cause an FMI 01 to be stored. Some possible causes of FMI 01 are listed here:
Some possible causes of FMI 00 are listed here:
• Signal above normal (High pressure or
• Signal below normal (Low voltage/pressure/ temperature)
temperature)
• Calibration is needed. (FMI 13 is the preferred code.)
For example, a certain PWM sensor is expected to generate a valid signal over 80 percent duty cycle. If the sensor generates a signal of 81 percent duty cycle, the sensor is still working but the signal is above the expected signal limits.
• Timing is retarded. For example, a certain PWM sensor is not expected to generate a PWM signal below 5 percent duty cycle even with zero air pressure. If the sensor generates a signal of 4 percent duty cycle with the engine shutdown, the sensor is still working but the signal is below the expected signal limits.
162 Testing and Adjusting Section
• A sensor signal contact of a failed control that is
FMI 02 – “Data Erratic, Intermittent Or Incorrect” Signal data that is received from a component is valid. The data that is received from the component has become intermittent or erratic. Data can be correct sometimes and the data may be incorrect at other times. The communication that occurs between electronic controls also relates to this condition. For example, when the VIMS is looking for the engine speed from the electronic engine control over the Cat data link. The data has been intermittent 10 times within 5 seconds in a 10 minute period.
FMI 04 – “Voltage Below Normal Or Shorted Low” The voltage that is received from a component is lower than the expected value that is identified by the CID. FMI 04 most often relates to a signal circuit. FMI 04 is very similar to FMI 06. This FMI is sometimes used in the place of FMI 06.
Some possible causes of FMI 02 are listed here:
Some Possible causes of FMI 04 are listed here:
• Loose connections in switches, harness, etc.
• The sensor
• Intermittent/erratic signal
• The harness
• Programmed data has changed.
• The related electronic control
• Noisy signal
Some possible cause of FMI 04 are listed here:
• The signal is out of range. (FMI 00 or FMI 01 are
• An analog sensor’s output is stuck at the minimum
the preferred codes.)
• A failed power or ground connection to the ECM
internally shorted to a positive voltage source
• A failed control believes that a failure exists in a circuit that is working correctly. This is unlikely.
output of the sensor.
• The signal wire is shorted to ground in the harness.
• Failed ECM FMI 03 – “Voltage Above Normal Or Shorted High” The voltage that is received from a component is higher than the expected value that is identified by the CID. FMI 03 most often relates to a signal circuit.
• Electronic control has an internal short to ground on the connector contact of the signal input. FMI 05 – “Current Below Normal Or Open Circuit” The current of the monitored circuit is below normal. This usually results from an open circuit. FMI 05 is generally related to a control output driver circuit.
Some Possible causes of FMI 03 are listed here: Some possible causes of FMI 05 are listed here:
• The sensor (switch) • The harness • The related electronic control
• Open circuit or poor harness connection • High resistance circuit in a component (relay coil) • Component in the open position (switch)
Some possible causes of an FMI 03 are listed here:
• An analog sensor’s output is stuck at the maximum output of the sensor.
• A harness that has the sensor signal wire shorted to any voltage that is greater than the voltage of the sensor power supply.
FMI 06 – “Current Above Normal Or Grounded Circuit” The current of the monitored circuit is above normal. This code is most commonly caused by a circuit that is shorted to ground. This is very similar to an FMI 04. This code is sometimes used in the place of FMI 04. Some possible causes of FMI 06 are listed here:
• A sensor signal wire is open in the machine harness between the sensor and the control. When a sensor has been disconnected from an electronic control the input circuit voltage is normally pulled up to a positive level. The positive voltage is often 5.0 DCV.
• A short to ground in the harness • Low resistance (failure) in component coil (relay) • Electronic control has an internal short to ground on the connector contact of signal input.
163 Testing and Adjusting Section
FMI 07 – “Mechanical System Not Responding Properly” A mechanical system does not respond in the expected manner when electrical commands are received from the electronic control. For example, a sluggish solenoid valve causes a slow shift. Some possible causes of FMI 07 are listed here:
• Improper response of a component • Stuck component • Component failure
FMI 10 – “Abnormal Rate Of Change” The code is related to a signal that changes at a rate that is different from the expected rate. The RATE OF CHANGE is outside of the expected limit. This value is not outside of the expected maximum or minimum value. For example, The ground speed increases too fast for normal operation. The output of the transmission speed sensor is sending the electronic control data that is erratic. FMI 11 – “Failure Mode Not Identifiable” This code is used when an electronic control determines that multiple FMI codes are responsible for a single failure.
• The engine is shutdown. Some possible causes of FMI 11 are listed here:
• Improper machine operation FMI 08 – “Abnormal Frequency, Pulse Width or Period” The frequency of the signal or the width of a given signal pulse is not in the expected range. This code can also relate to a failed output circuit of a sensor or an open output circuit of a sensor.
• Mechanical failure • Machine damage to multiple circuits
• Intermittent signal circuit connections
FMI 12 – “Bad Device Or Component” The code is used for the situations that are listed here: The code is used when an electronic control does not receive an expected response from another electronic control via the data link. The code is also used when an electronic control receives an expected response from another electronic control but the response is not valid. This condition is also used when an electronic control is expected to send data periodically and the control does not send the data.
• Misfire.
Some possible causes of FMI 12 are listed here:
• Noisy signals that are caused by a nearby radio
• Control failure.
Note: The period is defined as the number of cycles for any periodic waveform. The period is measured in cycles per second. Some possible causes of FMI 08 are listed here:
or magnetic field
• Failure of an input to another electronic control FMI 09 – “Abnormal Update” This code relates to the communication that occurs between electronic controls via a data link. This code occurs when given control is unable to receive required information from another control via the data link. This code indicates that the communication link to the ECM has been lost for more than five seconds and The ECM will not respond.
module
• Failure of the data link circuit within the machine harness
• One or more controls with the incorrect software
• Loose connections in the harness or switches
FMI 13 – “Out Of Calibration” This code is used when the electrical signal of a given mechanical condition is not within the expected limits of the electronic control. The sensor needs calibration, adjustment or replacement.
• Failed power or ground connections to the ECM
The possible causes of FMI 13 are listed here:
• No communication is available on the data link.
• Calibration is required.
• Abnormal update because of a mismatch of
• Data out of range
Some possible causes of FMI 09 are listed here:
software between electronic controls FMI 14, FMI 15 and FMI 20 – Codes are Not Used.
• Failure of the electronic control
164 Testing and Adjusting Section
FMI 16 – “Parameter Not Available” The electronic control that is providing data does not support the requested parameter because the parameter is not available. This code indicates a possible software mismatch between the electronic controls. FMI 17 – “Module Not Responding” This code is used when a parameter error is caused by a source module that ignores a request for data. The source module has failed or the wire harness has failed. FMI 18 – “Sensor Supply Failure”. This code is used when a parameter error is caused by a failed power supply in the module that is supplying the voltage. FMI 19 – “Conditions Not Met” This code is used when conditions that are defined in the software are not met in order to store trend data. FMI 19 or the actual FMI that is responsible for the failed trend condition will be recorded.
Troubleshooting Procedures Go to the procedure that corresponds to the CID and FMI that is shown on the VIMS message center module. These procedures are used for maintenance events (diagnostic codes)that originate with the VIMS modules. These procedures are used for CID’s that have an MID of 49, 50, 57, 58, 59, 60, 65, 66, 67 or 68. If the module identifier is not one of the previous listed numbers for the VIMS modules, see the Module Identifier (MID) chart that is located on the Electrical System Schematic for the machine that is being serviced. After determining which electronic control module detected the event or failure, see the service manual module for that control for troubleshooting information (CID/FMI). The service manual modules for each control are part of the Service Manual for the machine. See the following sections for additional information:Module Identifier (MID) and the Component Identifier (CID) . i01382117
Troubleshooting Diagnostic Codes Using Abbreviated Procedure SMCS Code: 7601-038 For detailed troubleshooting of system events, see procedure with the same CID and FMI numbers. FMI 05 or 06 may be incorrectly displayed sometimes in place of FMI 03 and 04 on input circuits. For similar information regarding other systems like EPTCII or EUI, see the Service Manual for that system.
165 Testing and Adjusting Section
Table 27
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
CID 0041 Sensor Power Supply + 8 Volts FMI-03 Voltage above normal (signal) or shorted high.
1. Any sensor powered by this 8 volt circuit may not work. Look for other CID codes in order to confirm. 2. Any sensor powered by this 8 Volt circuit may work intermittently. Look for other CID codes in order to confirm. 3. Any sensor powered by this 8 Volt circuit may appear to work now.
1. Harness/connector short to +Battery or other voltage greater than 8 Volts for the output on contact 26. A. D963-BU (interface module No. 1). B. D964-BR (interface module No. 2). C. F975-OR (interface module No. 2).
FMI-04 Voltage below normal or shorted low.
1. Any sensor powered by this 8 Volt circuit may not work. Look for other CID codes in order to confirm. 2. Any sensor powered by this 8 Volt circuit may work intermittently. Look for other CID codes in order to confirm. 3. Any sensor powered by this 8 Volt circuit may appear to work now.
1. Harness/connector short to +Battery or other voltage greater than 8 Volts for the output on contact 26. A. D963-BU (interface module No. 1). B. D964-BR (interface module No. 2). C. F975-OR (interface module No. 2). 2. Failed sensor(s) powered by this circuit.
FMI-06 Current above normal (signal) or grounded circuit.
1. Any sensor powered by this 8 Volt circuit may not work. Look for other CID codes in order to confirm. 2. Any sensor powered by this 8 Volt circuit may work intermittently. Look for other CID codes in order to confirm. 3. Any sensor powered by this 8 Volt circuit may appear to work now.
1. Harness/connector short to +Battery or other voltage greater than 8 Volts for the output on contact 26. A. D963-BU (interface module No. 1). B. D964-BR (interface module No. 2). C. F975-OR (interface module No. 2). 2. Failed sensor(s) powered by this circuit.
CID 0075 Steering Oil Temperature Sensor FMI-03 Voltage above normal (signal) or shorted high.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. D963-BU (+8 Volts). B. A451-WH (Signal). C. 201-BK (Ground). 797 ONLY A. K983-BU (+8 Volts). B. A451-WH (Signal). C. J842-BK (Ground). 2. Harness/connector short to +Battery or +8V in the A451-WH wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the A451-WH wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the A451-WH wire. 2. Failed sensor. 3. Failed interface module.
CID 0096 Fuel Level Sensor (continued)
166 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-03 Voltage above normal (signal) or shorted high.
1. Fuel gauge always shows full. 2. Fuel gauge may work intermittently. 3. Fuel gauge may work normally now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. 113-OR (+Battery). B. 447-PK (Signal). C. 201-BK or J842-BK (Ground). 2. Harness/connector short to +Battery in the 447-PK wire. 3. Failed fuel level sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Fuel gauge always shows empty. 2. Fuel gauge may work intermittently. 3. Fuel gauge may work normally now.
1. Harness/connector short to ground in the 447-PK wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Fuel gauge always shows empty. 2. Fuel gauge may work intermittently. 3. Fuel gauge may work normally now.
1. Harness/connector short to ground in the 447-PK wire. 2. Failed sensor. 3. Failed interface module.
CID 0100 Engine Oil Pressure Sensor (994) FMI-03 Voltage above normal or shorted high.
1. Engine oil pressure always shows a minimum. 2. Correct pressure may be intermittent. 3. Pressure may appear to be normal now.
1. Harness/connector open or intermittent in one or more of the following circuits. A. 113-OR (+24 Volts). B. 994-GY (Signal). C. A252-BK (Ground). 2. Harness/Connector short to +Battery in the 994-GY (Signal) wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Engine oil pressure may not work. 2. Engine oil pressure may work intermittently. 3. Engine oil pressure may appear normal now.
1. Harness/connector short to ground in the 994-GY wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal or grounded circuit.
1. Engine oil pressure may not work. 2. Engine oil pressure may work intermittently. 3. Engine oil pressure may appear normal now.
1. Harness/connector short to ground in the 994-GY wire. 2. Failed sensor. 3. Failed interface module.
CID 0110 Engine Coolant Temperature Sensor (994 and LHEX) FMI-03 Voltage above normal or shorted high.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. F975-OR (+8 Volts). B. 995-BU (Signal). C. A252-BK (Ground). 2. Harness/connector short to +Battery or +8V in the 995-BU wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector shorted to ground (intermittent) in the 995-BU wire 2. Failed sensor. 3. Failed interface module. (continued)
167 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-06 Current above normal (signal) or grounded circuit.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector shorted to ground (intermittent) in the 995-BU wire 2. Failed sensor. 3. Failed interface module.
CID 0127 Transmission Oil Pressure Sensor FMI-03 Voltage above normal or shorted high.
1. Transmission oil pressure always shows a minimum. 2. Correct transmission oil pressure may be intermittent. 3. Transmission oil pressure may appear to be normal now.
1. Harness/connector open or intermittent in one or more of the following circuits. A. 709-OR (+8 Volts). B. 815-WH (Signal). C. 202-BK (Ground). 2. Harness/Connector short to +Battery in the 815-WH (signal) wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Transmission oil pressure may not work. 2. Transmission oil pressure may work intermittently. 3. Transmission oil pressure may appear to be normal.
1. Harness/connector short to ground in the 815-WH (signal) wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal or grounded circuit.
1. Transmission oil pressure may not work. 2. Transmission oil pressure may work intermittently. 3. Transmission oil pressure may appear to be normal.
1. Harness/connector short to ground in the 815-WH (signal) wire. 2. Failed sensor. 3. Failed interface module.
CID 0171 Ambient Air Temperature Sensor FMI-03 Voltage above normal (signal) or shorted high.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. D963-BU or F975-OR (+8V). B. C453-YL (Signal). C. 201-BK (Ground). 797 ONLY A. K983-BU (+8V). B. C453-YL (Signal). C. J842-BK (Ground). 2. Harness/connector short to +Battery or +8V in the C453-YL wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the C453-YL (Signal) wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the C453-YL wire. 2. Failed sensor. 3. Failed interface module.
CID 0177 Transmission Oil Temperature Sensor (Lube) (continued)
168 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-03 Voltage above normal (signal) or shorted high.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. F975-OR (+8 Volts). B. 428-OR (Signal). C. 201-BK (Ground). 2. Harness/connector short to +Battery or +8V in the 428-OR wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the 428-OR wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal or grounded circuit.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the 428-OR wire. 2. Failed sensor. 3. Failed interface module.
CID 0190 Engine Speed Sensor (994 and LHEX) FMI-02 Data erratic, intermittent or incorrect.
1. Engine Speed shows erratic or not at all. 2. Engine Speed is normal now. 3. Auto lube may not cycle. 4. Hour meter does not increment (increase hours).
1. Sensor not adjusted correctly. 2. Harness/Connector is loose or intermittent in one or more of the following circuits: A. D963-BU (+8V). B. 450-YL (Signal). C. 201-BK (Ground). 3. Failed sensor. 4. Failed interface module
FMI-03 Voltage above normal or shorted high.
1. Engine Speed shows erratic or not at all. 2. Engine Speed is normal now. 3. Auto lube may not cycle. 4. Hour meter does not increment.
1. Sensor not adjusted correctly. 2. Harness/Connector is loose or intermittent in one or more of the following circuits: A. D963-BU (+8V). B. 450-YL (Signal). C. 201-BK (Ground). 3. Failed sensor. 4. Failed interface module
FMI-04 Voltage below normal or shorted low.
1. Engine Speed shows erratic or not at all. 2. Engine Speed is normal now. 3. Auto lube may not cycle. 4. Hour meter does not increment.
1. Harness/connector short to ground in the 450-YL wire. 2. Failed sensor. 3. Failed interface module.
FMI-08 Abnormal frequency, pulse width, or period
1. Engine Speed shows erratic or not at all. 2. Engine Speed is normal now. 3. Auto lube may not cycle. 4. Hour meter does not increment.
1. Runout on engine flywheel. 2. Incorrect hook-up/use of two-way radio. 3. Harness/connector is loose or intermittent in one or more of the following circuits: A. D963-BU (+8V). B. 450-YL (Signal). C. 201-BK (Ground). 4. Failed sensor.
CID 0248 CAT data link (continued)
169 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-02 Data erratic, intermittent or incorrect. ECM has dropped off the CAT data link 10 times in 10 minutes. Event is active until communication is reliable for more than ten minutes.
1. Gauges may be erratic. 2. Unexplained events may appear. 3. One or more ECM cannot communicate on CAT data link.
1. Harness/Connector Open/Short in one or more of the following circuits: A. CAT data link + B. CAT data link 2. Software mismatch between Electronic Control Systems on the CAT data link. 3. Failed electronic control module (ECM) on CAT data link.
FMI-09 Abnormal Update. Indicates that data link communication with the ECM has been broken for more than 5 seconds.
1. Gauges may be erratic. 2. Unexplained events may appear. 3. One or more ECM cannot communicate on the CAT data link.
1. Harness/Connector Open/Short in one or more of the following circuits: A. CAT data link + B. CAT data link 2. Software mismatch between Electronic Control Systems on the CAT data link. 3. Failed electronic control module (ECM) on CAT data link.
CID 0262 Sensor Power Supply (+5 Volts) FMI-03 Voltage above normal (signal) or shorted high.
1. Any sensor powered by this +5 volt circuit may not work. Look for other CID codes in order to confirm. 2. Any sensor powered by this +5 volt circuit may work intermittently. Look for other CID codes in order to confirm. 3. Any sensor powered by this +5 volt circuit may appear to work now.
1. Harness/connector short to +Battery or other voltage greater than +5 volts for the output on contact 27 of this interface module. 2. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Any sensor powered by this +5 volt circuit may not work. Look for other CID codes in order to confirm. 2. Any sensor powered by this 5 Volt circuit may work intermittently. Look for other CID codes in order to confirm. 3. Any sensor powered by this +5 volt circuit may appear to work now.
1. Harness/connector short to ground for the output on contact 27 of this interface module. 2. Failed sensor(s) powered by this circuit. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Any sensor powered by this +5 volt circuit may not work. Look for other CID codes in order to confirm. 2. Any sensor powered by this +5 volt circuit may work intermittently. Look for other CID codes in order to confirm. 3. Any sensor powered by this 5 Volt circuit may appear to work now.
1. Harness/connector short to ground for the output on contact 27 of this interface module. 2. Failed sensor(s) powered by this circuit. 3. Failed interface module.
CID 0263 Sensor Power Supply +8 Volt FMI-03 Voltage above normal (signal) or shorted high.
1. Any sensor powered by this 8 Volt circuit may not work. Look for other CID codes in order to confirm. 2. Any sensor powered by this 8 Volt circuit may work intermittently. Look for other CID codes in order to confirm. 3. Any sensor powered by this 8 Volt circuit may appear to work now.
1. Harness/connector short to +Battery or other voltage greater than +8 volts for the output on contact 26 (D963-BU) of this interface module. 2. Failed interface module.
(continued)
170 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-04 Voltage below normal or shorted low.
1. Any sensor powered by this 8 Volt circuit may not work. Look for other CID codes in order to confirm. 2. Any sensor powered by this 8 Volt circuit may work intermittently. Look for other CID codes in order to confirm. 3. Any sensor powered by this 8 Volt circuit may appear to work now.
1. Harness/connector short to ground for the output on contact 26 (D963-BU) of this interface module. 2. Failed sensor(s) powered by this circuit. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Any sensor powered by this +8 volt circuit may not work. Look for other CID codes in order to confirm. 2. Any sensor powered by this +8 volt circuit may work intermittently. Look for other CID codes in order to confirm. 3. Any sensor powered by this +8 volt circuit may appear to work now.
1. Harness/connector short to ground for the output on contact 26 (D963-BU) of this interface module. 2. Failed sensor(s) powered by this circuit. 3. Failed interface module.
CID 0267 Remote Engine Shutdown Input FMI-01 Data below normal.
1. VIMS requested engine shutdown. Engine speed dropped below 400 RPM then came back to life. 2. This event appears with next key ON after VIMS requested shutdown.
1. Failure in Remote switch or harness. 2. Failed engine ECM personality module. 3. Failed engine ECM.
FMI-02 Data erratic, intermittent or incorrect.
1. VIMS requested engine shutdown engine speed dropped below 400 RPM then came back to life. 2. This event appears with next key ON after VIMS requested shutdown.
1. Failure in Remote switch or harness. 2. Failed engine ECM personality module. 3. Failed engine ECM.
FMI-03 Voltage above normal or +Battery shorted high.
1. Alarm continuously on. 2. Alarm may not operate during self-test. 3. Alarm may appear to work normally now.
1. Wire 410-WH shorted to +Battery. 2. Failed main module.
FMI-05 Current below normal or open circuit.
1. Alarm may not operate during self-test. 2. Alarm sounds weak (not loud enough). 3. Alarm may work intermittently. 4. Alarm may appear to work normally now.
1. Alarm Failed. 2. Wrong alarm is installed. 3. Wire 410-WH is open (harness or connectors). 4. Alarm ground, 201-BK or J847-BK, is open or intermittent. 5. Failed main module.
FMI-06 Current above normal or shorted circuit.
1. Alarm may not operate during self-test. 2. Alarm sounds weak (not loud enough). 3. Alarm may work intermittently. 4. Alarm may appear to work normally now. 5. Alarm may have incorrect sound (pitch).
1. Failed alarm (shorted). 2. Wrong alarm is installed. 3. Wire 410-WH has short to ground (intermittent). 4. Failed main module.
CID 0271 VIMS Action Alarm
CID 0279 Front Aftercooler Coolant Temperature Sensor (continued)
171 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-03 Voltage above normal (signal) or shorted high.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. D963-BU or K933-GN (+8 Volts). B. D965-GN or C463-GY (Signal). C. 201-BK (Ground). 2. Harness/connector short to +Battery or +8V in the D965-GN or C463-GY wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the D965-GN or C463-GY wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the D965-GN or C463-GY wire. 2. Failed sensor. 3. Failed interface module.
CID 0280 Gear Box Temp (Gear Box Splitter Temperature Sensor) FMI-03 Voltage above normal (signal) or shorted high.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. A700-OR (+Battery). B. C401-BR (Signal). C. 998-BR (Ground). 2. Harness/connector short to +Battery or +8V in the C401-BR wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the C401-BR wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the C401-BR wire. 2. Failed sensor. 3. Failed interface module.
CID 0295 LHEX Electronic Control Module FMI-02 Data erratic, intermittent or incorrect. ECM has dropped off the CAT data link 10 times in 10 minutes. Event is active until communication is reliable for more than 10 minutes.
1. VIMS cannot communicate with large hydraulic excavator (LHEX) electronic control module (ECM) on CAT data link. 2. Unexplained events related to the LHEX ECM.
1. Harness/Connector open/short (intermittent) in one, or both, of the following circuits: A. 882-PK (CAT data link -). B. 883-GY (CAT data link +). 2. Wrong or corrupted configuration software. 3. Failed LHEX ECM. 4. Intermittent power or ground connections to the ECM.
FMI-09 Abnormal update. Indicates that data link communication with the ECM has been broken for more than 5 seconds.
1. VIMS cannot communicate with the large hydraulic excavator (LHEX) electronic control module (ECM) on CAT data link. 2. Unexplained events related to LHEX ECM.
1. Harness/connector open/short in one, or both, of the following circuits: A. 882-PK (CAT data link -). B. 883-GY (CAT data link +). 2. Wrong VIMS configuration or wrong LHEX ECM part number. 3. Failed LHEX ECM. 4. Wrong or corrupted control software (LHEX or VIMS). (continued)
172 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-11 Failure mode not identified.
1. VIMS cannot communicate with large hydraulic excavator (LHEX) electronic control module (ECM) on CAT data link. 2. Unexplained events related to LHEX ECM.
1. Wrong VIMS configuration or wrong LHEX ECM part number. 2. Failed LHEX ECM. 3. Wrong or corrupted control software (LHEX or VIMS).
FMI-12 Bad device or component.
1. Cannot communicate with large hydraulic excavator (LHEX) electronic control module (ECM) on CAT data link. 2. Unexplained events related to ECM. 3. ECM responds but not to all requested parameters.
1. Wrong VIMS configuration. 2. Wrong LHEX ECM part number. 3. Failed LHEX ECM. 4. Wrong or corrupted control software (LHEX or VIMS). 5. Incorrect harness code. 6. Incorrect attachment code (5230 (7LL99-UP).
CID 0296 Transmission Electronic Control Module FMI-02 Data erratic, intermittent or incorrect. ECM has dropped off the CAT data link 10 times in 10 minutes. Event is active until communication is reliable for more than 10 minutes.
1. Unexplained events are stored for this control. 2. Main module cannot communicate with this control. 3. Transmission control appears to work normally now.
1. Harness/connector open/short in one or both of the following circuits: A. 892-BR B. 893-GN 2. Failed transmission ECM or wrong part number. 3. Wrong or corrupted control software. 4. Intemittent power or ground connections to the ECM.
FMI-09 Abnormal update. Indicates that data link communication with the ECM has been broken for more than 5 seconds.
1. No VIMS operation related to this control will work. 2. Main module cannot communicate with this control. 3. Transmission control appears to work normally now.
1. Verify that harness code contacts on transmission control are correct. 2. Verify correct ECM part number. 3. Check CAT data link circuits for opens/shorts. 4. Wrong or corrupted control software. 5. No power and/or ground connection to the transmission control. 6. Failed transmission ECM. 7. Wrong or corrupted control software (transmission or VIMS). 8. Failed main module.
FMI-11 Failure mode not identifie4
1. No VIMS operation related to this control will work. 2. Main module cannot communicate with this control. 3. Transmission control appears to work normally now.
1. Wrong or corrupted configuration software. 2. Failed transmission control. 3. Verify that harness code contacts on transmission control are correct.
FMI-12 Bad device or component.
1. No VIMS operation related to this control will work. 2. Main module cannot communicate with this control. 3. ECM responds but not to all required parameters. 4. Transmission control appears to work normally now.
1. Incorrect VIMS configuration or transmission ECM part number. 2. Verify that harness code contacts on transmission control are correct. 3. Check CAT data link circuits for opens/shorts. 4. No power and/or ground connection to transmission control. 5. Failed transmission ECM. 6. Wrong or corrupted control software (transmission or VIMS).
CID 0324 Action Lamp (797 and C-Series OHT use LED’s in place of lamps) (continued)
173 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-03 Voltage above normal or shorted high.
1. Lamp continuously on. 2. Lamp may not turn on during self-test. 3. Lamp may appear to work normally now.
1. Wire 411-PK shorted to +Battery. 2. Failed main module.
FMI-05 Current below normal or open circuit.
1. Lamp may not turn on during self-test. 2. Lamp works but is dim. 3. Lamp may work intermittently. 4. Lamp may appear to work normally now.
1. Lamp defective (burned out). 2. Wrong lamp is installed. 3. Wire 411-PK is open (harness or connectors). 4. Lamp ground, 201-BK or J846-BK, is open or intermittent. 5. Failed lamp socket. 6. Failed main module.
FMI-06 Current above normal or shorted circuit.
1. Lamp may not turn on during self-test. 2. Lamp works but is dim. 3. Lamp may work intermittently. 4. Lamp may appear too bright. 5. Lamp may appear to work normally now.
1. Lamp defective (shorted). 2. Wrong lamp installed. 3. Wire 411-PK has short (intermittent) to ground 4. Failed lamp socket. 5. Failed main module.
CID 0341 Warm Up Sol 4 (Hydraulic Control Valve Warm Up Oil Solenoid No. 4) FMI-03 Voltage above normal or shorted high (power).
1. No hydraulic control valve warm up oil flow. Implement control valve may be sticky and could result in jerky or erratic implement control especially with a cold startup. 2. Implement control may be jerky or erratic until sometime after a cold startup. 3. Implement control may appear to be normal (smooth) now.
1. Harness/connector short to +Battery in the E775-PK wire. 2. Failed solenoid valve, either the coil or the mechanical valve. 3. Failed interface module.
FMI-05 Current below normal or open circuit (power).
1. Full, uncontrolled control valve warm up oil flow implement control may feel mushy, difficult to control or, appear low on power. 2. Implement control may feel mushy or difficult to control or, appear low on power sometimes (intermittent). 3. Implement control may appear to be normal (smooth) now.
1. Harness/connector open (intermittent) in the E775-PK wire. 2. Failed solenoid. 3. Failed interface module.
FMI-06 Current above normal or grounded circuit.
1. Full, uncontrolled control valve warm up oil flow implement control may feel "mushy", difficult to control or, appear low on power. 2. Implement control may feel "mushy" or difficult to control or, appear low on power sometimes (intermittent). 3. Implement control may appear to be normal (smooth) now.
1. Harness/connector short to ground in the E775-PK wire. 2. Failed solenoid. 3. Failed interface module.
FMI-11 Failure mode not identifiable.
1. Any combination of results listed for FMI -03, 05, or 06.
1. Unidentified harness problem. 2. Failed solenoid 3. Failed interface module.
CID 0350 Lift Linkage Position Sensor FMI-00 Data valid but above normal
1. Payload errors/faults. 2. Cannot calibrate payload. 3. Intermittent payload errors.
1. Calibration is required. 2. Failed sensor. 3. Failed interface module. (continued)
174 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-01 Data valid but below normal operating range.
1. Payload errors/faults. 2. Cannot calibrate payload. 3. Intermittent payload errors.
1. Calibration is needed. 2. Failed sensor. 3. Failed interface module.
FMI-02 Data erratic, Intermittent or incorrect.
1. Payload errors/faults. 2. Cannot calibrate payload. 3. Intermittent payload errors.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. 113-OR (+24 Volts). B. C502-GY (Signal). C. A252-BK (Ground). 2. Harness/connector short to +Battery or +8V in the C502-GY wire. 3. Failed sensor. 4. Failed interface module.
FMI-03 Voltage above normal or shorted high.
1. Payload errors/faults. 2. Cannot calibrate payload. 3. Intermittent payload errors.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. 113-OR (+24 Volts). B. C502-GY (Signal). C. A252-BK (Ground). 2. Harness/connector short to +Battery or +8V in the C502-GY wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Payload errors/faults. 2. Cannot calibrate payloa4 3. Intermittent payload errors.
1. Harness/connector short to ground in the C502-GY wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Payload errors/faults. 2. Cannot calibrate payload. 3. Intermittent payload errors.
1. Harness/connector short to ground in the C502-GY wire. 2. Failed sensor. 3. Failed interface module.
FMI-08 Abnormal frequency, pulse width or period.
1. Payload errors/faults. 2. Cannot calibrate payload 3. Intermittent payload errors.
1. Harness/connector open /short (intermittent) in one or more of the following circuits: A. 113-OR (+24 Volts). B. C502-GY (Signal). C. A252-BK (Ground). 2. Harness/connector short to +Battery or +8V in the C502-GY wire. 3. Failed sensor. 4. Wrong configuration software. 5. Failed interface module.
FMI-11 Failure mode not identifiable.
1. Payload errors/faults. 2. Cannot calibrate payload. 3. Intermittent payload errors.
1. Unidentified harness problem. 2. Failed sensor. 3. Wrong configuration software. 4. Failed interface module.
FMI-13 Out of calibration.
1. Payload errors/faults. 2. Intermittent payload errors.
1. Calibration is required 2. Failed sensor. 3. Wrong configuration software.
CID 0351 Tilt Linkage Position Sensor FMI-00 Data valid but above normal
1. Payload errors/faults. 2. Cannot calibrate payload. 3. Intermittent payload errors.
1. Calibration is required. 2. Failed sensor. 3. Failed interface module. (continued)
175 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-01 Data valid but below normal operating range.
1. Payload errors/faults. 2. Cannot calibrate payload. 3. Intermittent payload errors.
1. Calibration is needed. 2. Failed sensor. 3. Failed interface module.
FMI-02 Data erratic, Intermittent or incorrect.
1. Payload errors/faults. 2. Cannot calibrate payload. 3. Intermittent payload errors.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. 113-OR (+24 Volts). B. E451-BU (Signal). C. A252-BK (Ground). 2. Harness/connector short to +Battery or +8V in the E451-BU wire. 3. Failed sensor. 4. Failed interface module.
FMI-03 Voltage above normal or shorted high.
1. Payload errors/faults. 2. Cannot calibrate payloa4 3. Intermittent payload errors.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. 113-OR (+24 Volts). B. E451-BU (Signal). C. A252-BK (Ground). 2. Harness/connector short to +Battery or +8V in the E451-BU wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Payload errors/faults. 2. Cannot calibrate payload. 3. Intermittent payload errors.
1. Harness/connector short to ground in the E451-BU wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Payload errors/faults. 2. Cannot calibrate payload. 3. Intermittent payload errors.
1. Harness/connector short to ground in the E451-BU wire. 2. Failed sensor. 3. Failed interface module.
FMI-08 Abnormal frequency, pulse width or period.
1. Payload errors/faults. 2. Cannot calibrate payloa4 3. Intermittent payload errors.
1. Harness/connector open /short (intermittent) in one or more of the following circuits: A. 113-OR (+24 Volts). B. E451-BU (Signal). C. A252-BK (Ground). 2. Harness/connector short to +Battery or +8V in the E451-BU wire. 3. Failed sensor. 4. Wrong configuration softwatre. 5. Failed interface module.
FMI-11 Failure mode not identifiable.
1. Payload errors/faults. 2. Cannot calibrate payload. 3. Intermittent payload errors.
1. Unidentified harness problem. 2. Failed sensor. 3. Wrong configuration software. 4. Failed interface module.
FMI-13 Out of calibration.
1. Payload errors/faults. 2. Intermittent payload errors.
1. Calibration is required 2. Failed sensor. 3. Wrong configuration software.
CID 0364 Lift Cylinder Head Pressure Sensor (continued)
176 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-03 Voltage above normal or shorted high.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Harness/Connector open (intermittent) in one or more of the following circuits: A. 113-OR (+Battery). B. C502-BU (Signal). C. A252-BK (Ground). 2. Harness/connector short to +battery in the C502-BU wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Harness/connector short to ground in the C502-BU wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal or grounded circuit.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Harness/connector short to ground in the C502-BU wire. 2. Failed sensor. 3. Failed interface module.
CID 0371 Operator Horn Solenoid (Horn that blows continuously, or not at all without system event, is a mechanical problem.) FMI-03 Voltage above normal or shorted high.
1. Forward warning horn blows continuously. 2. Forward warning horn blows intermittently when not requested 3. Horns may not blow at all.
1. Harness/connector short to +battery in the E785-GY (994 /994D) A305-YL (992G) wire. 2. Failed solenoid valve coil. 3. Failed interface module.
FMI-05 Current below normal or open circuit.
1. Forward warning horn blows continuously. 2. Forward warning horn blows intermittently when not requested 3. Horns may not blow at all.
1. Harness/connector open in the E785-GY (994 /994D) A305-YL (992G) wire. 2. Failed solenoid valve coil or wrong solenoid. 3. Failed interface module.
FMI-06 Current above normal or grounded circuit.
1. Horn may not blow or blows intermittently. 2. Horn circuit blows fuses. 3. Horn blows normal now.
1. Harness/connector open/short to +battery in the E785-GY (994 /994D) A305-YL (992G) wire. 2. Failed solenoid valve coil. 3. Failed interface module.
FMI-11 Failure mode not identifiable.
1. Horn may not blow. 2. Horn may blow or blows intermittently. 3. Horn blows normal now.
1. Unidentified harness problem. 2. Failed horn solenoid. 3. Failed interface module.
FMI-03 Voltage above normal or shorted high.
1. Auto lube pumps until lube canister is empty. 2. Auto lube may not work. 3. Auto lube may appear to work normally now.
1. Harness/connector short to +Battery in the 801-PK wire. 2. Failed interface module.
FMI-05 Current below normal or open circuit.
1. Auto lube may not work. 2. Auto lube may work intermittently. 3. Auto lube may appear to work normally now.
1. Harness/connector open (intermittent) in the 801-PK wire. 2. Failed solenoid. 3. Failed interface module.
FMI-06 Current above normal or grounded circuit.
1. Auto lube may not work. 2. Auto lube may work intermittently. 3. Auto lube may appear to work normally now.
1. Harness/connector short to ground (intermittent) in the 801-PK wire. 2. Failed solenoid. 3. Failed interface module.
CID 0378 Auto Lube Solenoid
(continued)
177 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-11 Failure mode not identifiable.
1. Auto lube may not work. 2. Auto lube may work intermittently. 3. Auto lube may appear to work normally now.
1. Unidentified harness problem. 2. Failed solenoid. 3. Failed interface module.
CID 0379 Machine Auto Lube Pressure Sensor FMI-03 Voltage above normal or shorted high.
1. Auto lube pressure always shows a minimum. 2. Auto lube pressure may be intermittent. 3. Auto lube pressure may appear to be normal now.
1. Harness/connector open or intermittent in one or more of the following circuits. 5130 A. D963-BU (+8 Volts). B. B497-WH (Signal). C. 201-BK (Ground). 5230 A. 709-OR (+8 Volts). B. B497-WH (Signal). C. A201-BK (Ground). 797 A. K983-BU (+8 Volts). B. F456-WH (Signal). C. J842-BK (Ground). 2. Harness/connector short to +battery or +8V in the B497-WH or F456-WH (Signal) wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Auto lube pressure always shows a maximum. 2. Auto lube pressure may be intermittent. 3. Auto lube pressure may appear to be normal now.
1. Harness/connector short to ground in the B497-WH or F456-WH (Signal) wire. 2. Failed sensor 3. Failed interface module.
FMI-06 Current above normal or grounded circuit.
1. Auto lube pressure always shows a maximum. 2. Auto lube pressure may be intermittent. 3. Auto lube pressure may appear to be normal now.
1. Harness/connector short to ground in the B497-WH or F456-WH wire. 2. Failed sensor. 3. Failed interface module.
CID 0425 Front Brake Oil Pressure Sensor FMI-03 Voltage above normal or shorted high.
1. Pressure always shows minimum. 2. Correct pressure may be intermittent. 3. Pressure may appear to be normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. F975-OR (+8 Volts). B. C456-OR (Signal). C. A252-BK (Ground). 2. Harness/connector short to +Battery or +8V in the C456-OR wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Pressure always shows maximum. 2. Correct pressure may be intermittent. 3. Pressure may appear to be normal now.
1. Harness/connector short to ground in the C456-OR wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal or grounded circuit.
1. Pressure always shows maximum. 2. Correct pressure may be intermittent. 3. Pressure may appear to be normal now.
1. Harness/connector short to ground in the C456-OR wire. 2. Failed sensor. 3. Failed interface module.
CID 0426 Rear Brake Oil Pressure Sensor (continued)
178 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-03 Voltage above normal or shorted high.
1. Pressure always shows minimum. 2. Correct pressure may be intermittent. 3. Pressure may appear to be normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. F975-OR (+8 Volts). B. C457-BU (Signal). C. A252-BK (Ground). 2. Harness/connector short to +Battery or +8V in the C457-BU wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Pressure always shows maximum. 2. Correct pressure may be intermittent. 3. Pressure may appear to be normal now.
1. Harness/connector short to ground in the C457-BU 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal or grounded circuit.
1. Pressure always shows maximum. 2. Correct pressure may be intermittent. 3. Pressure may appear to be normal now.
1. Harness/connector short to ground in the C457-BU 2. Failed sensor. 3. Failed interface module.
CID 0427 Front Axle Oil Temperature Sensor FMI-03 Voltage above normal (signal) or shorted high.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. E933-BU (+8 Volts). B. 429-YL (Signal). C. A251-BK (Ground). 2. Harness/connector short to +Battery or +8V in the 429-YL wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the 429-YL (Signal) wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the 429-YL (Signal) wire. 2. Failed sensor. 3. Failed interface module.
CID 0428 Rear Axle Oil Temperature Sensor FMI-03 Voltage above normal (signal) or shorted high.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. E933-BU (+8 Volts). B. 446-PU (Signal). C. A251-BK (Ground). 2. Harness/connector short to +Battery or +8V in the 446-PU (Signal) wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the 446-PU (Signal) wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the 446-PU (Signal) wire. 2. Failed sensor. 3. Failed interface module. (continued)
179 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
CID 0429 Steering Pump (Main) Oil Pressure Sensor FMI-03 Voltage above normal or shorted high.
1. Pressure always shows minimum. 2. Correct pressure may be intermittent. 3. Pressure may appear to be normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. 113-OR (+24 Volts). B. C462-PK (Signal). C. A252-BK (Ground). 2. Harness/connector short to +Battery or +8V in the C462-PK wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Pressure always shows minimum. 2. Correct pressure may be intermittent. 3. Pressure may appear to be normal now.
1. Harness/connector short to ground in the C462-PK wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Pressure always shows minimum. 2. Correct pressure may be intermittent. 3. Pressure may appear to be normal now.
1. Harness/connector short to ground in the C462-PK wire. 2. Failed sensor. 3. Failed interface module.
CID 0430 Steering Pilot Oil Pressure Sensor FMI-03 Voltage above normal or shorted high.
1. Pressure always shows minimum. 2. Correct pressure may be intermittent. 3. Pressure may appear to be normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. F975-OR (+8 Volts). B. C450-YL (Signal). C. A252-BK (Ground). 2. Harness/connector short to +Battery or +8V in the C450-YL wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Pressure always shows minimum. 2. Correct pressure may be intermittent. 3. Pressure may appear to be normal now.
1. Harness/connector short to ground +8V in the C450-YL wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Pressure always shows minimum. 2. Correct pressure may be intermittent. 3. Pressure may appear to be normal now.
1. Harness/connector short to ground in the C450-YL wire. 2. Failed sensor. 3. Failed interface module.
CID 0434 Hydraulic Pilot Oil Pressure Sensor FMI-03 Voltage above normal or shorted high.
1. Pressure always shows minimum. 2. Correct pressure may be intermittent. 3. Pressure may appear to be normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. F975-OR (+8 Volts). B. C461-OR (Signal). C. A252-BK (Ground). 2. Harness/connector short to +Battery or +8V in the C461-OR wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Pressure always shows minimum. 2. Correct pressure may be intermittent. 3. Pressure may appear to be normal now.
1. Harness/connector short to ground in the C461-OR wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal or grounded circuit.
1. Pressure always shows minimum. 2. Correct pressure may be intermittent. 3. Pressure may appear to be normal now.
1. Harness/connector short to ground in the C461-OR wire. 2. Failed sensor. 3. Failed interface module. (continued)
180 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
CID 0436 Torque Converter Oil Pressure Sensor FMI-03 Voltage above normal or shorted high.
1. Pressure always shows minimum. 2. Correct pressure may be intermittent. 3. Pressure may appear to be normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. F975-OR (+8 Volts). B. C459-GY (Signal). C. A252-BK (Ground). 2. Harness/connector short to +Battery or +8V in the C459-GY wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Pressure always shows minimum. 2. Correct pressure may be intermittent. 3. Pressure may appear to be normal now.
1. Harness/connector short to ground in the C459-GY wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal or grounded circuit.
1. Pressure always shows minimum. 2. Correct pressure may be intermittent. 3. Pressure may appear to be normal now.
1. Harness/connector short to ground in the C459-GY wire. 2. Failed sensor. 3. Failed interface module.
CID 0438 Hydraulic Control Valve Warm Up Oil Solenoid No.1. FMI-03 Voltage above normal or shorted high (power).
1. No hydraulic control valve warm up oil flow. Implement control valve may be sticky and could result in jerky or erratic implement control especially with a cold startup. 2. Implement control may be jerky or erratic until sometime after a cold startup. 3. Implement control may appear to be normal (smooth) now.
1. Harness/connector short to +Battery in the E761-BU wire. 2. Failed solenoid. 3. Failed interface module.
FMI-05 Current below normal or open circuit (power).
1. Full, uncontrolled control valve warm up oil flow. Implement control may feel "mushy", difficult to control or, appear low on power. 2. Implement control may feel "mushy" or difficult to control or, appear low on power (sometimes intermittent). 3. Implement control may appear to be normal (smooth) now.
1. Harness/connector open (intermittent) in the E761-BU wire. 2. Failed solenoid. 3. Failed interface module.
FMI-06 Current above normal or grounded circuit.
1. Full, uncontrolled control valve warm up oil flow. Implement control may feel "mushy", difficult to control or, appear low on power. 2. Implement control may feel "mushy" or difficult to control or, appear low on power (sometimes intermittent). 3. Implement control may appear to be normal (smooth) now.
1. Harness/connector open (intermittent) in the E761-BU wire. 2. Failed solenoid. 3. Failed interface module.
FMI-11 Failure mode not identifiable.
1. Any combination of results listed for FMI -03, 05, or 06.
1. Unidentified harness problem. 2. Failed solenoid. 3. Failed interface module.
CID 0439 Hydraulic Control Valve Warm Up Oil Solenoid No. 2 (continued)
181 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-03 Voltage above normal or shorted high (power).
1. No hydraulic control valve warm up oil flow. Implement control valve may be sticky and could result in jerky or erratic implement control especially with a cold startup. 2. Implement control may be jerky or erratic until sometime after a cold startup. 3. Implement control may appear to be normal (smooth) now.
1. Harness/connector short to +Battery in the E762-WH wire. 2. Failed solenoid. 3. Failed interface module.
FMI-05 Current below normal or open circuit (power).
1. Full, uncontrolled control valve warm up oil flow. Implement control may feel “mushy”, difficult to control or, appear low on power. 2. Implement control may feel mushy or difficult to control or, appear low on power (sometimes intermittent). 3. Implement control may appear to be normal (smooth) now.
1. Harness/connector open (intermittent) in the E762-WH wire. 2. Failed solenoid. 3. Failed interface module.
FMI-06 Current above normal or grounded circuit.
1. Full, uncontrolled control valve warm up oil flow. Implement control may feel “mushy”, difficult to control or, appear low on power. 2. Implement control may feel "mushy" or difficult to control or, appear low on power (sometimes intermittent). 3. Implement control may appear to be normal (smooth) now.
1. Harness/connector short to ground in the E762-WH wire. 2. Failed solenoid. 3. Failed interface module.
FMI-11 Failure mode not identifiable.
1. Any combination of results listed for FMI -03, 05, or 06.
1. Unidentified harness problem. 2. Failed solenoid. 3. Failed interface module.
CID 0440 Hydraulic Control Valve Warm Up Oil Solenoid No. 3 FMI-03 Voltage above normal or shorted high (power).
1. No hydraulic control valve warm up oil flow. Implement control valve may be sticky and could result in jerky or erratic implement control especially with a cold startup. 2. Implement control may be jerky or erratic until sometime after a cold startup. 3. Implement control may appear to be normal (smooth) now.
1. Harness/connector short to +Battery in the E763-GN wire. 2. Failed solenoid. 3. Failed interface module.
FMI-05 Current below normal or open circuit (power).
1. Full, uncontrolled control valve warm up oil flow. Implement control may feel “mushy”, difficult to control or, appear low on power. 2. Implement control may feel mushy or difficult to control or, appear low on power (sometimes intermittent). 3. Implement control may appear to be normal (smooth) now.
1. Harness/connector open (intermittent) in the E763-GN wire. 2. Failed solenoid. 3. Failed interface module.
(continued)
182 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-06 Current above normal or grounded circuit.
1. Full, uncontrolled control valve warm up oil flow. Implement control may feel “mushy”, difficult to control or, appear low on power. 2. Implement control may feel mushy or difficult to control or, appear low on power (sometimes intermittent). 3. Implement control may appear to be normal (smooth) now.
1. Harness/connector short to ground in the E763-GN wire. 2. Failed solenoid. 3. Failed interface module.
FMI-11 Failure mode not identifiable.
1. Any combination of results listed for FMI -03, 05, or 06.
1. Unidentified harness problem. 2. Failed solenoid. 3. Failed interface module.
CID 0457 Brake Oil Temperature Sensor FMI-03 Voltage above normal or shorted high.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. F975-OR (+8 Volts). B. 429-YL (Signal). C. A252-BK (Ground). 2. Harness/connector short to +Battery or +8V in the 429-YL wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the 429-YL wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal or grounded circuit.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the 429-YL wire. 2. Failed sensor. 3. Failed interface module.
CID 0458 Tilt Cylinder Rod Pressure Sensor FMI-03 Voltage above normal or shorted high.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Harness/Connector open (intermittent) in one or more of the following circuits: A. 113-OR (+24 Volts). B. E451-PU (Signal). C. A252-BK (Ground). 2. Harness/connector short to +Battery in the E451-PU wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Harness/connector short to ground in the E451-PU wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal or grounded circuit.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Harness/connector short to ground in the E451-PU wire. 2. Failed sensor. 3. Failed interface module.
CID 0533 Auto Retarder Control (continued)
183 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-02 Data erratic, intermittent or incorrect. ECM has dropped off the CAT data link 10 times in 10 minutes. Event is active until communication is reliable for more than 10 minutes.
1. Unexplained events are logged against this control. 2. Main module cannot communicate with this control. 3. Auto retarder control appears to work normally now.
1. Harness/connector open/short in one or both of the following circuits: A. 892-BN (CAT data link -). B. 893-GN (CAT data link +). 2. Failed auto retarder control or wrong part number. 3. Wrong or corrupted control software.
FMI-09 Abnormal update. Indicates that data link communication with the ECM has been broken for more than 5 seconds.
1. No VIMS operation related to this control will work. 2. Main module cannot communicate with this control. 3. Auto retarder control appears to work normally now.
1. Verify that harness code contacts on auto retarder control are correct. 2. Check CAT data link circuits for opens/shorts. 3. No power and/or ground connection to auto retarder control. 4. Failed auto retarder control or wrong part number. 5. Failed main module.
FMI-12 Bad device or component.
1. No VIMS operation related to this control will work. 2. Main module cannot communicate with this control. 3. Auto retarder control appears to work normally now.
1. Verify that harness code contacts on auto retarder control are correct. 2. Check CAT data link circuits for opens/shorts. 3. No power and/or ground connection to the auto retarder control. 4. Failed auto retarder control. 5. Wrong control software. 6. Failed main module.
CID 0541 Differential Axle Oil Pressure (Pump Outlet) FMI-00 Data valid but above normal operational range.
1. Unexplained failures for this pressure channel. 2 This pressure seems normal now.
1. Residual pressure in system at key start switch ON. 2. Failed sensor. 3. Failed Caterpillar Monitoring System control.
FMI-03 Voltage above normal or shorted high.
1. Unexplained failures for this pressure channel. 2. This pressure seems normal now.
1. Residual vacuum in system at key start switch ON. 2. Failed sensor. 3. Failed Caterpillar Monitoring System control.
FMI-06 Current above normal or shorted circuit.
1. Differential pressure always shows a minimum. 2. Correct pressure may be intermittent. 3. Pressure may appear to be normal now.
1. Harness/connector open/short in one or more of the following circuits: A. F975-OR (+8 Volts). B. C473-GN (Signal). C. A271-BK (Ground). 2. Failed sensor. 3. Failed Caterpillar Monitoring System control.
CID 0562 Caterpillar Monitoring System (continued)
184 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-02 Data erratic, intermittent or incorrect. ECM has dropped off the CAT data link 10 times in 10 minutes. Event is active until communication is reliable for more than 10 minutes.
1. Intermittent communication, VIMS with Caterpillar Monitoring System for rear axle filtering and cooling. 2. Unexplained events may show against this ECM.
1. Verify correct harness code on Caterpillar Monitoring System. 2. Check CAT data link circuits for open/shorts: A. 892-BN (CAT data Link -). B. 893-GN (CAT data link +). 3. Intermittent/loss of power or ground: A. 113-OR (+ Battery). B. A271-BK (Ground). 4. Failed or wrong Part No. Caterpillar Monitoring System. 5. Wrong or corrupted configuration software.
FMI-09 Abnormal update. Indicates that data link communication with the ECM has been broken for more than 5 seconds.
1. Intermittent communication, VIMS with Caterpillar Monitoring System for rear axle filtering. 2. Unexplained events may show against this ECM.
1. Verify correct harness code on Caterpillar Monitoring System. 2 Check CAT data link circuits for open/shorts: A. 892-BN (CAT data Link -). B. 893-GN (CAT data link +). 3. Intermittent/loss of power or ground: A. 113-OR (+ Battery). B. A271-BK (Ground). 4. Failed or wrong ECM Part Number. 5. Wrong or corrupted configuration software.
FMI-12 Bad device or component.
1. Intermittent communication, VIMS with Caterpillar Monitoring System for rear axle filtering and cooling. 2. Unexplained events may show against this ECM. 3. Check CAT data link circuits for open/shorts.
1. Verify correct harness code on Caterpillar Monitoring System. 2. Check for open/shorts in CAT data link circuits: A. 892-BN (CAT data Link -). B. 893-GN (CAT data link +). 3. Intermittent/loss of power or ground: A. 113-OR (+ Battery). B. A271-BK (Ground). 4. Failed or wrong ECM Part Number. 5. Wrong or corrupted source or configuration software.
CID 0590 Engine Electronic Control Module (ECM) FMI-02 Data erratic, intermittent or incorrect. ECM has dropped off the CAT data link 10 times in 10 minutes. Event is active until communication is reliable for more than 10 minutes.
1. VIMS is having trouble communicating with this control over the CAT data link. 2. Unexplained events may show against this ECM.
1. Harness/connector open/short on CAT data link. 2. Failed engine ECM. 3. Wrong or corrupted engine ECM software (personality module).
FMI-09 Abnormal update. Indicates that data link communication with the ECM has been broken for more than 5 seconds.
1. VIMS is having trouble communicating with the engine control over the CAT data link. 2. Unexplained events may be logged against this ECM. 3. Engine control appears to work normally now.
1. Verify that personality module on the engine control is correct part number. 2. Check CAT data link circuits for opens/shorts. 3. No power and/or ground connection to engine control. 4. Failed engine control. 5. Wrong or corrupted configuration software. (continued)
185 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-11 Failure mode not identifiable.
1. VIMS is having trouble communicating with the engine control over the CAT data link. 2. Unexplained events may be logged against this ECM.
1. Wrong VIMS configuration or engine ECM personality module part number. 2. Failed engine ECM. 3. Wrong or corrupted configuration software.
FMI-12 Bad device or component.
1. VIMS is having trouble communicating with the engine control over the CAT data link. 2. Unexplained events may be logged against this ECM. 3. ECM responds but not to all required parameters. 4. Engine control appears to work normally now.
1. Wrong VIMS configuration or engine ECM personality module part number or flash software. 2. Check for open/shorts in CAT data link circuits. 3. No power and/or ground connection to engine ECM. 4. Failed engine ECM. 5. Attachment not configured in configuration software. 6. Wrong or corrupted source or configuration software.
CID 0596 Implement Electronic Control Module FMI-02 Data erratic, intermittent or incorrect. ECM has dropped off the CAT data link 10 times in 10 minutes. Event is active until communication is reliable for more than 10 minutes.
1. VIMS is having trouble communicating with this control over the CAT data link. 2. Unexplained events may show against implement control module.
1. Harness/connector open/short on CAT data link. 2. Failed implement ECM or wrong part number. 3. Wrong or corrupted configuration software (implement or VIMS).
FMI-09 Abnormal update. Indicates that data link communication with the ECM has been broken for more than 5 seconds.
1. No VIMS operation related to this control will work. 2. Main module cannot communicate with this control. 3. Implement control appears to work normally now.
1. Verify that implement control software is correct. 2. Check for opens/shorts in CAT data link circuits. 3. No power and/or ground connection to implement control. 4. Failed implement ECM. 5. Wrong or corrupted control software (implement or VIMS).
FMI-11 Failure mode not identifiable.
1. VIMS is having trouble communicating with the implement control over the CAT data link. 2. Unexplained events may be logged against this ECM.
1. Wrong VIMS configuration or software in implement ECM. 2. Check for open/shorts in CAT data link circuits. 3. Loss of power and/or ground to ECM. 4. Failed implement control. 5. Wrong or corrupted control software (implement or VIMS).
FMI-12 Bad device or component.
1. No VIMS operation related to this control will work. 2. Main module cannot communicate with this control. 3. ECM responds but not to all required parameters. 4. Implement control appears to work normally now.
1. Wrong VIMS configuration or software in implement ECM. 2. Check for open/shorts in CAT data link circuits. 3. Loss of power and/or ground to ECM. 4. Failed implement ECM. 5. Wrong or corrupted control software (implement or VIMS).
CID 0600 Hydraulic (Implement) Oil Temperature Sensor (continued)
186 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-03 Voltage above normal (signal) or shorted high.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. F975-OR (+8 Volts). B. 442-GY (Signal). C. A252-BK (Ground). 2. Harness/connector short to +Battery or +8V in the 442-GY (Signal) wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the 442-GY (Signal) wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal or grounded circuit.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the 442-GY (Signal) wire. 2. Failed sensor. 3. Failed interface module.
CID 0650 Harness Code For Interface Module FMI-02 Data erratic, intermittent or incorrect. ECM has dropped off the CAT data link 10 times in 10 minutes. Event is active until communication is reliable for more than 10 minutes.
1. Harness code was correct at power-up but Failed during operation. VIMS will operate normally until machine is powered down. 2. Power-up with this fault present should cause CID 801.
1. Verify that harness code contacts 37, 38, and 39 on interface module are grounded (201-BK). 2. Verify that harness code contact 40 on the interface module is open.
CID 0654 Trailer Right Brake Oil Temperature Sensor FMI-03 Voltage above normal (signal) or shorted high.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. C985-BU (+8 Volts). B. E805-BR (Signal). C. A253-BK (Ground). 2. Harness/connector short to +Battery or +8V in the E805-BR wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the E805-BR wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the E805-BR wire. 2. Failed sensor. 3. Failed interface module.
CID 0655 Trailer Left Brake Oil Temperature Sensor FMI-03 Voltage above normal (signal) or shorted high.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. C985-BU (+8 Volts). B. E806-OR (Signal). C. A253-BK (Ground). 2. Harness/connector short to +Battery or +8V in the E806-OR wire. 3. Failed sensor. 4. Failed interface module. (continued)
187 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-04 Voltage below normal or shorted low.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the E806-OR wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the E806-OR wire. 2. Failed sensor. 3. Failed interface module.
CID 0656 Trailer Brake Cooler Inlet Temperature Sensor FMI-03 Voltage above normal or shorted high.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. C985-BU (+8 Volts). B. E807-YL (Signal). C. A253-BK (Ground). 2. Harness/connector short to +Battery or +8V in the E807-YL wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the E807-YL wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the E807-YL wire. 2. Failed sensor. 3. Failed interface module.
CID 0657 Trailer Brake Cooler Outlet Temperature Sensor FMI-03 Voltage above normal or shorted high.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. C985-BU (+8 Volts). B. E848-GN (Signal). C. A253-BK (Ground). 2. Harness/connector short to +Battery or +8V in the E848-GN wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the E848-GN wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal(signal) or grounded circuit.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the E848-GN wire. 2. Failed sensor. 3. Failed interface module.
CID 0658 Right Suspension Cylinder FMI-02 Data erratic, intermittent or incorrect.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Suspension cylinder is collapsed. (Check suspension cylinder see Special Instruction, SEHS9411.) 2. Failed sensor. 3. Failed interface module. (continued)
188 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-03 Voltage above normal (signal) or shorted high.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. 113-OR (+Battery). B. E822-OR (Signal). C. A253-BK (Ground). 2. Harness/connector short to +Battery in the E822-OR wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Harness/connector short to ground in the E822-OR wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Harness/connector short to ground in the E822-OR wire. 2. Failed sensor. 3. Failed interface module.
CID 0659 Trailer Left Strut Pressure Sensor FMI-02 Data erratic, intermittent or incorrect.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Suspension cylinder is collapsed. (Check suspension cylinder see Special Instruction, SEHS9411.) 2. Failed sensor. 3. Failed interface module.
FMI-03 Voltage above normal (signal) or shorted high.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. 113-OR (+Battery). B. E823-YL (Signal). C. A053-BK (Ground). 2. Harness/connector short to +Battery in the E823-YL wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Harness/connector short to ground in the E823-YL wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Harness/connector short to ground in the E823-YL wire. 2. Failed sensor. 3. Failed interface module.
CID 0672 Torque Converter Output Speed Sensor (See service manual for Impeller LUC control). FMI-01 Data valid but below normal operating range.
1. Torque converter may not lock-up during load/carry. 2. Torque converter lock-up corrected now.
1. Incorrect sensor adjustment. 2. Possible RFI interference from a 2-way radio installation. 3. Harness/connector open (intermittent) in the 452- (Signal) wire. 4. Wrong sensor installed.
FMI-02 Data erratic, intermittent or incorrect.
1. Torque converter may not lock-up during load/carry. 2. Torque converter lock-up corrected now.
1. Incorrect sensor adjustment. 2. Possible RFI interference from a 2-way radio installation. 3. Harness/connector open (intermittent) in the 452- (Signal) wire. 4. Wrong sensor installed (continued)
189 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-03 Voltage above normal or shorted high.
1. Torque converter may not lock-up during load/carry. 2. Torque Converter lock-up corrected now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. 709-OR (+8V). B. 452-PU (Signal). C. 202-BK (Ground). 2. Harness/connector short to +Battery or +8V in the 452-PU (Signal) wire. 3. Failed sensor. 4. Failed Interface module.
FMI-04 Voltage below normal or shorted low.
1. Torque converter may not lock-up during load/carry. 2. Torque Converter lock-up corrected now.
1. Harness/connector short to ground in the 452-PU (Signal) wire. 2. Failed sensor. 3. Failed interface module.
FMI-08 Abnormal frequency, pulse width or period.
1. Torque converter may not lock-up during load/carry. 2. Torque converter lock-up corrected now.
1. Loose gear for speed sensor. 2. Possible RFI interference from a 2-way radio installation. 3. Harness/connector open (intermittent) in the 452-PU (Signal) wire. 4. Wrong sensor installed.
CID 0703 Trailer Door Position Sensor FMI-03 Voltage above normal or shorted high.
1. Door may show open/close when it is the opposite.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. 113-OR (+24V). B. E809-BU (Signal). C. A253-BK (Ground). 2. Harness/connector short to +Battery or +8V in the E809-BU wire. 3. Failed sensor. 4. Failed Interface module.
FMI-04 Voltage below normal or shorted low.
1. Door may show open/close when it is the opposite.
1. Harness/connector short to ground in the E809-BU wire. 2. Failed sensor. 3. Failed Interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Door may show open/close when it is the opposite.
1. Harness/connector short to ground in the E809-BU wire. 2. Failed sensor. 3. Failed Interface module.
FMI-02 Data erratic, intermittent or incorrect. ECM has dropped off the CAT data link 10 times in 10 minutes. Event is active until communication is reliable for more than 10 minutes.
1. VIMS seems dead or does not operate. 2. key on self-test intermittent or does not run at all. 3. At key on gauges jump to mid-scale then sweep to zero and stay at zero.
1. Wrong or corrupt source or configuration software. 2. Check for open/shorts in the CAT data link circuits. 3. Intermittant loss of power or ground A. 170-YL (+Battery). B. A251-BK (Ground) 4. Failed VIMS main module.
FMI-09 Abnormal update. Indicates that data link communication with the ECM has been broken for more than 5 seconds.
1. No VIMS operations will work. 2. Main module cannot communicate with other ECM’s. 3. Main module appears to work normally now.
1. Wrong or corrupt source or configuration software. 2. Check for open/shorts in the CAT data link circuits. 3. Intermittant loss of power or ground A. 170-YL (+Battery) B. A251-BK (Ground) 4. Failed VIMS main module.
CID 0800 VIMS Main Module
(continued)
190 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-11 Failure mode not identifiable.
One or all of listed Events will display for 35 seconds: 1. General actuator configuration error. 2. Pseudo channel configuration error. 3. Resettable cumulative configuration error. 4. Cumulative configuration error. 5. Conditions configuration error.
1. Wrong or corrupted source or configuration software. 2. Failed main module.
FMI-12 Bad device or component.
1. VIMS erased all stored data because of unusual conditions relating to the electrical system. 2. Event is active at key on for 35 seconds. Main module responds but does not have all necessary parameters.
1. Low or erratically low system voltage. 2. Wrong or corrupt source or configuration software. 3. Intermittent power or ground to the main module. 4. Check for open/shorts in the CAT data link circuits. 5. Failed VIMS main module.
CID 0801 VIMS Interface Module No. 1 FMI-02 Data erratic, intermittent or incorrect. ECM has dropped off the CAT data link 10 times in 10 minutes. Event is active until communication is reliable for more than 10 minutes.
1. Intermittent operation for all parameters related to interface module No. 1. 2. All parameters for interface module No.1 appear to function normally now.
1. Verify that harness code contacts 37, 38 and 39 on interface module No. 1 are grounded (201-BK). 2. Verify that harness code contact 40 on interface module No.1 is open. 3. Check the CAT data link circuit for opens/shorts. 4. Check for intermittent power and/or ground connection to interface module No. 1. 5. Wrong software in one or more ECM’s on the CAT data link. 6. Wrong or corrupted VIMS configuration. 7. Failed interface module No. 1.
FMI-09 Abnormal update. Indicates that data link communication with the ECM has been broken for more than 5 seconds.
1. No VIMS operation related to interface module No.1 will work. 2. Main module cannot communicate with interface module No. 1. 3. Interface module No. 1 appears to work normally now.
1. Verify that harness code contacts 37, 38 and 39 on interface module No.1 are grounded. 2. Check for opens/shorts in the CAT data link circuits. 3. Intermittent power and/or ground connection to interface module No. 1. 4. Failed interface module No. 1.
FMI-11 Failure mode not identifiable.
1. VIMS is having trouble communicating with the interface module No.1 over the CAT data link. 2. Unexplained events may be logged against interface module No.1. 3. VIMS may not appear to be online or show activity on display modules. 4. No malfunction is apparent.
1. Wrong software in one or more ECM’s on the CAT data link. 2. Check for opens/shorts in the CAT data link circuits. 3. Loss of power and/or ground to interface module No.1. 4. Wrong or corrupt source or configuration software. 5. Failed interface module No. 1. (continued)
191 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-12 Bad device or component.
1. No VIMS operation related to interface module No.1 will work. 2. Main module cannot communicate with interface module No.1. 3. ECM responds but not to all required parameters. 4. Interface module No. 1 appears to work normally now.
1. Wrong VIMS configuration. 2. Check for opens/shorts in the CAT data link circuirts. 3. Loss of power and/or ground to interface module No.1. 4. Failed interface module No. 1 or part number is not compatible with main module and or class of on board software. 5. Wrong or corrupted configuration software.
CID 0802 VIMS Interface Module No. 2 FMI-02 Data erratic, intermittent or incorrect. ECM has dropped off the CAT data link 10 times in 10 minutes. Event is active until communication is reliable for more than 10 minutes.
1. Intermittent operation for all parameters related to interface module No. 2. 2. All parameters for interface module No. 2 appear to function normally now.
1. Verify that harness code contacts 38, 39 and 40 on interface module No. 2 are grounded (201-BK). 2. Verify that harness code contact 37 on interface module No. 2 is open. 3. Check the CAT data link circuit for opens/shorts. 4. Check for intermittent power and/or ground connection to interface module No. 2. 5. Wrong software in one or more ECM’s on the CAT data link. 6. Wrong or corrupted VIMS configuration. 7. Failed interface module No. 2.
FMI-09 Abnormal update. Indicates that data link communication with the ECM has been broken for more than 5 seconds.
1. No VIMS operation related to interface module No. 2 will work. 2. Main module cannot communicate with interface module No. 2. 3. Interface module No. 2 appears to work normally now.
1. Verify that harness code contacts 38, 39 and 40 on interface module No. 2 are grounded. 2. Check for opens/shorts in the CAT data link circuits. 3. Intermittent power and/or ground connection to interface module No. 2. 4. Failed interface module No. 2.
FMI-11 Failure mode not identifiable.
1. VIMS is having trouble communicating with the interface module No. 2 over the CAT data link. 2. Unexplained events may be logged against interface module No. 2. 3. VIMS may not appear to be online or show activity on display modules. 4. No malfunction is apparent.
1. Wrong software in one or more ECM’s on the CAT data link. 2. Check for opens/shorts in the CAT data link circuits. 3. Loss of power and/or ground to interface module No. 2. 4. Wrong or corrupt source or configuration software. 5. Failed interface module No.2.
FMI-12 Bad device or component.
1. No VIMS operation related to interface module No. 2 will work. 2. Main module cannot communicate with interface module No. 2. 3. ECM responds but not to all required parameters. 4. Interface module No. 2 appears to work normally now.
1. Wrong VIMS configuration. 2. Check for opens/shorts in the CAT data link circuirts. 3. Loss of power and/or ground to interface module No. 2. 4. Failed interface module No. 2 or part number is not compatible with main module and or class of on board software. 5. Wrong or corrupt configuration software.
CID 0803 VIMS Interface Module No.3 (continued)
192 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-02 Data erratic, intermittent or incorrect. ECM has dropped off the CAT data link 10 times in 10 minutes. Event is active until communication is reliable for more than 10 minutes.
1. Intermittent operation for all parameters related to interface module No. 3. 2. All parameters for interface module No. 3 appear to function normally now.
1. Verify that harness code contacts 37, 39 and 40 on interface module No. 3 are grounded (201-BK). 2. Verify that harness code contact 38 on interface module No. 3 is open. 3. Check the CAT data link circuit for opens/shorts. 4. Check for intermittent power and/or ground connection to interface module No. 3. 5. Wrong software in one or more ECM’s on the CAT data link. 6. Wrong or corrupted VIMS configuration. 7. Failed interface module No. 3.
FMI-09 Abnormal update. Indicates that data link communication with the ECM has been broken for more than 5 seconds.
1. No VIMS operation related to interface module No. 3 will work. 2. Main module cannot communicate with interface module No. 3. 3. Interface module No. 3 appears to work normally now.
1. Verify that harness code contacts 37, 39 and 40 are grounded. 2. Check for opens/shorts in the CAT data link circuits. 3. Intermittent power and/or ground connection to interface module No. 3. 4. Failed interface module No. 3.
FMI-11 Failure mode not identifiable.
1. VIMS is having trouble communicating with the interface module No. 3 over the CAT data link. 2. Unexplained events may be logged against interface module No. 3. 3. VIMS may not appear to be online or show activity on display modules. 4. No malfunction is apparent.
1. Wrong software in one or more ECM’s on the CAT data link. 2. Check for opens/shorts in the CAT data link circuits. 3. Loss of power and/or ground to interface module No. 3. 4. Wrong or corrupt source or configuration software. 5. Failed interface module No. 3.
FMI-12 Bad device or component.
1. No VIMS operation related to interface module No. 3 will work. 2. Main module cannot communicate with interface module No. 3. 3. ECM responds but not to all required parameters. 4. Interface module No. 3 appears to work normally now.
1. Wrong VIMS configuration. 2. Check for opens/shorts in the CAT data link circuirts. 3. Loss of power and/or ground to interface module No. 3. 4. Failed interface module No. 3 or part number is not compatible with main module and or class of on board software. 5. Wrong or corrupt configuration software.
CID 0809 Speedometer/Tachometer No. 1 FMI-02 Data erratic, intermittent or incorrect. ECM has dropped off the Display data link 10 times in 10 minutes. Event is active until communication is reliable for more than ten minutes.
1. Tachometer, speedometer or actual gear indicator does not work during operation or self-test. 2. Tachometer, speedometer or actual gear indicator may be erratic during operation or self-test. 3. Tachometer, speedometer and actual gear indicator appear to work normally now. Note: Backlighting is not part of this procedure.
1. Harness/connector open/short in one or more of the following circuits: A. E707-GN (9V Power). B. E708-PK (Clock). C. C413-YL (Data). D. C414-BU (Load). 2. Wire E972-BU (Ground) is open or intermittent. 3. Failed Tachometer/speedometer module. 4. Failed main module. (continued)
193 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-12 Bad device or component.
1. Tachometer, speedometer or actual gear indicator does not work during operation or self-test. 2. Tachometer, speedometer or actual gear indicator may be erratic during operation or self-test. 3. Tachometer, speedometer and actual gear indicator appear to work normally now. Note: Backlighting is not part of this procedure.
1. Module connector is not connected to dash harness. 2. Harness/connector open/short in one or more of the following circuits: A. E707-GN (9V Power). B. E708-PK (Clock). C. C413-YL (Data). D. C414-BU (Load). 3. Wire E972-BU is open or intermittent. 4. Failed Speedometer/tachometer module. 5. Wrong or corrupted source or configuration software. 6. Failed main module.
CID 0810 Speedometer/Tachometer No. 2 FMI-02 Data erratic, intermittent or incorrect. ECM has dropped off the Display data link 10 times in 10 minutes. Event is active until communication is reliable for more than ten minutes.
1. Tachometer, speedometer or actual gear indicator does not work during operation or self-test. 2. Tachometer, speedometer or actual gear indicator may be erratic during operation or self-test. 3. Tachometer, speedometer and actual gear indicator appear to work normally now. Note: Backlighting is not part of this procedure.
1. Harness/connector open/short in one or more of the following circuits: A. E707-GN (9V Power). B. E708-PK (Clock). C. C413-YL (Data). D. C414-BU (Load). 2. Wire E972-BU (Ground) is open or intermittent. 3. Failed speedometer/tachometer module. 4. Failed main module.
FMI-12 Bad device or component.
1. Tachometer, speedometer or actual gear indicator does not work during operation or self-test. 2. Tachometer, speedometer or actual gear indicator may be erratic during operation or self-test. 3. Tachometer, speedometer and actual gear indicator appear to work normally now. Note: Backlighting is not part of this procedure.
1. Module connector is not connected to dash harness. 2. Harness/connector open/short in one or more of the following circuits: A. E707-GN (9V Power). B. E708-PK (Clock). C. C413-YL (Data). D. C414-BU (Load). 3. Wire E972-BU (Ground) is open or intermittent. 4. Failed Speedometer/tachometer module. 5. Wrong or corrupted source or configuration software. 6. Failed main module.
1. One or more gauges do not work during operation or self-test. 2. One or more gauges are erratic during self-test or during operation. 3. All gauges may appear to work normally now. Note: Backlighting is not part of this procedure.
1. Harness/connector open/short in one or more of the following circuits: A. E707-GN (9V Power). B. E708-PK (Clock). C. C413-YL (Data). D. C414-BU (Load). 2. Wire E972-BU (Ground) is open or intermittent. 3. Failed gauge cluster module. 4. Wrong or corrupted source or configuration software. 5. Failed main module.
CID 0811 Gauge Cluster No. 1 FMI-02 Data erratic, intermittent or incorrect. ECM has dropped off the Display data link 10 times in 10 minutes. Event is active until communication is reliable for more than ten minutes.
(continued)
194 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-12 Bad device or component.
1. One or more gauges do not work during operation or self-test. 2. One or more gauges are erratic during self-test or during operation. 3. All gauges may appear to work normally now. Note: Backlighting is not part of this procedure.
1. Module connector is not connected to dash harness. 2. Harness/connector open/short in one or more of the following circuits: A. E707-GN (9V Power). B. E708-PK (Clock). C. C413-YL (Data). D. C414-BU (Load). 3. Wire E972-BU (Ground) is open or intermittent. 4. Failed gauge cluster module. 5. Wrong or corrupted source or configuration software. 6. Failed main module.
FMI-02 Data erratic, intermittent or incorrect. ECM has dropped off the Display data link 10 times in 10 minutes. Event is active until communication is reliable for more than ten minutes.
1. One or more gauges do not work during operation or self-test. 2. One or more gauges are erratic during self-test or during operation. 3. All gauges may appear to work normally now. Note: Backlighting is not part of this procedure.
1. Harness/connector open/short in one or more of the following circuits: A. E707-GN (9V Power). B. E708-PK (Clock). C. C413-YL (Data). D. C414-BU (Load). 2. Wire E972-BU (Ground) is open or intermittent. 3. Failed gauge cluster module. 4. Wrong or corrupted source or configuration software. 5. Failed main module.
FMI-12 Bad device or component.
1. One or more gauges do not work during operation or self-test. 2. One or more gauges are erratic during self-test or during operation. 3. All gauges may appear to work normally now. Note: Backlighting is not part of this procedure.
1. Module connector is not connected to dash harness. 2. Harness/connector open/short in one or more of the following circuits: A. E707-GN (9V Power). B. E708-PK (Clock). C. C413-YL (Data). D. C414-BU (Load). 3. Wire E972-BU (Ground) is open or intermittent. 4. Failed gauge cluster module. 5. Wrong or corrupted source or configuration software. 6. Failed main module.
1. One or more gauges do not work during operation or self-test. 2. One or more gauges are erratic during self-test or during operation. 3. All gauges may appear to work normally now. Note: Backlighting is not part of this procedure.
1. Harness/connector open/short in one or more of the following circuits: A. E707-GN (9V Power). B. E708-PK (Clock). C. C413-YL (Data). D. C414-BU (Load). 2. Wire E972-BU (Ground) is open or intermittent. 3. Failed gauge cluster module. 4. Wrong or corrupted source or configuration software. 5. Failed main module.
CID 0812 Gauge Cluster No. 2
CID 0813 Gauge Cluster No. 3 FMI-02 Data erratic, intermittent or incorrect. ECM has dropped off the Display data link 10 times in 10 minutes. Event is active until communication is reliable for more than ten minutes.
(continued)
195 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-12 Bad device or component.
1. One or more gauges do not work during operation or self-test. 2. One or more gauges are erratic during self-test or during operation. 3. All gauges may appear to work normally now. Note: Backlighting is not part of this procedure.
1. Module connector is not connected to dash harness. 2. Harness/connector open/short in one or more of the following circuits: A. E707-GN (9V Power). B. E708-PK (Clock). C. C413-YL (Data). D. C414-BU (Load). 3. Wire E972-BU (Ground) is open or intermittent. 4. Failed gauge cluster module. 5. Wrong or corrupted source or configuration software. 6. Failed main module.
FMI-02 Data erratic, intermittent or incorrect. ECM has dropped off the Display data link 10 times in 10 minutes. Event is active until communication is reliable for more than ten minutes.
1. One or more gauges do not work during operation or self-test. 2. One or more gauges are erratic during self-test or during operation. 3. All gauges may appear to work normally now. Note: Backlighting is not part of this procedure.
1. Harness/connector open/short in one or more of the following circuits: A. E707-GN (9V Power). B. E708-PK (Clock). C. C413-YL (Data). D. C414-BU (Load). 2. Wire E972-BU (Ground) is open or intermittent. 3. Failed gauge cluster module. 4. Wrong or corrupted source or configuration software. 5. Failed main module.
FMI-12 Bad device or component.
1. One or more gauges do not work during operation or self-test. 2. One or more gauges are erratic during self-test or during operation. 3. All gauges may appear to work normally now. Note: Backlighting is not part of this procedure.
1. Module connector is not connected to dash harness. 2. Harness/connector open/short in one or more of the following circuits: A. E707-GN (9V Power). B. E708-PK (Clock). C. C413-YL (Data). D. C414-BU (Load). 3. Wire E972-BU (Ground) is open or intermittent. 4. Failed gauge cluster module. 5. Wrong or corrupted source or configuration software. 6. Failed main module.
1. Any part of message center module does not work during operation or self-test. 2. Any part of message center module is erratic during operation or self-test. 3. All parts of message center module may appear to work normally now. Note: Backlighting is not part of this procedure.
1. Harness/connector open/short in one or more of the following circuits: A. E707-GN (9V Power). B. E708-PK (Clock). C. C413-YL (Data). D. C414-BU (Load). 2. Wire E972-BU (Ground) is open or intermittent. 3. Failed message center module. 4. Wrong or corrupted source or configuration software. 5. Failed main module.
CID 0814 Gauge Cluster No. 4
CID 0815 Message Center No. 1 FMI-02 Data erratic, intermittent or incorrect. ECM has dropped off the Display data link 10 times in 10 minutes. Event is active until communication is reliable for more than ten minutes.
(continued)
196 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-12 Bad device or component.
1. Any part of message center module does not work during operation or self-test. 2. Any part of message center module is erratic during operation or self-test. 3. All parts of message center module may appear to work normally now. Note: Backlighting is not part of this procedure.
1. Module connector is not connected to dash harness. 2. Harness/connector open/short in one or more of the following circuits: A. E707-GN (9V Power). B. E708-PK (Clock). C. C413-YL (Data). D. C414-BU (Load). 3. Wire E972-BU (Ground) is open or intermittent. 4. Failed message center module. 5. Wrong or corrupted source or configuration software. 6. Failed main module.
FMI-02 Data erratic, intermittent or incorrect. ECM has dropped off the Display data link 10 times in 10 minutes. Event is active until communication is reliable for more than ten minutes.
1. Any part of message center module does not work during operation or self-test. 2. Any part of message center module is erratic during operation or self-test. 3. All parts of message center module may appear to work normally now. Note: Backlighting is not part of this procedure.
1. Harness/connector open/short in one or more of the following circuits: A. E707-GN (9V Power). B. E708-PK (Clock). C. C413-YL (Data). D. C414-BU (Load). 2. Wire E972-BU (Ground) is open or intermittent. 3. Failed message center module. 4. Wrong or corrupted source or configuration software. 5. Failed main module.
FMI-12 Bad device or component.
1. Any part of message center module does not work during operation or self-test. 2. Any part of message center module is erratic during operation or self-test. 3. All parts of message center module may appear to work normally now. Note: Backlighting is not part of this procedure.
1. Module connector is not connected to dash harness. 2. Harness/connector open/short in one or more of the following circuits: A. E707-GN (9V Power). B. E708-PK (Clock). C. C413-YL (Data). D. C414-BU (Load). 3. Wire E972-BU (Ground) is open or intermittent. 4. Failed message center module. 5. Wrong or corrupted source or configuration software. 6. Failed main module.
1. Loss of data stored for downloading resulting from loss of +Battery to main module (contact 1) and failure of the 3V lithium backup battery. 2. Loss of real time clock data. 3. Event active for 35 seconds at Key On (Version 3.0 Hardware).
1. Replacement of 3V lithium battery while machine disconnect switch was open. 2. Failure of 3V lithium battery while machine disconnect switch was open. 3. Failure of battery holder for 3 volt lithium battery. 4. Failed main module.
CID 0816 Message Center No. 2
CID 0817 ECM Backup Battery FMI-02 Data erratic, intermittent or incorrect.
(continued)
197 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-12 Bad device or component.
1. Operator warning: BACKUP BATTERY ERROR. 2. Loss of real time clock data if the key switch is turned off before stored data can be downloaded. 3. Loss of stored main module data if disconnect switch is opened before data is downloaded.
1. Failure of 3 volt lithium battery (less than 1.5-1.7 volts ). 2. 3 volt lithium battery installed without removing insulation sleeve from battery. (V2.0 hardware) 3. No battery installed. 4. Failure of battery holder/socket for 3 volt lithium battery. 5. Failure of main module.
FMI-02 Data erratic, intermittent or incorrect. display module has dropped off the Display data link 10 times in 10 minutes. Event is active until communication is reliable for more than ten minutes.
1. Any or all display component modules may not work during operation or self-test. 2. Any or all display component modules may be erratic during operation or self-test. 3. All display component modules(s) may appear to work normally now.
1. Harness/connector open/short in one or more of the following circuits: A. E707-GN (9V Power). B. E708-PK (Clock). C. C413-YL (Data). D. C414-BU (Load). 2. Wire E972-BU (Ground) is open or intermittent. 3. One or more of the display component modules has failed. 4. Failed main module.
FMI-03 Voltage above normal (display data) or shorted high.
1. Any or all display component modules may not work during operation or self-test. 2. Any or all display component modules may be erratic during operation or self-test. 3. All display component modules(s) may appear to work normally now.
1. Harness/connector open/short in one or more of the following circuits: A. E707-GN (9V Power). B. E708-PK (Clock). C. C413-YL (Data). D. C414-BU (Load). 2. Wire E972-BU (Ground) is open or intermittent. 3. One or more of the display component modules has failed. 4. Failed main module.
FMI-06 Current above normal (display data) or shorted high.
1. Any or all display component modules may not work during operation or self-test. 2. Any or all display component modules may be erratic during operation or self-test. 3. All display component modules(s) may appear to work normally now.
1. Harness/connector open/short in one or more of the following circuits: A. E707-GN (9V Power). B. E708-PK (Clock). C. C413-YL (Data). D. C414-BU (Load). 2. Wire E972-BU (Ground) is open or intermittent. 3. One or more of the display component modules has failed. 4. Failed main module.
FMI-12 Bad device or component.
1. Any or all display component modules may not work during operation or self-test. 2. Any or all display component modules may be erratic during operation or self-test. 3. All display component modules(s) may appear to work normally now.
1. The connector to one or more of the display component modules is not connected to the dash harness. 2. Harness/connector open/short in one or more of the following circuits: A. E707-GN (9V Power). B. E708-PK (Clock). C. C413-YL (Data). D. C414-BU (Load). 3. Wire E972-BU (Ground) is open or intermittent. 4. One or more of the display component modules has failed. 5. Failed main module.
CID 0819 Display data link
CID 0820 Keypad data link (continued)
198 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-02 Data erratic, intermittent or incorrect. keypad has dropped off the Keypad data link 10 times in 10 minutes. Event is active until communication is reliable for more than ten minutes.
1. Message center may not show entries from keypad. 2. Message center may work erratically to entries from keypad 3. Keypad may appear to work normally now.
1. Harness/connector open/short in one or more of the following circuits: A. E707-GN (9V Power). B. C415-WH (Data). 2. Wire E972-BU (Ground) is open or intermittent. 3. Failed keypad. 4. Failed main module.
FMI-03 Voltage above normal (data) or shorted high.
1. Message center may not show entries from keypad. 2. Message center may work erratically to entries from keypad 3. Keypad may appear to work normally now.
1. Harness/connector short to +Battery in one or more of the following circuits: A. E707-GN (9V Power). B. C415-WH (Data). 2. Wire E972-BU (Ground) is open or intermittent. 3. Failed keypad. 4. Failed main module.
FMI-06 Current above normal or shorted circuit.
1. Message center may not show entries from keypad. 2. Message center may work erratically to entries from keypad 3. Keypad may appear to work normally now.
1. Harness/connector short to ground in C415-WH wire. 2. Failed keypad. 3. Failed main module.
FMI-12 Bad device or component.
1. Message center may not show entries from keypad. 2. Message center may work erratically to entries from keypad 3. Keypad may appear to work normally now.
1. Harness/connector open/short in one or more of the following circuits: A. E707-GN (9V Power). B. C415-WH (Data). 2. Wire E972-BU(Ground) is open or intermittent. 3. Failed keypad. 4. Failed main module.
CID 0821 Display Power Supply (9 volt) FMI-03 Voltage above normal or shorted high.
1. Any or all display component module(s) may not work during operation or self-test. 2. Any or all display component module(s) may be erratic during operation or self-test. 3. All display component modules(s) may appear to work normally now.
1. Harness/connector short to +Battery in the E707-GN wire. 2. Failed main module.
FMI-06 Current above normal or grounded circuit.
1. Any or all display component module(s) may not work during operation or self-test. 2. Any or all display component module(s) may be erratic during operation or self-test. 3. All display component modules(s) may appear to work normally now.
1. Harness/connector short to ground in the E707-GN wire. 2. One of the display component modules has failed. 3. Failed main module.
CID 0822 Display Lighting Power Supply (continued)
199 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-03 Voltage above normal or shorted high.
1. LCD backlighting in message center or speedo/tach may not work (dead). 2. LCD backlighting in message center or speedo/tach may not dim with headlight use. 3. LCD backlighting for message center or speedo/tach may be intermittent.
1. Harness/connector short to +Battery in the E710-BU wire. 2. Wire E710-BU is open or intermittent. 3. Failed main module.
FMI-05 Current below normal or open circuit.
1. LCD backlighting in message center or speedo/tach may not work (dead). 2. LCD backlighting in message center or speedo/tach may not dim with headlight use. 3. LCD backlighting for message center or speedo/tach may be intermittent.
1. Harness/connector short to +Battery in the E710-BU wire. 2. Wire E710-BU is open or intermittent. 3. Lamps are burned out. 4. Wrong lamps installed 5. Failed main module.
FMI-06 Current above normal or grounded circuit.
1. LCD backlighting in message center or speedo/tach may not work (dead). 2. LCD backlighting in message center or speedo/tach may not dim with headlight use. 3. LCD backlighting for message center or speedo/tach may be intermittent. 4. LCD backlighting for message center or speedo/tach may be very bright constantly.
1. Harness/connector short to ground or E707-GN in the following wires. A. E707-GN (9V Power). B. E710-BU (LCD lamps). 2. Wrong lamps used for LCD backlighting. 3. Fault in lamp socket(s). 4. Failed main module.
FMI-03 Voltage above normal or shorted high.
1. Lamp always on. 2. Lamp may not work (dead).
1. Harness/connector short to +Battery in the E709-WH wire. 2. Failed main module.
FMI-05 Current below normal or open circuit.
1. Lamp may not turn on during self-test. 2. Lamp works but is dim. 3. Lamp may work intermittently. 4. Lamp may appear to work normally now.
1. Lamp defective (burned out). 2. Wrong lamp installe4 3. Wire E709-WH is open (harness or connectors). 4. Lamp ground, 201-BK or J848-BU, is open or intermittent. 5. Failed lamp socket. 6. Failed main module.
FMI-06 Current above normal or grounded circuit.
1. Lamp may not turn on during self-test. 2. Lamp works but is dim. 3. Lamp may work intermittently. 4. Lamp may appear too bright. 5. Lamp may appear to work normally now.
1. 2. 3. to 4. 5.
CID 0823 Service Lamp
Lamp defective (shorted). Wrong lamp installed. Wire E709-WH has short (intermittent) ground. Failed lamp socket. Failed main module.
CID 0824 Truck Payload Lamp No. 1 (Green) FMI-03 Voltage above normal or shorted high.
1. Both lamps always on. 2. One or both lamps may not work (dead).
1. Harness/connector short to +Battery in the 636-GN wire. 2. Failed main module.
FMI-05 Current below normal or grounded circuit.
1. Lamp may not turn on during self-test. 2. Lamps work but are dim. 3. Lamps may work intermittently. 4. Lamps may appear to work normally now.
1. Both lamps defective (burned out). 2. Wrong lamps installed. 3. Wire 636-GN is open (harness or connectors). 4. Lamp ground, 201-BK or J840-WH, is open or intermittent. 5. Failed lamp socket. 6. Failed main module. (continued)
200 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-06 Current above normal or grounded circuit.
1. Both lamps may not turn on during self-test. 2. Lamps work but are dim. 3. Lamps may work intermittently. 4. Lamps may appear too bright. 5. Lamps may appear to work normally now.
1. Lamps defective (shorted). 2. Wrong lamps installed. 3. Wire 636-GN has short (intermittent) to ground. 4. Failed lamp socket. 5. Failed main module.
FMI-08 Abnormal pulse width, frequency or period.
1. Both lamps always on. 2. One or both lamps may not work (dead).
1. Harness/connector short to +Battery in the 636-GN wire. 2. Failed main module.
CID 0825 Truck Payload Lamp No. 2 (Red) FMI-03 Voltage above normal or shorted high.
1. Both lamps always on. 2. Lamp may not work (dead).
1. Harness/connector short to +Battery in the 635-BU wire. 2. Failed main module.
FMI-05 Current below normal or open circuit.
1. Lamps may not turn on during self-test. 2. Lamps work but are dim. 3. Lamps may work intermittently. 4. Lamps may appear to work normally now.
1. Both lamps defective (burned out). 2. Wrong lamps installe4 3. Wire 635-BU is open (harness or connectors). 4. Lamp ground, 201-BK or J841-YL, is open or intermittent. 5. Failed lamp socket. 6. Failed main module.
FMI-06 Current above normal or grounded circuit.
1. Both lamps may not turn on during self-test. 2. Lamps works but are dim. 3. Lamps may work intermittently. 4. Lamps may appear too bright. 5. Lamps may appear to work normally now.
1. Lamps defective (shorted). 2. Wrong lamps installed. 3. Wire 635-BU has short (intermittent) to ground. 4. Failed lamp socket. 5. Failed main module.
FMI-08 Abnormal frequency, pulse width or period.
1. Both lamps always on. 2. Lamp may not work (dead).
1. Harness/connector short to +Battery in the 635-BU wire. 2. Failed main module.
CID 0826 Torque Converter Output Oil Temperature Sensor FMI-03 Voltage above normal (signal) or shorted high.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. D963-BU (+8 Volts). B. D969-PU (Signal). C. 201-BK (Ground). 2. Harness/connector short to +Battery or +8V in the D969-PU wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the D969-PU wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the D969-PU wire. 2. Failed sensor. 3. Failed interface module. (continued)
201 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-11 Failure mode not identifiable.
1. Any combination of results listed for FMI 03, FMI 04 or FMI 06
1. Harness/connector open (intermittent) in one or more of the following circuits: A. D963-BU (+8 Volts). B. D969-PU (Signal). C. 201-BK (Ground). 2. Harness/connector short to +Battery or +8V in the D969-PU wire. 3. Failed sensor. 4. Failed interface module.
CID 0827 Left Exhaust (Bank) Temperature Sensor FMI-03 Voltage above normal (signal) or shorted high.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. D963-BU (+8 Volts). B. D976-PK (Signal). C. 201-BK (Ground). 2. Harness/connector short to +Battery or +8V in the D976-PK wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the D976-PK wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the D976-PK wire. 2. Failed sensor. 3. Failed interface module.
FMI-08 Abnormal pulse width, frequency or period
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may change faster than actually possible on the machine. 4. Temperature may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. D963-BU (+8 Volts). B. D976-PK (Signal). C. 201-BK (Ground). 2. Harness/connector intermittent short to +Battery or +8V/ground in the D976-PK wire. 3. Failed sensor. 4. Failed interface module.
CID 0828 Right Exhaust (Bank) Temperature Sensor FMI-03 Voltage above normal (signal) or shorted high.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. D963-BU (+8 Volts). B. D977-PU (Signal). C. 201-BK (Ground). 2. Harness/connector short to +Battery or +8V in the D977-PU wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the D977-PU (Signal) wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the D977-PU (Signal) wire. 2. Failed sensor. 3. Failed interface module. (continued)
202 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-08 Abnormal pulse width, frequency or period
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may change faster than actually possible on the machine. 4. Temperature may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. D963-BU (+8 Volts). B. D977-PU (Signal). C. 201-BK (Ground). 2. Harness/connector internittent short to +Battery or +8V/ground in the D977-PU wire. 3. Failed sensor. 4. Failed interface module.
CID 0829 Rear Aftercooler Coolant Temperature Sensor FMI-03 Voltage above normal (signal) or shorted high.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. D963-BU (+8 Volts). B. B406-GY (Signal). C. 201-BK (Ground). 2. Harness/connector short to +Battery or +8V in the B406-GY wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the B406-GY wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the B406-GY wire. 2. Failed sensor. 3. Failed interface module.
CID 0830 Front Brake Oil Temperature Sensor FMI-03 Voltage above normal (signal) or shorted high.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. D963-BU (+8 Volts). B. B433-PU (Signal). C. 201-BK (Ground). 2. Harness/connector short to +Battery or +8V in the B433-PU wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the B433-PU wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the B433-PU wire. 2. Failed sensor. 3. Failed interface module.
CID 0833 Rear Brake Oil Temperature Sensor (continued)
203 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-03 Voltage above normal (signal) or shorted high.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. F975-OR (+8 Volts). B. 429-YL (Signal). C. 201-BK (Ground). 2. Harness/connector short to +Battery or +8V in the 429-YL wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the 429-YL wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the 429-YL wire. 2. Failed sensor. 3. Failed interface module.
CID 0835 Differential (Axle) Oil Temperature Sensor FMI-03 Voltage (signal) above normal or shorted high.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. F975-OR (+8 Volts). B. C429-GY (Signal). C. 201-BK (Ground). 2. Harness/connector short to +Battery or +8V in the C429-GY wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the C429-GY wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the C429-GY wire. 2. Failed sensor. 3. Failed interface module.
CID 0838 Left Front Suspension Cylinder Pressure Sensor FMI-02 Data erratic, intermittent or incorrect.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Suspension Cylinder is charged incorrectly. (Check suspension cylinder see Special Instruction, SEHS9411.) 2. Failed sensor. 3. Failed interface module.
FMI-03 Voltage above normal (signal) or shorted high.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. 113-OR (+Battery). B. 859-YL (Signal). C. 201-BK or J842-BK(Ground). 2. Harness/connector short to +Battery in the 859-YL wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Harness/connector short to ground in the 859-YL wire. 2. Failed sensor. 3. Failed interface module. (continued)
204 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-06 Current above normal (signal) or grounded circuit.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Harness/connector short to ground in the 859-YL wire. 2. Failed sensor. 3. Failed interface module.
FMI-08 Abnormal frequency, pulse width or period.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. 113-OR (+Battery). B. 859-YL (Signal). C. 201-BK or J842-BK(Ground). 2. Harness/connector intermitent short to +Battery or + 8V/ground in the 859-YL wire. 3. Failed sensor. 4. Failed interface module.
CID 0839 Right Front Suspension Cylinder Pressure Sensor FMI-02 Data erratic, intermittent or incorrect.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Suspension Cylinder is incorrectly charged. (Check suspension cylinder see Special Instruction, SEHS9411.) 2. Failed sensor. 3. Failed interface module.
FMI-03 Voltage above normal (signal) or shorted high.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. 113-OR (+Battery). B. 858-GY (Signal). C. 201-BK or J842-BK (Ground). 2. Harness/connector short to +Battery in the 858-GY wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Harness/connector short to ground in the 858-GY wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Harness/connector short to ground in the 858-GY wire. 2. Failed sensor. 3. Failed interface module.
FMI-08 Abnormal frequency, pulse width or period.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. 113-OR (+Battery). B. 858-GY (Signal). C. 201-BKor J842-BK(Ground). 2. Harness/connector internittent short to +Battery or +8V/ground in the 858-GY wire. 3. Failed sensor. 4. Failed interface module.
CID 0840 Left Rear Suspension Cylinder Pressure Sensor FMI-02 Data erratic, intermittent or incorrect.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Suspension Cylinder is charged incorrectly. (Check suspension cylinder see Special Instruction, SEHS9411.) 2. Failed sensor. 3. Failed interface module. (continued)
205 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-03 Voltage above normal (signal) or shorted high.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. 113-OR (+Battery). B. 861-PU (Signal). C. 201-BK or J842-BK(Ground). 2. Harness/connector short to +Battery in the 861-PU wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Harness/connector short to ground in the 861-PU wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Harness/connector short to ground in the 861-PU wire. 2. Failed sensor. 3. Failed interface module.
FMI-08 Abnormal frequency, pulse width or period.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. 113-OR (+Battery). B. 861-PU (Signal). C. 201-BK or J842-BK (Ground). 2. Harness/connector intermittent short to +Battery or +8V/ground in the 861-PU wire. 3. Failed sensor. 4. Failed interface module.
CID 0841 Right Rear Suspension Cylinder Pressure Sensor FMI-02 Data erratic, intermittent or incorrect.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Suspension Cylinder is charge incorrectly (Check suspension cylinder see Special Instruction, SEHS9411.) 2. Failed sensor. 3. Failed interface module.
FMI-03 Voltage above normal (signal) or shorted high.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. 113-OR (+Battery). B. 860-PK (Signal). C. 201-BK or J842-BK (Ground). 2. Harness/connector short to +Battery in the 860-PK wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Harness/connector short to ground in the 8860-PK wire. 2. Failed sensor. 3. Failed interface module
FMI-06 Current above normal (signal) or grounded circuit.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Harness/connector short to ground in the 8860-PK wire. 2. Failed sensor. 3. Failed interface module (continued)
206 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-08 Abnormal frequency, pulse width or period.
1. Payload may appear incorrect. 2. Correct payload may appear intermittent. 3. Payload may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. 113-OR (+Battery). B. 860-PK (Signal). C. 201-BK or J842-BK (Ground). 2. Harness/connector intermittent short to +Battery or +8V/ground in the 860-PK wire. 3. Failed sensor. 4. Failed interface module.
CID 0849 System (Brake) Air Pressure Sensor FMI-03 Voltage above normal (signal) or shorted high.
1. Pressure gauge always shows minimum. 2. Pressure gauge may work intermittently. 3. Pressure gauge may work normally now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. D963-BU (+8 Volts). B. D970-WH (Signal). C. 201-BK (Ground). 797 A. K983-BU (+8 Volts). B. M914-WH (Signal). C. J842-BK (Ground). 2. Harness/connector short to +Battery or +8V in the D970-WH or M914-WH wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Pressure gauge always shows minimum. 2. Pressure gauge may work intermittently. 3. Pressure gauge may work normally now.
1. Harness/connector short to ground in the D970-WH or M914-WHwire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Pressure gauge always shows minimum. 2. Pressure gauge may work intermittently. 3. Pressure gauge may work normally now.
1. Harness/connector short to ground in the D970-WH or M914-WHwire. 2. Failed sensor. 3. Failed interface module.
CID 0851 Gear Box (Splitter) Pressure Sensor FMI-03 Voltage above normal (signal) or shorted high.
1. Pressure always shows minimum. 2. Correct pressure may be intermittent. 3. Pressure may appear to be normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. D963-BU (+8 Volts). B. C412-BR (signal). C. 201-BK (Ground). 2. Harness/connector short to +Battery or +8V in the C412-BR wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Pressure always shows minimum. 2. Correct pressure may be intermittent. 3. Pressure may appear to be normal now.
1. Harness/connector short to ground in the C412-BR wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Pressure always shows minimum. 2. Correct pressure may be intermittent. 3. Pressure may appear to be normal now.
1. Harness/connector short to ground in the C412-BR wire. 2. Failed sensor. 3. Failed interface module.
CID 0852 Right Front Brake Oil Temperature Sensor (continued)
207 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-03 Voltage above normal (signal) or shorted high.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. F975-OR (+8 Volts). B. B433-PU (Signal). C. A252-BK (Ground). 2. Harness/connector short to +Battery or +8V in the B433-PU wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the B433-PU wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the B433-PU wire. 2. Failed sensor. 3. Failed interface module.
CID 0853 Left Front Brake Oil Temperature Sensor FMI-03 Voltage above normal (signal) or shorted high.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. F975-ORF975- (+8 Volts). B. B466-YL (Signal). C. A252-BK (Ground). 2. Harness/connector short to +Battery or +8V in the B466-YL wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the B466-YL wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the B466-YL wire. 2. Failed sensor. 3. Failed interface module.
CID 0854 Right Rear Brake Oil Temperature Sensor FMI-03 Voltage above normal (signal) or shorted high.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. F975-OR (+8 Volts). B. B429-YL (Signal). C. A252-BK (Ground). 2. Harness/connector short to +Battery or +8V in the B429-YL wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the B429-YL wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the B429-YL wire. 2. Failed sensor. 3. Failed interface module.
CID 0855 Left Rear Brake Oil Temperature Sensor (continued)
208 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-03 Voltage above normal (signal) or shorted high.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector open (intermittent) in one or more of the following circuits: A. F975-OR (+8 Volts). B. C467-BU (Signal). C. A252-BK (Ground). 2. Harness/connector short to +Battery or +8V in the C467-BU wire. 3. Failed sensor. 4. Failed interface module.
FMI-04 Voltage below normal or shorted low.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the C467-BU wire. 2. Failed sensor. 3. Failed interface module.
FMI-06 Current above normal (signal) or grounded circuit.
1. Temperature always shows maximum. 2. Correct temperature may be intermittent. 3. Temperature may appear normal now.
1. Harness/connector short to ground in the C467-BU wire. 2. Failed sensor. 3. Failed interface module.
1. No broadcast (telemetry) of VIMS data. 2. Broadcast of data is intermittent. 3. Broadcast is working now.
1. Broadcast system is not removing data from VIMS broadcast buffer. 2. Will correct itself when broadcast system resumes operation. 3. Key Start switch ON/OFF will clear broadcast buffer. 4. Open, short, ground in broadcast data link. 5. Related broadcast ECM has failed. 6. Failed main module.
CID 0890 Telemetry data link (VIMS) FMI-09 Abnormal update. Indicates that data link communication with the ECM has been broken for more than 5 seconds.
CID 1089 ABL Interface module (797 only) FMI-02 Data erratic, intermittent or incorrect. ECM has dropped off the CAT Data Link 10 times in 10 minutes. Event is active until communication is reliable for more than 10 minutes.
1. Intermittent operation for all parameters related to interface module. 2. All parameters for interface module appear to function normally now.
1. Verify that location code contact J2-4, on interface module is grounded (E972-BU). 2. Verify that location code contacts J2-3, J2-61 and J2-62 on interface module are open. 3. Check CAT Data Link circuit for opens/shorts. 4. Check for intermittent power and/or ground connection to interface module No. 1. 5. Wrong software in one or more ECM. 6. Wrong or corrupted VIMS configuration. 7. Failed interface module. (continued)
209 Testing and Adjusting Section
(Table 27, contd)
VIMS DETECTED FAILURES CID/FMI FAILURE DESCRIPTION
RESULT OF FAILURE (during normal operation)
POSSIBLE CAUSE
FMI-09 Abnormal update. Indicates that Data Link communication with the ECM has been broken for more than 5 seconds.
1. No VIMS operation related to interface module will work. 2. Main module cannot communicate with interface module. 3. Interface module appears to work normally now.
1. Verify that location code contact J2-4, on interface module is grounded (E972-BU). 2. Verify that location code contacts J2-3, J2-61 and J2-62 on interface module are open. 3. Check for opens/shorts CAT Data Link circuits. 4. Intermittent power and/or ground connection to interface module. 5. Failed interface module.
FMI-12 Bad device or component.
1. No VIMS operation related to interface module will work. 2. Main module cannot communicate with interface module. 3. interface module responds but not to all required parameters. 4. Interface module appears to work normally now.
1. Wrong VIMS configuration. 2. Check for opens/shorts in CAT Data Link circuits. 3. Loss of power and/or ground to interface module. 4. Failed interface module or part number is not compatible with main module and or class of on board software. 5. Wrong or corrupted configuration software.
i00990817
CID 0041 FMI 03 Sensor Power Supply (8 DCV) Voltage Above Normal - Test SMCS Code: 1408-038-NS Note: This procedure can cause new diagnostic codes to be recorded. Ignore these newly created diagnostic codes. Complete this procedure and then clear the diagnostic codes that were created during this procedure. This diagnostic code is recorded when the ECM reads the voltage of the 8 DCV sensor supply circuit and the voltage is above normal. 1. CHECK FOR THE CORRECT VOLTAGE AT THE INTERFACE MODULE a. Turn the disconnect switch and the key start switch to the ON position. b. Check the voltage at the connector of the interface module from contact 26 (sensor supply) to contact 2 (ground). Use the 7X-1710 Cable probes to measure the voltage. Do NOT disconnect the machine harness from the VIMS main module. Expected Results: The voltage is 8.0 ± 0.5 DCV. Results:
• OK - Voltage is 8.0 ± 0.5 DCV. The sensor supply voltage is correct. Check the message center in order to verify that the same diagnostic code is present. If the diagnostic code is still present, the interface module has failed. Replace the module. Refer to the Testing and Adjusting, “Module - Replace” section. STOP.
• NOT OK - Voltage is greater than 8.0 ± 0.5 DCV. The sensor supply voltage is NOT correct. Proceed to 2. 2. HARNESS CHECK FOR SHORT TO THE +BATTERY CIRCUIT a. The disconnect switch and the key start switch remain in the ON position. b. Disconnect the machine harness from the VIMS interface module. c. At the machine harness connector for the VIMS interface module, measure the voltage from connector contact 26 (sensor supply) to contact 2 (ground). Expected Results: The voltage is 0.0 ± 0.5 DCV. Results:
• OK - Voltage is 0.0 ± 0.5 DCV. The voltage is correct. The VIMS interface module has failed. Replace the VIMS module. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
210 Testing and Adjusting Section
• NOT OK - Voltage is NOT 0.0 ± 0.5 DCV.
The harness has failed. The machine harness is shorted to +battery. Repair the machine harness or replace the machine harness. STOP. i00991923
CID 0041 FMI 04 Sensor Power Supply (8 DCV) Voltage Below Normal - Test SMCS Code: 1408-038-NS Note: This procedure can cause new diagnostic codes to be recorded. Ignore these newly created diagnostic codes. Complete this procedure and then clear the diagnostic codes that were created during this procedure. This diagnostic code is recorded when the ECM reads the voltage of the 8 DCV sensor supply circuit and the voltage is below normal. 1. CHECK THE VOLTAGE AT THE INTERFACE MODULE. a. Turn the disconnect switch and the key start switch to the ON position. b. Check the voltage at the connector of the interface module from contact 26 (sensor supply) to contact 2 (ground). Use the 7X-1710 Cable probes to measure the voltage. Do NOT disconnect the machine harness from the VIMS main module. Expected Results: Voltage is 8.0 ± 0.5 DCV. Results:
• OK - Voltage is 8.0 ± 0.5 DCV. The sensor supply voltage is correct. Check the message center in order to verify that the same diagnostic code is present. If the diagnostic code is still present the interface module has failed. Replace the module. Refer to the Testing and Adjusting, “Module - Replace” section. STOP.
• NOT OK - Voltage is NOT 8.0 ± 0.5 DCV. The voltage is less than 8.0 ± 0.5 DCV. The sensor supply voltage is NOT correct. proceed to 2. 2. CHECK FOR SHORT TO GROUND a. Turn the key start switch and the disconnect switch to the OFF position.
b. Disconnect the machine harness from the VIMS interface module. c. At the VIMS interface module harness connector, measure the resistance between frame ground and the contact 26 of the sensor supply circuit. Expected Results: Resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. The VIMS interface module has failed. Replace the VIMS interface module. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - Resistance is less than 5000 ohms. The machine harness or a sensor has failed. Proceed to 3. 3. DISCONNECT THE SENSORS. a. The key start switch and the disconnect switch remain in the OFF position. b. One at a time disconnect any sensor that uses the +8 DCV interface module sensor supply from the machine harness, that is associated with this diagnostic code. c. After disconnecting the sensor (s), check the resistance from frame ground to contact 26 (sensor supply) of the machine harness connector for the VIMS interface module. Expected Results: Resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. The sensor that was just disconnected has failed. Replace the sensor. STOP.
• NOT OK - Resistance is less than 5000 ohms. If the resistance is less than 5000 ohms after all the sensors have been disconnected from the machine harness. The machine harness is shorted to ground. Repair the machine harness or replace the machine harness. STOP.
211 Testing and Adjusting Section
i00992100
CID 0041 FMI 06 Sensor Power Supply (8 DCV) Current Above Normal - Test SMCS Code: 1408-038-NS Note: This procedure can cause new diagnostic codes to be recorded. Ignore these newly created diagnostic codes. Complete this procedure and then clear the diagnostic codes that were created during this procedure. This diagnostic code is recorded when the ECM reads the voltage of the 8 DCV sensor supply circuit and the ECM determines:
• The voltage is too low. • The current is above normal. 1. CHECK FOR THE CORRECT VOLTAGE AT THE INTERFACE MODULE a. Check the voltage at the connector of the interface module from contact 26 (sensor supply) to contact 2 (ground). Use the 7X-1710 Cable probes to measure the voltage. Do NOT disconnect the machine harness from the VIMS main module. Expected Results: Voltage is 8.0 ± 0.5 DCV. Results:
• OK - Voltage is 8.0 ± 0.5 DCV. The sensor supply voltage is correct. Check the message center in order to verify that the same diagnostic code is present. If the diagnostic code is still present the interface module has failed. Replace the module. Refer to the Testing and Adjusting, “Module - Replace” section. STOP.
• NOT OK - Voltage is less than 8.0 ± 0.5 DCV. The sensor supply voltage is NOT correct. Proceed to 2. 2. CHECK FOR SHORT TO GROUND a. Turn the key start switch and the disconnect switch to the OFFposition. b. Disconnect the machine harness from the VIMS interface module. c. At the harness connector of VIMS interface module, measure the resistance between frame ground and the contact 26 of the sensor supply circuit.
Expected Results: Resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. The VIMS interface module has failed. Replace the VIMS interface module. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - Resistance is less than 5000
ohms. The machine harness or a sensor has failed. Proceed to 3.
3. DISCONNECT THE SENSORS. a. One at a time disconnect any sensor that uses the +8 DCV interface module sensor supply from the machine harness, that is associated with the diagnostic code. b. After disconnecting the sensor, check the resistance from frame ground to contact 26 (sensor supply) of the machine harness connector for the VIMS interface module. Expected Results: Resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. The sensor that was just disconnected has failed. Replace the sensor. STOP.
• NOT OK - Resistance is less than 5000 ohms. If the resistance is less than 5000 ohms after all the sensors have been disconnected from the machine harness. The machine harness is shorted to ground. Repair the machine harness or replace the machine harness. STOP.
212 Testing and Adjusting Section
i01382498
CID 0075 FMI 03 Temperature Sensor (Steering Oil) Voltage Above Normal - Test
• An open supply circuit to the sensor • A failed sensor • An open circuit • The VIMS interface Module may have failed. This
SMCS Code: 430S-038-TA
is unlikely.
Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 8 DCV. Results:
• OK - Voltage is approximately 8 DCV. The voltage is correct. Proceed to 3.
• NOT OK - Voltage is not approximately 8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2. 2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. Illustration 213
g00730083
Schematic of the Steering Oil Temperature Sensor
This diagnostic code is recorded when the VIMS reads the voltage of the steering oil temperature sensor and the voltage above normal. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground. Expected Results: The voltage should measure approximately 8 DCV. Results:
• A shorted harness
213 Testing and Adjusting Section
• OK - Voltage measures approximately 8
DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - Voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP. 3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground).
• NOT OK - Resistance is greater than
5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP.
5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module. c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module, measure the resistance from the signal contact to all possible sources of +Battery.
Expected Results: The voltage should measure approximately 5 DCV.
Expected Results: Each measurement is greater than 5000 ohms.
• OK - Voltage is approximately 5 DCV. The
• OK - Resistance measurements are greater
voltage is correct. Replace the sensor. STOP
• NOT OK - Voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT. a. Turn the key start switch and the disconnect switch to the OFF position. b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms. Results:
• OK - Resistance measures less than 10
ohms. The circuit is correct. Proceed to 5.
than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - Resistance measured less than
5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP.
214 Testing and Adjusting Section
i01382487
CID 0075 FMI 04 Temperature Sensor (Steering Oil) Voltage Below Normal - Test
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely.
SMCS Code: 430S-038-TA
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - Diagnostic code remains active. The
sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - Diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. Illustration 214
g00730083
Schematic of the Steering Oil Temperature Sensor
This diagnostic code is recorded when the VIMS reads the voltage of the steering oil temperature sensor and the voltage is below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
215 Testing and Adjusting Section
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3.
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
i01382470
CID 0075 FMI 06 Temperature Sensor (Steering Oil) Current Above Normal - Test SMCS Code: 430S-038-TA
3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Clean the contacts of the harness connectors. Use established procedures. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0075 FMI 04 is no longer active. Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “Module - Replace”. STOP. Illustration 215
g00730083
Schematic of the Steering Oil Temperature Sensor
This diagnostic code is recorded when The VIMS reads the current of the steering oil temperature sensor and the current is above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed.
216 Testing and Adjusting Section
• The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: The VIMS may wait up to approximately 30 seconds before updating the message area.
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3.
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Clean the contacts of the harness connectors. Use established procedures. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code.
Results:
e. Operate the machine.
• OK - Diagnostic code remains active. The
f. Observe the status of the diagnostic code.
sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - Diagnostic code is NO longer
active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND.
Expected Result: The diagnostic code CID 0075 FMI 06 is no longer active. Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “Module - Replace”. STOP.
217 Testing and Adjusting Section
i01382462
CID 0096 FMI 03 Level Sensor (Fuel) Voltage Above Normal Test SMCS Code: 1273-038-NS; 1408-038-NS
Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Check the voltage at the machine harness connector of the sensor from +battery contact to the ground contact . Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 24 DCV. Results:
• OK - Voltage is approximately 24 DCV. The voltage is correct. Proceed to 3.
• NOT OK - Voltage is not approximately
24 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2.
2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. Illustration 216
g00730074
a. The key start switch and the disconnect switch remain in the ON position.
Schematic of the Fuel Level Sensor
This diagnostic code is recorded when the VIMS reads the voltage of the fuel level sensor and the voltage above normal. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from the +Battery contact to frame ground. Expected Results: The voltage should measure approximately 24 DCV.
• A shorted harness Results:
• An open supply circuit to the sensor • A failed sensor • An open circuit • The ECM may have failed. This is unlikely. Note: Ensure that the diagnostic code is still active.
• OK - Voltage measures approximately 24 DCV. The return circuit is open. Repair the machine harness or replace the machine harness.
• NOT OK - Voltage does not measure approximately 24 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. 3. CHECK THE SIGNAL CIRCUIT.
218 Testing and Adjusting Section
a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between signal contact and the ground contact. Expected Results: The voltage should measure approximately 5 DCV.
• OK - Voltage is approximately 5 DCV. The voltage is correct. Replace the sensor. STOP
• NOT OK - Voltage is not approximately 5 DCV. The voltage is not correct. Proceed to 4.
c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module, measure the resistance from the signal contact to all possible sources of + Battery. Expected Results: Each measurement is greater than 5000 ohms.
• OK - Resistance measurements are greater
than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - Resistance measured less than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP.
4. CHECK FOR AN OPEN SIGNAL CIRCUIT. a. Turn the key start switch and the disconnect switch to the OFF position. b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module.
i01382455
CID 0096 FMI 04 Level Sensor (Fuel) Voltage Below Normal Test SMCS Code: 1273-038-NS; 1408-038-NS
d. Place a jumper between signal contact and the ground contact of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms. Results:
• OK - Resistance measures less than 10
ohms. The circuit is correct. Proceed to 5.
• NOT OK - Resistance is greater than
5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness.
5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module.
Illustration 217 Schematic of the Fuel Level Sensor
g00730074
219 Testing and Adjusting Section
This diagnostic code is recorded when the VIMS reads the voltage of the fuel level sensor and the voltage is below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3.
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area.
a. Clean the contacts of the harness connectors. Use established procedures. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine.
Results: f. Observe the status of the diagnostic code.
• OK - Diagnostic code remains active. The
sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
Expected Result: The diagnostic code CID 0096 FMI 04 is no longer active. Results:
• NOT OK - Diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module.
• YES - Diagnostic code is NOT active. The
diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “Module - Replace”. STOP.
220 Testing and Adjusting Section
i01382438
CID 0096 FMI 06 Level Sensor (Fuel) Current Above Normal Test SMCS Code: 1273-038-NS; 1408-038-NS
b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - Diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - Diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. Illustration 218
g00730074
Schematic of the Fuel Level Sensor
This diagnostic code is recorded when the VIMS reads the current of the fuel level sensor and the current is above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3.
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
221 Testing and Adjusting Section
a. Clean the contacts of the harness connectors. Use established procedures. b. Reconnect all harness connectors.
This diagnostic code is recorded when VIMS reads the signal wire of the engine oil pressure sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module.
c. Turn the disconnect switch and the key start switch to the ON position.
The possible causes of this diagnostic code are listed here:
d. Observe the status of the diagnostic code.
• A shorted harness
e. Operate the machine.
• An open supply circuit to the sensor
f. Observe the status of the diagnostic code.
• A failed sensor
Expected Result: The diagnostic code CID 0096 FMI 06 is no longer active.
• An open circuit • The VIMS interface Module may have failed. This is unlikely.
Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP. i00981374
CID 0100 FMI 03 Pressure Sensor (Engine Oil) Voltage Above Normal - Test SMCS Code: 1924-038-PXS
1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Check the voltage at the machine harness connector of the sensor from contact A (+ Battery) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 24 DCV. Results:
• OK - The voltage is approximately 24 DCV. The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately
24 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2.
2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. Illustration 219 Schematic of the Engine Oil PressureSensor
g00499561
b. Disconnect the sensor from the machine harness.
222 Testing and Adjusting Section
c. At the machine harness connector for the sensor, measure the voltage from contact A (+Battery) to frame ground.
Expected Result: The resistance measures less than 10 ohms. Results:
Expected Results: The voltage should measure approximately 24 DCV.
• OK - The resistance measures less than 10 ohms. The circuit is correct. Proceed to 5.
Results:
• OK - The voltage measures approximately 24 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The resistance is greater than 5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP. 5. CHECK THE SIGNAL WIRE FOR SHORTS.
• NOT OK - The voltage does not measure approximately 24 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP. 3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
• OK - The voltage is approximately 5 DCV. The voltage is correct. Replace the sensor. STOP
a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module. c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts. Expected Results: Each measurement is greater than 5000 ohms.
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The voltage is NOT approximately
• NOT OK - The resistance measured less
5 DCV. The voltage is NOT correct. Proceed to 4.
than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP.
4. CHECK FOR AN OPEN SIGNAL CIRCUIT. a. Turn the key start switch and the disconnect switch to the OFF position. b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground.
223 Testing and Adjusting Section
i00981570
CID 0100 FMI 04 Pressure Sensor (Engine Oil) Voltage Below Normal - Test
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
SMCS Code: 1924-038-PXS
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. Illustration 220
g00499561
c. Disconnect the machine harness from the VIMS interface module.
Schematic of the Engine Oil Pressure Sensor
This diagnostic code is recorded when VIMS reads the voltage of the engine oil pressure sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000
ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code.
224 Testing and Adjusting Section
Expected Result: The diagnostic code CID 0100 FMI 04 is no longer active.
• The VIMS interface module has failed. This is
Results:
1. CHECK THE SENSOR.
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
unlikely.
a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
i00981604
CID 0100 FMI 06 Pressure Sensor (Engine Oil) Current Above Normal - Test
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO
longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
SMCS Code: 1924-038-PXS
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. Illustration 221
g00499561
Schematic of the Engine Oil Pressure Sensor
This diagnostic code is recorded when VIMS reads the current of the engine oil pressure sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
225 Testing and Adjusting Section
• NOT OK - Resistance is less than 5000
ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
i00982846
CID 0110 FMI 03 Temperature Sensor (Engine Coolant) Voltage Above Normal - Test SMCS Code: 1906-038-ENG
a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code. g00500250
Expected Result: The diagnostic code CID 0100 FMI 06 is no longer active.
Illustration 222
Results:
This diagnostic code is recorded when VIMS reads the signal wire of the engine coolant temperature sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module.
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
Schematic of the Engine Coolant Temperature Sensor
The possible causes of this diagnostic code are listed here:
• A shorted harness • An open supply circuit to the sensor • A failed sensor • An open circuit • The VIMS interface module may have failed. This is unlikely. Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
226 Testing and Adjusting Section
b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 8 DCV.
• OK - The voltage is approximately 5 DCV.
The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT.
Results:
• OK - The voltage is approximately 8 DCV.
a. Turn the key start switch and the disconnect switch to the OFF position.
The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately 8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2. 2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground.
b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms. Results:
Expected Results: The voltage should measure approximately 8 DCV.
• OK - The resistance measures less than 10
Results:
• NOT OK - The resistance is greater than
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP.
ohms. The circuit is correct. Proceed to 5. 5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP. 5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module.
3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts. Expected Results: Each measurement is greater than 5000 ohms.
227 Testing and Adjusting Section
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP.
Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. i00982927
CID 0110 FMI 04 Temperature Sensor (Engine Coolant) Voltage Below Normal - Test SMCS Code: 1906-038-ENG
The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO
longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. Illustration 223
g00500250
Schematic of the Engine Coolant Temperature Sensor
This diagnostic code is recorded when VIMS reads the voltage of the engine coolant temperature sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor.
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors.
228 Testing and Adjusting Section
c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code.
This diagnostic code is recorded when VIMS reads the current of the engine coolant temperature sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module.
e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0110 FMI 04 is no longer active.
The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP. i00982934
CID 0110 FMI 06 Temperature Sensor (Engine Coolant) Current Above Normal - Test
• The VIMS interface module has failed. This is unlikely. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
SMCS Code: 1906-038-ENG
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND.
Illustration 224 Schematic of the Engine Coolant Temperature Sensor
g00500250
a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module.
229 Testing and Adjusting Section
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms.
i00984373
CID 0127 FMI 03 Pressure Sensor (Transmission Oil) Voltage Above Normal - Test SMCS Code: 3080-038-PXS
Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. g00502027
a. Using established procedures, clean the contacts of the harness connectors.
Illustration 225
b. Reconnect all harness connectors.
This diagnostic code is recorded when VIMS reads the signal wire of the transmission oil pressure sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module.
c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code.
Schematic of the Transmission Oil Pressure Sensor
The possible causes of this diagnostic code are listed here:
• A shorted harness • An open supply circuit to the sensor
Expected Result: The diagnostic code CID 0110 FMI 06 is no longer active.
• A failed sensor
Results:
• An open circuit
• YES - Diagnostic code is NOT active. The
• The VIMS interface module may have failed. This
diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
is unlikely. Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
230 Testing and Adjusting Section
b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 8 DCV.
• OK - The voltage is approximately 5 DCV.
The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT.
Results:
• OK - The voltage is approximately 8 DCV.
a. Turn the key start switch and the disconnect switch to the OFF position.
The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately 8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2. 2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground.
b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms. Results:
Expected Results: The voltage should measure approximately 8 DCV.
• OK - The resistance measures less than 10
Results:
• NOT OK - The resistance is greater than
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP.
ohms. The circuit is correct. Proceed to 5. 5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP. 5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module.
3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts. Expected Results: Each measurement is greater than 5000 ohms.
231 Testing and Adjusting Section
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP.
Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. i00984376
CID 0127 FMI 04 Pressure Sensor (Transmission Oil) Voltage Below Normal - Test SMCS Code: 3080-038-PXS
The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO
longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. Illustration 226
g00502027
Schematic of the Transmission Pressure Sensor
This diagnostic code is recorded when VIMS reads the voltage of the transmission oil pressure sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor.
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors.
232 Testing and Adjusting Section
c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code.
This diagnostic code is recorded when VIMS reads the current of the transmission oil pressure sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module.
e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0127 FMI 04 is no longer active.
The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP. i00984400
CID 0127 FMI 06 Pressure Sensor (Transmission Oil) Current Above Normal - Test
• The VIMS interface module has failed. This is unlikely. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
SMCS Code: 3080-038-PXS
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND.
Illustration 227 Schematic of the Transmission Oil Pressure Sensor
g00502027
a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module.
233 Testing and Adjusting Section
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms.
i01382430
CID 0171 FMI 03 Temperature Sensor (Ambient Air) Voltage Above Normal - Test SMCS Code: 1928-038-NS
Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is Correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0127 FMI 06 is no longer active. Results:
• YES - Diagnostic code is NOT active. The
diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP. Illustration 228
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
g00730066
Schematic of the Ambient Air Temperature Sensor
This diagnostic code is recorded when the VIMS reads the voltage of the ambient air temperature sensor and the voltage is above normal. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• A shorted harness • An open supply circuit to the sensor
234 Testing and Adjusting Section
• A failed sensor • An open circuit • The VIMS interface module may have failed. This is unlikely. Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 8 DCV. Results:
• OK - Voltage is approximately 8 DCV. The
• OK - Voltage measures approximately 8
DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - Voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP. 3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
• OK - Voltage is approximately 5 DCV. The voltage is correct. Replace the sensor. STOP
• NOT OK - Voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT.
voltage is correct. Proceed to 3.
• NOT OK - Voltage is not approximately
8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2.
2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground.
a. Turn the key start switch and the disconnect switch to the OFF position. b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms.
Expected Results: The voltage should measure approximately 8 DCV.
Results:
Results:
• OK - Resistance measures less than 10
ohms. The circuit is correct. Proceed to 5.
235 Testing and Adjusting Section
• NOT OK - Resistance is greater than
5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP.
5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position.
i01382427
CID 0171 FMI 04 Temperature Sensor (Ambient Air) Voltage Below Normal - Test SMCS Code: 1928-038-NS
b. The machine harness remains disconnected from the VIMS interface module. c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module, measure the resistance from the signal contact to all possible sources of +Battery. Expected Results: Each measurement is greater than 5000 ohms.
• OK - Resistance measurements are greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - Resistance measured less than
5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP.
Illustration 229
g00730066
Schematic of the Ambient Air Temperature Sensor
This diagnostic code is recorded when the VIMS reads the voltage of the ambient air temperature sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed.
236 Testing and Adjusting Section
• The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area.
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3.
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Clean the contacts of the harness connectors. Use established procedures. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code.
Results:
e. Operate the machine.
• OK - Diagnostic code remains active. The
f. Observe the status of the diagnostic code.
sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - Diagnostic code is NO longer
active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND.
Expected Result: The diagnostic code CID 0171 FMI 04 is no longer active. Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
237 Testing and Adjusting Section
i01382422
CID 0171 FMI 06 Temperature Sensor (Ambient Air) Current Above Normal - Test
• The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR.
SMCS Code: 1928-038-NS
a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: The VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - Diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - Diagnostic code is NO longer
active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position.
Illustration 230
g00730066
Schematic of the Ambient Air Temperature Sensor
This diagnostic code is recorded when the VIMS reads the current of the ambient air temperature sensor and the current is above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module.
c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
The possible causes of this diagnostic code are listed here:
• The sensor has failed.
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3.
238 Testing and Adjusting Section
• NOT OK - Resistance is less than 5000
ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
i00983395
CID 0177 FMI 03 Temperature Sensor (Transmission Oil) Voltage Above Normal - Test SMCS Code: 3080-038-NS
a. Clean the contacts of the harness connectors. Use established procedures. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code. g00500583
Expected Result: The diagnostic code CID 0171 FMI 06 is no longer active.
Illustration 231
Results:
This diagnostic code is recorded when VIMS reads the signal wire of the transmission oil temperature sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module.
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
Schematic of the Transmission Oil Temperature Sensor
The possible causes of this diagnostic code are listed here:
• A shorted harness • An open supply circuit to the sensor • A failed sensor • An open circuit • The VIMS interface module may have failed. This is unlikely. Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
239 Testing and Adjusting Section
b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 8 DCV.
• OK - The voltage is approximately 5 DCV.
The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT.
Results:
• OK - The voltage is approximately 8 DCV.
a. Turn the key start switch and the disconnect switch to the OFF position.
The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately 8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2. 2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground.
b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms. Results:
Expected Results: The voltage should measure approximately 8 DCV.
• OK - The resistance measures less than 10
Results:
• NOT OK - The resistance is greater than
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP.
ohms. The circuit is correct. Proceed to 5. 5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP. 5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module.
3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts. Expected Results: Each measurement is greater than 5000 ohms.
240 Testing and Adjusting Section
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP. i00983555
CID 0177 FMI 04 Temperature Sensor (Transmission Oil) Voltage Below Normal - Test SMCS Code: 3080-038-NS
b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness.
Illustration 232
g00500583
Schematic of the Transmission Oil Temperature Sensor
This diagnostic code is recorded when VIMS reads the voltage of the transmission oil temperature sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module.
b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground.
The possible causes of this diagnostic code are listed here:
Expected Result: The resistance is greater than 5000 ohms.
• The sensor has failed.
Results:
• The signal circuit in the machine harness is
• OK - Resistance is greater than 5000 ohms.
shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
241 Testing and Adjusting Section
a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position.
This diagnostic code is recorded when VIMS reads the current of the transmission oil temperature sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module.
d. Observe the status of the diagnostic code.
The possible causes of this diagnostic code are listed here:
e. Operate the machine.
• The sensor has failed.
f. Observe the status of the diagnostic code.
• The signal circuit in the machine harness is shorted to ground.
Expected Result: The diagnostic code CID 0177 FMI 04 is no longer active.
• The VIMS interface module has failed. This is unlikely.
Results: 1. CHECK THE SENSOR.
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
i00983749
CID 0177 FMI 06 Temperature Sensor (Transmission Oil) Current Above Normal - Test
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO
SMCS Code: 3080-038-NS
longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. Illustration 233 Schematic of the Transmission Oil Temperature Sensor
g00500583
c. Disconnect the machine harness from the VIMS interface module.
242 Testing and Adjusting Section
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms.
i00985166
CID 0190 FMI 02 Speed Sensor (Engine) Incorrect Signal - Test SMCS Code: 1907-038-NS
Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0177 FMI 06 is no longer active. Results:
• YES - Diagnostic code is NOT active. The
diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
Illustration 234
g00501598
Engine Speed Sensor Schematic
This fault is recorded when the VIMS module reads the engine speed signal and the signal is erratic, intermittent or incorrect. The possible causes of this fault are listed here:
• A poor electrical connection at a machine harness connector
• The sensor is loose or the sensor is not adjusted correctly.
• The signal circuit in the machine harness is shorted to ground.
• The signal circuit is shorted to + battery in the machine harness.
• The signal circuit is open in the machine harness. • The VIMS module is faulty. This is unlikely. 1. INSPECT THE HARNESS AND INSPECT THE SENSOR. a. Turn the disconnect switch to the OFF position. b. Inspect the engine speed sensor and related machine harness connections. c. Verify that the engine speed sensor is clean and tight. Verify that the harness connections are clean and tight. Expected Result: The engine speed sensor and related wiring are correct.
243 Testing and Adjusting Section
Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit is correct. Proceed to 4.
• OK - Sensor is correct and the machine harness is correct. Proceed to 2.
• NOT OK - Sensor has failed or the machine harness has failed. Repair the failed component. Refer to the Testing and Adjusting, “Speed Sensor - Adjust” section. STOP. 2. CHECK FOR SHORT TO GROUND IN THE SIGNAL CIRCUIT
• NOT OK - Resistance is less than 5 ohms.
The machine harness is faulty. There is a short between the engine speed signal circuit and + battery. Repair the harness or replace the harness. STOP.
4. CHECK FOR OPEN SIGNAL CIRCUIT a. The disconnect switch remains in the OFF position.
a. The disconnect switch remains in the OFF position.
b. The sensor remains disconnected and the VIMS module remains disconnected.
b. Disconnect the machine harness from the engine speed sensor.
c. Measure the resistance between contact C (wire 450-YL) of the engine speed sensor to connector contact 29 (wire 450-YL) of the machine harness connector of the VIMS interface module.
c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector of the VIMS interface module, measure the resistance between frame ground and contact 29 (wire 450-YL) of the engine speed signal circuit.
Expected Result: The resistance is less than 5 ohms.
Expected Result: The resistance is greater than 5000 ohms.
• OK - Resistance is less than 5 ohms. The
Results:
• OK - Resistance is greater than 5000 ohms.
Results: signal circuit in the machine harness is correct. The VIMS interface module has failed. Replace the interface module. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
The harness circuit is correct. Proceed to 3.
• NOT OK - Resistance is less than 5 ohms.
The machine harness has failed. There is a short between frame ground and the engine speed signal circuit in the machine harness. STOP.
3. CHECK FOR A SHORT TO THE + BATTERY CIRCUIT IN THE MACHINE HARNESS. a. The disconnect switch remains in the OFF position. b. The sensor remains disconnected and the VIMS module remains disconnected. c. At the machine harness connector for the VIMS module, measure the resistance between the + battery contact 1 (wire 113-OR) and contact 29 (wire 450-YL) of the engine speed signal circuit. Expected Result: The resistance is greater than 5000 ohms. Results:
• NOT OK - Resistance is greater than 5 ohms. The machine harness is faulty. The engine speed signal circuit is open in the machine harness. Repair the machine harness or replace the machine harness. STOP.
244 Testing and Adjusting Section
i00986247
CID 0190 FMI 03 Speed Sensor (Engine) Voltage Above Normal - Test
b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 8 DCV.
SMCS Code: 1907-038-NS
Results:
• OK - The voltage is approximately 8 DCV. The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately 8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2. 2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. Illustration 235
g00501598
a. The key start switch and the disconnect switch remain in the ON position.
Schematic of the Engine Speed Sensor
This diagnostic code is recorded when VIMS reads the signal wire of the engine speed sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• A shorted harness • An open supply circuit to the sensor • A failed sensor • An open circuit • The VIMS interface module may have failed. This is unlikely. Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground. Expected Results: The voltage should measure approximately 8 DCV. Results:
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP.
3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
245 Testing and Adjusting Section
• OK - The voltage is approximately 5 DCV.
The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT.
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP.
a. Turn the key start switch and the disconnect switch to the OFF position. b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor.
i00986255
CID 0190 FMI 04 Speed Sensor (Engine) Voltage Below Normal - Test SMCS Code: 1907-038-NS
e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms. Results:
• OK - The resistance measures less than 10 ohms. The circuit is correct. Proceed to 5.
• NOT OK - The resistance is greater than 5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP. 5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module. c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts. Expected Results: Each measurement is greater than 5000 ohms.
Illustration 236
g00501598
Schematic of the Engine Speed Sensor
This diagnostic code is recorded when VIMS reads the voltage of the engine speed sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor.
246 Testing and Adjusting Section
Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area.
b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine.
Results: f. Observe the status of the diagnostic code.
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
Expected Result: The diagnostic code CID 0190 FMI 04 is no longer active. Results:
• NOT OK - This diagnostic code is NO
longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position.
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms.
i00986259
CID 0190 FMI 08 Speed Sensor (Engine) Abnormal Signal Test SMCS Code: 1907-038-NS
Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors.
Illustration 237 Schematic of the Engine Speed Sensor
g00501598
247 Testing and Adjusting Section
This diagnostic code is recorded when VIMS reads the signal from the sensor and the frequency of the signal or pulse of the signal is not within an expected range. The sensor sends a PWM signal to the VIMS module.
Expected Results: Each resistance measurement should be greater than 5000 ohms.
The possible causes of this diagnostic code are listed here:
• YES - Each resistance measurement does
Results: measure greater than 5000 ohms. The harness is correct. It is unlikely that the VIMS interface module has failed. Exit this procedure and perform this diagnostic code procedure again. If the cause of the diagnostic code is not found, replace the VIMS interface module. See Testing and Adjusting, “ Module - Replace”. STOP.
• The sensor has failed. • Intermittent or poor connections • The VIMS interface module has failed. This is unlikely. Note: The following diagnostic code procedure can create other related diagnostic codes. Perform the following procedure. Reconnect all harnesses. Then clear all the related diagnostic codes.
• NO - The resistance measurement does not measure greater than 5000 ohms for all measurements. The machine harness is faulty. There is a short in the machine harness. The short is between the signal circuit (wire 450-YL) and the circuit with the low resistance measurement. Repair the machine harness or replace the machine harness. STOP.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Ensure that the diagnostic code is active. c. Disconnect the sensor from the machine harness. Expected Results: The diagnostic code is NO longer active. Results:
• YES - The diagnostic code is NO longer
active. The sensor is faulty. Replace the sensor. Verify that the new sensor corrected this diagnostic code. The diagnostic code should NOT be active. STOP.
• NO - The diagnostic code remains
active. The sensor is not the cause of the diagnostic code. Proceed to 2.
2. CHECK FOR A SHORT IN THE HARNESS.
i00992167
CID 0248 FMI 09 CAT Data Link Abnormal Update - Test SMCS Code: 7601-038 This failure is recorded when the VIMS main module does not receive expected information. For example, engine speed or actual gear information is not received from other electronic control modules through the CAT data link. This failure can result in the display of abnormal values on readouts that are dependent on the CAT data link information. The possible causes are listed here:
• Poor electrical connection at a machine harness connector
• CAT data link circuit in the machine harness is shorted to ground.
a. The sensor remains disconnected from the machine harness.
• CAT data link circuit in the machine harness is shorted to +battery.
b. Turn the key start switch and the disconnect switch to the OFF position.
• CAT data link circuit in the machine harness is shorted.
c. Disconnect the machine harness connector from the VIMS interface module.
• CAT data link circuit in the machine harness is open.
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact 29 (wire 450-YL) to all other contacts.
• An electronic control module which uses the CAT data link has failed. (“For example, the engine ECM, the transmission ECM, etc.”). This is unlikely.
248 Testing and Adjusting Section
1. CHECK FOR ADDITIONAL DIAGNOSTIC CODES a. Check for additional CID 0248 diagnostic codes that are logged against the other electronic control modules. This confirms the existence of a communication problem. b. Check for a harness problem between the two controls that are reporting the CID 0248. Otherwise, Proceed to Step 2.
4. CHECK FOR A SHORTED HARNESS a. The disconnect switch remains in the OFF position. b. All related control modules remain disconnected from the machine harness. c. Check the line to line resistance of the CAT data link. Perform the following measurements.
• Measure the resistance between contact 2. INSPECT THE HARNESS CONNECTORS. a. Turn the disconnect switch to the OFF position.
“4” and contacts “5”, “6” and “7” of the CAT data link at the machine harness connector of the VIMS main module.
• Measure the resistance between contact b. Inspect the connections of the machine harness that are related to the CAT data link. Verify that the connectors are clean and tight. Expected Results: The machine harness connectors are clean and tight. Results:
• OK - Connectors of the machine harness are clean and tight. Proceed to Step 3.
• NOT OK - Machine harness connectors are in need of repair. Repair the harness or replace the harness. STOP. 3. CHECK FOR SHORT TO GROUND a. The disconnect switch remains in the OFF position. b. Disconnect the machine harness from all electronic control modules that use the CAT data link. c. At the connector of the machine harness for the main module, measure the resistance between frame ground and the circuits of the CAT data link (contacts 4, 5, 6 and 7).
“5” and contacts “6” and “7” of the CAT data link at the machine harness connector of the main module.
• Measure the resistance between contact
“6” and contact “7” of the CAT data link at the machine harness connector of the main module.
Expected Results: The resistance measurements are greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to Step 5.
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between the lines of the CAT data link in the machine harness. Repair the harness or replace the harness. STOP. 5. CHECK FOR SHORT TO +BATTERY a. The disconnect switch remains in the OFF position.
Expected Results: The resistance is greater than 5000 ohms.
b. All related control modules remain disconnected from the machine harness.
Results:
c. At the connector of the machine harness for the main module, measure the resistance between +battery (“contact 1”) and the circuits of the CAT data link (“contacts 4, 5, 6 and 7”).
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to Step 5.
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the CAT data link in the machine harness. Repair the harness or replace the harness.
Expected Results: The resistance is greater than 5000 ohms. Results:
249 Testing and Adjusting Section
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to Step 6.
This diagnostic code is recorded when the control reads the voltage of the +5 DCV sensor supply circuit as above normal or this circuit is shorted to a voltage source that is higher than +5 volts.
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between +Battery and the circuits of the CAT data link in the machine harness. Repair the harness or replace the harness. STOP. 6. CHECK FOR OPEN HARNESS a. The disconnect switch remains in the OFF position. b. All related control modules remain disconnected from the machine harness. c. At the machine harness connector for the main module, measure the resistance between the CAT data link circuit contacts 4, 5, 6 and 7 to the connector contacts of the related electronic control module. Expected Results: The resistance is less than 5 ohms. Results:
• OK - Resistance is less than 5 ohms.
The CAT data link circuit in the machine harness is correct. The main module has failed. Refer to the Testing and Adjustment, “Module - Replace” section. STOP.
• NOT OK - Resistance is greater than 5
ohms. The machine harnesshas failed. The CAT data link circuit is open in the machine harness. Repair the machine harness or replace the machine harness. STOP.
Note: For information on repairing the harness, refer to the Testing And Adjusting , “General Information”section in this manual. i00992102
CID 0262 FMI 03 Sensor Power Supply (5 DCV) Voltage Above Normal - Test SMCS Code: 7601-038-NS Note: This procedure can cause new diagnostic codes to be recorded. Ignore these newly created diagnostic codes. Complete this procedure and then clear the diagnostic codes that were created during this procedure.
1. CHECK FOR THE CORRECT VOLTAGE AT THE INTERFACE MODULE a. Turn the disconnect switch and the key start switch to the ON position. b. Check the voltage at the connector of the interface module from contact 27 (sensor supply) to contact 2 (ground). Use the 7X-1710 Cable probes to measure the voltage. Do NOT disconnect the machine harness from the VIMS main module. Expected Results: The voltage is 5.0 ± 0.5 DCV. Results:
• OK - Voltage is 5.0 ± 0.5 DCV. The sensor supply voltage is correct. Check the message center in order to verify that the same diagnostic code is present. If the diagnostic code is still present, the interface module has failed. Replace the module. Refer to the Testing and Adjusting, “Module - Replace” section. STOP.
• NOT OK - Voltage is greater than 5.0 ± 0.5 DCV. The sensor supply voltage is NOT correct. Proceed to 2. 2. HARNESS CHECK FOR SHORT TO THE +BATTERY CIRCUIT a. The disconnect switch and the key start switch remain in the ON position. b. Disconnect the machine harness from the VIMS interface module. c. At the machine harness connector for the VIMS interface module, measure the voltage from connector contact 27 (sensor supply) to contact 2 (ground). Expected Results: The voltage is 0.0 ± 0.5 DCV. Results:
• OK - Voltage is 0.0 ± 0.5 DCV. The voltage is correct. The VIMS interface module has failed. Replace the VIMS module. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
250 Testing and Adjusting Section
• NOT OK - Voltage is NOT 0.0 ± 0.5 DCV.
The harness has failed. The machine harness is shorted to +battery. Repair the machine harness or replace the machine harness. STOP. i00992126
CID 0262 FMI 04 Sensor Power Supply (5 DCV) Voltage Below Normal - Test SMCS Code: 7601-038-NS This diagnostic code is recorded when the ECM reads the voltage of the +5 DCV sensor supply circuit and the voltage is below normal. The circuit may be shorted to ground. 1. CHECK THE VOLTAGE AT THE INTERFACE MODULE. a. Turn the disconnect switch and the key start switch to the ON position. b. Check the voltage at the connector of the interface module from contact 27 (sensor supply) to contact 2 (ground). Use the 7X-1710 Cable probes to measure the voltage. Do NOT disconnect the machine harness from the VIMS main module. Expected Results: Voltage is 5.0 ± 0.5 DCV. Results:
• OK - Voltage is 5.0 ± 0.5 DCV. The sensor supply voltage is correct. Check the message center in order to verify that the same diagnostic code is present. If the diagnostic code is still present the interface module has failed. Replace the module. Refer to the Testing and Adjusting, “Module - Replace” section. STOP.
• NOT OK - Voltage is NOT 5.0 ± 0.5 DCV. The voltage is less than 5.0 ± 0.5 DCV. The sensor supply voltage is NOT correct. proceed to 2. 2. CHECK FOR SHORT TO GROUND a. Turn the key start switch and the disconnect switch to the OFF position. b. Disconnect the machine harness from the VIMS interface module.
c. At the VIMS interface module harness connector , measure the resistance between frame ground and the contact 27 of the sensor supply circuit. Expected Results: Resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. The VIMS interface module has failed. Replace the VIMS interface module. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - Resistance is less than 5000 ohms. The machine harness or a sensor has failed. Proceed to 3. 3. DISCONNECT THE SENSORS. a. The key start switch and the disconnect switch remain in the OFF position. b. One at a time disconnect any sensor that uses the +5 DCV interface module sensor supply from the machine harness, that is associated with this diagnostic code. c. After disconnecting the sensor (s), check the resistance from frame ground to contact 27 (sensor supply) of the machine harness connector for the VIMS interface module. Expected Results: Resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. The sensor that was just disconnected has failed. Replace the sensor. STOP.
• NOT OK - Resistance is less than 5000 ohms. If the resistance is less than 5000 ohms after all the sensors have been disconnected from the machine harness. The machine harness is shorted to ground. Repair the machine harness or replace the machine harness. STOP.
251 Testing and Adjusting Section
i00992135
CID 0262 FMI 06 Sensor Power Supply (5 DCV) Current Above Normal - Test SMCS Code: 7601-038-NS Note: This procedure can cause new diagnostic codes to be recorded. Ignore these newly created diagnostic codes. Complete this procedure and then clear the diagnostic codes that were created during this procedure. This diagnostic code is recorded when the ECM reads the voltage of the 5 DCV sensor supply circuit and the ECM determines:
• The voltage is too low. • The current is above normal. 1. CHECK FOR THE CORRECT VOLTAGE AT THE INTERFACE MODULE a. Check the voltage at the connector of the interface module from contact 27 (sensor supply) to contact 2 (ground). Use the 7X-1710 Cable probes to measure the voltage. Do NOT disconnect the machine harness from the VIMS main module. Expected Results: Voltage is 5.0 ± 0.5 DCV. Results:
• OK - Voltage is 5.0 ± 0.5 DCV. The sensor supply voltage is correct. Check the message center in order to verify that the same diagnostic code is present. If the diagnostic code is still present the interface module has failed. Replace the module. Refer to the Testing and Adjusting, “Module - Replace” section. STOP.
Expected Results: Resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. The VIMS interface module has failed. Replace the VIMS interface module. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - Resistance is less than 5000
ohms. The machine harness or a sensor has failed. Proceed to 3.
3. DISCONNECT THE SENSORS. a. One at a time disconnect any sensor that uses the +5 DCV interface module sensor supply from the machine harness, that is associated with the diagnostic code. b. After disconnecting the sensor, check the resistance from frame ground to contact 27 (sensor supply) of the machine harness connector for the VIMS interface module. Expected Results: Resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. The sensor that was just disconnected has failed. Replace the sensor. STOP.
• NOT OK - Resistance is less than 5000 ohms. If the resistance is less than 5000 ohms after all the sensors have been disconnected from the machine harness. The machine harness is shorted to ground. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - Voltage is less than 5.0 ± 0.5 DCV. The sensor supply voltage is NOT correct. Proceed to 2. 2. CHECK FOR SHORT TO GROUND a. Turn the key start switch and the disconnect switch to the OFFposition. b. Disconnect the machine harness from the VIMS interface module. c. At the harness connector of VIMS interface module, measure the resistance between frame ground and the contact 27 of the sensor supply circuit.
i00992177
CID 0263 FMI 03 Sensor Power Supply (8 or 12 DCV) Voltage Above Normal - Test SMCS Code: 7601-038-NS Note: This procedure can cause new diagnostic codes to be recorded. Ignore these newly created diagnostic codes. Complete this procedure and then clear the diagnostic codes that were created during this procedure.
252 Testing and Adjusting Section
This failure is recorded when the ECM reads the voltage of the 8 DCV or 12 DCV sensor supply circuit and the voltage is above normal. 1. CHECK FOR THE CORRECT VOLTAGE AT THE INTERFACE MODULE a. Turn the disconnect switch and the key start switch to the ON position. b. Check the voltage at the connector of the interface module from contact 26 (sensor supply) to contact 2 (ground). Use the 7X-1710 Cable probes to measure the voltage. Do NOT disconnect the machine harness from the VIMS main module. Expected Results : The voltage is 8.0 ± 0.5 DCV or the voltage is 12.0 ± 0.5 DCV. Results:
• OK - Voltage is 8.0 ± 0.5 DCV or 12.0 ± 0.5 DCV . The sensor supply voltage is correct. Check the message center in order to verify that the same diagnostic code is present. If the diagnostic code is still present, the interface module has failed. Replace the module. Refer to the Testing and Adjusting, “Module - Replace” section. STOP.
• NOT OK - Voltage is greater than 8.0 ± 0.5 DCV or 12.0 ± 0.5 DCV . The sensor supply voltage is NOT correct. Proceed to 2. 2. HARNESS CHECK FOR SHORT TO THE +BATTERY CIRCUIT
• NOT OK - Voltage is NOT 0.0 ± 0.5 DCV.
The harness has failed. The machine harness is shorted to +battery. Repair the machine harness or replace the machine harness. STOP. i00992180
CID 0263 FMI 04 Sensor Power Supply (8 or 12 DCV) Voltage Below Normal - Test SMCS Code: 7601-038-NS Note: This procedure can cause new diagnostic codes to be recorded. Ignore these newly created diagnostic codes. Complete this procedure and then clear the diagnostic codes that were created during this procedure. This failure is recorded when the ECM reads the voltage of the 8 DCV or 12 DCV sensor supply circuit and the voltage is below normal. 1. CHECK THE VOLTAGE AT THE INTERFACE MODULE. a. Turn the disconnect switch and the key start switch to the ON position. b. Check the voltage at the connector of the interface module from contact 26 (sensor supply) to contact 2 (ground). Use the 7X-1710 Cable probes to measure the voltage. Do NOT disconnect the machine harness from the VIMS main module.
a. The disconnect switch and the key start switch remain in the ON position.
Expected Results: Voltage is 8.0 ± 0.5 DCV or the voltage is 12.0 ± 0.5 DCV.
b. Disconnect the machine harness from the VIMS interface module.
Results:
c. At the machine harness connector for the VIMS interface module, measure the voltage from connector contact 26 (sensor supply) to contact 2 (ground). Expected Results: The voltage is 0.0 ± 0.5 DCV. Results:
• OK - Voltage is 0.0 ± 0.5 DCV. The voltage is correct. The VIMS interface module has failed. Replace the VIMS module. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• OK - Voltage is 8.0 ± 0.5 DCV or 12.0 ± 0.5 DCV. The sensor supply voltage is correct. Check the message center in order to verify that the same diagnostic code is present. If the diagnostic code is still present the interface module has failed. Replace the module. Refer to the Testing and Adjusting, “Module - Replace” section. STOP.
• NOT OK - Voltage is NOT 8.0 ± 0.5 DCV or 12.0 ± 0.5 DCV. The voltage is less than 8.0 ± 0.5 DCV or 12.0 ± 0.5 DCV. The sensor supply voltage is NOT correct. proceed to 2. 2. CHECK FOR SHORT TO GROUND
253 Testing and Adjusting Section
a. Turn the key start switch and the disconnect switch to the OFF position. b. Disconnect the machine harness from the VIMS interface module. c. At the VIMS interface module harness connector , measure the resistance between frame ground and the contact 26 of the sensor supply circuit. Expected Results: Resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. The VIMS interface module has failed. Replace the VIMS interface module. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - Resistance is less than 5000 ohms. The machine harness or a sensor are faulty. Proceed to 3. 3. DISCONNECT THE SENSORS. a. The key start switch and the disconnect switch remain in the OFF position. b. One at a time disconnect any sensor that uses the +8 DCV interface module sensor supply from the machine harness, that is associated with this diagnostic code. c. After disconnecting the sensor (s), check the resistance from frame ground to contact 26 (sensor supply) of the machine harness connector for the VIMS interface module. Expected Results: Resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. The sensor that was just disconnected has failed. Replace the sensor. STOP.
• NOT OK - Resistance is less than 5000 ohms. If the resistance is less than 5000 ohms after all the sensors have been disconnected from the machine harness. The machine harness is shorted to ground. Repair the machine harness or replace the machine harness. STOP.
i00992183
CID 0263 FMI 06 Sensor Power Supply (8 or 12 DCV) Current Above Normal - Test SMCS Code: 7601-038-NS Note: This procedure can cause new diagnostic codes to be recorded. Ignore these newly created diagnostic codes. Complete this procedure and then clear the diagnostic codes that were created during this procedure. This failure is recorded when the ECM reads the voltage of the 8 DCV or 12 DCV sensor supply circuit and the ECM determines:
• The voltage is too low. • The current is above normal. 1. CHECK FOR THE CORRECT VOLTAGE AT THE INTERFACE MODULE a. Check the voltage at the connector of the interface module from contact 26 (sensor supply) to contact 2 (ground). Use the 7X-1710 Cable probes to measure the voltage. Do NOT disconnect the machine harness from the VIMS main module. Expected Results: Voltage is 8.0 ± 0.5 DCV or the voltage is 12.0 ± 0.5 DCV. Results:
• OK - Voltage is 8.0 ± 0.5 DCVor 12.0 ± 0.5
DCV. The sensor supply voltage is correct. Check the message center in order to verify that the same diagnostic code is present. If the diagnostic code is still present the interface module has failed. Replace the module. Refer to the Testing and Adjusting, “Module - Replace” section. STOP.
• NOT OK - Voltage is less than 8.0 ± 0.5
DCV or 12.0 ± 0.5 DCV. The sensor supply voltage is NOT correct. Proceed to 2.
2. CHECK FOR SHORT TO GROUND a. Turn the key start switch and the disconnect switch to the OFF position. b. Disconnect the machine harness from the VIMS interface module. c. At the harness connector of VIMS interface module, measure the resistance between frame ground and the contact 26 of the sensor supply circuit.
254 Testing and Adjusting Section
Expected Results: Resistance is greater than 5000 ohms.
i00993430
Results:
CID 0271 FMI 03 Alarm (Action) Voltage Above Normal - Test
• OK - Resistance is greater than 5000 ohms.
SMCS Code: 7407-038
The harness circuit resistance is correct. The VIMS interface module has failed. Replace the VIMS interface module. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - Resistance is less than 5000
ohms. The machine harness or a sensor has failed. Proceed to 3.
3. DISCONNECT THE SENSORS. a. One at a time disconnect any sensor that uses the +8 DCV interface module sensor supply from the machine harness, that is associated with the diagnostic code. b. After disconnecting the sensor, check the resistance from frame ground to contact 26 (sensor supply) of the machine harness connector for the VIMS interface module. Expected Results: Resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. The sensor that was just disconnected has failed. Replace the sensor. STOP.
• NOT OK - Resistance is less than 5000 ohms. If the resistance is less than 5000 ohms after all the sensors have been disconnected from the machine harness. The machine harness is shorted to ground. Repair the machine harness or replace the machine harness. STOP.
Illustration 238
g00506532
Schematic of Travel Alarm
This diagnostic code is recorded when the VIMS main module reads the voltage of the action alarm (wire 410-WH) and the voltage is above normal. There is a possible short to the +battery circuit. This condition will cause the action alarm to SOUND CONTINUOUSLY. 1. CHECK OF THE ALARM CIRCUIT a. Turn the disconnect switch and the key start switch to the OFF position. b. Disconnect the machine harness from the VIMS main module. c. Turn the disconnect switch to the ON position. d. Listen for the continuous SOUNDING of the action alarm. e. Turn the key start switch to the ON position.
255 Testing and Adjusting Section
Expected Result: The alarm is SOUNDING continuously. Note: The action alarm will sound during the key ON self-test.
1. CHECK THE ALARM. a. Disconnect the alarm from the machine harness. b. At the machine harness connector for the alarm, place a jumper wire across the two contacts.
Results:
• OK - Alarm is SOUNDING continuously. The harness circuit (wire 410-WH) is shorted to the +battery. Repair the harness or replace the harness. STOP.
Expected Result: The diagnostic code CID 0271 FMI 05 is no longer active. Results:
• NOT OK - Alarm does NOT SOUND. The VIMS main module has failed. Replace the VIMS main module. Refer to the Testing and Adjustment, “Module - Replace” section of this manual. STOP. i00992224
CID 0271 FMI 05 Alarm (Action) Current Below Normal - Test
• OK - The diagnostic code CID 0271 FMI 05 is no longer active. The alarm is open. Replace the action alarm. Verify that the action alarm is open. The correct resistance for a good alarm is 200 ±100 ohms. STOP.
• NOT OK - The diagnostic code CID 0271 FMI 05 is still active. The action alarm is not causing the fault. Proceed to 2. 2. CHECK THE HARNESS.
SMCS Code: 7407-038 a. Turn the disconnect switch and the key start switch to the OFF position. b. The jumper wire placed in the 1 CHECK THE ALARM test remains connected to the machine harness. c. Disconnect the machine harness from the main module. d. At the machine harness connector for the module, measure the resistance between contact 24 (wire 410-WH) and frame ground. Expected Result: The resistance is less than 5 ohms. Results:
• OK - Resistance is less than 5 ohms.
The harness circuit resistance is correct. Proceed to 4.
• NOT OK - Resistance is greater than 5 ohms. The harness circuit is open. Proceed to 3. Illustration 239
g00506532
Schematic of Action Alarm
The diagnostic code is recorded when the VIMS module reads the current of the action alarm circuit (410-WH) and the current is below normal. The action alarm may not SOUND or may be weak when this diagnostic code is active.
3. CHECK THE HARNESS. a. Turn the disconnect switch and the key start switch to the OFF position. b. The machine harness remains disconnected from the action alarm. c. Remove the jumper wire that was placed in 1 CHECK THE ALARM.
256 Testing and Adjusting Section
d. Check for an open in the action alarm circuit (wire 410-WH). Measure the resistance between the main module harness connector (contact 24) and the action alarm machine harness connector (contact 1). e. Check for an open in the action alarm (return or ground) circuit (wire 201-BK or 251-BK). Measure the resistance between the action alarm machine harness connector (contact 2) and the frame ground.
i00992225
CID 0271 FMI 06 Alarm (Action) Current Above Normal - Test SMCS Code: 7407-038
Expected Result: The resistance measurements are less than 5 ohms. Results:
• OK - Resistance is less than 5 ohms. The machine harness is correct. The fault is intermittent. Proceed to 4.
• NOT OK - Resistance is greater than 5
ohms. The machine harness is not correct. Repair the machine harness or replace the machine harness. STOP.
4. CHECK THE MODULE. a. Reconnect the machine harness connector to the main module. b. Reconnect the alarm to the machine harness. c. Turn the disconnect switch and the key start switch to the ON position. Expected Result: The diagnostic code has not changed. The diagnostic code CID 0271 FMI 05 is still active. Results:
• YES - Diagnostic code has not changed.
Diagnostic code CID 0271 FMI 05 remains active. The main module has failed. Replace the main module. See Testing and Adjusting, “Module - Replace”. STOP.
• NO - Diagnostic code is NO longer active.
The main module is not causing the diagnostic code. The diagnostic code is intermittent. The probable cause is a poor electrical connection at the harness connectors or a damaged harness. Check the harness for damage. Clean the harness connectors. STOP.
Illustration 240
g00506532
Schematic of Action Alarm Circuit
This diagnostic code is recorded when the VIMS module reads the current of the action alarm circuit (wire 410-WH) and the current is above normal. The action alarm circuit is shorted to ground. The action alarm does not SOUND as a result of this fault condition. 1. CHECK THE ALARM. a. Disconnect the machine harness from the alarm. Expected Result: The diagnostic code changes from CID 0271 FMI 06 to CID 0271 FMI 05. Results:
• OK - The diagnostic code has not changed. diagnostic code CID 0271 FMI 06 remains active. The action alarm is not causing the fault. Proceed to 2.
257 Testing and Adjusting Section
• NOT OK - The diagnostic code is NO longer active. The alarm has failed. Replace the action alarm. The correct resistance for a good alarm is 200 ± 100 ohms. STOP.
2. CHECK THE HARNESS. a. Turn the disconnect switch to the OFF position. b. The alarm remains disconnected from the machine harness. c. Disconnect the machine harness from the main module. d. At the machine harness connector for the VIMS module, measure the resistance between contact 24 (wire 410-WH) and frame ground.
• NOT OK - The diagnostic code is NO longer active. The main module is not causing the diagnostic code. The diagnostic code is intermittent. The probable cause is a poor electrical connection at the harness connectors or a damaged harness. Check the harness for damage and clean the harness connectors. STOP.
i00983751
CID 0279 FMI 03 Temperature Sensor (Front Aftercooler Coolant) Voltage Above Normal - Test SMCS Code: 1063-038-NS
Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness resistance is correct. Proceed to 3.
• NOT OK - Resistance is less than 5000
ohms. The harness has failed. Repair the machine harness or replace the machine harness. STOP.
3. CHECK THE MODULE. a. Use the correct service tools to remove contact 24 from the machine harness connector of the VIMS module. b. Reconnect the machine harness connector to the module. c. Turn the disconnect switch and the key start switch to the ON position. d. Verify that the diagnostic code CID 0271 FMI 06 is still active. Expected Result: The diagnostic code CID 0271 FMI 06 is still active. Results:
• OK - The diagnostic code (CID 0271 FMI 06) is still active. The main module has failed. Replace the main module. See Testing and Adjusting, “Module - Replace”. STOP.
Illustration 241
g00500760
Schematic of the Front Aftercooler Temperature Sensor
This diagnostic code is recorded when VIMS reads the signal wire of the front aftercooler temperature sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• A shorted harness • An open supply circuit to the sensor • A failed sensor
258 Testing and Adjusting Section
• An open circuit • The VIMS interface Module may have failed. This is unlikely. Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP.
3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground).
a. Turn the disconnect switch and the key start switch to the ON position.
Expected Results: The voltage should measure approximately 5 DCV.
b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage.
• OK - The voltage is approximately 5 DCV.
Expected Results: The voltage should measure approximately 8 DCV.
The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4.
4. CHECK FOR AN OPEN SIGNAL CIRCUIT. Results:
• OK - The voltage is approximately 8 DCV.
a. Turn the key start switch and the disconnect switch to the OFF position.
The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately 8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2. 2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground.
b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Note: When troubleshooting the 797 measure the resistance between connector J2 contact 45 (wire A451-WH) and connector J2 contact 19 (wire J842-BK)
Expected Results: The voltage should measure approximately 8 DCV.
Expected Result: The resistance measures less than 10 ohms.
Results:
Results:
• OK - The voltage measures approximately 8
• OK - The resistance measures less than 10
DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
ohms. The circuit is correct. Proceed to 5.
259 Testing and Adjusting Section
• NOT OK - The resistance is greater than
5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP.
5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position.
i00984422
CID 0279 FMI 04 Temperature Sensor (Front Aftercooler Coolant) Voltage Below Normal - Test SMCS Code: 1063-038-NS
b. The machine harness remains disconnected from the VIMS interface module. c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts. Expected Results: Each measurement is greater than 5000 ohms.
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less
than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP.
Illustration 242
g00500760
Schematic of the Front Aftercooler Temperature Sensor
This diagnostic code is recorded when VIMS reads the voltage of the front aftercooler temperature sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
260 Testing and Adjusting Section
b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor.
a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors.
Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active.
c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code.
Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0279 FMI 04 is no longer active. Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
261 Testing and Adjusting Section
i00984428
CID 0279 FMI 06 Temperature Sensor (Front Aftercooler Coolant) Current Above Normal - Test SMCS Code: 1063-038-NS
b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position.
Illustration 243
g00500760
Schematic of the Front Aftercooler Temperature Sensor
This diagnostic code is recorded when VIMS reads the current of the front aftercooler temperature sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
262 Testing and Adjusting Section
a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors.
This diagnostic code is recorded when VIMS reads the signal wire of the pump drive temperature sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module.
c. Turn the disconnect switch and the key start switch to the ON position.
The possible causes of this diagnostic code are listed here:
d. Observe the status of the diagnostic code.
• A shorted harness
e. Operate the machine.
• An open supply circuit to the sensor
f. Observe the status of the diagnostic code.
• A failed sensor
Expected Result: The diagnostic code CID 0279 FMI 06 is no longer active.
• An open circuit • The VIMS interface Module may have failed. This is unlikely.
Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP. i00983853
CID 0280 FMI 03 Temperature Sensor (Pump Drive) Voltage Above Normal - Test SMCS Code: 3108-038-NS
1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 8 DCV. Results:
• OK - The voltage is approximately 8 DCV. The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately
8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2.
2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. Illustration 244 Schematic of the Pump Drive Temperature Sensor
g00500820
b. Disconnect the sensor from the machine harness.
263 Testing and Adjusting Section
c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground. Expected Results: The voltage should measure approximately 8 DCV.
Note: When troubleshooting the 797, measure the resistance between connector J2 contact 45 (wire A451-WH) and connector J2 contact 19 (wire J842-BK) . Expected Result: The resistance measures less than 10 ohms.
Results: Results:
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP.
• OK - The resistance measures less than 10 ohms. The circuit is correct. Proceed to 5.
• NOT OK - The resistance is greater than 5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP. 5. CHECK THE SIGNAL WIRE FOR SHORTS.
3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module. c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module, measure from the signal contact to all possible sources of + Battery contact.
• OK - The voltage is approximately 5 DCV. The voltage is correct. Replace the sensor. STOP
Expected Results: Each measurement is greater than 5000 ohms.
• NOT OK - The voltage is NOT approximately
• OK - Each measurement is greater than
5 DCV. The voltage is NOT correct. Proceed to 4.
5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
4. CHECK FOR AN OPEN SIGNAL CIRCUIT.
• NOT OK - The resistance measured less a. Turn the key start switch and the disconnect switch to the OFF position. b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground.
than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP.
264 Testing and Adjusting Section
i00984434
CID 0280 FMI 04 Temperature Sensor (Pump Drive) Voltage Below Normal - Test
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
SMCS Code: 3108-038-NS
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. Illustration 245
g00500820
c. Disconnect the machine harness from the VIMS interface module.
Schematic of the Pump Drive Temperature Sensor
This diagnostic code is recorded when VIMS reads the voltage of the pump drive temperature sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000
ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code.
265 Testing and Adjusting Section
Expected Result: The diagnostic code CID 0280 FMI 04 is no longer active.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP. i00984467
CID 0280 FMI 06 Temperature Sensor (Pump Drive) Current Above Normal - Test SMCS Code: 3108-038-NS
Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO
longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. Illustration 246
g00500820
Schematic of the Pump Drive Temperature Sensor
This diagnostic code is recorded when VIMS reads the current of the pump drive temperature sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely.
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
266 Testing and Adjusting Section
• NOT OK - Resistance is less than 5000
ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
This failure results in events that are logged against an ECM that can not be explained. The VIMS main module cannot communicate with this ECM or the ECM appears to work intermittently. 1. VERIFY THE HARDWARE AND THE SOFTWARE PART NUMBERS.
3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Verify that the following information is correct: a. Using established procedures, clean the contacts of the harness connectors.
• The part number of the VIMS configuration software
b. Reconnect all harness connectors.
• The part number of the machine ECM flash c. Turn the disconnect switch and the key start switch to the ON position.
software.
• The part number of the VIMS main module d. Observe the status of the diagnostic code.
• The part number of the machine ECM
e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0280 FMI 06 is no longer active.
Note: Consult the Business Unit that produces the product for the correct part numbers of the configuration software. Expected Result: All part numbers are correct.
Results: Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
• OK - All part numbers are correct. Proceed to 2.
• NOT OK - All part numbers are NOT correct. The installed VIMS main module or the machine ECM has the wrong part number or the incorrect configuration software is installed. Replace the incorrect VIMS main module or the machine ECM with a module that has the correct part number. Flash the correct configuration software. STOP. 2. INSPECT THE HARNESS CONNECTIONS. a. Turn the disconnect switch to the OFF position.
i01303695
CID 0295 FMI 02 Electronic Control Module (Machine) Incorrect Signal - Test SMCS Code: 7610-038-MCH This diagnostic code is recorded when the machine ECM has dropped off the CAT data link 10 times within a ten minute period. The event is active until communication is reliable for more than ten minutes.
b. Inspect all harness connections that are related to the CAT data link. Make sure that the connectors are clean and tight. c. Check the connectors for proper mating. d. Check the wires at the connector. e. Check each wire for nicks or signs of abrasion in the insulation. f. Check for moisture at the connector. g. Check the connectors for dirty contacts or corroded contacts.
267 Testing and Adjusting Section
h. Check each pin and each socket of the machine harness connectors. Expected Result: The machine harness connectors are tight and free of corrosion.
• Measure the resistance between (+battery) connector contact 1 (wire 113-OR), to the CAT data link circuit connector contact 7 (wire 893-GY).
Results:
Expected Result: The resistance is greater than 5000 ohms.
• OK - The machine harness connectors are
Results:
tight and free of corrosion. Proceed to 3.
• NOT OK - The machine harness connectors are in need of repair. Repair the machine harness or replace the machine harness. STOP. 3. CHECK FOR SHORTS TO GROUND a. The disconnect switch remains in the OFF position. b. Disconnect the machine harness from all electronic control modules that use the CATdata link. c. At the machine harness for the VIMS main module, measure the resistance between frame ground and connector contacts 6 (wire 882-PK) and 7 (wire 893-GY) of the CAT data link circuit. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 4.
• NOT OK - The resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 4. CHECK FOR SHORT TO +BATTERY a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness. c. At the machine harness connector for the VIMS main module, perform the checks that are listed here:
• Measure the resistance between (+battery) connector contact 1 (wire 113-OR) and contact 6 (wire 882-PK) of the CAT data link circuit connector.
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 5.
• NOT OK - The resistance is less than 5000 ohms. The machine harness has failed. There is a short between +battery and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 5. CHECK FOR OPEN HARNESS a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness. c. Measure the resistance of the CAT data link circuit in the machine harness:
• Measure from connector contact 6 (wire 882-PK) of the VIMS main module to the CAT data link circuit of the machine ECM connector.
• Measure from connector contact 7 (wire 893-GY) of the VIMS main module to the CAT data link circuit of the machine ECM connector. Expected Result: The resistance measures less than 5 Ohms. Results:
• OK - The resistance is less than 5 ohms. The CAT data link circuit in the machine harness is correct. Proceed to 6.
• NOT OK - The resistance is greater than 5
ohms. The machine harness has failed. the CAT data link circuit is open in the machine harness. Repair the machine harness or replace the machine harness. STOP.
6. CHECK FOR ADDITIONAL DIAGNOSTIC CODES FOR THE OTHER ELECTRONIC CONTROL MODULES. a. Turn the key start switch and the disconnect switch to the OFF position.
268 Testing and Adjusting Section
b. One at a time, reconnect the electronic control modules that use the CAT data link.
• The part number of the VIMS configuration
c. Turn the disconnect switch and the key start switch to the ON position.
• The part number of the machine ECM flash
d. After each of the electronic control modules has been reconnected, check the Event List for diagnostic codes that are logged against the electronic control module.
• The part number of the VIMS main module
Expected Result: Diagnostic codes are not present for the other electronic control modules in the event list.
software software
• The part number of the machine ECM Note: Consult the Business Unit that produces the product for the correct part numbers of the configuration software.
Results:
Expected Result: All part numbers are correct.
• OK - Diagnostic codes are not present for
Results:
the other electronic control modules in the event list. The machine ECM has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, check the +battery contacts and ground contacts of the ECM. If these contacts are correct, replace the ECM. STOP.
• NOT OK - Diagnostic codes are present for
the other electronic control modules (ECM) in the event list. The VIMS main module has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, replace the ECM. See the Testing and Adjusting, “Module - Replace” section of this manual. STOP. i01304092
CID 0295 FMI 09 Electronic Control Module (Machine) Abnormal Update - Test
• OK - All part numbers are correct. Proceed to 2.
• NOT OK - All part numbers are NOT correct. The installed VIMS main module or the machine ECM has the wrong part number or the incorrect configuration software is installed. Replace the incorrect VIMS main module or the machine ECM with a module that has the correct part number. Flash the correct configuration software. STOP. 2. INSPECT THE HARNESS CONNECTIONS. a. Turn the disconnect switch to the OFF position. b. Inspect all harness connections that are related to the CAT data link. Make sure that the connectors are clean and tight. c. Check the connectors for proper mating. d. Check the wires at the connector.
SMCS Code: 7610-038-MCH
e. Check each wire for nicks or signs of abrasion in the insulation.
This diagnostic code is recorded when the VIMS main module does not receive expected information from the machine ECM through the CAT data link.
f. Check for moisture at the connector.
This failure may cause the readouts that depend on the information from the CAT data link to display information incorrectly. 1. VERIFY THE HARDWARE AND THE SOFTWARE PART NUMBERS. a. Verify that the following information is correct:
g. Check the connectors for dirty contacts or corroded contacts. h. Check each pin and each socket of the machine harness connectors. Expected Result: The machine harness connectors are tight and free of corrosion. Results:
269 Testing and Adjusting Section
• OK - The machine harness connectors are
Results:
tight and free of corrosion. Proceed to 3.
• NOT OK - The machine harness connectors are in need of repair. Repair the machine harness or replace the machine harness. STOP.
3. CHECK FOR SHORTS TO GROUND a. The disconnect switch remains in the OFF position. b. Disconnect the machine harness from all electronic control modules that use the CATdata link. c. At the machine harness for the VIMS main module, measure the resistance between frame ground and connector contacts 6 (wire 882-PK) and 7 (wire 893-GY) of the CAT data link circuit. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 4.
• NOT OK - The resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 4. CHECK FOR SHORT TO +BATTERY a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness. c. At the machine harness connector for the VIMS main module, perform the checks that are listed here:
• Measure the resistance between (+battery)
connector contact 1 (wire 113-OR) and contact 6 (wire 882-PK) of the CAT data link circuit connector.
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 5.
• NOT OK - The resistance is less than 5000 ohms. The machine harness has failed. There is a short between +battery and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
5. CHECK FOR OPEN HARNESS a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness. c. Measure the resistance of the CAT data link circuit in the machine harness:
• Measure between contact 6 (wire 882-PK) of the VIMS main module to the CAT data link circuit of the machine ECM.
• Measure from connector contact 7 (wire 893-GY) of the VIMS main module to the CAT data link circuit of the machine ECM. Expected Result: The resistance measures less than 5 Ohms. Results:
• OK - The resistance is less than 5 ohms. The CAT data link circuit in the machine harness is correct. Proceed to 6.
• NOT OK - The resistance is greater than 5 ohms. The machine harness has failed. the CAT data link circuit is open in the machine harness. Repair the machine harness or replace the machine harness. STOP. 6. CHECK FOR ADDITIONAL DIAGNOSTIC CODES FOR THE OTHER ELECTRONIC CONTROL MODULES. a. Turn the key start switch and the disconnect switch to the OFF position. b. One at a time, reconnect the electronic control modules that use the CAT data link.
• Measure the resistance between the contact 1 (wire 113-OR) (+battery) and contact 7 (wire 893-GN) of the CAT data link circuit. Expected Result: The resistance is greater than 5000 ohms.
c. Turn the disconnect switch and the key start switch to the ON position.
270 Testing and Adjusting Section
d. After each of the electronic control modules has been reconnected, check the Event List for diagnostic codes that are logged against the electronic control module.
• The part number of the machine ECM Note: Consult the Business Unit that produces the product for the correct part numbers of the configuration software.
Expected Result: Diagnostic codes are not present for the other electronic control modules in the event list.
Expected Result: All part numbers are correct.
Results:
Results:
• OK - Diagnostic codes are not present for
• OK - All part numbers are correct. Proceed
the other electronic control modules in the event list. The Machine control ECM has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, check the +battery contacts and ground contacts of the ECM. If these contacts are correct, replace the ECM. STOP.
• NOT OK - Diagnostic codes are present for
the other electronic control modules (ECM) in the event list. The VIMS main module has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, replace the ECM. See the Testing and Adjusting, “Module - Replace” section of this manual. STOP. i01304364
CID 0295 FMI 12 Electronic Control Module (Machine) Failed - Test SMCS Code: 7610-038-MCH This diagnostic code is recorded when the VIMS main module can not communicate with the machine ECM through the CAT data link. This diagnostic code results in failed VIMS operations that are related to the machine ECM. The VIMS operations may work intermittently. 1. VERIFY THE HARDWARE AND THE SOFTWARE PART NUMBERS. a. Verify that the following information is correct:
• The part number of the VIMS configuration software
• The part number of the machine ECM flash software.
• The part number of the VIMS main module
to 2.
• NOT OK - All part numbers are NOT correct. The installed VIMS main module or the machine ECM has the wrong part number or the incorrect configuration software is installed. Replace the incorrect VIMS main module or the machine ECM with a module that has the correct part number. Flash the correct configuration software. STOP. 2. INSPECT THE HARNESS CONNECTIONS. a. Turn the disconnect switch to the OFF position. b. Inspect all harness connections that are related to the CAT data link. Make sure that the connectors are clean and tight. c. Check the connectors for proper mating. d. Check the wires at the connector. e. Check each wire for nicks or signs of abrasion in the insulation. f. Check for moisture at the connector. g. Check the connectors for dirty contacts or corroded contacts. h. Check each pin and each socket of the machine harness connectors. Expected Result: The machine harness connectors are tight and free of corrosion. Results:
• OK - The machine harness connectors are tight and free of corrosion. Proceed to 3.
• NOT OK - The machine harness connectors are in need of repair. Repair the machine harness or replace the machine harness. STOP. 3. CHECK FOR SHORTS TO GROUND
271 Testing and Adjusting Section
a. The disconnect switch remains in the OFF position. b. Disconnect the machine harness from all electronic control modules that use the CATdata link. c. At the machine harness for the VIMS main module, measure the resistance between frame ground and connector contacts 6 (wire 882-PK) and 7 (wire 893-GY) of the CAT data link circuit. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 4.
• NOT OK - The resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 4. CHECK FOR SHORT TO +BATTERY a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness. c. At the machine harness connector for the VIMS main module, perform the checks that are listed here:
• Measure the resistance between the contact 1 (wire 113-OR) (+battery) and contact 6 (wire 882-PK) of the CAT data link circuit.
• Measure the resistance between the contact 1 (wire 113-OR) (+battery) and contact 7 (wire 893-GN) of the CAT data link circuit.
Expected Result: The resistance is greater than 5000 ohms.
• NOT OK - The resistance is less than 5000 ohms. The machine harness has failed. There is a short between +battery and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
5. CHECK FOR OPEN HARNESS a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness. c. Measure the resistance of the CAT data link circuit in the machine harness:
• Measure between contact 6 (wire 882-PK)
of the VIMS main module and the contact of the CAT data link circuit of the machine ECM.
• Measure from connector contact 7 (wire 893-GY) of the VIMS main module and the contact of CAT data link circuit of the machine ECM. Expected Result: The resistance measures less than 5 Ohms. Results:
• OK - The resistance is less than 5 ohms. The CAT data link circuit in the machine harness is correct. Proceed to 6.
• NOT OK - The resistance is greater than 5 ohms. The machine harness has failed. the CAT data link circuit is open in the machine harness. Repair the machine harness or replace the machine harness. STOP. 6. CHECK FOR ADDITIONAL DIAGNOSTIC CODES FOR THE OTHER ELECTRONIC CONTROL MODULES. a. Turn the key start switch and the disconnect switch to the OFF position. b. One at a time, reconnect the electronic control modules that use the CAT data link.
Results:
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 5.
c. Turn the disconnect switch and the key start switch to the ON position. d. After each of the electronic control modules has been reconnected, check the Event List for diagnostic codes that are logged against the electronic control module.
272 Testing and Adjusting Section
Expected Result: Diagnostic codes are not present for the other electronic control modules in the event list. Results:
• OK - Diagnostic codes are not present for
the other electronic control modules in the event list. The Machine control ECM has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, check the +battery contacts and ground contacts of the ECM. If these contacts are correct, replace the ECM. STOP.
• NOT OK - Diagnostic codes are present for the other electronic control modules (ECM) in the event list. The VIMS main module has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, replace the ECM. See the Testing and Adjusting, “Module - Replace” section of this manual. STOP. i01305260
CID 0296 FMI 02 Power Train Electronic Control Module (Electronic Clutch Pressure Control) Incorrect Signal - Test
• The part number of the power train ECM Note: Consult the Business Unit that produces the product for the correct part numbers of the configuration software. Expected Result: All part numbers are correct. Results:
• OK - All part numbers are correct. Proceed to 2.
• NOT OK - All part numbers are NOT correct. The installed VIMS main module or the power train ECM has the wrong part number or the incorrect configuration software is installed. Replace the incorrect VIMS main module or the power train ECM with a module that has the correct part number. Flash the correct configuration software. STOP. 2. INSPECT THE HARNESS CONNECTIONS. a. Turn the disconnect switch to the OFF position. b. Inspect all harness connections that are related to the CAT data link. Make sure that the connectors are clean and tight. c. Check the connectors for proper mating.
SMCS Code: 7610-038-DTN
d. Check the wires at the connector.
This diagnostic code is recorded when the power train ECM has dropped off the CAT data link 10 times within a ten minute period. The event is active until communication is reliable for more than ten minutes.
e. Check each wire for nicks or signs of abrasion in the insulation.
This failure results in events that are logged against an ECM that can not be explained. The VIMS main module cannot communicate with this ECM or the ECM appears to work intermittently. 1. VERIFY THE HARDWARE AND THE SOFTWARE PART NUMBERS. a. Verify that the following information is correct:
• The part number of the VIMS configuration software
• The part number of the power train ECM flash software.
• The part number of the VIMS main module
f. Check for moisture at the connector. g. Check the connectors for dirty contacts or corroded contacts. h. Check each pin and each socket of the machine harness connectors. Expected Result: The machine harness connectors are tight and free of corrosion. Results:
• OK - The machine harness connectors are tight and free of corrosion. Proceed to 3.
• NOT OK - The machine harness connectors are in need of repair. Repair the machine harness or replace the machine harness. STOP.
273 Testing and Adjusting Section
3. CHECK FOR SHORTS TO GROUND a. The disconnect switch remains in the OFF position. b. Disconnect the machine harness from all electronic control modules that use the CATdata link. c. At the machine harness for the VIMS main module, measure the resistance between frame ground and connector contacts 6 (wire 882-PK) and 7 (wire 893-GY) of the CAT data link circuit. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 4.
• NOT OK - The resistance is less than 5000
ohms. The machine harness has failed. There is a short between frame ground and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
4. CHECK FOR SHORT TO +BATTERY a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness. c. At the machine harness connector for the VIMS main module, perform the checks that are listed here:
• Measure the resistance between the connector contact 1 (wire 113-OR) and contact 6 (wire 882-PK) of the connector of the CAT data link circuit.
• Measure the resistance between connector
contact 1 (wire 113-OR) and contact 7 (wire 893-GY) of the CAT data link connector.
Expected Result: The resistance is greater than 5000 ohms.
• NOT OK - The resistance is less than 5000 ohms. The machine harness has failed. There is a short between +battery and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
5. CHECK FOR OPEN HARNESS a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness. c. Measure resistance of the CAT data link circuit in the machine harness:
• Measure the resistance from connector
contact 6 (wire 882-PK) of the VIMS main module to the contacts of the CAT data link of the power train ECM.
• Measure the resistancefrom connector contact 7 (wire 893-GY) of the VIMS main module to the contacts of the CAT data link of the power train ECM. Expected Result: The resistance measures less than 5 Ohms. Results:
• OK - The resistance is less than 5 ohms. The CAT data link circuit in the machine harness is correct. Proceed to 6.
• NOT OK - The resistance is greater than 5 ohms. The machine harness has failed. the CAT data link circuit is open in the machine harness. Repair the machine harness or replace the machine harness. STOP. 6. CHECK FOR ADDITIONAL DIAGNOSTIC CODES FOR THE OTHER ELECTRONIC CONTROL MODULES. a. Turn the key start switch and the disconnect switch to the OFF position. b. One at a time, reconnect the electronic control modules that use the CAT data link. c. Turn the disconnect switch and the key start switch to the ON position.
Results:
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 5.
d. After each of the electronic control modules has been reconnected, check the Event List for diagnostic codes that are logged against the electronic control module.
274 Testing and Adjusting Section
Expected Result: Diagnostic codes are not present for the other electronic control modules in the event list.
Note: Consult the Business Unit that produces the product for the correct part numbers of the configuration software. Expected Result: All part numbers are correct.
Results:
• OK - Diagnostic codes are not present for
the other electronic control modules in the event list. The power train ECM has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, check the +battery contacts and ground contacts of the ECM. If these contacts are correct, replace the ECM. STOP.
• NOT OK - Diagnostic codes are present for the other electronic control modules (ECM) in the event list. The VIMS main module has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, replace the ECM. See the Testing and Adjusting, “Module - Replace” section of this manual. STOP. i01305587
CID 0296 FMI 09 Power Train Electronic Control Module (Electronic Clutch Pressure Control) Abnormal Update) Test SMCS Code: 7610-038-DTN This diagnostic code is recorded when the VIMS main module does not receive expected information from the power train ECM through the CAT data link. This failure may cause the readouts that depend on the information from the CAT data link to display information incorrectly. 1. VERIFY THE HARDWARE AND THE SOFTWARE PART NUMBERS. a. Verify that the following information is correct:
• The part number of the VIMS configuration software
• The part number of the power train ECM flash software.
• The part number of the VIMS main module • The part number of the power train ECM
Results:
• OK - All part numbers are correct. Proceed to 2.
• NOT OK - All part numbers are NOT
correct. The installed VIMS main module or the power train ECM has the wrong part number or the incorrect configuration software is installed. Replace the incorrect VIMS main module or the power train ECM with a module that has the correct part number. Flash the correct configuration software. STOP.
2. INSPECT THE HARNESS CONNECTIONS. a. Turn the disconnect switch to the OFF position. b. Inspect all harness connections that are related to the CAT data link. Make sure that the connectors are clean and tight. c. Check the connectors for proper mating. d. Check the wires at the connector. e. Check each wire for nicks or signs of abrasion in the insulation. f. Check for moisture at the connector. g. Check the connectors for dirty contacts or corroded contacts. h. Check each pin and each socket of the machine harness connectors. Expected Result: The machine harness connectors are tight and free of corrosion. Results:
• OK - The machine harness connectors are tight and free of corrosion. Proceed to 3.
• NOT OK - The machine harness connectors are in need of repair. Repair the machine harness or replace the machine harness. STOP.
3. CHECK FOR SHORTS TO GROUND
275 Testing and Adjusting Section
a. The disconnect switch remains in the OFF position. b. Disconnect the machine harness from all electronic control modules that use the CATdata link. c. At the machine harness for the VIMS main module, measure the resistance between frame ground and connector contacts 6 (wire 882-PK) and 7 (wire 893-GY) of the CAT data link circuit. Expected Result: The resistance is greater than 5000 ohms. Results:
• NOT OK - The resistance is less than 5000 ohms. The machine harness has failed. There is a short between +battery and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
5. CHECK FOR OPEN HARNESS a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness. c. Measure the resistance of the CAT data link circuit in the machine harness:
• OK - The resistance is greater than 5000
• Measure between contact 6 (wire 882-PK)
• NOT OK - The resistance is less than 5000
• Measure from connector contact 7 (wire
ohms. The harness circuit resistance is correct. Proceed to 4.
ohms. The machine harness has failed. There is a short between frame ground and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 4. CHECK FOR SHORT TO +BATTERY a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness. c. At the machine harness connector for the VIMS main module, perform the checks that are listed here:
• Measure the resistance between connector contact 1 (wire 113-OR) and contact 6 (wire 882-PK) of the connector of the CAT data link circuit.
• Measure the resistance between the contact 1 (wire 113-OR) (+battery) and contact 7 (wire 893-GN) of the CAT data link circuit. Expected Result: The resistance is greater than 5000 ohms.
of the VIMS main module to the CAT data link circuit of the power train ECM.
893-GY) of the VIMS main module to the CAT data link circuit of the power train ECM. Expected Result: The resistance measures less than 5 Ohms. Results:
• OK - The resistance is less than 5 ohms. The CAT data link circuit in the machine harness is correct. Proceed to 6.
• NOT OK - The resistance is greater than 5 ohms. The machine harness has failed. the CAT data link circuit is open in the machine harness. Repair the machine harness or replace the machine harness. STOP. 6. CHECK FOR ADDITIONAL DIAGNOSTIC CODES FOR THE OTHER ELECTRONIC CONTROL MODULES. a. Turn the key start switch and the disconnect switch to the OFF position. b. One at a time, reconnect the electronic control modules that use the CAT data link. c. Turn the disconnect switch and the key start switch to the ON position.
Results:
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 5.
d. After each of the electronic control modules has been reconnected, check the Event List for diagnostic codes that are logged against the electronic control module. Expected Result: Diagnostic codes are not present for the other electronic control modules in the event list.
276 Testing and Adjusting Section
Expected Result: All part numbers are correct.
Results:
• OK - Diagnostic codes are not present for the other electronic control modules in the event list. The power train ECM has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, check the +battery contacts and ground contacts of the ECM. If these contacts are correct, replace the ECM. STOP.
• NOT OK - Diagnostic codes are present for
the other electronic control modules (ECM) in the event list. The VIMS main module has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, replace the ECM. See the Testing and Adjusting, “Module - Replace” section of this manual. STOP. i01305602
CID 0296 FMI 12 Power Train Electronic Control Module (Electronic Clutch Pressure Control) Failed - Test SMCS Code: 7610-038-DTN This diagnostic code is recorded when the VIMS main module can not communicate with the power train ECM through the CAT data link. This diagnostic code results in failed VIMS operations that are related to the power train ECM. The VIMS operations may work intermittently. 1. VERIFY THE HARDWARE AND THE SOFTWARE PART NUMBERS.
Results:
• OK - All part numbers are correct. Proceed to 2.
• NOT OK - All part numbers are NOT correct. The installed VIMS main module or the power train ECM has the wrong part number or the incorrect configuration software is installed. Replace the incorrect VIMS main module or the power train ECM with a module that has the correct part number. Flash the correct configuration software. STOP. 2. INSPECT THE HARNESS CONNECTIONS. a. Turn the disconnect switch to the OFF position. b. Inspect all harness connections that are related to the CAT data link. Make sure that the connectors are clean and tight. c. Check the connectors for proper mating. d. Check the wires at the connector. e. Check each wire for nicks or signs of abrasion in the insulation. f. Check for moisture at the connector. g. Check the connectors for dirty contacts or corroded contacts. h. Check each pin and each socket of the machine harness connectors. Expected Result: The machine harness connectors are tight and free of corrosion.
a. Verify that the following information is correct: Results:
• The part number of the VIMS configuration software
• OK - The machine harness connectors are tight and free of corrosion. Proceed to 3.
• The part number of the power train ECM flash software.
• The part number of the VIMS main module
• NOT OK - The machine harness connectors are in need of repair. Repair the machine harness or replace the machine harness. STOP.
• The part number of the power train ECM 3. CHECK FOR SHORTS TO GROUND Note: Consult the Business Unit that produces the product for the correct part numbers of the configuration software.
a. The disconnect switch remains in the OFF position.
277 Testing and Adjusting Section
b. Disconnect the machine harness from all electronic control modules that use the CAT data link. c. At the machine harness for the VIMS main module, measure the resistance between frame ground and connector contact 6 (wire 882-PK) and contact 7 (wire 893-GY) of the CAT data link circuit. Expected Result: The resistance is greater than 5000 ohms.
a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness. c. Measure the resistance of the CAT data link circuit in the machine harness:
• Measure the resistance between contact
6 (wire 882-PK) of the VIMS main module and the contact of the CAT data link of the machine ECM.
Results:
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 4.
• NOT OK - The resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 4. CHECK FOR SHORT TO +BATTERY a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness. c. At the machine harness connector for the VIMS main module, perform the checks that are listed here:
• Measure the resistance between the contact 1 (wire 113-OR) (+battery) and contact 6 (wire 882-PK) of the CAT data link circuit.
• Measure the resistance between the contact 1 (wire 113-OR) (+battery) and contact 7 (wire 893-GN) of the CAT data link circuit.
Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 5.
• Measure the resistancefrom connector contact 7 (wire 893-GY) of the VIMS main module and the contact of CAT data link circuit of the machine ECM. Expected Result: The resistance measures less than 5 Ohms. Results:
• OK - The resistance is less than 5 ohms. The CAT data link circuit in the machine harness is correct. Proceed to 6.
• NOT OK - The resistance is greater than 5 ohms. The machine harness has failed. the CAT data link circuit is open in the machine harness. Repair the machine harness or replace the machine harness. STOP. 6. CHECK FOR ADDITIONAL DIAGNOSTIC CODES FOR THE OTHER ELECTRONIC CONTROL MODULES. a. Turn the key start switch and the disconnect switch to the OFF position. b. One at a time, reconnect the electronic control modules that use the CAT data link. c. Turn the disconnect switch and the key start switch to the ON position. d. After each of the electronic control modules has been reconnected, check the Event List for diagnostic codes that are logged against the electronic control module. Expected Result: Diagnostic codes are not present for the other electronic control modules in the event list.
• NOT OK - The resistance is less than 5000 ohms. The machine harness has failed. There is a short between +battery and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 5. CHECK FOR OPEN HARNESS
Results:
278 Testing and Adjusting Section
• OK - Diagnostic codes are not present for
the other electronic control modules in the event list. The power train ECM has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, check the +battery contacts and ground contacts of the ECM. If these contacts are correct, replace the ECM. STOP.
• NOT OK - Diagnostic codes are present for the other electronic control modules (ECM) in the event list. The VIMS main module has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, replace the ECM. See the Testing and Adjusting, “Module - Replace” section of this manual. STOP.
• NOT OK - The action lamp is OFF. The
module is faulty. Replace the VIMS main module. Refer to the Testing and Adjusting, “Module - Replace” section. STOP. i00992228
CID 0324 FMI 05 Lamp (Action) Current Below Normal - Test SMCS Code: 7431-038-LMP This diagnostic code is recorded when the VIMS module reads the current of the action lamp circuit (411-PK) and the current is below normal. The circuit is open. The action lamp does not light when this diagnostic code is active.. 1. CHECK THE LAMP.
i00992227
CID 0324 FMI 03 Lamp (Action) Voltage Above Normal - Test
a. At the action lamp, use a jumper to connect wire 411-PK to frame ground. Expected Result: The CID 0324 FMI 05 fault is no longer active.
SMCS Code: 7431-038-LMP Results: This diagnostic code is recorded when the VIMS module reads the voltage of the action lamp circuit (411-PK) and the voltage is above normal. The circuit shorted to +battery. The action lamp is ON CONTINUOUSLY as a result of this fault condition. 1. CHECK THE LAMP CIRCUIT. a. Turn the disconnect switch and the key start switch to the OFF position. b. Disconnect the machine harness from the VIMS module. c. Turn the disconnect switch to the ON position.
• OK - The diagnostic code is no longer active. The lamp or the lamp socket are open. Replace the action lamp. For the purposes of this procedure, the correct resistance for a lamp is less than 200 ohms. STOP.
• NOT OK - The diagnostic code is still
active. The action lamp is not causing the fault. Proceed to 2.
2. CHECK THE HARNESS. a. Turn the disconnect switch and the key start switch to the OFF position.
d. Observe the action lamp. e. Turn the key start switch to the ON position.
b. Remove the jumper wire from wire 411-PK and frame ground. Connect the action lamp to the machine harness.
Expected Result: The action lamp is ON. Results: Note: The action lamp will flash during the power ON self-test.
• OK - The action lamp is ON CONTINUOUSLY. The harness circuit 411-PK is shorted to the +battery circuit. Repair the harness or replace the harness. STOP.
c. Disconnect the machine harness from the VIMS main module. d. At the machine harness connector for the VIMS module, measure the resistance between contact 20 (411-PK) and frame ground. Expected Result: The resistance is greater than 100 ohms. Results:
279 Testing and Adjusting Section
• OK - The resistance is greater than 100
ohms. The harness circuit is open. Proceed to 3.
• NOT OK - The resistance is less than 100 ohms. The harness circuit resistance is correct. Replace the VIMS main module. Refer to the Testing and Adjusting, “Module - Replace” section. STOP.
• OK - The diagnostic code changed to CID
0324 FMI 05. The lamp or the lamp socket has failed. Replace the action lamp. For the purposes of this procedure, the correct resistance for a lamp is greater than 10 ohms. STOP.
• NOT OK - The CID 0324 FMI 06 is still active. The action lamp is not causing the diagnostic code. Proceed to 2.
3. CHECK THE HARNESS. 2. CHECK THE HARNESS. a. Disconnect the wire 411-PK from the action lamp socket. b. Check for an open in the circuit 411-PK between contact 20 of the VIMS main module harness connector and the lamp socket. c. Measure the resistance in the circuit 201-BK between the lamp socket and the frame ground. Expected Result: The resistance is less than 5 ohms.
a. Turn the disconnect switch to the OFF position. b. Wire 411-PK remains disconnected from the action lamp. c. Disconnect the machine harness from the VIMS main module. d. At the machine harness connector for the VIMS module, measure the resistance between contact 20 (wire 411-PK) and frame ground.
Results:
• OK - Resistance is less than 5 ohms. The circuit is correct. The fault is intermittent. The probable cause is a poor electrical connection at the harness connectors or a damaged harness. Check the harness for damage and clean the harness connectors, as required. STOP.
• NOT OK - Resistance is greater than 5
ohms. The circuit is NOT correct. Repair the harness or replace the harness. STOP. i01382396
CID 0324 FMI 06 Lamp (Action) Current Above Normal - Test
Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000 ohms. The harness resistance is correct. Proceed to 3.
• NOT OK - The resistance is less than 5000 ohms. The harness has failed. Repair the machine harness or replace the machine harness. STOP.
3. CHECK THE MODULE. a. Remove contact 20 (wire 411-PK) from the machine harness connector for the VIMS main module.
SMCS Code: 7431-038-LMP This diagnostic code is recorded when the VIMS module reads the current of the action lamp and the current is above normal. The action lamp is shorted to ground. The action lamp does not light when this diagnostic code is active. 1. CHECK THE LAMP. a. Disconnect wire 411-PK from the action lamp socket. Expected Result: The diagnostic code changed to CID 0324 FMI 05. Results:
b. Reconnect the harness connector to the VIMS main module. c. Turn the disconnect switch and the key start switches to the ON position. Expected Result: The diagnostic code CID 0324 FMI 06 is still active. Results:
• OK - The diagnostic code CID 0324 FMI 06 diagnostic code is still active. The VIMS main module has failed. Replace the VIMS main module. Refer to the Testing and Adjusting, “Module - Replace”. STOP.
280 Testing and Adjusting Section
• NOT OK - The diagnostic code is NOT
active. The VIMS module is not causing the diagnostic code. The diagnostic code is intermittent. The probable cause is a poor electrical connection at the harness connectors or a damaged harness. Check the harness for damage. If necessary, clean the harness connectors. STOP.
Note: The following procedure applies to machines that are equipped with LED indicators in place of lamps.
c. Disconnect the machine harness from the VIMS module. d. At the machine harness connector for the VIMS main module measure the resistance from contact 20(wire 411-PK) to frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000
ohms. The harness is correct. Proceed to 3.
• NOT OK - The resistance is less than 5000 ohms. The harness has failed. Repair the machine harness or replace the machine harness. STOP.
3. CHECK THE POWER TRAIN ECM a. Remove contact 20 (wire 411-PK) from the machine harness at the VIMS main module.
Illustration 247
g00730058
This diagnostic code is recorded when the VIMS module reads the current of the action lamp circuit as above normal. The circuit is shorted to ground. The action lamp will not illuminate when this diagnostic code is active. 1. CHECK THE ACTION LAMP. a. At the action lamp, disconnect the wire 411-PK from the action lamp circuit. Expected Result: The diagnostic code CID 0324 FMI 06 is still active. Results:
• OK - The diagnostic code CID 0324 FMI 06 is still active. The action lamp is NOT ON. The harness circuit 411-PK is not causing the diagnostic code. Proceed to 2.
• NOT OK - The diagnostic code CID 0324 FMI 06 is is no longer active. Replace the action lamp. STOP. 2. CHECK THE HARNESS a. Turn the disconnect switch to the OFF position. b. The wire 411-PK remains disconnected from the action lamp circuit.
b. Reconnect the harness connector to the VIMS main module. c. Turn the disconnect switch and the key start switch to the ON position. d. Check to see if the diagnostic code is still active. Expected Result: The CID 0324 FMI 06 is still active. Results:
• OK - CID 0324 FMI 06 is still active. The
action lamp is ON. The VIMS main module has failed. Replace the main module. Refer to the Testing and Adjusting, “Module Replace”. STOP.
• NOT OK - The CID 0324 FMI 06 is NOT
active. The VIMS main module is not causing the diagnostic code. The diagnostic code is intermittent. The probable cause is a poor electrical connection at the harness connectors or a damaged harness. Check the harness for damage and clean the harness connectors as required. STOP.
281 Testing and Adjusting Section
i00994303
CID 0341 FMI 03 Solenoid Valve (No. 4) (Warm Up) Voltage Above Normal - Test
Expected Results:The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000 ohms. The solenoid harness circuitry is correct. Inspect harness connector contacts. Reconnect the harness connector to the module and check the message center for the same diagnostic code. If the diagnostic code is present, the interface module has failed. Replace the module. Refer to the Testing and Adjusting, “Module-Replace” section. STOP.
SMCS Code: 5479-038-II
• NOT OK - The resistance is less than 5 ohms. The solenoid harness is shorted. Repair the machine harness or replace the machine harness. STOP.
Illustration 248
g00507591
Schematic of the Warm Up Valve Solenoid
This diagnostic code is recorded when the VIMS interface module reads the signal voltage of the solenoid and the voltage is high. There is a short to +battery in the solenoid circuit.
i00994348
CID 0341 FMI 05 Solenoid Valve (No. 4) (Warm Up) Current Below Normal - Test SMCS Code: 5479-038-II
1. CHECK FOR SHORT TO +BATTERY a. Turn the disconnect switch and the key start switch to the OFF position. b. Disconnect the machine harness connector from the VIMS interface module. c. Measure the resistance from contact 33 (wire E775-PK) to the +battery contact 1 (wire 113-OR) of the machine harness connector. Expected Resutls:The resistance is greater than 5000 ohms.
Illustration 249
g00507591
Results:
Schematic of the Warm Up Valve Solenoid
• OK - The resistance is greater than 5000
This diagnostic code is recorded when the VIMS module reads the electrical circuit for this solenoid and the circuit is open.
ohms. The solenoid harness is not shorted to +battery. Proceed to 2.
• NOT OK - The resistance is less than 5
ohms. The solenoid harness is shorted to +battery. Repair the machine harness or replace the machine harness. STOP.
2. CHECK FOR SHORT TO OTHER SOLENOID OUTPUTS a. Measure the resistance from contact 33 (wire E775-PK) to the other solenoid outputs of the machine harness connector.
1. CHECK FOR OPEN HARNESS a. Turn the key start switch and the disconnect switch to the OFF position. b. Disconnect the machine harness connector from the module. c. Measure the resistance from contact 33 of the solenoid circuit (wire E775-PK) to the solenoid return (frame ground).
282 Testing and Adjusting Section
Expected Results: The resistance is 30 to 65 ohms.
b. Disconnect the machine harness connector from the module.
Results:
c. Measure the resistance between contact 33 (wire E775-PK) of the machine harness connector for the interface module and contact 2 (wire 201-BK) of the machine harness connector for the solenoid.
• OK - The resistance is 30 to 65 ohms. The resistance of the solenoid circuitry is correct. Inspect the contacts of harness connectors. Reconnect the harness connector to the module and check the message center for the same diagnostic code. If the diagnostic code is present, the interface module has failed. Replace the VIMS interface module. Refer to the Testing and Adjustment, “Module - Replace” section. STOP.
• NOT OK - The resistance is NOT 30 to 65 ohms. The solenoid has failed or the circuitry of the solenoid harness has failed. Verify the machine harness. Repair the machine harness or replace the machine harness, if necessary. If the machine harness is not the cause of the diagnostic code then replace the solenoid. STOP.
Expected Results:The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000 ohms. The circuitry of the solenoid harness is correct. Inspect the contacts of the harness connector. Reconnect the harness connector to the module and check the message center for the same diagnostic code. If the diagnostic code is present, the module has failed. Replace the VIMS interface module. Refer to the Testing and Adjusting, “Module-Replace”section. STOP.
• NOT OK - The resistance is less than 5 i00994359
CID 0341 FMI 06 Solenoid Valve (No. 4) (Warm Up) Current Above Normal - Test
ohms. The solenoid is shorted to ground or machine harness is shorted to ground. Verify the machine harness. Repair the machine harness or replace the machine harness, if necessary. If the machine harness is NOT the cause of this diagnostic code, then replace the solenoid. STOP.
SMCS Code: 5479-038-II i00994361
CID 0341 FMI 11 Solenoid Valve (No. 4) (Warm Up) Failure Mode Not Identifiable - Test SMCS Code: 5479-038-II
Illustration 250
g00507591
Schematic of the Warm Up Valve Solenoid
This diagnostic code is recorded when the VIMS module reads the electrical circuit for this solenoid and the circuit is shorted to ground. 1. CHECK FOR SHORT TO GROUND Illustration 251
a. Turn the key start switch and the disconnect switch to the OFF position.
Schematic of the Warm Up Valve Solenoid
g00507591
283 Testing and Adjusting Section
This diagnostic code is recorded when the VIMS interface module has failed internally. Turn the disconnect switch and the key start switch to the OFF position. Wait for ten seconds. Turn the disconnect switch and the key start switch to the ON position. Check the message center for the same diagnostic code. If the diagnostic code is still active, the VIMS interface module has failed. Replace the VIMS interface module. Refer to the Testing and Adjusting, “Module-Replace” section.
i01491656
CID 0350 FMI 01 Position Sensor (Lift Linkage) Below Normal Range - Test SMCS Code: 5736-038-LQ
i01491652
CID 0350 FMI 00 Position Sensor (Lift Linkage) Above Normal Range - Test SMCS Code: 5736-038-LQ
Illustration 253
g00508128
Schematic of the Lift Linkage Position Sensor
This PWM sensor runs at a nominal frequency of 600 Hz. The sensor is powered by the machine electrical system. The duty cycle of the sensor varies from 3.5 to 96.5 percent over a rotational range of 102 degrees. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor-Test” section for troubleshooting of this failure. Illustration 252
g00508128
Schematic of the Lift Linkage Position Sensor
This PWM sensor runs at a nominal frequency of 600 Hz. The sensor is powered by the machine electrical system. The duty cycle of the sensor varies from 3.5 to 96.5 percent over a rotational range of 102 degrees. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor-Test” section for troubleshooting of this failure.
284 Testing and Adjusting Section
i01491659
i01491753
CID 0350 FMI 02 Position Sensor (Lift Linkage) Incorrect Signal - Test
CID 0350 FMI 03 Position Sensor (Lift Linkage) Voltage Above Normal - Test
SMCS Code: 5736-038-LQ
SMCS Code: 5736-038-LQ
Illustration 254
g00508128
Illustration 255
g00508128
Schematic of the Lift Linkage Position Sensor
Schematic of the Lift Linkage Position Sensor
This PWM sensor runs at a nominal frequency of 600 Hz. The sensor is powered by the machine electrical system. The duty cycle of the sensor varies from 3.5 to 96.5 percent over a rotational range of 102 degrees. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor-Test” section for troubleshooting of this failure.
This PWM sensor runs at a nominal frequency of 600 Hz. The sensor is powered by the machine electrical system. The duty cycle of the sensor varies from 3.5 to 96.5 percent over a rotational range of 102 degrees. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor-Test” section for troubleshooting of this failure.
285 Testing and Adjusting Section
i01491755
i01491760
CID 0350 FMI 04 Position Sensor (Lift Linkage) Voltage Below Normal - Test
CID 0350 FMI 06 Position Sensor (Lift Linkage) Current Above Normal - Test
SMCS Code: 5736-038-LQ
SMCS Code: 5736-038-LQ
Illustration 256
g00508128
Illustration 257
g00508128
Schematic of the Lift Linkage Position Sensor
Schematic of the Lift Linkage Position Sensor
This PWM sensor runs at a nominal frequency of 600 Hz. The sensor is powered by the machine electrical system. The duty cycle of the sensor varies from 3.5 to 96.5 percent over a rotational range of 102 degrees. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor-Test” section for troubleshooting of this failure.
This PWM sensor runs at a nominal frequency of 600 Hz. The sensor is powered by the machine electrical system. The duty cycle of the sensor varies from 3.5 to 96.5 percent over a rotational range of 102 degrees. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor-Test” section for troubleshooting of this failure.
286 Testing and Adjusting Section
i01491941
i01491775
CID 0350 FMI 08 Position Sensor (Lift Linkage) Abnormal Signal - Test
CID 0350 FMI 11 Position Sensor (Lift Linkage) Failure Mode Not Identifiable - Test
SMCS Code: 5736-038-LQ
SMCS Code: 5736-038-LQ
Illustration 258
g00508128
Illustration 259
g00508128
Schematic of the Lift Linkage Position Sensor
Schematic of the Lift Linkage Position Sensor
This PWM sensor runs at a nominal frequency of 600 Hz. The sensor is powered by the machine electrical system. The duty cycle of the sensor varies from 3.5 to 96.5 percent over a rotational range of 102 degrees. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor-Test” section for troubleshooting of this failure.
This PWM sensor runs at a nominal frequency of 600 Hz. The sensor is powered by the machine electrical system. The duty cycle of the sensor varies from 3.5 to 96.5 percent over a rotational range of 102 degrees. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor-Test” section for troubleshooting of this failure.
287 Testing and Adjusting Section
i01491806
CID 0350 FMI 13 Position Sensor (Lift Linkage) Out of Calibration - Test SMCS Code: 5736-038-LQ
i01491821
CID 0364 FMI 04 Pressure Sensor (Lift Cylinder Head End) Voltage Below Normal Test SMCS Code: 5102-038-PXS The output frequency of the sensor changes as the pressure in the lift cylinder changes. The sensor is power by the machine electrical system. Refer to the Testing and Adjusting, “Lift/Tilt Cylinder Pressure Sensor-Tests” section for troubleshooting of this failure. i01491824
CID 0364 FMI 06 Pressure Sensor (Lift Cylinder Head End) Current Above Normal Test SMCS Code: 5102-038-PXS Illustration 260
g00508128
Schematic of the Lift Linkage Position Sensor
This PWM sensor runs at a nominal frequency of 600 Hz. The sensor is powered by the machine electrical system. The duty cycle of the sensor varies from 3.5 to 96.5 percent over a rotational range of 102 degrees. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor-Test” section for troubleshooting of this failure. i01491813
CID 0364 FMI 03 Pressure Sensor (Lift Cylinder Head End) Voltage Below Normal Test
The output frequency of the sensor changes as the pressure in the lift cylinder changes. The sensor is power by the machine electrical system. Refer to the Testing and Adjusting, “Lift/Tilt Cylinder Pressure Sensor-Tests” section for troubleshooting of this failure. i00994384
CID 0371 FMI 03 Solenoid Valve (Air Horn) Voltage Above Normal - Test SMCS Code: 5479-038-AI; 5509-038-JV
SMCS Code: 5102-038-PXS The output frequency of the sensor changes as the pressure in the lift cylinder changes. The sensor is power by the machine electrical system. Refer to the Testing and Adjusting, “Lift/Tilt Cylinder Pressure Sensor-Tests” section for troubleshooting of this failure. Illustration 261 Schematic of the Air Horn Solenoid
g00507588
288 Testing and Adjusting Section
This diagnostic code is recorded when the VIMS interface module reads the signal voltage of the solenoid and the voltage is high. There is a short to +battery in the solenoid circuit. 1. CHECK FOR SHORT TO +BATTERY a. Turn the disconnect switch and the key start switch to the OFF position.
i00994386
CID 0371 FMI 05 Solenoid Valve (Air Horn) Current Below Normal - Test SMCS Code: 5479-038-AI; 5509-038-JV
b. Disconnect the machine harness connector from the VIMS interface module. c. Measure the resistance from contact 31 (wire E785-GY) to the +battery contact 1 (wire 113-OR) of the machine harness connector. Expected Resutls:The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000 ohms. The solenoid harness is not shorted to +battery. Proceed to 2.
• NOT OK - The resistance is less than 5 ohms. The solenoid harness is shorted to +battery. Repair the machine harness or replace the machine harness. STOP.
Illustration 262
g00507588
Schematic of the Air Horn Solenoid
This diagnostic code is recorded when the VIMS module reads the electrical circuit for this solenoid and the circuit is open. 1. CHECK FOR OPEN HARNESS
2. CHECK FOR SHORT TO OTHER SOLENOID OUTPUTS a. Measure the resistance from contact 31 (wire E785-GY) to the other solenoid outputs of the machine harness connector. Expected Results:The resistance is greater than 5000 ohms.
a. Turn the key start switch and the disconnect switch to the OFF position. b. Disconnect the machine harness connector from the module. c. Measure the resistance from contact 31 of the solenoid circuit (wire E785-GY) to the solenoid return (frame ground).
Results:
• OK - The resistance is greater than 5000 ohms. The solenoid harness circuitry is correct. Inspect harness connector contacts. Reconnect the harness connector to the module and check the message center for the same diagnostic code. If the diagnostic code is present, the interface module has failed. Replace the module. Refer to the Testing and Adjusting, “Module-Replace” section. STOP.
• NOT OK - The resistance is less than 5
ohms. The solenoid harness is shorted. Repair the machine harness or replace the machine harness. STOP.
Expected Results: The resistance is 30 to 65 ohms. Results:
• OK - The resistance is 30 to 65 ohms. The resistance of the solenoid circuitry is correct. Inspect the contacts of harness connectors. Reconnect the harness connector to the module and check the message center for the same diagnostic code. If the diagnostic code is present, the interface module has failed. Replace the VIMS interface module. Refer to the Testing and Adjustment, “Module - Replace” section. STOP.
289 Testing and Adjusting Section
• NOT OK - The resistance is NOT 30 to
65 ohms. The solenoid has failed or the circuitry of the solenoid harness has failed. Verify the machine harness. Repair the machine harness or replace the machine harness, if necessary. If the machine harness is not the cause of the diagnostic code then replace the solenoid. STOP. i00994387
CID 0371 FMI 06 Solenoid Valve (Air Horn) Current Above Normal - Test SMCS Code: 5479-038-AI; 5509-038-JV
• OK - The resistance is greater than 5000
ohms. The circuitry of the solenoid harness is correct. Inspect the contacts of the harness connector. Reconnect the harness connector to the module and check the message center for the same diagnostic code. If the diagnostic code is present, the module has failed. Replace the VIMS interface module. Refer to the Testing and Adjusting, “Module-Replace” section. STOP.
• NOT OK - The resistance is less than 5 ohms. The solenoid is shorted to ground or machine harness is shorted to ground. Verify the machine harness. Repair the machine harness or replace the machine harness, if necessary. If the machine harness is NOT the cause of this diagnostic code, then replace the solenoid. STOP. i00994388
CID 0371 FMI 11 Solenoid Valve (Air Horn) Failure Mode Not Identifiable - Test SMCS Code: 5479-038-AI; 5509-038-JV
Illustration 263
g00507588
Schematic of the Air Horn Solenoid
This diagnostic code is recorded when the VIMS module reads the electrical circuit for this solenoid and the circuit is shorted to ground. 1. CHECK FOR SHORT TO GROUND a. Turn the key start switch and the disconnect switch to the OFF position. Illustration 264
b. Disconnect the machine harness connector from the module. c. Measure the resistance between contact 31 (wire E785-GY) of the machine harness connector for the interface module and contact 2 (wire 201-BK) of the machine harness connector for the solenoid. Expected Results:The resistance is greater than 5000 ohms. Results:
g00507588
Schematic of the Air Horn Solenoid
This diagnostic code is recorded when the VIMS interface module has failed internally. Turn the disconnect switch and the key start switch to the OFF position. Wait for ten seconds. Turn the disconnect switch and the key start switch to the ON position. Check the message center for the same diagnostic code. If the diagnostic code is still active, the VIMS interface module has failed. Replace the VIMS interface module. Refer to the Testing and Adjusting, “Module-Replace” section.
290 Testing and Adjusting Section
i00994401
CID 0378 FMI 03 Solenoid Valve (Automatic Lubrication) Voltage Above Normal - Test SMCS Code: 5479-038-LZ; 7540-038-JV
b. Disconnect the machine harness connector from the VIMS interface module. c. Measure the resistance from contact 31 (wire 801-PK) to the +battery contact 1 (wire 113-OR) of the machine harness connector. Expected Resutls:The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000
ohms. The solenoid harness is not shorted to +battery. Proceed to 2.
• NOT OK - The resistance is less than 5 ohms. The solenoid harness is shorted to +battery. Repair the machine harness or replace the machine harness. STOP. 2. CHECK FOR SHORT TO OTHER SOLENOID OUTPUTS a. Measure the resistance from contact 31 (wire 801-PK) to the other solenoid outputs of the machine harness connector. Expected Results:The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000
ohms. The solenoid harness circuitry is correct. Inspect harness connector contacts. Reconnect the harness connector to the module and check the message center for the same diagnostic code. If the diagnostic code is present, the interface module has failed. Replace the module. Refer to the Testing and Adjusting, “Module-Replace” section. STOP.
• NOT OK - The resistance is less than 5 ohms. The solenoid harness is shorted. Repair the machine harness or replace the machine harness. STOP. Illustration 265
g00507589
Schematic of the Automatic Lubrication Solenoid
This diagnostic code is recorded when the VIMS interface module reads the signal voltage of the solenoid and the voltage is high. There is a short to +battery in the solenoid circuit. 1. CHECK FOR SHORT TO +BATTERY a. Turn the disconnect switch and the key start switch to the OFF position.
291 Testing and Adjusting Section
i00994403
CID 0378 FMI 05 Solenoid Valve (Automatic Lubrication) Current Below Normal - Test SMCS Code: 5479-038-LZ; 7540-038-JV
c. Measure the resistance from contact 31 of the solenoid circuit (wire 801-PK) to the solenoid return (frame ground). Expected Results: The resistance is 30 to 65 ohms. Results:
• OK - The resistance is 30 to 65 ohms.
The resistance of the solenoid circuitry is correct. Inspect the contacts of harness connectors. Reconnect the harness connector to the module and check the message center for the same diagnostic code. If the diagnostic code is present, the interface module has failed. Replace the VIMS interface module. Refer to the Testing and Adjustment, “Module - Replace” section. STOP.
• NOT OK - The resistance is NOT 30 to
65 ohms. The solenoid has failed or the circuitry of the solenoid harness has failed. Verify the machine harness. Repair the machine harness or replace the machine harness, if necessary. If the machine harness is not the cause of the diagnostic code then replace the solenoid. STOP.
Illustration 266
g00507589
Schematic of the Automatic Lubrication Solenoid
This diagnostic code is recorded when the VIMS module reads the electrical circuit for this solenoid and the circuit is open. 1. CHECK FOR OPEN HARNESS a. Turn the key start switch and the disconnect switch to the OFF position. b. Disconnect the machine harness connector from the module.
292 Testing and Adjusting Section
i00994405
CID 0378 FMI 06 Solenoid Valve (Automatic Lubrication) Current Above Normal - Test SMCS Code: 5479-038-LZ; 7540-038-JV
b. Disconnect the machine harness connector from the module. c. Measure the resistance between contact 31 (wire 801-PK) of the machine harness connector for the interface module and contact 2 (wire 201-BK or wire A251-BK) of the machine harness connector for the solenoid. Expected Results:The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000 ohms. The circuitry of the solenoid harness is correct. Inspect the contacts of the harness connector. Reconnect the harness connector to the module and check the message center for the same diagnostic code. If the diagnostic code is present, the module has failed. Replace the VIMS interface module. Refer to the Testing and Adjusting, “Module-Replace” section. STOP.
• NOT OK - The resistance is less than 5 ohms. The solenoid is shorted to ground or machine harness is shorted to ground. Verify the machine harness. Repair the machine harness or replace the machine harness, if necessary. If the machine harness is NOT the cause of this diagnostic code, then replace the solenoid. STOP.
Illustration 267
g00507589
Schematic of the Automatic Lubrication Solenoid
This diagnostic code is recorded when the VIMS module reads the electrical circuit for this solenoid and the circuit is shorted to ground. 1. CHECK FOR SHORT TO GROUND a. Turn the key start switch and the disconnect switch to the OFF position.
293 Testing and Adjusting Section
i00994410
CID 0378 FMI 11 Solenoid Valve (Automatic Lubrication) Failure Mode Not Identifiable Test SMCS Code: 5479-038-LZ; 7540-038-JV
This diagnostic code is recorded when the VIMS interface module has failed internally. Turn the disconnect switch and the key start switch to the OFF position. Wait for ten seconds. Turn the disconnect switch and the key start switch to the ON position. Check the message center for the same diagnostic code. If the diagnostic code is still active, the VIMS interface module has failed. Replace the VIMS interface module. Refer to the Testing and Adjusting, “Module-Replace” section. i01382395
CID 0379 FMI 03 Pressure Sensor (Automatic Lubrication) Voltage Above Normal - Test SMCS Code: 7540-038-PXS
Illustration 269 Illustration 268 Schematic of the Automatic Lubrication Solenoid
g00507589
g00730057
Schematic of the Pressure Sensor (Auto Lube)
This diagnostic code is recorded when the VIMS reads the voltage of the pressure sensor (auto lube) and the voltage is above normal. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• A shorted harness • An open supply circuit to the sensor
294 Testing and Adjusting Section
• A failed sensor • An open circuit • The VIMS interface Module may have failed. This is unlikely. Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 8 DCV. Results:
• OK - The voltage is approximately 8 DCV.
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP. 3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
• OK - The voltage is approximately 5 DCV. The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT.
The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately
8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2.
2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground.
a. Turn the key start switch and the disconnect switch to the OFF position. b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms.
Expected Results: The voltage should measure approximately 8 DCV.
Results:
Results:
• OK - The resistance measures less than 10 ohms. The circuit is correct. Proceed to 5.
295 Testing and Adjusting Section
• NOT OK - The resistance is greater than
5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP.
5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position.
i01382391
CID 0379 FMI 04 Pressure Sensor (Automatic Lubrication) Voltage Below Normal - Test SMCS Code: 7540-038-PXS
b. The machine harness remains disconnected from the VIMS interface module. c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of +Battery. Expected Results: Each measurement is greater than 5000 ohms.
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less
than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP.
Illustration 270
g00730057
Schematic of the Pressure Sensor (Auto Lube)
This diagnostic code is recorded when the VIMS reads the voltage of the pressure sensor (auto lube) and the voltage is below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
296 Testing and Adjusting Section
b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor.
a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors.
Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active.
c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code.
Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3.
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0379 FMI 04 is no longer active. Results:
• YES - The diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - The diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
297 Testing and Adjusting Section
i01382388
CID 0379 FMI 06 Pressure Sensor (Automatic Lubrication) Current Above Normal - Test SMCS Code: 7540-038-PXS
b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: The VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position.
Illustration 271
g00730057
Schematic of the Pressure Sensor (Auto Lube) This diagnostic code is recorded when the VIMS reads the current of the pressure sensor (auto lube) and the current is above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3.
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
298 Testing and Adjusting Section
a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors.
This diagnostic code is recorded when VIMS reads the signal wire of the front brake oil temperature sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module.
c. Turn the disconnect switch and the key start switch to the ON position.
The possible causes of this diagnostic code are listed here:
d. Observe the status of the diagnostic code.
• A shorted harness
e. Operate the machine.
• An open supply circuit to the sensor
f. Observe the status of the diagnostic code.
• A failed sensor
Expected Result: The diagnostic code CID 0379 FMI 06 is no longer active.
• An open circuit • The VIMS interface module may have failed. This is unlikely.
Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP. i00984125
CID 0425 FMI 03 Pressure Sensor (Front Brake Oil) Voltage Above Normal - Test SMCS Code: 4251-038-PXS
1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 8 DCV. Results:
• OK - The voltage is approximately 8 DCV. The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately
8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2.
2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. Illustration 272 Schematic of the Front Brake Oil Pressure Sensor
g00503409
b. Disconnect the sensor from the machine harness.
299 Testing and Adjusting Section
c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground.
Results:
• OK - The resistance measures less than 10 ohms. The circuit is correct. Proceed to 5.
Expected Results: The voltage should measure approximately 8 DCV. Results:
• NOT OK - The resistance is greater than 5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP.
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP. 3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
• OK - The voltage is approximately 5 DCV. The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT. a. Turn the key start switch and the disconnect switch to the OFF position. b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms.
b. The machine harness remains disconnected from the VIMS interface module. c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts. Expected Results: Each measurement is greater than 5000 ohms.
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP.
300 Testing and Adjusting Section
i00984516
CID 0425 FMI 04 Pressure Sensor (Front Brake Oil) Voltage Below Normal - Test
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
SMCS Code: 4251-038-PXS
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. Illustration 273
g00503409
c. Disconnect the machine harness from the VIMS interface module.
Schematic of the Front Brake Oil Pressure Sensor
This diagnostic code is recorded when VIMS reads the voltage of the front brake oil pressure sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000
ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code.
301 Testing and Adjusting Section
Expected Result: The diagnostic code CID 0425 FMI 04 is no longer active.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP. i00984527
CID 0425 FMI 06 Pressure Sensor (Front Brake Oil) Current Above Normal - Test SMCS Code: 4251-038-PXS
Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO
longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. Illustration 274
g00503409
Schematic of the Front Brake Oil Pressure Sensor
This diagnostic code is recorded when VIMS reads the current of the front brake oil pressure sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely.
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
302 Testing and Adjusting Section
• NOT OK - Resistance is less than 5000
ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
i00984136
CID 0426 FMI 03 Pressure Sensor (Rear Brake Oil) Voltage Above Normal - Test SMCS Code: 4251-038-PXS
a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code. g00503445
Expected Result: The diagnostic code CID 0425 FMI 06 is no longer active.
Illustration 275
Results:
This diagnostic code is recorded when VIMS reads the signal wire of the rear brake oil temperature sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module.
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
Schematic of the Rear Brake Oil Temperature Sensor
The possible causes of this diagnostic code are listed here:
• A shorted harness • An open supply circuit to the sensor • A failed sensor • An open circuit • The VIMS interface Module may have failed. This is unlikely. Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
303 Testing and Adjusting Section
b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 8 DCV.
• OK - The voltage is approximately 5 DCV.
The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT.
Results:
• OK - The voltage is approximately 8 DCV.
a. Turn the key start switch and the disconnect switch to the OFF position.
The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately 8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2. 2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground.
b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms. Results:
Expected Results: The voltage should measure approximately 8 DCV.
• OK - The resistance measures less than 10
Results:
• NOT OK - The resistance is greater than
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP.
ohms. The circuit is correct. Proceed to 5. 5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP. 5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module.
3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts. Expected Results: Each measurement is greater than 5000 ohms.
304 Testing and Adjusting Section
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP. i00984540
CID 0426 FMI 04 Pressure Sensor (Rear Brake Oil) Voltage Below Normal - Test SMCS Code: 4251-038-PXS
b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness.
Illustration 276
g00503445
Schematic of the Rear Brake Oil Pressure Sensor
This diagnostic code is recorded when VIMS reads the voltage of the rear brake oil pressure sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground. • The VIMS interface module has failed. This is unlikely. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
305 Testing and Adjusting Section
a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position.
This diagnostic code is recorded when VIMS reads the current of the rear brake oil pressure sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
d. Observe the status of the diagnostic code.
• The sensor has failed.
e. Operate the machine.
• The signal circuit in the machine harness is f. Observe the status of the diagnostic code.
shorted to ground.
Expected Result: The diagnostic code CID 0426 FMI 04 is no longer active.
• The VIMS interface module has failed. This is
Results:
1. CHECK THE SENSOR.
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
unlikely.
a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
i00984578
CID 0426 FMI 06 Pressure Sensor (Rear Brake Oil) Current Above Normal - Test
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
SMCS Code: 4251-038-PXS
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. Illustration 277 Schematic of the Rear Brake Oil Pressure Sensor
g00503445
c. Disconnect the machine harness from the VIMS interface module.
306 Testing and Adjusting Section
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms.
i00984143
CID 0427 FMI 03 Temperature Sensor (Front Axle Oil) Voltage Above Normal - Test SMCS Code: 3260-038-NS
Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. g00500951
a. Using established procedures, clean the contacts of the harness connectors.
Illustration 278
b. Reconnect all harness connectors.
This diagnostic code is recorded when VIMS reads the signal wire of the front axle oil temperature sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module.
c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code.
Schematic of the Front Axle Oil Temperature Sensor
The possible causes of this diagnostic code are listed here:
• A shorted harness • An open supply circuit to the sensor
Expected Result: The diagnostic code CID 0426 FMI 06 is no longer active.
• A failed sensor
Results:
• An open circuit
• YES - Diagnostic code is NOT active. The
• The VIMS interface module may have failed. This
diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
is unlikely. Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
307 Testing and Adjusting Section
b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 8 DCV.
• OK - The voltage is approximately 5 DCV.
The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT.
Results:
• OK - The voltage is approximately 8 DCV.
a. Turn the key start switch and the disconnect switch to the OFF position.
The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately 8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2. 2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground.
b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms. Results:
Expected Results: The voltage should measure approximately 8 DCV.
• OK - The resistance measures less than 10
Results:
• NOT OK - The resistance is greater than
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP.
ohms. The circuit is correct. Proceed to 5. 5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP. 5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module.
3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts. Expected Results: Each measurement is greater than 5000 ohms.
308 Testing and Adjusting Section
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP. i00984582
CID 0427 FMI 04 Temperature Sensor (Front Axle Oil) Voltage Below Normal - Test SMCS Code: 3260-038-NS
b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness.
Illustration 279
g00500951
Schematic of the Front Axle Oil Temperature Sensor
This diagnostic code is recorded when VIMS reads the voltage of the front axle oil temperature sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground. • The VIMS interface module has failed. This is unlikely. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
309 Testing and Adjusting Section
a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position.
This diagnostic code is recorded when VIMS reads the current of the front axle oil temperature sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
d. Observe the status of the diagnostic code.
• The sensor has failed.
e. Operate the machine.
• The signal circuit in the machine harness is f. Observe the status of the diagnostic code.
shorted to ground.
Expected Result: The diagnostic code CID 0427 FMI 06 is no longer active.
• The VIMS interface module has failed. This is
Results:
1. CHECK THE SENSOR.
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
unlikely.
a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
i00984610
CID 0427 FMI 06 Temperature Sensor (Front Axle Oil) Current Above Normal - Test
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
SMCS Code: 3260-038-NS
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. Illustration 280 Schematic of the Front Axle Oil Temperature Sensor
g00500951
c. Disconnect the machine harness from the VIMS interface module.
310 Testing and Adjusting Section
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms.
i00984617
CID 0428 FMI 03 Temperature Sensor (Rear Axle Oil) Voltage Above Normal - Test SMCS Code: 3260-038-NS
Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. g00502794
a. Using established procedures, clean the contacts of the harness connectors.
Illustration 281
b. Reconnect all harness connectors.
This diagnostic code is recorded when VIMS reads the signal wire of the rear axle oil temperature sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module.
c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code.
Schematic of the Rear Axle Oil Temperature Sensor
The possible causes of this diagnostic code are listed here:
• A shorted harness • An open supply circuit to the sensor
Expected Result: The diagnostic code CID 0427 FMI 06 is no longer active.
• A failed sensor
Results:
• An open circuit
• YES - Diagnostic code is NOT active. The
• The VIMS interface Module may have failed. This
diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
is unlikely. Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
311 Testing and Adjusting Section
b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 8 DCV.
• OK - The voltage is approximately 5 DCV.
The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT.
Results:
• OK - The voltage is approximately 8 DCV.
a. Turn the key start switch and the disconnect switch to the OFF position.
The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately 8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2. 2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground.
b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms. Results:
Expected Results: The voltage should measure approximately 8 DCV.
• OK - The resistance measures less than 10
Results:
• NOT OK - The resistance is greater than
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP.
ohms. The circuit is correct. Proceed to 5. 5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP. 5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module.
3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts. Expected Results: Each measurement is greater than 5000 ohms.
312 Testing and Adjusting Section
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP. i00984633
CID 0428 FMI 04 Temperature Sensor (Rear Axle Oil) Voltage Below Normal - Test SMCS Code: 3260-038-NS
b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness.
Illustration 282
g00502794
Schematic of the Rear Axle Oil Temperature Sensor
This diagnostic code is recorded when VIMS reads the voltage of the rear axle oil temperature sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground. • The VIMS interface module has failed. This is unlikely. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
313 Testing and Adjusting Section
a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position.
This diagnostic code is recorded when VIMS reads the current of the rear axle oil temperature sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
d. Observe the status of the diagnostic code.
• The sensor has failed.
e. Operate the machine.
• The signal circuit in the machine harness is f. Observe the status of the diagnostic code.
shorted to ground.
Expected Result: The diagnostic code CID 0427 FMI 04 is no longer active.
• The VIMS interface module has failed. This is
Results:
1. CHECK THE SENSOR.
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
unlikely.
a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
i00984664
CID 0428 FMI 06 Temperature Sensor (Rear Axle Oil) Current Above Normal - Test
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
SMCS Code: 3260-038-NS
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. Illustration 283 Schematic of the Rear Axle Oil Temperature Sensor
g00502794
c. Disconnect the machine harness from the VIMS interface module.
314 Testing and Adjusting Section
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms.
i00984678
CID 0429 FMI 03 Pressure Sensor (Steering Oil) Voltage Above Normal - Test SMCS Code: 430S-038-PXS
Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. g00502898
a. Using established procedures, clean the contacts of the harness connectors.
Illustration 284
b. Reconnect all harness connectors.
This diagnostic code is recorded when VIMS reads the signal wire of the steering oil pressure sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module.
c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code.
Schematic of the Steering Oil Pressure Sensor
The possible causes of this diagnostic code are listed here:
• A shorted harness • An open supply circuit to the sensor
Expected Result: The diagnostic code CID 0428 FMI 06 is no longer active.
• A failed sensor
Results:
• An open circuit
• YES - Diagnostic code is NOT active. The
• The VIMS interface Module may have failed. This
diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
is unlikely. Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
315 Testing and Adjusting Section
b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 24 DCV.
• OK - The voltage is approximately 5 DCV.
The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT.
Results:
• OK - The voltage is approximately 24 DCV.
a. Turn the key start switch and the disconnect switch to the OFF position.
The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately 24 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2. 2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground.
b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms. Results:
Expected Results: The voltage should measure approximately 24 DCV.
• OK - The resistance measures less than 10
Results:
• NOT OK - The resistance is greater than
• OK - The voltage measures approximately 24 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure
approximately 24 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP.
ohms. The circuit is correct. Proceed to 5. 5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP. 5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module.
3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts. Expected Results: Each measurement is greater than 5000 ohms.
316 Testing and Adjusting Section
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP. i00984681
CID 0429 FMI 04 Pressure Sensor (Steering Oil) Voltage Below Normal - Test SMCS Code: 430S-038-PXS
b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness.
Illustration 285
g00502898
Schematic of the Steering Pump Pilot Oil Pressure Sensor
This diagnostic code is recorded when VIMS reads the voltage of the steering pump pilot oil pressure sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module.
b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground.
The possible causes of this diagnostic code are listed here:
Expected Result: The resistance is greater than 5000 ohms.
• The sensor has failed.
Results:
• The signal circuit in the machine harness is
• OK - Resistance is greater than 5000 ohms.
shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
317 Testing and Adjusting Section
a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position.
This diagnostic code is recorded when VIMS reads the current of the steering pump pilot oil pressure sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module.
d. Observe the status of the diagnostic code.
The possible causes of this diagnostic code are listed here:
e. Operate the machine.
• The sensor has failed.
f. Observe the status of the diagnostic code.
• The signal circuit in the machine harness is shorted to ground.
Expected Result: The diagnostic code CID 0429 FMI 04 is no longer active.
• The VIMS interface module has failed. This is unlikely.
Results: 1. CHECK THE SENSOR.
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
i00984683
CID 0429 FMI 06 Pressure Sensor (Steering Oil) Current Above Normal - Test
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO
SMCS Code: 430S-038-PXS
longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. Illustration 286
g00502898
Schematic of the Steering Pump Pilot Oil Pressure Sensor
c. Disconnect the machine harness from the VIMS interface module.
318 Testing and Adjusting Section
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms.
i00984687
CID 0430 FMI 03 Pressure Sensor (Steering Pilot Oil) Voltage Above Normal - Test SMCS Code: 430S-038-PXS
Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. g00502954
a. Using established procedures, clean the contacts of the harness connectors.
Illustration 287
b. Reconnect all harness connectors.
This diagnostic code is recorded when VIMS reads the signal wire of the steering pilot oil pressure sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module.
c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code.
Schematic of the Steering Pilot Oil Pressure Sensor
The possible causes of this diagnostic code are listed here:
• A shorted harness • An open supply circuit to the sensor
Expected Result: The diagnostic code CID 0429 FMI 06 is no longer active.
• A failed sensor
Results:
• An open circuit
• YES - Diagnostic code is NOT active. The
• The VIMS interface Module may have failed. This
diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
is unlikely. Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
319 Testing and Adjusting Section
b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 8 DCV.
• OK - The voltage is approximately 5 DCV.
The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT.
Results:
• OK - The voltage is approximately 8 DCV.
a. Turn the key start switch and the disconnect switch to the OFF position.
The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately 8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2. 2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground.
b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms. Results:
Expected Results: The voltage should measure approximately 8 DCV.
• OK - The resistance measures less than 10
Results:
• NOT OK - The resistance is greater than
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP.
ohms. The circuit is correct. Proceed to 5. 5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP. 5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module.
3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts. Expected Results: Each measurement is greater than 5000 ohms.
320 Testing and Adjusting Section
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP. i00984689
CID 0430 FMI 04 Pressure Sensor (Steering Pilot Oil) Voltage Below Normal - Test SMCS Code: 430S-038-PXS
b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness.
Illustration 288
g00502954
Schematic of the Steering Main Pump Pressure Sensor
This diagnostic code is recorded when VIMS reads the voltage of the steering main pump pressure sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module.
b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground.
The possible causes of this diagnostic code are listed here:
Expected Result: The resistance is greater than 5000 ohms.
• The sensor has failed.
Results:
• The signal circuit in the machine harness is
• OK - Resistance is greater than 5000 ohms.
shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
321 Testing and Adjusting Section
a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position.
This diagnostic code is recorded when VIMS reads the current of the steering pilot oil pressure sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
d. Observe the status of the diagnostic code.
• The sensor has failed.
e. Operate the machine.
• The signal circuit in the machine harness is f. Observe the status of the diagnostic code.
shorted to ground.
Expected Result: The diagnostic code CID 0430 FMI 04 is no longer active.
• The VIMS interface module has failed. This is
Results:
1. CHECK THE SENSOR.
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
unlikely.
a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
i00984691
CID 0430 FMI 06 Pressure Sensor (Steering Pilot Oil) Current Above Normal - Test
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
SMCS Code: 430S-038-PXS
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. Illustration 289 Schematic of the Steering Pilot Oil Pressure Sensor
g00502954
c. Disconnect the machine harness from the VIMS interface module.
322 Testing and Adjusting Section
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms.
i00984692
CID 0434 FMI 03 Pressure Sensor (Hydraulic Pilot Oil) Voltage Above Normal - Test SMCS Code: 5050-038-PXS
Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. g00503343
a. Using established procedures, clean the contacts of the harness connectors.
Illustration 290
b. Reconnect all harness connectors.
This diagnostic code is recorded when VIMS reads the signal wire of the hydraulic (implement) pilot oil pressure sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module.
c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code.
Schematic of the Hydraulic (Implement) Pilot Oil Pressure Sensor
The possible causes of this diagnostic code are listed here:
• A shorted harness • An open supply circuit to the sensor
Expected Result: The diagnostic code CID 0430 FMI 06 is no longer active.
• A failed sensor
Results:
• An open circuit
• YES - Diagnostic code is NOT active. The
• The VIMS interface Module may have failed. This
diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
is unlikely. Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
323 Testing and Adjusting Section
b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 8 DCV.
• OK - The voltage is approximately 5 DCV.
The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT.
Results:
• OK - The voltage is approximately 8 DCV.
a. Turn the key start switch and the disconnect switch to the OFF position.
The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately 8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2. 2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground.
b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms. Results:
Expected Results: The voltage should measure approximately 8 DCV.
• OK - The resistance measures less than 10
Results:
• NOT OK - The resistance is greater than
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP.
ohms. The circuit is correct. Proceed to 5. 5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP. 5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module.
3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts. Expected Results: Each measurement is greater than 5000 ohms.
324 Testing and Adjusting Section
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP. i00984694
CID 0434 FMI 04 Pressure Sensor (Hydraulic Pilot Oil) Voltage Below Normal - Test SMCS Code: 5050-038-PXS
b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness.
Illustration 291
g00503343
Schematic of the Hyrdraulic (Implement) Pilot Oil Pressure Sensor
This diagnostic code is recorded when VIMS reads the voltage of the hyrdraulic (implement) pilot oil pressure sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module.
b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground.
The possible causes of this diagnostic code are listed here:
Expected Result: The resistance is greater than 5000 ohms.
• The sensor has failed.
Results:
• The signal circuit in the machine harness is
• OK - Resistance is greater than 5000 ohms.
shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
325 Testing and Adjusting Section
a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position.
This diagnostic code is recorded when VIMS reads the current of the hydraulic (implement) pilot oil pressure sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module.
d. Observe the status of the diagnostic code.
The possible causes of this diagnostic code are listed here:
e. Operate the machine.
• The sensor has failed.
f. Observe the status of the diagnostic code.
• The signal circuit in the machine harness is shorted to ground.
Expected Result: The diagnostic code CID 0434 FMI 04 is no longer active.
• The VIMS interface module has failed. This is unlikely.
Results: 1. CHECK THE SENSOR.
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
i00984695
CID 0434 FMI 06 Pressure Sensor (Hydraulic Pilot Oil) Current Above Normal - Test
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO
SMCS Code: 5050-038-PXS
longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. Illustration 292
g00503343
Schematic of the Hydraulic (Implement) Pilot Oil Pressure Sensor
c. Disconnect the machine harness from the VIMS interface module.
326 Testing and Adjusting Section
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms.
i00984698
CID 0436 FMI 03 Pressure Sensor (Torque Converter Oil) Voltage Above Normal - Test SMCS Code: 3101-038-PXS
Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. g00503364
a. Using established procedures, clean the contacts of the harness connectors.
Illustration 293
b. Reconnect all harness connectors.
This diagnostic code is recorded when VIMS reads the signal wire of the torque converter oil pressure sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module.
c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code.
Schematic of the Torque Converter Oil Pressure Sensor
The possible causes of this diagnostic code are listed here:
• A shorted harness • An open supply circuit to the sensor
Expected Result: The diagnostic code CID 0434 FMI 06 is no longer active.
• A failed sensor
Results:
• An open circuit
• YES - Diagnostic code is NOT active. The
• The VIMS interface Module may have failed. This
diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
is unlikely. Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
327 Testing and Adjusting Section
b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 8 DCV.
• OK - The voltage is approximately 5 DCV.
The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT.
Results:
• OK - The voltage is approximately 8 DCV.
a. Turn the key start switch and the disconnect switch to the OFF position.
The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately 8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2. 2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground.
b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms. Results:
Expected Results: The voltage should measure approximately 8 DCV.
• OK - The resistance measures less than 10
Results:
• NOT OK - The resistance is greater than
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP.
ohms. The circuit is correct. Proceed to 5. 5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP. 5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module.
3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts. Expected Results: Each measurement is greater than 5000 ohms.
328 Testing and Adjusting Section
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP. i00984701
CID 0436 FMI 04 Pressure Sensor (Torque Converter Oil) Voltage Below Normal - Test SMCS Code: 3101-038-PXS
b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness.
Illustration 294
g00503364
Schematic of the Torque Converter Oil Pressure Sensor
This diagnostic code is recorded when VIMS reads the voltage of the torque converter oil pressure sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module.
b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground.
The possible causes of this diagnostic code are listed here:
Expected Result: The resistance is greater than 5000 ohms.
• The sensor has failed.
Results:
• The signal circuit in the machine harness is
• OK - Resistance is greater than 5000 ohms.
shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
329 Testing and Adjusting Section
a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position.
This diagnostic code is recorded when VIMS reads the current of the torque converter oil pressure sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module.
d. Observe the status of the diagnostic code.
The possible causes of this diagnostic code are listed here:
e. Operate the machine.
• The sensor has failed.
f. Observe the status of the diagnostic code.
• The signal circuit in the machine harness is shorted to ground.
Expected Result: The diagnostic code CID 0436 FMI 04 is no longer active.
• The VIMS interface module has failed. This is unlikely.
Results: 1. CHECK THE SENSOR.
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
i00984703
CID 0436 FMI 06 Pressure Sensor (Torque Converter Oil) Current Above Normal - Test
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO
SMCS Code: 3101-038-PXS
longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. Illustration 295 Schematic of the Torque Converter Oil Pressure Sensor
g00503364
c. Disconnect the machine harness from the VIMS interface module.
330 Testing and Adjusting Section
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms.
i00994423
CID 0438 FMI 03 Solenoid Valve (No. 1) (Warm Up) Voltage Above Normal - Test SMCS Code: 5479-038-II
Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. g00507587
a. Using established procedures, clean the contacts of the harness connectors.
Illustration 296
b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position.
This diagnostic code is recorded when the VIMS interface module reads the signal voltage of the solenoid and the voltage is high. There is a short to +battery in the solenoid circuit.
d. Observe the status of the diagnostic code.
1. CHECK FOR SHORT TO +BATTERY
e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0436 FMI 06 is no longer active. Results:
• YES - Diagnostic code is NOT active. The
diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
Schematic of the Warm Up Solenoid No. 1
a. Turn the disconnect switch and the key start switch to the OFF position. b. Disconnect the machine harness connector from the VIMS interface module. c. Measure the resistance from contact 31 (wire E761-BU) to the +battery contact 1 (wire 113-OR) of the machine harness connector. Expected Resutls:The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000 ohms. The solenoid harness is not shorted to +battery. Proceed to 2.
• NOT OK - The resistance is less than 5
ohms. The solenoid harness is shorted to +battery. Repair the machine harness or replace the machine harness. STOP.
2. CHECK FOR SHORT TO OTHER SOLENOID OUTPUTS
331 Testing and Adjusting Section
a. Measure the resistance from contact 31 (wire E761-BU) to the other solenoid outputs of the machine harness connector.
c. Measure the resistance from contact 31 of the solenoid circuit (wire E761-BU) to the solenoid return (frame ground).
Expected Results:The resistance is greater than 5000 ohms.
Expected Results: The resistance is 30 to 65 ohms.
Results:
Results:
• OK - The resistance is greater than 5000
• OK - The resistance is 30 to 65 ohms.
ohms. The solenoid harness circuitry is correct. Inspect harness connector contacts. Reconnect the harness connector to the module and check the message center for the same diagnostic code. If the diagnostic code is present, the interface module has failed. Replace the module. Refer to the Testing and Adjusting, “Module-Replace” section. STOP.
• NOT OK - The resistance is less than 5 ohms. The solenoid harness is shorted. Repair the machine harness or replace the machine harness. STOP. i00994445
CID 0438 FMI 05 Solenoid Valve (No. 1) (Warm Up) Current Below Normal - Test
The resistance of the solenoid circuitry is correct. Inspect the contacts of harness connectors. Reconnect the harness connector to the module and check the message center for the same diagnostic code. If the diagnostic code is present, the interface module has failed. Replace the VIMS interface module. Refer to the Testing and Adjustment, “Module - Replace” section. STOP.
• NOT OK - The resistance is NOT 30 to
65 ohms. The solenoid has failed or the circuitry of the solenoid harness has failed. Verify the machine harness. Repair the machine harness or replace the machine harness, if necessary. If the machine harness is not the cause of the diagnostic code then replace the solenoid. STOP. i00994446
CID 0438 FMI 06 Solenoid Valve (No. 1) (Warm Up) Current Above Normal - Test
SMCS Code: 5479-038-II
SMCS Code: 5479-038-II
Illustration 297
g00507587
Schematic Warm Up Valve No. 1 Solenoid
This diagnostic code is recorded when the VIMS module reads the electrical circuit for this solenoid and the circuit is open.
Illustration 298
g00507587
Schematic of the Warm Up Valve No. 1 Solenoid
1. CHECK FOR OPEN HARNESS a. Turn the key start switch and the disconnect switch to the OFF position. b. Disconnect the machine harness connector from the module.
This diagnostic code is recorded when the VIMS module reads the electrical circuit for this solenoid and the circuit is shorted to ground. 1. CHECK FOR SHORT TO GROUND
332 Testing and Adjusting Section
a. Turn the key start switch and the disconnect switch to the OFF position. b. Disconnect the machine harness connector from the module. c. Measure the resistance between contact 31 (wire E761-BU) of the machine harness connector for the interface module and contact 2 (wire 201-BK) of the machine harness connector for the solenoid.
i00994447
CID 0438 FMI 11 Solenoid Valve (No. 1) (Warm Up) Failure Mode Not Identifiable - Test SMCS Code: 5479-038-II
Expected Results:The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000 ohms. The circuitry of the solenoid harness is correct. Inspect the contacts of the harness connector. Reconnect the harness connector to the module and check the message center for the same diagnostic code. If the diagnostic code is present, the module has failed. Replace the VIMS interface module. Refer to the Testing and Adjusting, “Module-Replace”section. STOP.
• NOT OK - The resistance is less than 5 ohms. The solenoid is shorted to ground or machine harness is shorted to ground. Verify the machine harness. Repair the machine harness or replace the machine harness, if necessary. If the machine harness is NOT the cause of this diagnostic code, then replace the solenoid. STOP.
Illustration 299
g00507587
Schematic of the Warm Up Valve No. 1 Solenoid
This diagnostic code is recorded when the VIMS interface module has failed internally. Turn the disconnect switch and the key start switch to the OFF position. Wait for ten seconds. Turn the disconnect switch and the key start switch to the ON position. Check the message center for the same diagnostic code. If the diagnostic code is still active, the VIMS interface module has failed. Replace the VIMS interface module. Refer to the Testing and Adjusting, “Module-Replace” section.
333 Testing and Adjusting Section
i00994451
CID 0439 FMI 03 Solenoid Valve (No. 2) (Warm Up) Voltage Above Normal - Test
Expected Results:The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000 ohms. The solenoid harness circuitry is correct. Inspect harness connector contacts. Reconnect the harness connector to the module and check the message center for the same diagnostic code. If the diagnostic code is present, the interface module has failed. Replace the module. Refer to the Testing and Adjusting, “Module-Replace” section. STOP.
SMCS Code: 5479-038-II
• NOT OK - The resistance is less than 5 ohms. The solenoid harness is shorted. Repair the machine harness or replace the machine harness. STOP.
Illustration 300
g00507592
Schematic of the Warm Up valve No. 2 Solenoid
This diagnostic code is recorded when the VIMS interface module reads the signal voltage of the solenoid and the voltage is high. There is a short to +battery in the solenoid circuit.
i00994452
CID 0439 FMI 05 Solenoid Valve (No. 2) (Warm Up) Current Below Normal - Test SMCS Code: 5479-038-II
1. CHECK FOR SHORT TO +BATTERY a. Turn the disconnect switch and the key start switch to the OFF position. b. Disconnect the machine harness connector from the VIMS interface module. c. Measure the resistance from contact 33 (wire E762-WH) to the +battery contact 1 (wire 113-OR) of the machine harness connector. Expected Resutls:The resistance is greater than 5000 ohms.
Illustration 301
g00507592
Results:
Schematic of the Warm Up Valve No. 2 Solenoid
• OK - The resistance is greater than 5000
This diagnostic code is recorded when the VIMS module reads the electrical circuit for this solenoid and the circuit is open.
ohms. The solenoid harness is not shorted to +battery. Proceed to 2.
• NOT OK - The resistance is less than 5
ohms. The solenoid harness is shorted to +battery. Repair the machine harness or replace the machine harness. STOP.
2. CHECK FOR SHORT TO OTHER SOLENOID OUTPUTS a. Measure the resistance from contact 33 (wire E762-WH) to the other solenoid outputs of the machine harness connector.
1. CHECK FOR OPEN HARNESS a. Turn the key start switch and the disconnect switch to the OFF position. b. Disconnect the machine harness connector from the module. c. Measure the resistance from contact 33 of the solenoid circuit (wire E762-WH) to the solenoid return (frame ground).
334 Testing and Adjusting Section
Expected Results: The resistance is 30 to 65 ohms.
b. Disconnect the machine harness connector from the module.
Results:
c. Measure the resistance between contact 33 (wire E762-WH) of the machine harness connector for the interface module and contact 2 (wire 201-BK) of the machine harness connector for the solenoid.
• OK - The resistance is 30 to 65 ohms. The resistance of the solenoid circuitry is correct. Inspect the contacts of harness connectors. Reconnect the harness connector to the module and check the message center for the same diagnostic code. If the diagnostic code is present, the interface module has failed. Replace the VIMS interface module. Refer to the Testing and Adjustment, “Module - Replace” section. STOP.
• NOT OK - The resistance is NOT 30 to 65 ohms. The solenoid has failed or the circuitry of the solenoid harness has failed. Verify the machine harness. Repair the machine harness or replace the machine harness, if necessary. If the machine harness is not the cause of the diagnostic code then replace the solenoid. STOP.
Expected Results:The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000 ohms. The circuitry of the solenoid harness is correct. Inspect the contacts of the harness connector. Reconnect the harness connector to the module and check the message center for the same diagnostic code. If the diagnostic code is present, the module has failed. Replace the VIMS interface module. Refer to the Testing and Adjusting, “Module-Replace”section. STOP.
• NOT OK - The resistance is less than 5 i00994454
CID 0439 FMI 06 Solenoid Valve (No. 2) (Warm Up) Current Above Normal - Test
ohms. The solenoid is shorted to ground or machine harness is shorted to ground. Verify the machine harness. Repair the machine harness or replace the machine harness, if necessary. If the machine harness is NOT the cause of this diagnostic code, then replace the solenoid. STOP.
SMCS Code: 5479-038-II i00994456
CID 0439 FMI 11 Solenoid Valve (No. 2) (Warm Up) Failure Mode Not Identifiable - Test SMCS Code: 5479-038-II
Illustration 302
g00507592
Schematic of the Warm Up Valve No. 2 Solenoid
This diagnostic code is recorded when the VIMS module reads the electrical circuit for this solenoid and the circuit is shorted to ground. 1. CHECK FOR SHORT TO GROUND Illustration 303
a. Turn the key start switch and the disconnect switch to the OFF position.
Schematic of the Warm Up Valve No. 2 Solenoid
g00507592
335 Testing and Adjusting Section
This diagnostic code is recorded when the VIMS interface module has failed internally. Turn the disconnect switch and the key start switch to the OFF position. Wait for ten seconds. Turn the disconnect switch and the key start switch to the ON position. Check the message center for the same diagnostic code. If the diagnostic code is still active, the VIMS interface module has failed. Replace the VIMS interface module. Refer to the Testing and Adjusting, “Module-Replace” section. i00994460
CID 0440 FMI 03 Solenoid Valve (No. 3) (Warm Up) Voltage Above Normal - Test
Results:
• OK - The resistance is greater than 5000 ohms. The solenoid harness is not shorted to +battery. Proceed to 2.
• NOT OK - The resistance is less than 5
ohms. The solenoid harness is shorted to +battery. Repair the machine harness or replace the machine harness. STOP.
2. CHECK FOR SHORT TO OTHER SOLENOID OUTPUTS a. Measure the resistance from contact 33 (wire E763-GN) to the other solenoid outputs of the machine harness connector. Expected Results:The resistance is greater than 5000 ohms.
SMCS Code: 5479-038-II
Results:
• OK - The resistance is greater than 5000 ohms. The solenoid harness circuitry is correct. Inspect harness connector contacts. Reconnect the harness connector to the module and check the message center for the same diagnostic code. If the diagnostic code is present, the interface module has failed. Replace the module. Refer to the Testing and Adjusting, “Module-Replace” section. STOP.
• NOT OK - The resistance is less than 5 ohms. The solenoid harness is shorted. Repair the machine harness or replace the machine harness. STOP.
Illustration 304
g00507593
Schematic of the Warm Up Valve No. 3 Solenoid
This diagnostic code is recorded when the VIMS interface module reads the signal voltage of the solenoid and the voltage is high. There is a short to +battery in the solenoid circuit. 1. CHECK FOR SHORT TO +BATTERY a. Turn the disconnect switch and the key start switch to the OFF position. b. Disconnect the machine harness connector from the VIMS interface module. c. Measure the resistance from contact 33 (wire E763-GN) to the +battery contact 1 (wire 113-OR) of the machine harness connector. Expected Resutls:The resistance is greater than 5000 ohms.
336 Testing and Adjusting Section
i00994461
CID 0440 FMI 05 Solenoid Valve (No. 3) (Warm Up) Current Below Normal - Test SMCS Code: 5479-038-II
• OK - The resistance is 30 to 65 ohms.
The resistance of the solenoid circuitry is correct. Inspect the contacts of harness connectors. Reconnect the harness connector to the module and check the message center for the same diagnostic code. If the diagnostic code is present, the interface module has failed. Replace the VIMS interface module. Refer to the Testing and Adjustment, “Module - Replace” section. STOP.
• NOT OK - The resistance is NOT 30 to
65 ohms. The solenoid has failed or the circuitry of the solenoid harness has failed. Verify the machine harness. Repair the machine harness or replace the machine harness, if necessary. If the machine harness is not the cause of the diagnostic code then replace the solenoid. STOP. i00994462
CID 0440 FMI 06 Solenoid Valve (No. 3) (Warm Up) Current Above Normal - Test Illustration 305
g00507593
SMCS Code: 5479-038-II
Schematic of the Warm Up Valve No. 3 Solenoid
This diagnostic code is recorded when the VIMS module reads the electrical circuit for this solenoid and the circuit is open. 1. CHECK FOR OPEN HARNESS a. Turn the key start switch and the disconnect switch to the OFF position. b. Disconnect the machine harness connector from the module. c. Measure the resistance from contact 33 of the solenoid circuit (wire E763-GN) to the solenoid return (frame ground). Expected Results: The resistance is 30 to 65 ohms. Results:
Illustration 306
g00507593
Schematic of the Warm Up Valve No. 3 Solenoid
This diagnostic code is recorded when the VIMS module reads the electrical circuit for this solenoid and the circuit is shorted to ground. 1. CHECK FOR SHORT TO GROUND
337 Testing and Adjusting Section
a. Turn the key start switch and the disconnect switch to the OFF position. b. Disconnect the machine harness connector from the module. c. Measure the resistance between contact 33 (wire E763-GN) of the machine harness connector for the interface module and contact 2 (wire 201-BK) of the machine harness connector for the solenoid.
i00994463
CID 0440 FMI 11 Solenoid Valve (No. 3) (Warm Up) Failure Mode Not Identifiable - Test SMCS Code: 5479-038-II
Expected Results:The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000 ohms. The circuitry of the solenoid harness is correct. Inspect the contacts of the harness connector. Reconnect the harness connector to the module and check the message center for the same diagnostic code. If the diagnostic code is present, the module has failed. Replace the VIMS interface module. Refer to the Testing and Adjusting, “Module-Replace”section. STOP.
• NOT OK - The resistance is less than 5 ohms. The solenoid is shorted to ground or machine harness is shorted to ground. Verify the machine harness. Repair the machine harness or replace the machine harness, if necessary. If the machine harness is NOT the cause of this diagnostic code, then replace the solenoid. STOP.
Illustration 307
g00507593
Schematic of the Warm Up Valve No. 3 Solenoid
This diagnostic code is recorded when the VIMS interface module has failed internally. Turn the disconnect switch and the key start switch to the OFF position. Wait for ten seconds. Turn the disconnect switch and the key start switch to the ON position. Check the message center for the same diagnostic code. If the diagnostic code is still active, the VIMS interface module has failed. Replace the VIMS interface module. Refer to the Testing and Adjusting, “Module-Replace” section.
338 Testing and Adjusting Section
i00984744
CID 0457 FMI 03 Temperature Sensor (Brake Oil) Voltage Above Normal - Test
b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 8 DCV.
SMCS Code: 4251-038-NS
Results:
• OK - The voltage is approximately 8 DCV. The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately 8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2. 2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. Illustration 308
g00503387
a. The key start switch and the disconnect switch remain in the ON position.
Schematic of the Brake Oil Temperature Sensor
This diagnostic code is recorded when VIMS reads the signal wire of the brake oil temperature sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• A shorted harness • An open supply circuit to the sensor • A failed sensor • An open circuit • The VIMS interface Module may have failed. This is unlikely. Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground. Expected Results: The voltage should measure approximately 8 DCV. Results:
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP.
3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
339 Testing and Adjusting Section
• OK - The voltage is approximately 5 DCV.
The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT.
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP.
a. Turn the key start switch and the disconnect switch to the OFF position. b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor.
i00984746
CID 0457 FMI 04 Temperature Sensor (Brake Oil) Voltage Below Normal - Test SMCS Code: 4251-038-NS
e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms. Results:
• OK - The resistance measures less than 10 ohms. The circuit is correct. Proceed to 5.
• NOT OK - The resistance is greater than 5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP. 5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module. c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts. Expected Results: Each measurement is greater than 5000 ohms.
Illustration 309
g00503387
Schematic of the Brake Oil Temperature Sensor
This diagnostic code is recorded when VIMS reads the voltage of the brake oil temperature sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor.
340 Testing and Adjusting Section
Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area.
b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine.
Results: f. Observe the status of the diagnostic code.
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
Expected Result: The diagnostic code CID 0457 FMI 04 is no longer active. Results:
• NOT OK - This diagnostic code is NO
longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position.
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms.
i00984747
CID 0457 FMI 06 Temperature Sensor (Brake Oil) Current Above Normal - Test SMCS Code: 4251-038-NS
Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors.
Illustration 310 Schematic of the Brake Oil Temperature Sensor
g00503387
341 Testing and Adjusting Section
This diagnostic code is recorded when VIMS reads the current of the brake oil temperature sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area.
a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine.
Results: f. Observe the status of the diagnostic code.
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
Expected Result: The diagnostic code CID 0457 FMI 06 is no longer active. Results:
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module.
• YES - Diagnostic code is NOT active. The
diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
342 Testing and Adjusting Section
i01491867
CID 0458 FMI 03 Pressure Sensor (Tilt Cylinder Rod) Voltage Above Normal - Test SMCS Code: 5104-038-PXS The output frequency of the sensor changes as the pressure in the tilt cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Lift/Tilt Cylinder Pressure Sensor-Test” section of this manual for troubleshooting of this failure. i01491879
CID 0458 FMI 04 Pressure Sensor (Tilt Cylinder Rod) Voltage Below Normal - Test
i01305265
CID 0533 FMI 02 Machine Electronic Control Module (Integrated Brake) Incorrect Signal - Test SMCS Code: 7610-038-BRK This diagnostic code is recorded when the integrated brake control has dropped off the CAT data link 10 times within a ten minute period. The event is active until communication is reliable for more than ten minutes. This failure results in events that are logged against an ECM that can not be explained. The VIMS main module cannot communicate with this ECM or the ECM appears to work intermittently. 1. VERIFY THE HARDWARE AND THE SOFTWARE PART NUMBERS.
SMCS Code: 5104-038-PXS a. Verify that the following information is correct: The output frequency of the sensor changes as the pressure in the tilt cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Lift/Tilt Cylinder Pressure Sensor-Test” section of this manual for troubleshooting of this failure. i01491883
CID 0458 FMI 06 Pressure Sensor (Tilt Cylinder Rod) Current Above Normal - Test SMCS Code: 5104-038-PXS The output frequency of the sensor changes as the pressure in the tilt cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Lift/Tilt Cylinder Pressure Sensor-Test” section of this manual for troubleshooting of this failure.
• The part number of the VIMS configuration software
• The part number of the integrated brake control flash software.
• The part number of the VIMS main module • The part number of the integrated brake control Note: Consult the Business Unit that produces the product for the correct part numbers of the configuration software. Expected Result: All part numbers are correct. Results:
• OK - All part numbers are correct. Proceed to 2.
• NOT OK - All part numbers are NOT
correct. The installed VIMS main module or the integrated brake control has the wrong part number or the incorrect configuration software is installed. Replace the incorrect VIMS main module or the integrated brake control with a module that has the correct part number. Flash the correct configuration software. STOP.
2. INSPECT THE HARNESS CONNECTIONS.
343 Testing and Adjusting Section
a. Turn the disconnect switch to the OFF position. b. Inspect all harness connections that are related to the CAT data link. Make sure that the connectors are clean and tight. c. Check the connectors for proper mating. d. Check the wires at the connector. e. Check each wire for nicks or signs of abrasion in the insulation.
• NOT OK - The resistance is less than 5000
ohms. The machine harness has failed. There is a short between frame ground and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
4. CHECK FOR SHORT TO +BATTERY a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness.
f. Check for moisture at the connector. g. Check the connectors for dirty contacts or corroded contacts. h. Check each pin and each socket of the machine harness connectors. Expected Result: The machine harness connectors are tight and free of corrosion.
c. At the machine harness connector for the VIMS main module, perform the checks that are listed here:
• Measure the resistance between (+battery) connector contact 1 (wire 113-OR) and contact 6 (wire 882-PK) of the CAT data link circuit connector.
• Measure the resistance between (+battery) Results:
• OK - The machine harness connectors are
connector contact 1 (wire 113-OR), to the CAT data link circuit connector contact 7 (wire 893-GY).
tight and free of corrosion. Proceed to 3.
• NOT OK - The machine harness connectors are in need of repair. Repair the machine harness or replace the machine harness. STOP.
Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000 3. CHECK FOR SHORTS TO GROUND a. The disconnect switch remains in the OFF position. b. Disconnect the machine harness from all electronic control modules that use the CATdata link. c. At the machine harness for the VIMS main module, measure the resistance between frame ground and connector contacts 6 (wire 882-PK) and 7 (wire 893-GY) of the CAT data link circuit.
ohms. The harness circuit resistance is correct. Proceed to 5.
• NOT OK - The resistance is less than 5000 ohms. The machine harness has failed. There is a short between +battery and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 5. CHECK FOR OPEN HARNESS a. The disconnect switch remains in the OFF position.
Expected Result: The resistance is greater than 5000 ohms.
b. All related electronic control modules remain disconnected from the machine harness.
Results:
c. Measure the resistance of the CAT data link circuit in the machine harness:
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 4.
• Measure from connector contact 6 (wire 882-PK) of the VIMS main module to the CAT data link circuit of the integrated brake control connector.
344 Testing and Adjusting Section
• Measure from connector contact 7 (wire
893-GY) of the VIMS main module to the CAT data link circuit of the integrated brake control connector.
Expected Result: The resistance measures less than 5 Ohms. Results:
• NOT OK - Diagnostic codes are present for
the other electronic control modules (ECM) in the event list. The VIMS main module has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, replace the ECM. See the Testing and Adjusting, “Module - Replace” section of this manual. STOP.
• OK - The resistance is less than 5 ohms. The CAT data link circuit in the machine harness is correct. Proceed to 6.
• NOT OK - The resistance is greater than 5 ohms. The machine harness has failed. the CAT data link circuit is open in the machine harness. Repair the machine harness or replace the machine harness. STOP.
i01305612
CID 0533 FMI 09 Machine Electronic Control Module (Integrated Brake) Abnormal Update - Test SMCS Code: 7610-038-BRK
6. CHECK FOR ADDITIONAL DIAGNOSTIC CODES FOR THE OTHER ELECTRONIC CONTROL MODULES. a. Turn the key start switch and the disconnect switch to the OFF position.
This diagnostic code is recorded when the VIMS main module does not receive expected information from the integrated brake control through the CAT data link.
b. One at a time, reconnect the electronic control modules that use the CAT data link.
This failure may cause the readouts that depend on the information from the CAT data link to display information incorrectly.
c. Turn the disconnect switch and the key start switch to the ON position.
1. VERIFY THE HARDWARE AND THE SOFTWARE PART NUMBERS.
d. After each of the electronic control modules has been reconnected, check the Event List for diagnostic codes that are logged against the electronic control module.
a. Verify that the following information is correct:
Expected Result: Diagnostic codes are not present for the other electronic control modules in the event list.
• The part number of the integrated brake
• The part number of the VIMS configuration software control flash software
• The part number of the VIMS main module Results:
• OK - Diagnostic codes are not present for the other electronic control modules in the event list. The integrated brake control has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, check the +battery contacts and ground contacts of the ECM. If these contacts are correct, replace the ECM. STOP.
• The part number of the integrated brake control Note: Consult the Business Unit that produces the product for the correct part numbers of the configuration software. Expected Result: All part numbers are correct. Results:
• OK - All part numbers are correct. Proceed to 2.
345 Testing and Adjusting Section
• NOT OK - All part numbers are NOT
correct. The installed VIMS main module or the integrated brake control has the wrong part number or the incorrect configuration software is installed. Replace the incorrect VIMS main module or the integrated brake control with a module that has the correct part number. Flash the correct configuration software. STOP.
Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 4.
• NOT OK - The resistance is less than 5000 2. INSPECT THE HARNESS CONNECTIONS. a. Turn the disconnect switch to the OFF position. b. Inspect all harness connections that are related to the CAT data link. Make sure that the connectors are clean and tight. c. Check the connectors for proper mating. d. Check the wires at the connector. e. Check each wire for nicks or signs of abrasion in the insulation. f. Check for moisture at the connector. g. Check the connectors for dirty contacts or corroded contacts. h. Check each pin and each socket of the machine harness connectors. Expected Result: The machine harness connectors are tight and free of corrosion. Results:
ohms. The machine harness has failed. There is a short between frame ground and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
4. CHECK FOR SHORT TO +BATTERY a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness. c. At the machine harness connector for the VIMS main module, perform the checks that are listed here:
• Measure the resistance between (+battery) connector contact 1 (wire 113-OR) and contact 6 (wire 882-PK) of the CAT data link circuit connector.
• Measure the resistance between the contact 1 (wire 113-OR) (+battery) and contact 7 (wire 893-GN) of the CAT data link circuit.
Expected Result: The resistance is greater than 5000 ohms.
• OK - The machine harness connectors are tight and free of corrosion. Proceed to 3.
• NOT OK - The machine harness connectors are in need of repair. Repair the machine harness or replace the machine harness. STOP.
Results:
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 5.
• NOT OK - The resistance is less than 5000 3. CHECK FOR SHORTS TO GROUND a. The disconnect switch remains in the OFF position. b. Disconnect the machine harness from all electronic control modules that use the CATdata link. c. At the machine harness for the VIMS main module, measure the resistance between frame ground and connector contacts 6 (wire 882-PK) and 7 (wire 893-GY) of the CAT data link circuit.
ohms. The machine harness has failed. There is a short between +battery and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 5. CHECK FOR OPEN HARNESS a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness. c. Measure the resistance of the CAT data link circuit in the machine harness:
346 Testing and Adjusting Section
• Measure between contact 6 (wire 882-PK) of the VIMS main module to the CAT data link circuit of the integrated brake control.
• Measure from connector contact 7 (wire 893-GY) of the VIMS main module to the CAT data link circuit of the integrated brake control.
• NOT OK - Diagnostic codes are present for
the other electronic control modules (ECM) in the event list. The VIMS main module has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, replace the ECM. See the Testing and Adjusting, “Module - Replace” section of this manual. STOP.
Expected Result: The resistance measures less than 5 Ohms. Results:
• OK - The resistance is less than 5 ohms. The CAT data link circuit in the machine harness is correct. Proceed to 6.
• NOT OK - The resistance is greater than 5
ohms. The machine harness has failed. the CAT data link circuit is open in the machine harness. Repair the machine harness or replace the machine harness. STOP.
6. CHECK FOR ADDITIONAL DIAGNOSTIC CODES FOR THE OTHER ELECTRONIC CONTROL MODULES. a. Turn the key start switch and the disconnect switch to the OFF position. b. One at a time, reconnect the electronic control modules that use the CAT data link. c. Turn the disconnect switch and the key start switch to the ON position. d. After each of the electronic control modules has been reconnected, check the Event List for diagnostic codes that are logged against the electronic control module. Expected Result: Diagnostic codes are not present for the other electronic control modules in the event list. Results:
• OK - Diagnostic codes are not present for
the other electronic control modules in the event list. The Machine control ECM has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, check the +battery contacts and ground contacts of the ECM. If these contacts are correct, replace the ECM. STOP.
i01305645
CID 0533 FMI 12 Machine Electronic Control Module (Integrated Brake) Failed - Test SMCS Code: 7610-038-BRK This diagnostic code is recorded when the VIMS main module can not communicate with the integrated bracke control through the CAT data link. This diagnostic code results in failed VIMS operations that are related to the integrated bracke control. The VIMS operations may work intermittently. 1. VERIFY THE HARDWARE AND THE SOFTWARE PART NUMBERS. a. Verify that the following information is correct:
• The part number of the VIMS configuration software
• The part number of the integrated bracke control flash software.
• The part number of the VIMS main module • The part number of the integrated bracke control Note: Consult the Business Unit that produces the product for the correct part numbers of the configuration software. Expected Result: All part numbers are correct. Results:
• OK - All part numbers are correct. Proceed to 2.
347 Testing and Adjusting Section
• NOT OK - All part numbers are NOT
correct. The installed VIMS main module or the integrated bracke control has the wrong part number or the incorrect configuration software is installed. Replace the incorrect VIMS main module or the integrated bracke control with a module that has the correct part number. Flash the correct configuration software. STOP.
Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 4.
• NOT OK - The resistance is less than 5000 2. INSPECT THE HARNESS CONNECTIONS. a. Turn the disconnect switch to the OFF position. b. Inspect all harness connections that are related to the CAT data link. Make sure that the connectors are clean and tight. c. Check the connectors for proper mating. d. Check the wires at the connector. e. Check each wire for nicks or signs of abrasion in the insulation. f. Check for moisture at the connector. g. Check the connectors for dirty contacts or corroded contacts. h. Check each pin and each socket of the machine harness connectors. Expected Result: The machine harness connectors are tight and free of corrosion.
ohms. The machine harness has failed. There is a short between frame ground and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
4. CHECK FOR SHORT TO +BATTERY a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness. c. At the machine harness connector for the VIMS main module, perform the checks that are listed here:
• Measure the resistance between the contact 1 (wire 113-OR) (+battery) and contact 6 (wire 882-PK) of the CAT data link circuit.
• Measure the resistance between the contact 1 (wire 113-OR) (+battery) and contact 7 (wire 893-GN) of the CAT data link circuit.
Results:
Expected Result: The resistance is greater than 5000 ohms.
• OK - The machine harness connectors are
Results:
tight and free of corrosion. Proceed to 3.
• NOT OK - The machine harness connectors are in need of repair. Repair the machine harness or replace the machine harness. STOP.
3. CHECK FOR SHORTS TO GROUND a. The disconnect switch remains in the OFF position. b. Disconnect the machine harness from all electronic control modules that use the CATdata link. c. At the machine harness for the VIMS main module, measure the resistance between frame ground and connector contacts 6 (wire 882-PK) and 7 (wire 893-GY) of the CAT data link circuit.
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 5.
• NOT OK - The resistance is less than 5000 ohms. The machine harness has failed. There is a short between +battery and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
5. CHECK FOR OPEN HARNESS a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness. c. Measure the resistance of the CAT data link circuit in the machine harness:
348 Testing and Adjusting Section
• Measure between contact 6 (wire 882-PK)
of the VIMS main module and the contact of the CAT data link circuit of the integrated bracke control.
• Measure from connector contact 7 (wire 893-GY) of the VIMS main module and the contact of CAT data link circuit of the integrated bracke control.
• NOT OK - Diagnostic codes are present for
the other electronic control modules (ECM) in the event list. The VIMS main module has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, replace the ECM. See the Testing and Adjusting, “Module - Replace” section of this manual. STOP.
Expected Result: The resistance measures less than 5 Ohms. Results:
• OK - The resistance is less than 5 ohms. The CAT data link circuit in the machine harness is correct. Proceed to 6.
i00984750
CID 0541 FMI 03 Pressure Sensor (Differential Oil) Voltage Above Normal - Test SMCS Code: 3258-038-PXS
• NOT OK - The resistance is greater than 5 ohms. The machine harness has failed. the CAT data link circuit is open in the machine harness. Repair the machine harness or replace the machine harness. STOP. 6. CHECK FOR ADDITIONAL DIAGNOSTIC CODES FOR THE OTHER ELECTRONIC CONTROL MODULES. a. Turn the key start switch and the disconnect switch to the OFF position. b. One at a time, reconnect the electronic control modules that use the CAT data link. c. Turn the disconnect switch and the key start switch to the ON position. d. After each of the electronic control modules has been reconnected, check the Event List for diagnostic codes that are logged against the electronic control module. Expected Result: Diagnostic codes are not present for the other electronic control modules in the event list. Results:
• OK - Diagnostic codes are not present for the other electronic control modules in the event list. The Machine control ECM has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, check the +battery contacts and ground contacts of the ECM. If these contacts are correct, replace the ECM. STOP.
Illustration 311
g00503483
Schematic of the Differential Oil Pressure Sensor
This diagnostic code is recorded when VIMS reads the signal wire of the differential oil pressure sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• A shorted harness • An open supply circuit to the sensor • A failed sensor • An open circuit • The VIMS interface Module may have failed. This is unlikely.
Note: Ensure that the diagnostic code is still active.
349 Testing and Adjusting Section
Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR.
a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground).
a. Turn the disconnect switch and the key start switch to the ON position.
Expected Results: The voltage should measure approximately 5 DCV.
b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage.
• OK - The voltage is approximately 5 DCV.
Expected Results: The voltage should measure approximately 8 DCV.
The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT.
Results:
• OK - The voltage is approximately 8 DCV.
a. Turn the key start switch and the disconnect switch to the OFF position.
• NOT OK - The voltage is not approximately
b. The sensor remains disconnected from the machine harness.
The voltage is correct. Proceed to 3.
8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2.
2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground.
c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms. Results:
Expected Results: The voltage should measure approximately 8 DCV.
• OK - The resistance measures less than 10
Results:
• NOT OK - The resistance is greater than
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP. 3. CHECK THE SIGNAL CIRCUIT.
ohms. The circuit is correct. Proceed to 5. 5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP.
5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module.
350 Testing and Adjusting Section
c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts. Expected Results: Each measurement is greater than 5000 ohms.
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP. i00984751
CID 0541 FMI 04 Pressure Sensor (Differential Oil) Voltage Below Normal - Test
• The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO
SMCS Code: 3258-038-PXS
longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. Illustration 312
g00503483
Schematic of the Differential Oil Pressure Sensor
c. Disconnect the machine harness from the VIMS interface module.
This diagnostic code is recorded when VIMS reads the voltage of the differential oil pressure sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module.
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground.
The possible causes of this diagnostic code are listed here:
Expected Result: The resistance is greater than 5000 ohms.
• The sensor has failed.
Results:
351 Testing and Adjusting Section
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
i00984752
CID 0541 FMI 06 Pressure Sensor (Differential Oil) Current Above Normal - Test SMCS Code: 3258-038-PXS
3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine.
Illustration 313
g00503483
Schematic of the Differential Oil Pressure Sensor
f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0541 FMI 04 is no longer active. Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
This diagnostic code is recorded when VIMS reads the current of the differential oil pressure sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
352 Testing and Adjusting Section
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000
ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code.
Expected Result: The diagnostic code CID 0541 FMI 06 is no longer active. Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP. i01305296
CID 0562 FMI 02 Caterpillar Monitoring System Incorrect Signal - Test SMCS Code: 7490-038 This diagnostic code is recorded when the CAT monitor system ECM has dropped off the CAT data link 10 times within a ten minute period. The event is active until communication is reliable for more than ten minutes. This failure results in events that are logged against an ECM that can not be explained. The VIMS main module cannot communicate with this ECM or the ECM appears to work intermittently. 1. VERIFY THE HARDWARE AND THE SOFTWARE PART NUMBERS. a. Verify that the following information is correct:
• The part number of the VIMS configuration software
• The part number of the CAT monitor system ECM flash software.
• The part number of the VIMS main module • The part number of the CAT monitor system ECM Note: Consult the Business Unit that produces the product for the correct part numbers of the configuration software.
353 Testing and Adjusting Section
Expected Result: All part numbers are correct. Results:
c. At the machine harness for the VIMS main module, measure the resistance between frame ground and connector contacts 6 (wire 882-PK) and 7 (wire 893-GY) of the CAT data link circuit.
• OK - All part numbers are correct. Proceed to 2.
Expected Result: The resistance is greater than 5000 ohms.
• NOT OK - All part numbers are NOT correct. The installed VIMS main module or the CAT monitor system ECM has the wrong part number or the incorrect configuration software is installed. Replace the incorrect VIMS main module or the CAT monitor system ECM with a module that has the correct part number. Flash the correct configuration software. STOP. 2. INSPECT THE HARNESS CONNECTIONS. a. Turn the disconnect switch to the OFF position.
Results:
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 4.
• NOT OK - The resistance is less than 5000
ohms. The machine harness has failed. There is a short between frame ground and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
4. CHECK FOR SHORT TO +BATTERY b. Inspect all harness connections that are related to the CAT data link. Make sure that the connectors are clean and tight. c. Check the connectors for proper mating.
a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness.
d. Check the wires at the connector. e. Check each wire for nicks or signs of abrasion in the insulation. f. Check for moisture at the connector. g. Check the connectors for dirty contacts or corroded contacts. h. Check each pin and each socket of the machine harness connectors. Expected Result: The machine harness connectors are tight and free of corrosion.
c. At the machine harness connector for the VIMS main module, perform the checks that are listed here:
• Measure the resistance between (+battery) connector contact 1 (wire 113-OR) and contact 6 (wire 882-PK) of the CAT data link circuit connector.
• Measure the resistance between (+battery) connector contact 1 (wire 113-OR), to the CAT data link circuit connector contact 7 (wire 893-GY).
Results:
Expected Result: The resistance is greater than 5000 ohms.
• OK - The machine harness connectors are
Results:
tight and free of corrosion. Proceed to 3.
• NOT OK - The machine harness connectors are in need of repair. Repair the machine harness or replace the machine harness. STOP. 3. CHECK FOR SHORTS TO GROUND a. The disconnect switch remains in the OFF position. b. Disconnect the machine harness from all electronic control modules that use the CATdata link.
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 5.
• NOT OK - The resistance is less than 5000 ohms. The machine harness has failed. There is a short between +battery and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 5. CHECK FOR OPEN HARNESS
354 Testing and Adjusting Section
a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness. c. Measure the resistance of the CAT data link circuit in the machine harness:
• Measure from connector contact 6 (wire
882-PK) of the VIMS main module to the CAT data link circuit of the CAT monitor system ECM connector.
• Measure from connector contact 7 (wire 893-GY) of the VIMS main module to the CAT data link circuit of the CAT monitor system ECM connector.
• OK - Diagnostic codes are not present for
the other electronic control modules in the event list. The CAT monitor system ECM has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, check the +battery contacts and ground contacts of the ECM. If these contacts are correct, replace the ECM. STOP.
• NOT OK - Diagnostic codes are present for the other electronic control modules (ECM) in the event list. The VIMS main module has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, replace the ECM. See the Testing and Adjusting, “Module - Replace” section of this manual. STOP.
Expected Result: The resistance measures less than 5 Ohms. Results:
• OK - The resistance is less than 5 ohms. The CAT data link circuit in the machine harness is correct. Proceed to 6.
• NOT OK - The resistance is greater than 5 ohms. The machine harness has failed. the CAT data link circuit is open in the machine harness. Repair the machine harness or replace the machine harness. STOP. 6. CHECK FOR ADDITIONAL DIAGNOSTIC CODES FOR THE OTHER ELECTRONIC CONTROL MODULES. a. Turn the key start switch and the disconnect switch to the OFF position. b. One at a time, reconnect the electronic control modules that use the CAT data link. c. Turn the disconnect switch and the key start switch to the ON position. d. After each of the electronic control modules has been reconnected, check the Event List for diagnostic codes that are logged against the electronic control module. Expected Result: Diagnostic codes are not present for the other electronic control modules in the event list. Results:
i01305660
CID 0562 FMI 09 Caterpillar Monitoring System Abnormal Update - Test SMCS Code: 7490-038 This diagnostic code is recorded when the VIMS main module does not receive expected information from the Caterpillar Monitoring System through the CAT data link. This failure may cause the readouts that depend on the information from the CAT data link to display information incorrectly. 1. VERIFY THE HARDWARE AND THE SOFTWARE PART NUMBERS. a. Verify that the following information is correct:
• The part number of the VIMS configuration software
• The part number of the Caterpillar Monitoring System flash software
• The part number of the VIMS main module • The part number of the Caterpillar Monitoring System Note: Consult the Business Unit that produces the product for the correct part numbers of the configuration software. Expected Result: All part numbers are correct.
355 Testing and Adjusting Section
Results:
• OK - All part numbers are correct. Proceed to 2.
c. At the machine harness for the VIMS main module, measure the resistance between frame ground and connector contacts 6 (wire 882-PK) and 7 (wire 893-GY) of the CAT data link circuit.
• NOT OK - All part numbers are NOT correct. The installed VIMS main module or the Caterpillar Monitoring System has the wrong part number or the incorrect configuration software is installed. Replace the incorrect VIMS main module or the Caterpillar Monitoring System with a module that has the correct part number. Flash the correct configuration software. STOP. 2. INSPECT THE HARNESS CONNECTIONS. a. Turn the disconnect switch to the OFF position. b. Inspect all harness connections that are related to the CAT data link. Make sure that the connectors are clean and tight. c. Check the connectors for proper mating.
Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 4.
• NOT OK - The resistance is less than 5000
ohms. The machine harness has failed. There is a short between frame ground and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
4. CHECK FOR SHORT TO +BATTERY a. The disconnect switch remains in the OFF position.
d. Check the wires at the connector. e. Check each wire for nicks or signs of abrasion in the insulation. f. Check for moisture at the connector. g. Check the connectors for dirty contacts or corroded contacts. h. Check each pin and each socket of the machine harness connectors. Expected Result: The machine harness connectors are tight and free of corrosion.
b. All related electronic control modules remain disconnected from the machine harness. c. At the machine harness connector for the VIMS main module, perform the checks that are listed here:
• Measure the resistance between (+battery) connector contact 1 (wire 113-OR) and contact 6 (wire 882-PK) of the CAT data link circuit connector.
• Measure the resistance between the contact 1 (wire 113-OR) (+battery) and contact 7 (wire 893-GN) of the CAT data link circuit.
Results:
• OK - The machine harness connectors are
Expected Result: The resistance is greater than 5000 ohms.
tight and free of corrosion. Proceed to 3. Results:
• NOT OK - The machine harness connectors are in need of repair. Repair the machine harness or replace the machine harness. STOP. 3. CHECK FOR SHORTS TO GROUND a. The disconnect switch remains in the OFF position. b. Disconnect the machine harness from all electronic control modules that use the CATdata link.
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 5.
• NOT OK - The resistance is less than 5000 ohms. The machine harness has failed. There is a short between +battery and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 5. CHECK FOR OPEN HARNESS a. The disconnect switch remains in the OFF position.
356 Testing and Adjusting Section
b. All related electronic control modules remain disconnected from the machine harness. c. Measure the resistance of the CAT data link circuit in the machine harness:
• Measure between contact 6 (wire 882-PK) of the VIMS main module to the CAT data link circuit of the Caterpillar Monitoring System.
• Measure from connector contact 7 (wire 893-GY) of the VIMS main module to the CAT data link circuit of the Caterpillar Monitoring System. Expected Result: The resistance measures less than 5 Ohms.
• OK - Diagnostic codes are not present for
the other electronic control modules in the event list. The Machine control ECM has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, check the +battery contacts and ground contacts of the ECM. If these contacts are correct, replace the ECM. STOP.
• NOT OK - Diagnostic codes are present for the other electronic control modules (ECM) in the event list. The VIMS main module has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, replace the ECM. See the Testing and Adjusting, “Module - Replace” section of this manual. STOP.
Results:
• OK - The resistance is less than 5 ohms. The CAT data link circuit in the machine harness is correct. Proceed to 6.
• NOT OK - The resistance is greater than 5 ohms. The machine harness has failed. the CAT data link circuit is open in the machine harness. Repair the machine harness or replace the machine harness. STOP. 6. CHECK FOR ADDITIONAL DIAGNOSTIC CODES FOR THE OTHER ELECTRONIC CONTROL MODULES. a. Turn the key start switch and the disconnect switch to the OFF position. b. One at a time, reconnect the electronic control modules that use the CAT data link. c. Turn the disconnect switch and the key start switch to the ON position. d. After each of the electronic control modules has been reconnected, check the Event List for diagnostic codes that are logged against the electronic control module.
i01305671
CID 0562 FMI 12 Caterpillar Monitoring System Failed Test SMCS Code: 7490-038 This diagnostic code is recorded when the VIMS main module can not communicate with the Caterpillar Monitoring System through the CAT data link. This diagnostic code results in failed VIMS operations that are related to the Caterpillar Monitoring System. The VIMS operations may work intermittently. 1. VERIFY THE HARDWARE AND THE SOFTWARE PART NUMBERS. a. Verify that the following information is correct:
• The part number of the VIMS configuration software
• The part number of the Caterpillar Monitoring System flash software.
Expected Result: Diagnostic codes are not present for the other electronic control modules in the event list.
• The part number of the VIMS main module
Results:
• The part number of the Caterpillar Monitoring System Note: Consult the Business Unit that produces the product for the correct part numbers of the configuration software.
357 Testing and Adjusting Section
Expected Result: All part numbers are correct. Results:
c. At the machine harness for the VIMS main module, measure the resistance between frame ground and connector contacts 6 (wire 882-PK) and 7 (wire 893-GY) of the CAT data link circuit.
• OK - All part numbers are correct. Proceed to 2.
Expected Result: The resistance is greater than 5000 ohms.
• NOT OK - All part numbers are NOT correct. The installed VIMS main module or the Caterpillar Monitoring System has the wrong part number or the incorrect configuration software is installed. Replace the incorrect VIMS main module or the Caterpillar Monitoring System with a module that has the correct part number. Flash the correct configuration software. STOP. 2. INSPECT THE HARNESS CONNECTIONS. a. Turn the disconnect switch to the OFF position.
Results:
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 4.
• NOT OK - The resistance is less than 5000
ohms. The machine harness has failed. There is a short between frame ground and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
4. CHECK FOR SHORT TO +BATTERY b. Inspect all harness connections that are related to the CAT data link. Make sure that the connectors are clean and tight. c. Check the connectors for proper mating.
a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness.
d. Check the wires at the connector. e. Check each wire for nicks or signs of abrasion in the insulation. f. Check for moisture at the connector. g. Check the connectors for dirty contacts or corroded contacts.
c. At the machine harness connector for the VIMS main module, perform the checks that are listed here:
• Measure the resistance between the contact 1 (wire 113-OR) (+battery) and contact 6 (wire 882-PK) of the CAT data link circuit.
• Measure the resistance between the contact h. Check each pin and each socket of the machine harness connectors.
1 (wire 113-OR) (+battery) and contact 7 (wire 893-GN) of the CAT data link circuit.
Expected Result: The machine harness connectors are tight and free of corrosion.
Expected Result: The resistance is greater than 5000 ohms.
Results:
Results:
• OK - The machine harness connectors are
• OK - The resistance is greater than 5000
tight and free of corrosion. Proceed to 3.
ohms. The harness circuit resistance is correct. Proceed to 5.
• NOT OK - The machine harness connectors are in need of repair. Repair the machine harness or replace the machine harness. STOP. 3. CHECK FOR SHORTS TO GROUND a. The disconnect switch remains in the OFF position. b. Disconnect the machine harness from all electronic control modules that use the CATdata link.
• NOT OK - The resistance is less than 5000 ohms. The machine harness has failed. There is a short between +battery and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
5. CHECK FOR OPEN HARNESS a. The disconnect switch remains in the OFF position.
358 Testing and Adjusting Section
b. All related electronic control modules remain disconnected from the machine harness. c. Measure the resistance of the CAT data link circuit in the machine harness:
• Measure between contact 6 (wire 882-PK)
of the VIMS main module and the contact of the CAT data link circuit of the Caterpillar Monitoring System.
• Measure from connector contact 7 (wire 893-GY) of the VIMS main module and the contact of CAT data link circuit of the Caterpillar Monitoring System. Expected Result: The resistance measures less than 5 Ohms.
• OK - Diagnostic codes are not present for
the other electronic control modules in the event list. The Machine control ECM has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, check the +battery contacts and ground contacts of the ECM. If these contacts are correct, replace the ECM. STOP.
• NOT OK - Diagnostic codes are present for the other electronic control modules (ECM) in the event list. The VIMS main module has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, replace the ECM. See the Testing and Adjusting, “Module - Replace” section of this manual. STOP.
Results:
• OK - The resistance is less than 5 ohms. The CAT data link circuit in the machine harness is correct. Proceed to 6.
• NOT OK - The resistance is greater than 5 ohms. The machine harness has failed. the CAT data link circuit is open in the machine harness. Repair the machine harness or replace the machine harness. STOP. 6. CHECK FOR ADDITIONAL DIAGNOSTIC CODES FOR THE OTHER ELECTRONIC CONTROL MODULES. a. Turn the key start switch and the disconnect switch to the OFF position. b. One at a time, reconnect the electronic control modules that use the CAT data link. c. Turn the disconnect switch and the key start switch to the ON position. d. After each of the electronic control modules has been reconnected, check the Event List for diagnostic codes that are logged against the electronic control module.
i01305307
CID 0590 FMI 02 Electronic Control Module (Engine) Incorrect Signal - Test SMCS Code: 1901-038; 7610-038-ENG This diagnostic code is recorded when the engine ECM has dropped off the CAT data link 10 times within a ten minute period. The event is active until communication is reliable for more than ten minutes. This failure results in events that are logged against an ECM that can not be explained. The VIMS main module cannot communicate with this ECM or the ECM appears to work intermittently. 1. VERIFY THE HARDWARE AND THE SOFTWARE PART NUMBERS. a. Verify that the following information is correct:
• The part number of the VIMS configuration software
• The part number of the engine ECM flash software.
Expected Result: Diagnostic codes are not present for the other electronic control modules in the event list.
• The part number of the VIMS main module
Results:
• The part number of the engine ECM Note: Consult the Business Unit that produces the product for the correct part numbers of the configuration software. Expected Result: All part numbers are correct.
359 Testing and Adjusting Section
Results:
• OK - All part numbers are correct. Proceed to 2.
c. At the machine harness for the VIMS main module, measure the resistance between frame ground and connector contacts 6 (wire 882-PK) and 7 (wire 893-GY) of the CAT data link circuit.
• NOT OK - All part numbers are NOT correct. The installed VIMS main module or the engine ECM has the wrong part number or the incorrect configuration software is installed. Replace the incorrect VIMS main module or the engine ECM with a module that has the correct part number. Flash the correct configuration software. STOP.
Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 4.
2. INSPECT THE HARNESS CONNECTIONS. a. Turn the disconnect switch to the OFF position. b. Inspect all harness connections that are related to the CAT data link. Make sure that the connectors are clean and tight.
• NOT OK - The resistance is less than 5000
ohms. The machine harness has failed. There is a short between frame ground and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
4. CHECK FOR SHORT TO +BATTERY c. Check the connectors for proper mating. d. Check the wires at the connector.
a. The disconnect switch remains in the OFF position.
e. Check each wire for nicks or signs of abrasion in the insulation.
b. All related electronic control modules remain disconnected from the machine harness.
f. Check for moisture at the connector.
c. At the machine harness connector for the VIMS main module, perform the checks that are listed here:
g. Check the connectors for dirty contacts or corroded contacts.
• Measure the resistance between (+battery) h. Check each pin and each socket of the machine harness connectors. Expected Result: The machine harness connectors are tight and free of corrosion. Results:
connector contact 1 (wire 113-OR) and contact 6 (wire 882-PK) of the CAT data link circuit connector.
• Measure the resistance between (+battery) connector contact 1 (wire 113-OR), to the CAT data link circuit connector contact 7 (wire 893-GY).
• OK - The machine harness connectors are tight and free of corrosion. Proceed to 3.
Expected Result: The resistance is greater than 5000 ohms.
• NOT OK - The machine harness connectors are in need of repair. Repair the machine harness or replace the machine harness. STOP. 3. CHECK FOR SHORTS TO GROUND a. The disconnect switch remains in the OFF position. b. Disconnect the machine harness from all electronic control modules that use the CATdata link.
Results:
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 5.
• NOT OK - The resistance is less than 5000 ohms. The machine harness has failed. There is a short between +battery and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 5. CHECK FOR OPEN HARNESS
360 Testing and Adjusting Section
a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness. c. Measure the resistance of the CAT data link circuit in the machine harness:
• Measure from connector contact 6 (wire
882-PK) of the VIMS main module to the CAT data link circuit of the engine ECM connector.
• Measure from connector contact 7 (wire 893-GY) of the VIMS main module to the CAT data link circuit of the engine ECM connector.
• OK - Diagnostic codes are not present for
the other electronic control modules in the event list. The engine ECM has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, check the +battery contacts and ground contacts of the ECM. If these contacts are correct, replace the ECM. STOP.
• NOT OK - Diagnostic codes are present for the other electronic control modules (ECM) in the event list. The VIMS main module has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, replace the ECM. See the Testing and Adjusting, “Module - Replace” section of this manual. STOP.
Expected Result: The resistance measures less than 5 Ohms. Results:
• OK - The resistance is less than 5 ohms. The CAT data link circuit in the machine harness is correct. Proceed to 6.
• NOT OK - The resistance is greater than 5 ohms. The machine harness has failed. the CAT data link circuit is open in the machine harness. Repair the machine harness or replace the machine harness. STOP. 6. CHECK FOR ADDITIONAL DIAGNOSTIC CODES FOR THE OTHER ELECTRONIC CONTROL MODULES. a. Turn the key start switch and the disconnect switch to the OFF position. b. One at a time, reconnect the electronic control modules that use the CAT data link. c. Turn the disconnect switch and the key start switch to the ON position. d. After each of the electronic control modules has been reconnected, check the Event List for diagnostic codes that are logged against the electronic control module. Expected Result: Diagnostic codes are not present for the other electronic control modules in the event list. Results:
i01305686
CID 0590 FMI 09 Electronic Control Module (Engine) Abnormal Update - Test SMCS Code: 1901-038; 7610-038-ENG This diagnostic code is recorded when the VIMS main module does not receive expected information from the engine ECM through the CAT data link. This failure may cause the readouts that depend on the information from the CAT data link to display information incorrectly. 1. VERIFY THE HARDWARE AND THE SOFTWARE PART NUMBERS. a. Verify that the following information is correct:
• The part number of the VIMS configuration software
• The part number of the engine ECM flash software
• The part number of the VIMS main module • The part number of the engine ECM Note: Consult the Business Unit that produces the product for the correct part numbers of the configuration software. Expected Result: All part numbers are correct. Results:
361 Testing and Adjusting Section
• OK - All part numbers are correct. Proceed
Expected Result: The resistance is greater than 5000 ohms.
• NOT OK - All part numbers are NOT
Results:
to 2.
correct. The installed VIMS main module or the engine ECM has the wrong part number or the incorrect configuration software is installed. Replace the incorrect VIMS main module or the engine ECM with a module that has the correct part number. Flash the correct configuration software. STOP.
2. INSPECT THE HARNESS CONNECTIONS. a. Turn the disconnect switch to the OFF position.
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 4.
• NOT OK - The resistance is less than 5000
ohms. The machine harness has failed. There is a short between frame ground and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
4. CHECK FOR SHORT TO +BATTERY b. Inspect all harness connections that are related to the CAT data link. Make sure that the connectors are clean and tight. c. Check the connectors for proper mating.
a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness.
d. Check the wires at the connector. e. Check each wire for nicks or signs of abrasion in the insulation. f. Check for moisture at the connector. g. Check the connectors for dirty contacts or corroded contacts. h. Check each pin and each socket of the machine harness connectors. Expected Result: The machine harness connectors are tight and free of corrosion.
c. At the machine harness connector for the VIMS main module, perform the checks that are listed here:
• Measure the resistance between (+battery) connector contact 1 (wire 113-OR) and contact 6 (wire 882-PK) of the CAT data link circuit connector.
• Measure the resistance between the contact 1 (wire 113-OR) (+battery) and contact 7 (wire 893-GN) of the CAT data link circuit.
Expected Result: The resistance is greater than 5000 ohms.
Results: Results:
• OK - The machine harness connectors are tight and free of corrosion. Proceed to 3.
• NOT OK - The machine harness connectors are in need of repair. Repair the machine harness or replace the machine harness. STOP. 3. CHECK FOR SHORTS TO GROUND a. The disconnect switch remains in the OFF position.
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 5.
• NOT OK - The resistance is less than 5000 ohms. The machine harness has failed. There is a short between +battery and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 5. CHECK FOR OPEN HARNESS
b. Disconnect the machine harness from all electronic control modules that use the CATdata link. c. At the machine harness for the VIMS main module, measure the resistance between frame ground and connector contacts 6 (wire 882-PK) and 7 (wire 893-GY) of the CAT data link circuit.
a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness. c. Measure the resistance of the CAT data link circuit in the machine harness:
362 Testing and Adjusting Section
• Measure between contact 6 (wire 882-PK) of the VIMS main module to the CAT data link circuit of the engine ECM.
• Measure from connector contact 7 (wire 893-GY) of the VIMS main module to the CAT data link circuit of the engine ECM. Expected Result: The resistance measures less than 5 Ohms.
• NOT OK - Diagnostic codes are present for
the other electronic control modules (ECM) in the event list. The VIMS main module has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, replace the ECM. See the Testing and Adjusting, “Module - Replace” section of this manual. STOP. i01305690
Results:
• OK - The resistance is less than 5 ohms. The CAT data link circuit in the machine harness is correct. Proceed to 6.
• NOT OK - The resistance is greater than 5 ohms. The machine harness has failed. the CAT data link circuit is open in the machine harness. Repair the machine harness or replace the machine harness. STOP. 6. CHECK FOR ADDITIONAL DIAGNOSTIC CODES FOR THE OTHER ELECTRONIC CONTROL MODULES. a. Turn the key start switch and the disconnect switch to the OFF position. b. One at a time, reconnect the electronic control modules that use the CAT data link. c. Turn the disconnect switch and the key start switch to the ON position. d. After each of the electronic control modules has been reconnected, check the Event List for diagnostic codes that are logged against the electronic control module. Expected Result: Diagnostic codes are not present for the other electronic control modules in the event list. Results:
• OK - Diagnostic codes are not present for the other electronic control modules in the event list. The Machine control ECM has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, check the +battery contacts and ground contacts of the ECM. If these contacts are correct, replace the ECM. STOP.
CID 0590 FMI 12 Electronic Control Module (Engine) Failed - Test SMCS Code: 1901-038; 7610-038-ENG This diagnostic code is recorded when the VIMS main module can not communicate with the engine ECM through the CAT data link. This diagnostic code results in failed VIMS operations that are related to the engine ECM. The VIMS operations may work intermittently. 1. VERIFY THE HARDWARE AND THE SOFTWARE PART NUMBERS. a. Verify that the following information is correct:
• The part number of the VIMS configuration software
• The part number of the engine ECM flash software.
• The part number of the VIMS main module • The part number of the engine ECM Note: Consult the Business Unit that produces the product for the correct part numbers of the configuration software. Expected Result: All part numbers are correct. Results:
• OK - All part numbers are correct. Proceed to 2.
363 Testing and Adjusting Section
• NOT OK - All part numbers are NOT
correct. The installed VIMS main module or the engine ECM has the wrong part number or the incorrect configuration software is installed. Replace the incorrect VIMS main module or the engine ECM with a module that has the correct part number. Flash the correct configuration software. STOP.
2. INSPECT THE HARNESS CONNECTIONS. a. Turn the disconnect switch to the OFF position.
Results:
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 4.
• NOT OK - The resistance is less than 5000
ohms. The machine harness has failed. There is a short between frame ground and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
4. CHECK FOR SHORT TO +BATTERY b. Inspect all harness connections that are related to the CAT data link. Make sure that the connectors are clean and tight. c. Check the connectors for proper mating.
a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness.
d. Check the wires at the connector. e. Check each wire for nicks or signs of abrasion in the insulation. f. Check for moisture at the connector. g. Check the connectors for dirty contacts or corroded contacts.
c. At the machine harness connector for the VIMS main module, perform the checks that are listed here:
• Measure the resistance between the contact 1 (wire 113-OR) (+battery) and contact 6 (wire 882-PK) of the CAT data link circuit.
• Measure the resistance between the contact h. Check each pin and each socket of the machine harness connectors.
1 (wire 113-OR) (+battery) and contact 7 (wire 893-GN) of the CAT data link circuit.
Expected Result: The machine harness connectors are tight and free of corrosion.
Expected Result: The resistance is greater than 5000 ohms.
Results:
Results:
• OK - The machine harness connectors are
• OK - The resistance is greater than 5000
tight and free of corrosion. Proceed to 3.
ohms. The harness circuit resistance is correct. Proceed to 5.
• NOT OK - The machine harness connectors are in need of repair. Repair the machine harness or replace the machine harness. STOP. 3. CHECK FOR SHORTS TO GROUND a. The disconnect switch remains in the OFF position. b. Disconnect the machine harness from all electronic control modules that use the CATdata link. c. At the machine harness for the VIMS main module, measure the resistance between frame ground and connector contacts 6 (wire 882-PK) and 7 (wire 893-GY) of the CAT data link circuit.
• NOT OK - The resistance is less than 5000 ohms. The machine harness has failed. There is a short between +battery and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
5. CHECK FOR OPEN HARNESS a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness. c. Measure the resistance of the CAT data link circuit in the machine harness:
• Measure between contact 6 (wire 882-PK) Expected Result: The resistance is greater than 5000 ohms.
of the VIMS main module and the contact of the CAT data link circuit of the engine ECM.
364 Testing and Adjusting Section
• Measure from connector contact 7 (wire
893-GY) of the VIMS main module and the contact of CAT data link circuit of the engine ECM.
Expected Result: The resistance measures less than 5 Ohms. Results:
• NOT OK - Diagnostic codes are present for
the other electronic control modules (ECM) in the event list. The VIMS main module has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, replace the ECM. See the Testing and Adjusting, “Module - Replace” section of this manual. STOP.
• OK - The resistance is less than 5 ohms. The CAT data link circuit in the machine harness is correct. Proceed to 6.
• NOT OK - The resistance is greater than 5 ohms. The machine harness has failed. the CAT data link circuit is open in the machine harness. Repair the machine harness or replace the machine harness. STOP. 6. CHECK FOR ADDITIONAL DIAGNOSTIC CODES FOR THE OTHER ELECTRONIC CONTROL MODULES. a. Turn the key start switch and the disconnect switch to the OFF position. b. One at a time, reconnect the electronic control modules that use the CAT data link. c. Turn the disconnect switch and the key start switch to the ON position.
i01305331
CID 0596 FMI 02 Electronic Control Module (Implement) Incorrect Signal - Test SMCS Code: 7610-038-II This diagnostic code is recorded when the implement ECM has dropped off the CAT data link 10 times within a ten minute period. The event is active until communication is reliable for more than ten minutes. This failure results in events that are logged against an ECM that can not be explained. The VIMS main module cannot communicate with this ECM or the ECM appears to work intermittently. 1. VERIFY THE HARDWARE AND THE SOFTWARE PART NUMBERS.
d. After each of the electronic control modules has been reconnected, check the Event List for diagnostic codes that are logged against the electronic control module.
a. Verify that the following information is correct:
Expected Result: Diagnostic codes are not present for the other electronic control modules in the event list.
• The part number of the implement ECM
Results:
• OK - Diagnostic codes are not present for the other electronic control modules in the event list. The Machine control ECM has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, check the +battery contacts and ground contacts of the ECM. If these contacts are correct, replace the ECM. STOP.
• The part number of the VIMS configuration software
flash software.
• The part number of the VIMS main module • The part number of the implement ECM Note: Consult the Business Unit that produces the product for the correct part numbers of the configuration software. Expected Result: All part numbers are correct. Results:
• OK - All part numbers are correct. Proceed to 2.
365 Testing and Adjusting Section
• NOT OK - All part numbers are NOT
correct. The installed VIMS main module or the implement ECM has the wrong part number or the incorrect configuration software is installed. Replace the incorrect VIMS main module or the implement ECM with a module that has the correct part number. Flash the correct configuration software. STOP.
Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 4.
• NOT OK - The resistance is less than 5000 2. INSPECT THE HARNESS CONNECTIONS. a. Turn the disconnect switch to the OFF position. b. Inspect all harness connections that are related to the CAT data link. Make sure that the connectors are clean and tight. c. Check the connectors for proper mating. d. Check the wires at the connector. e. Check each wire for nicks or signs of abrasion in the insulation. f. Check for moisture at the connector. g. Check the connectors for dirty contacts or corroded contacts. h. Check each pin and each socket of the machine harness connectors. Expected Result: The machine harness connectors are tight and free of corrosion.
ohms. The machine harness has failed. There is a short between frame ground and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
4. CHECK FOR SHORT TO +BATTERY a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness. c. At the machine harness connector for the VIMS main module, perform the checks that are listed here:
• Measure the resistance between (+battery) connector contact 1 (wire 113-OR) and contact 6 (wire 882-PK) of the CAT data link circuit connector.
• Measure the resistance between (+battery) connector contact 1 (wire 113-OR), to the CAT data link circuit connector contact 7 (wire 893-GY).
Results:
• OK - The machine harness connectors are
Expected Result: The resistance is greater than 5000 ohms.
tight and free of corrosion. Proceed to 3.
Results:
• NOT OK - The machine harness connectors are in need of repair. Repair the machine harness or replace the machine harness. STOP.
3. CHECK FOR SHORTS TO GROUND a. The disconnect switch remains in the OFF position. b. Disconnect the machine harness from all electronic control modules that use the CATdata link. c. At the machine harness for the VIMS main module, measure the resistance between frame ground and connector contacts 6 (wire 882-PK) and 7 (wire 893-GY) of the CAT data link circuit.
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 5.
• NOT OK - The resistance is less than 5000 ohms. The machine harness has failed. There is a short between +battery and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 5. CHECK FOR OPEN HARNESS a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness.
366 Testing and Adjusting Section
c. Measure the resistance of the CAT data link circuit in the machine harness:
• Measure from connector contact 6 (wire
882-PK) of the VIMS main module to the CAT data link circuit of the implement ECM connector.
• Measure from connector contact 7 (wire
• NOT OK - Diagnostic codes are present for
the other electronic control modules (ECM) in the event list. The VIMS main module has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, replace the ECM. See the Testing and Adjusting, “Module - Replace” section of this manual. STOP.
893-GY) of the VIMS main module to the CAT data link circuit of the implement ECM connector. Expected Result: The resistance measures less than 5 Ohms. Results:
• OK - The resistance is less than 5 ohms. The CAT data link circuit in the machine harness is correct. Proceed to 6.
• NOT OK - The resistance is greater than 5 ohms. The machine harness has failed. the CAT data link circuit is open in the machine harness. Repair the machine harness or replace the machine harness. STOP. 6. CHECK FOR ADDITIONAL DIAGNOSTIC CODES FOR THE OTHER ELECTRONIC CONTROL MODULES.
i01305691
CID 0596 FMI 09 Electronic Control Module (Implement) Abnormal Update - Test SMCS Code: 7610-038-II This diagnostic code is recorded when the VIMS main module does not receive expected information from the engine ECM through the CAT data link. This failure may cause the readouts that depend on the information from the CAT data link to display information incorrectly. 1. VERIFY THE HARDWARE AND THE SOFTWARE PART NUMBERS. a. Verify that the following information is correct:
a. Turn the key start switch and the disconnect switch to the OFF position.
• The part number of the VIMS configuration
b. One at a time, reconnect the electronic control modules that use the CAT data link.
• The part number of the engine ECM flash
c. Turn the disconnect switch and the key start switch to the ON position.
• The part number of the VIMS main module
d. After each of the electronic control modules has been reconnected, check the Event List for diagnostic codes that are logged against the electronic control module. Expected Result: Diagnostic codes are not present for the other electronic control modules in the event list. Results:
• OK - Diagnostic codes are not present for the other electronic control modules in the event list. The implement ECM has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, check the +battery contacts and ground contacts of the ECM. If these contacts are correct, replace the ECM. STOP.
software software
• The part number of the engine ECM Note: Consult the Business Unit that produces the product for the correct part numbers of the configuration software. Expected Result: All part numbers are correct. Results:
• OK - All part numbers are correct. Proceed to 2.
367 Testing and Adjusting Section
• NOT OK - All part numbers are NOT
correct. The installed VIMS main module or the engine ECM has the wrong part number or the incorrect configuration software is installed. Replace the incorrect VIMS main module or the engine ECM with a module that has the correct part number. Flash the correct configuration software. STOP.
2. INSPECT THE HARNESS CONNECTIONS. a. Turn the disconnect switch to the OFF position.
Results:
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 4.
• NOT OK - The resistance is less than 5000
ohms. The machine harness has failed. There is a short between frame ground and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
4. CHECK FOR SHORT TO +BATTERY b. Inspect all harness connections that are related to the CAT data link. Make sure that the connectors are clean and tight. c. Check the connectors for proper mating.
a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness.
d. Check the wires at the connector. e. Check each wire for nicks or signs of abrasion in the insulation. f. Check for moisture at the connector. g. Check the connectors for dirty contacts or corroded contacts. h. Check each pin and each socket of the machine harness connectors. Expected Result: The machine harness connectors are tight and free of corrosion.
c. At the machine harness connector for the VIMS main module, perform the checks that are listed here:
• Measure the resistance between (+battery) connector contact 1 (wire 113-OR) and contact 6 (wire 882-PK) of the CAT data link circuit connector.
• Measure the resistance between the contact 1 (wire 113-OR) (+battery) and contact 7 (wire 893-GN) of the CAT data link circuit.
Expected Result: The resistance is greater than 5000 ohms.
Results: Results:
• OK - The machine harness connectors are tight and free of corrosion. Proceed to 3.
• NOT OK - The machine harness connectors are in need of repair. Repair the machine harness or replace the machine harness. STOP. 3. CHECK FOR SHORTS TO GROUND a. The disconnect switch remains in the OFF position.
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 5.
• NOT OK - The resistance is less than 5000 ohms. The machine harness has failed. There is a short between +battery and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 5. CHECK FOR OPEN HARNESS
b. Disconnect the machine harness from all electronic control modules that use the CATdata link. c. At the machine harness for the VIMS main module, measure the resistance between frame ground and connector contacts 6 (wire 882-PK) and 7 (wire 893-GY) of the CAT data link circuit. Expected Result: The resistance is greater than 5000 ohms.
a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness. c. Measure the resistance of the CAT data link circuit in the machine harness:
368 Testing and Adjusting Section
• Measure between contact 6 (wire 882-PK) of the VIMS main module to the CAT data link circuit of the engine ECM.
• Measure from connector contact 7 (wire 893-GY) of the VIMS main module to the CAT data link circuit of the engine ECM. Expected Result: The resistance measures less than 5 Ohms.
• NOT OK - Diagnostic codes are present for
the other electronic control modules (ECM) in the event list. The VIMS main module has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, replace the ECM. See the Testing and Adjusting, “Module - Replace” section of this manual. STOP. i01305697
Results:
• OK - The resistance is less than 5 ohms. The CAT data link circuit in the machine harness is correct. Proceed to 6.
• NOT OK - The resistance is greater than 5 ohms. The machine harness has failed. the CAT data link circuit is open in the machine harness. Repair the machine harness or replace the machine harness. STOP. 6. CHECK FOR ADDITIONAL DIAGNOSTIC CODES FOR THE OTHER ELECTRONIC CONTROL MODULES. a. Turn the key start switch and the disconnect switch to the OFF position. b. One at a time, reconnect the electronic control modules that use the CAT data link. c. Turn the disconnect switch and the key start switch to the ON position. d. After each of the electronic control modules has been reconnected, check the Event List for diagnostic codes that are logged against the electronic control module. Expected Result: Diagnostic codes are not present for the other electronic control modules in the event list. Results:
• OK - Diagnostic codes are not present for the other electronic control modules in the event list. The Machine control ECM has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, check the +battery contacts and ground contacts of the ECM. If these contacts are correct, replace the ECM. STOP.
CID 0596 FMI 12 Electronic Control Module (Implement) Failed - Test SMCS Code: 7610-038-II This diagnostic code is recorded when the VIMS main module can not communicate with the implement ECM through the CAT data link. This diagnostic code results in failed VIMS operations that are related to the implement ECM. The VIMS operations may work intermittently. 1. VERIFY THE HARDWARE AND THE SOFTWARE PART NUMBERS. a. Verify that the following information is correct:
• The part number of the VIMS configuration software
• The part number of the implement ECM flash software.
• The part number of the VIMS main module • The part number of the implement ECM Note: Consult the Business Unit that produces the product for the correct part numbers of the configuration software. Expected Result: All part numbers are correct. Results:
• OK - All part numbers are correct. Proceed to 2.
369 Testing and Adjusting Section
• NOT OK - All part numbers are NOT
correct. The installed VIMS main module or the implement ECM has the wrong part number or the incorrect configuration software is installed. Replace the incorrect VIMS main module or the implement ECM with a module that has the correct part number. Flash the correct configuration software. STOP.
Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 4.
• NOT OK - The resistance is less than 5000 2. INSPECT THE HARNESS CONNECTIONS. a. Turn the disconnect switch to the OFF position. b. Inspect all harness connections that are related to the CAT data link. Make sure that the connectors are clean and tight. c. Check the connectors for proper mating. d. Check the wires at the connector. e. Check each wire for nicks or signs of abrasion in the insulation. f. Check for moisture at the connector. g. Check the connectors for dirty contacts or corroded contacts. h. Check each pin and each socket of the machine harness connectors. Expected Result: The machine harness connectors are tight and free of corrosion.
ohms. The machine harness has failed. There is a short between frame ground and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
4. CHECK FOR SHORT TO +BATTERY a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness. c. At the machine harness connector for the VIMS main module, perform the checks that are listed here:
• Measure the resistance between the contact 1 (wire 113-OR) (+battery) and contact 6 (wire 882-PK) of the CAT data link circuit.
• Measure the resistance between the contact 1 (wire 113-OR) (+battery) and contact 7 (wire 893-GN) of the CAT data link circuit.
Results:
Expected Result: The resistance is greater than 5000 ohms.
• OK - The machine harness connectors are
Results:
tight and free of corrosion. Proceed to 3.
• NOT OK - The machine harness connectors are in need of repair. Repair the machine harness or replace the machine harness. STOP.
3. CHECK FOR SHORTS TO GROUND a. The disconnect switch remains in the OFF position. b. Disconnect the machine harness from all electronic control modules that use the CATdata link. c. At the machine harness for the VIMS main module, measure the resistance between frame ground and connector contacts 6 (wire 882-PK) and 7 (wire 893-GY) of the CAT data link circuit.
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 5.
• NOT OK - The resistance is less than 5000 ohms. The machine harness has failed. There is a short between +battery and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
5. CHECK FOR OPEN HARNESS a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness. c. Measure the resistance of the CAT data link circuit in the machine harness:
370 Testing and Adjusting Section
• Measure between contact 6 (wire 882-PK)
of the VIMS main module and the contact of the CAT data link circuit of the implement ECM.
• Measure from connector contact 7 (wire 893-GY) of the VIMS main module and the contact of CAT data link circuit of the implement ECM.
• NOT OK - Diagnostic codes are present for
the other electronic control modules (ECM) in the event list. The VIMS main module has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, replace the ECM. See the Testing and Adjusting, “Module - Replace” section of this manual. STOP.
Expected Result: The resistance measures less than 5 Ohms. Results:
• OK - The resistance is less than 5 ohms. The CAT data link circuit in the machine harness is correct. Proceed to 6.
i00984753
CID 0600 FMI 03 Temperature Sensor (Hydraulic Oil) Voltage Above Normal - Test SMCS Code: 5050-038-NS
• NOT OK - The resistance is greater than 5 ohms. The machine harness has failed. the CAT data link circuit is open in the machine harness. Repair the machine harness or replace the machine harness. STOP. 6. CHECK FOR ADDITIONAL DIAGNOSTIC CODES FOR THE OTHER ELECTRONIC CONTROL MODULES. a. Turn the key start switch and the disconnect switch to the OFF position. b. One at a time, reconnect the electronic control modules that use the CAT data link. c. Turn the disconnect switch and the key start switch to the ON position. d. After each of the electronic control modules has been reconnected, check the Event List for diagnostic codes that are logged against the electronic control module. Expected Result: Diagnostic codes are not present for the other electronic control modules in the event list. Results:
• OK - Diagnostic codes are not present for the other electronic control modules in the event list. The Machine control ECM has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, check the +battery contacts and ground contacts of the ECM. If these contacts are correct, replace the ECM. STOP.
Illustration 314
g00503530
Schematic of the Hydraulic Oil Temperature Sensor
This diagnostic code is recorded when VIMS reads the signal wire of the hydraulic oil temperature sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• A shorted harness • An open supply circuit to the sensor
371 Testing and Adjusting Section
• A failed sensor • An open circuit
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP.
• The VIMS interface Module may have failed. This is unlikely. Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 8 DCV. Results:
3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
• OK - The voltage is approximately 5 DCV. The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4.
4. CHECK FOR AN OPEN SIGNAL CIRCUIT. a. Turn the key start switch and the disconnect switch to the OFF position.
• OK - The voltage is approximately 8 DCV.
b. The sensor remains disconnected from the machine harness.
• NOT OK - The voltage is not approximately
c. Disconnect the machine harness from the interface module.
The voltage is correct. Proceed to 3.
8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2.
2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT.
d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor.
a. The key start switch and the disconnect switch remain in the ON position.
e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground.
b. Disconnect the sensor from the machine harness.
Expected Result: The resistance measures less than 10 ohms.
c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground.
Results:
• OK - The resistance measures less than 10 ohms. The circuit is correct. Proceed to 5.
Expected Results: The voltage should measure approximately 8 DCV. Results:
• NOT OK - The resistance is greater than 5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP.
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
5. CHECK THE SIGNAL WIRE FOR SHORTS.
372 Testing and Adjusting Section
a. The disconnect switch and the key start switch remain in the OFF position.
i00984754
b. The machine harness remains disconnected from the VIMS interface module.
CID 0600 FMI 04 Temperature Sensor (Hydraulic Oil) Voltage Below Normal - Test
c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor.
SMCS Code: 5050-038-NS
d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts. Expected Results: Each measurement is greater than 5000 ohms.
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP.
Illustration 315
g00503530
Schematic of the Hydraulic Oil Temperature Sensor
This diagnostic code is recorded when VIMS reads the voltage of the hydraulic oil temperature sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
373 Testing and Adjusting Section
b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor.
a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors.
Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active.
c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code.
Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0600 FMI 04 is no longer active. Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
374 Testing and Adjusting Section
i00984755
CID 0600 FMI 06 Temperature Sensor (Hydraulic Oil) Current Above Normal - Test SMCS Code: 5050-038-NS
b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. Illustration 316
g00503530
Schematic of the Hydraulic Oil Temperature Sensor
This diagnostic code is recorded when VIMS reads the current of the hydraulic oil temperature sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
375 Testing and Adjusting Section
a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0600 FMI 06 is no longer active. Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP. i00992232
CID 0650 FMI 02 Harness Code Incorrect - Test SMCS Code: 1408-038 Table 28
Harness Code Troubleshooting 37
38
39
40
Interface Module No. 1 (MID 57)
grounded
grounded
grounded
open
Interface Module No. 2 (MID 58)
open
grounded
grounded
grounded
Interface Module No. 3 (MID 59)
grounded
open
grounded
grounded
Interface Module No. 4 (MID 60)
open
open
grounded
open
Interface Module No. 5 (MID 65)
grounded
grounded
open
grounded
Interface Module No. 6 (MID 66)
open
grounded
open
open
Interface Module No. 7 (MID 66)
grounded
open
open
open
Interface Module No. 8 (MID 68)
open
open
open
grounded
Connector and Contact
376 Testing and Adjusting Section
Note: The harness code is similar to the personality module identification code. Both terms are used to describe the particular interface module that is sending information to the VIMS main module. The harness code is the status (open or ground) of the harness code inputs. The module identifier is the number that is assigned to a particular harness code for a particular electronic control module. Each module has a specific harness code. Therefore, each module also has a specific module identifier. The correct harness code is given in the Electrical System Schematic. This failure is recorded when the module code circuits change during normal operation. In order to perform this procedure, the specified harness code for each module must be known. The “Harness Code Troubleshooting” table above lists the specified harness code for VIMS modules. 1. CHECK THE HARNESS CODE. a. Turn the disconnect switch and the key start switch to the OFF position. b. Disconnect the machine harness from the VIMS module. c. At the machine harness connector for the VIMS module, check for continuity between the contacts of the harness code connector and contact 2 (ground). The machine’s Electrical System Schematic or the “Harness Code Troubleshooting table” should be used to determine the configuration of the harness code contacts (grounded or open). Expected Results: Results: The harness code is correct.
• OK - Harness code is correct. No defect
was found in the circuits of the harness code. Reconnect the harness connectors. The problem is intermittent or the module is faulty. STOP.
• NOT OK - Harness code is not correct.
Repair the harness code circuits or replace the harness. STOP.
i00984756
CID 0654 FMI 03 Temperature Sensor (Trailer Right Brake Oil) Voltage Above Normal - Test SMCS Code: 4251-038-NS This diagnostic code is recorded when VIMS reads the signal wire of the steering oil temperature sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• A shorted harness • An open supply circuit to the sensor • A failed sensor • An open circuit • The VIMS interface Module may have failed. This is unlikely. Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 8 DCV. Results:
• OK - The voltage is approximately 8 DCV. The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately 8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2.
377 Testing and Adjusting Section
2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground.
d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms. Results:
Expected Results: The voltage should measure approximately 8 DCV.
• OK - The resistance measures less than 10
Results:
• NOT OK - The resistance is greater than
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP.
ohms. The circuit is correct. Proceed to 5. 5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP. 5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module.
3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
• OK - The voltage is approximately 5 DCV. The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT. a. Turn the key start switch and the disconnect switch to the OFF position. b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module.
c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts. Expected Results: Each measurement is greater than 5000 ohms.
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP.
378 Testing and Adjusting Section
i00984757
CID 0654 FMI 04 Temperature Sensor (Trailer Right Brake Oil) Voltage Below Normal - Test SMCS Code: 4251-038-NS This diagnostic code is recorded when VIMS reads the voltage of the trailer right brake oil temperature sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND.
a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0654 FMI 04 is no longer active. Results:
• YES - Diagnostic code is NOT active. The
diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
379 Testing and Adjusting Section
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP. i00984758
CID 0654 FMI 06 Temperature Sensor (Trailer Right Brake Oil) Current Above Normal - Test SMCS Code: 4251-038-NS This diagnostic code is recorded when VIMS reads the current of the trailer right brake oil temperature sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO
longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0654 FMI 06 is no longer active. Results:
380 Testing and Adjusting Section
• YES - Diagnostic code is NOT active. The
diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP. i00984760
CID 0655 FMI 03 Temperature Sensor (Trailer Left Brake Oil) Voltage Above Normal - Test SMCS Code: 4251-038-NS This fault is recorded when the VIMS module reads the signal from the sensor and the voltage is too high. The possible causes of this fault are listed here:
• The sensor is faulty. • The ground circuit in the machine harness is open.
• The signal circuit in the machine harness is shorted to the +battery circuit.
• The signal circuit in the machine harness is open or the sensor is disconnected.
• The VIMS module is faulty. This is unlikely. 1. CHECK THE CONTROL AND THE HARNESS. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness from the sensor. c. At the machine harness connector for the sensor, measure the voltage (DCV) between the signal contact and the ground contact. Expected Result: The voltage is 5.0 ± 0.5 DCV. Results:
• OK - Voltage is 5.0 ± 0.5 DCV. The VIMS
module is correct and the harness is correct. The sensor is faulty. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor Test” section. STOP.
• NOT OK - Voltage is NOT 5.0 ± 0.5 DCV. The VIMS module is faulty or the harness is faulty. Proceed to Step 2. 2. CHECK THE GROUND CIRCUIT IN THE HARNESS. The machine harness remains disconnected from the sensor. a. Turn the key start switch and turn the disconnect switch to the OFF position. b. Disconnect the machine harness from the VIMS module. c. At the machine harness connector for the sensor, measure the resistance between the ground contact and frame ground. Expected Result: The resistance is less than 5.0 ohms. Results:
• OK - Resistance is less than 5.0 ohms. The harness resistance is correct. Proceed to Step 3.
• NOT OK - Resistance is greater than 5.0
ohms. The ground circuit in the harness is faulty. There is an open circuit between the ground contact and frame ground. Repair the machine harness or replace the machine harness. STOP.
3. CHECK THE SIGNAL CIRCUIT FOR A SHORT IN THE HARNESS. The sensor remains disconnected from the machine harness. The VIMS module remains disconnected from the machine harness. The disconnect switch remains in the OFF position. The key start switch remains in the OFF position. a. At the machine harness connector for the sensor, measure the resistance between the signal contact and the +battery contact (+V). Expected Result: The resistance is greater than 5000 ohms. Results:
381 Testing and Adjusting Section
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to Step 4.
• NOT OK - Resistance is less than 5000 ohms. The machine harness is faulty. There is a short between the +battery circuit and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 4. CHECK THE SIGNAL CIRCUIT FOR AN OPEN IN THE HARNESS. The sensor remains disconnected from the machine harness and the VIMS module remains disconnected from the machine harness. The disconnect switch remains in the OFF position and the key start switch remains in the OFF position. a. Measure the resistance of the signal circuit from the VIMS machine harness connector to the sensor machine harness connector. Expected Result: The resistance is less than 5.0 ohms (continuity). Results:
• OK - Circuit has continuity. The signal
circuit is correct. The VIMS module is faulty. Replace the VIMS module. Refer to the Testing and Adjusting, “Module - Replace ” section. STOP.
• NOT OK - Circuit has NO continuity. The
signal circuit is faulty. The signal circuit is open in the machine harness. Repair the machine harness or replace the machine harness. STOP. i00984761
CID 0655 FMI 04 Temperature Sensor (Trailer Left Brake Oil) Voltage Below Normal - Test SMCS Code: 4251-038-NS This diagnostic code is recorded when VIMS reads the voltage of the trailer left brake oil temperature sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed.
• The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO
longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
382 Testing and Adjusting Section
• NOT OK - Resistance is less than 5000
ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
• The VIMS interface module has failed. This is a. Using established procedures, clean the contacts of the harness connectors.
unlikely. 1. CHECK THE SENSOR.
b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code.
a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor.
e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0655 FMI 04 is no longer active.
Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area.
Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND.
i00984762
CID 0655 FMI 06 Temperature Sensor (Trailer Left Brake Oil) Current Above Normal - Test SMCS Code: 4251-038-NS This diagnostic code is recorded when VIMS reads the current of the trailer left brake oil temperature sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module.
a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground.
383 Testing and Adjusting Section
Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000
ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors.
i00984763
CID 0656 FMI 03 Temperature Sensor (Trailer Brake Oil Cooler Inlet) Voltage Above Normal - Test SMCS Code: 1365-038-NS This diagnostic code is recorded when VIMS reads the signal wire of the trailer brake oil cooler inlet temperature sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• A shorted harness
b. Reconnect all harness connectors.
• An open supply circuit to the sensor
c. Turn the disconnect switch and the key start switch to the ON position.
• A failed sensor
d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0655 FMI 06 is no longer active. Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
• An open circuit • The VIMS interface Module may have failed. This is unlikely. Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 8 DCV. Results:
• OK - The voltage is approximately 8 DCV. The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately 8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2.
384 Testing and Adjusting Section
2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground.
d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms. Results:
Expected Results: The voltage should measure approximately 8 DCV.
• OK - The resistance measures less than 10
Results:
• NOT OK - The resistance is greater than
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP.
ohms. The circuit is correct. Proceed to 5. 5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP. 5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module.
3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
• OK - The voltage is approximately 5 DCV. The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT. a. Turn the key start switch and the disconnect switch to the OFF position. b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module.
c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts. Expected Results: Each measurement is greater than 5000 ohms.
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP.
385 Testing and Adjusting Section
i00984784
CID 0656 FMI 04 Temperature Sensor (Trailer Brake Oil Cooler Inlet) Voltage Below Normal - Test SMCS Code: 1365-038-NS This diagnostic code is recorded when VIMS reads the voltage of the trailer brake oil cooler inlet temperature sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND.
a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0656 FMI 04 is no longer active. Results:
• YES - Diagnostic code is NOT active. The
diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
386 Testing and Adjusting Section
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP. i00984785
CID 0656 FMI 06 Temperature Sensor (Trailer Brake Oil Cooler Inlet) Current Above Normal - Test SMCS Code: 1365-038-NS This diagnostic code is recorded when VIMS reads the current of the trailer brake oil cooler inlet temperature sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• NOT OK - This diagnostic code is NO
longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area.
a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine.
Results: f. Observe the status of the diagnostic code.
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
Expected Result: The diagnostic code CID 0656 FMI 06 is no longer active. Results:
387 Testing and Adjusting Section
• YES - Diagnostic code is NOT active. The
diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 8 DCV.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP. i00984786
CID 0657 FMI 03 Temperature Sensor (Trailer Brake Oil Cooler Outlet) Voltage Above Normal - Test SMCS Code: 1365-038-NS This diagnostic code is recorded when VIMS reads the signal wire of the trailer brake oil cooler outlet temperature sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
Results:
• OK - The voltage is approximately 8 DCV. The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately 8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2. 2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground. Expected Results: The voltage should measure approximately 8 DCV. Results:
• A shorted harness • An open supply circuit to the sensor • A failed sensor • An open circuit • The VIMS interface module may have failed. This is unlikely. Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP.
3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
388 Testing and Adjusting Section
• OK - The voltage is approximately 5 DCV.
The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT.
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP.
a. Turn the key start switch and the disconnect switch to the OFF position. b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms.
i00984787
CID 0657 FMI 04 Temperature Sensor (Trailer Brake Oil Cooler Outlet) Voltage Below Normal - Test SMCS Code: 1365-038-NS This diagnostic code is recorded when VIMS reads the voltage of the trailer brake oil cooler outlet temperature sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module.
Results:
The possible causes of this diagnostic code are listed here:
• OK - The resistance measures less than 10
• The sensor has failed.
ohms. The circuit is correct. Proceed to 5.
• NOT OK - The resistance is greater than 5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP. 5. CHECK THE SIGNAL WIRE FOR SHORTS.
• The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely. 1. CHECK THE SENSOR.
a. The disconnect switch and the key start switch remain in the OFF position.
a. Turn the disconnect switch and the key start switch to the ON position.
b. The machine harness remains disconnected from the VIMS interface module.
b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor.
c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts. Expected Results: Each measurement is greater than 5000 ohms.
Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
389 Testing and Adjusting Section
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000
ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
Expected Result: The diagnostic code CID 0657 FMI 04 is no longer active. Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP. i00984788
CID 0657 FMI 06 Temperature Sensor (Trailer Brake Oil Cooler Outlet) Current Above Normal - Test SMCS Code: 1365-038-NS This diagnostic code is recorded when VIMS reads the current of the trailer brake oil cooler outlet temperature sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
• The VIMS interface module has failed. This is a. Using established procedures, clean the contacts of the harness connectors.
unlikely. 1. CHECK THE SENSOR.
b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code.
a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor.
e. Operate the machine. f. Observe the status of the diagnostic code.
Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active.
390 Testing and Adjusting Section
Note: VIMS may wait up to approximately 30 seconds before updating the message area.
d. Observe the status of the diagnostic code. e. Operate the machine.
Results: f. Observe the status of the diagnostic code.
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
Expected Result: The diagnostic code CID 0657 FMI 06 is no longer active. Results:
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position.
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position.
i01491892
CID 0658 FMI 02 Pressure Sensor (Trailer Right Suspension Cylinder) Incorrect Signal - Test SMCS Code: 7201-038-PXS The output frequency of the sensor changes as the pressure in the suspension cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Suspension Cylinder Pressure Sensor-Test” section of this manual for troubleshooting of this failure.
391 Testing and Adjusting Section
i01491902
i01491909
CID 0658 FMI 03 Pressure Sensor (Trailer Right Suspension Cylinder) Voltage Above Normal - Test
CID 0659 FMI 02 Pressure Sensor (Trailer Left Suspension Cylinder) Incorrect Signal - Test
SMCS Code: 7201-038-PXS
SMCS Code: 7201-038-PXS
The output frequency of the sensor changes as the pressure in the suspension cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Suspension Cylinder Pressure Sensor-Test” section of this manual for troubleshooting of this failure.
The output frequency of the sensor changes as the pressure in the suspension cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Suspension Cylinder Pressure Sensor-Test” section of this manual for troubleshooting of this failure.
i01491905
i01491913
CID 0658 FMI 04 Pressure Sensor (Trailer Right Suspension Cylinder) Voltage Below Normal - Test
CID 0659 FMI 03 Pressure Sensor (Trailer Left Suspension Cylinder) Voltage Above Normal - Test
SMCS Code: 7201-038-PXS
SMCS Code: 7201-038-PXS
The output frequency of the sensor changes as the pressure in the suspension cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Suspension Cylinder Pressure Sensor-Test” section of this manual for troubleshooting of this failure.
The output frequency of the sensor changes as the pressure in the suspension cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Suspension Cylinder Pressure Sensor-Test” section of this manual for troubleshooting of this failure.
i01491906
i01491917
CID 0658 FMI 06 Pressure Sensor (Trailer Right Suspension Cylinder) Current Above Normal - Test
CID 0659 FMI 04 Pressure Sensor (Trailer Left Suspension Cylinder) Voltage Below Normal - Test
SMCS Code: 7201-028-PXS
SMCS Code: 7201-038-PXS
The output frequency of the sensor changes as the pressure in the suspension cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Suspension Cylinder Pressure Sensor-Test” section of this manual for troubleshooting of this failure.
The output frequency of the sensor changes as the pressure in the suspension cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Suspension Cylinder Pressure Sensor-Test” section of this manual for troubleshooting of this failure.
392 Testing and Adjusting Section
i01491919
CID 0659 FMI 06 Pressure Sensor (Trailer Left Suspension Cylinder) Current Above Normal - Test SMCS Code: 7201-038-PXS The output frequency of the sensor changes as the pressure in the suspension cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Suspension Cylinder Pressure Sensor-Test” section of this manual for troubleshooting of this failure.
Expected Results: The diagnostic code should NO longer be active. Results:
• YES - The diagnostic code is NO longer active. The sensor has failed. Replace the sensor. After the sensor has been replaced, verify that the new sensor corrected the problem. STOP.
• NO - The diagnostic code remains active. Exit this procedure and perform this diagnostic code procedure again. If the cause of the diagnostic code is not found, replace the VIMS interface module. See Testing and Adjusting, “ Module - Replace”. STOP.
i01092831
CID 0672 FMI 01 Speed Sensor (Torque Converter Output) Below Normal Range - Test SMCS Code: 3141-038
i00987321
CID 0672 FMI 02 Speed Sensor (Torque Converter Output) Incorrect Signal - Test SMCS Code: 3141-038
Illustration 317
g00503599
Schematic of the Torque Converter Output Speed Sensor
This diagnostic code is recorded when the VIMS module determines that the signal of the sensor is below normal range. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. View the status of the diagnostic code. The diagnostic code should be active. c. Disconnect the sensor from the machine harness. d. View the status of the diagnostic code.
Illustration 318
g00503599
Schematic of the Torque Converter Output Speed Sensor
This fault is recorded when the VIMS module reads the engine speed signal and the signal is erratic, intermittent or incorrect. The possible causes of this fault are listed here:
• Poor electrical connection of the machine harness connector
• The sensor is loose or the sensor is not adjusted correctly.
• The signal circuit in the machine harness is shorted to ground.
393 Testing and Adjusting Section
• The signal circuit is shorted to + battery in the machine harness.
• The signal circuit is open in the machine harness.
• NOT OK - The resistance is less than 5000
ohms. The machine harness has failed. There is a short between frame ground and the torque converter output speed circuit in the machine harness. STOP.
• The VIMS module has failed. This is unlikely. 1. INSPECT THE HARNESS AND THE SENSOR.
3. CHECK FOR A SHORT TO THE + BATTERY CIRCUIT IN THE MACHINE HARNESS.
a. Turn the disconnect switch to the OFF position.
a. The disconnect switch remains in the OFF position.
b. Inspect the torque converter output speed sensor and inspect the machine harness connectors of the torque converter output speed sensor.
b. The sensor remains disconnected and the VIMS module remains disconnected.
c. Check the torque converter output speed sensor. The sensor should be clean and tight. The harness connections are clean and tight.
c. At the machine harness connector for the VIMS module, measure the resistance between the + battery contact 1 (wire 113-OR) and contact 29 of the torque converter output speed signal circuit (wire 452-BU).
Expected Result: The torque converter output speed sensor and related wiring are correct.
Expected Result:The resistance is greater than 5000 ohms.
Results:
Results:
• OK - The sensor and the machine harness
• OK - Resistance is greater than 5000 ohms.
are correct. Proceed to 2.
• NOT OK - The sensor has failed or the machine harness has failed. Repair the failed component. Reference the Testing and Adjusting, “Speed Sensor - Adjust” section. STOP. 2. CHECK FOR SHORT TO GROUND IN THE SIGNAL CIRCUIT
The harness circuit is correct. Proceed to Step 4.
• NOT OK - Resistance is less than 5000
ohms. The machine harness is faulty. There is a short between the engine speed signal circuit and +battery. Repair the machine harness or replace the machine harness. STOP.
4. CHECK FOR OPEN SIGNAL CIRCUIT a. The disconnect switch remains in the OFF position. b. Disconnect the machine harness from the torque converter output speed sensor. c. Disconnect the machine harness from the VIMS module. d. At the machine harness connector of the VIMS module, measure the resistance between frame ground and contact 13 of the torque converter output circuit (wire 452-BU). Expected Result: The resistance is greater than 5000 ohms.
a. The disconnect switch remains in the OFF position. b. The sensor remains disconnected and the VIMS module remains disconnected. c. Measure the resistance between contact C of the machine harness connector of the torque converter output speed sensor (wire452-BU) and contact 13 of the VIMS interface module machine harness connector (wire 452-BU). Expected Result:The resistance is less than 5 ohms. Results:
Results:
• OK - The resistance is greater than 5000 ohms. The harness circuit is correct. Proceed to 3.
• OK - Resistance is less than 5 ohms. The signal circuit in the machine harness is correct. The VIMS module has failed. Replace the interface module. Reference the Testing and Adjusting, “Module Replace” section. STOP.
394 Testing and Adjusting Section
• NOT OK - Resistance is greater than 5
ohms. The machine harness has failed. The engine speed signal circuit is open in the machine harness. Repair the machine harness or replace the machine harness. STOP. i00989365
CID 0672 FMI 03 Speed Sensor (Torque Converter Output) Voltage Above Normal - Test SMCS Code: 3141-038
1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 8 DCV. Results:
• OK - The voltage is approximately 8 DCV. The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately 8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2. 2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. Illustration 319
g00503599
Schematic of the Torque Converter Output Speed Sensor
This diagnostic code is recorded when VIMS reads the signal wire of the torque converter output speed sensor as a continuous “high” voltage. The possible causes of this diagnostic code are listed here:
• A shorted harness • An open supply circuit to the sensor • A failed sensor • An open circuit • The VIMS interface module may have failed. This is unlikely. Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes.
b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground. Expected Results: The voltage should measure approximately 8 DCV. Results:
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP.
3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor.
395 Testing and Adjusting Section
c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
• OK - The voltage is approximately 5 DCV. The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4.
Expected Results: Each measurement is greater than 5000 ohms.
• OK - Each measurement is greater than
5000 ohms. The VIMS interface module has failed. Refer to the Testing and Adjusting, “Module - Replace” section. STOP.
• NOT OK - The resistance measured less than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP. i00989368
4. CHECK FOR AN OPEN SIGNAL CIRCUIT. a. Turn the key start switch and the disconnect switch to the OFF position. b. The sensor remains disconnected from the machine harness.
CID 0672 FMI 04 Speed Sensor (Torque Converter Output) Voltage Below Normal - Test SMCS Code: 3141-038
c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms. Results:
• OK - The resistance measures less than 10 ohms. The circuit is correct. Proceed to 5.
• NOT OK - The resistance is greater than
5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP.
5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module. c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts.
Illustration 320
g00503599
Schematic of the Torque Converter Output Sensor
This diagnostic code is recorded when VIMS reads the voltage of the torque converter output sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
396 Testing and Adjusting Section
b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor.
a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors.
Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active.
c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code.
Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground.
e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0672 FMI 04 is no longer active. Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP. i00989370
CID 0672 FMI 08 Speed Sensor (Torque Converter Output) Abnormal Signal - Test SMCS Code: 3141-038
Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
Illustration 321
g00503599
Schematic of the Torque Converter Output Speed Sensor
397 Testing and Adjusting Section
This diagnostic code is recorded when VIMS reads the signal from the torque converer output sensor and the frequency of the signal or pulse of the signal is not within an expected range. The sensor sends a PWM signal to the VIMS module.
Expected Results: Each resistance measurement should be greater than 5000 ohms.
The possible causes of this diagnostic code are listed here:
• YES - Each resistance measurement
• The sensor has failed. • Intermittent or poor connections • The VIMS interface module has failed. This is unlikely. Note: The following diagnostic code procedure can create other related diagnostic codes. Perform the following procedure. Reconnect all harnesses. Then clear all the related diagnostic codes. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
Results: measures greater than 5000 ohms. The harness is correct. It is unlikely that the VIMS interface module has failed. Exit this procedure and perform this diagnostic code procedure again. If the cause of the diagnostic code is not found, replace the VIMS interface module. See Testing and Adjusting, “ Module - Replace”. STOP.
• NO - The resistance measurement does not measure greater than 5000 ohms for all measurements. The machine harness has failed. There is a short in the machine harness. The short is between the signal circuit (wire 452-BU) and the circuit with the low resistance measurement. Repair the machine harness or replace the machine harness. STOP.
b. Ensure that the diagnostic code is active. c. Disconnect the sensor from the machine harness. Expected Results: The diagnostic code is NO longer active.
i01306022
CID 0767 FMI 03 Pressure Sensor (Fixed Displacement Pump Oil) Voltage Above Normal - Test
Results: SMCS Code: 5084-038-PXS
• YES - The diagnostic code is NO longer
active. The sensor has failed. Replace the sensor. Verify that the new sensor corrected this diagnostic code. The diagnostic code should NOT be active.
• NO - The diagnostic code remains
active. The sensor is not the cause of the diagnostic code. Proceed to 2.
2. CHECK FOR A SHORT IN THE HARNESS. a. The sensor remains disconnected from the machine harness. g00691823
b. Turn the key start switch and the disconnect switch to the OFF position.
Illustration 322
c. Disconnect the machine harness connector from the VIMS interface module.
This diagnostic code is recorded when VIMS reads the signal wire of the fixed displacement pump oil pressure sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module.
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact 13 (wire 452-BU) to all other contacts of the machine harness.
Schematic of the Fixed Displacement Pump oil Pressure Sensor
The possible causes of this diagnostic code are listed here:
• A shorted harness
398 Testing and Adjusting Section
• An open supply circuit to the sensor • A failed sensor • An open circuit • The VIMS interface module may have failed. This is unlikely.
• OK - The voltage measures approximately 24 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure approximately 24 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP.
Note: Ensure that the diagnostic code is still active. 3. CHECK THE SIGNAL CIRCUIT. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Check the voltage at the machine harness connector of the sensor from contact A (+Battery) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage.
a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
• OK - The voltage is approximately 5 DCV. The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately Expected Results: The voltage should measure approximately 8 DCV. Results:
• OK - The voltage is approximately 24 DCV. The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately 24 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2. 2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (+battery) to frame ground.
5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT. a. Turn the key start switch and the disconnect switch to the OFF position. b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms. Results:
Expected Results: The voltage should measure approximately 24 DCV.
• OK - The resistance measures less than 10 ohms. The circuit is correct. Proceed to 5.
Results:
399 Testing and Adjusting Section
• NOT OK - The resistance is greater than
5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP.
5. CHECK THE SIGNAL WIRE FOR SHORTS.
This diagnostic code is recorded when VIMS reads the voltage of the fixed displacement pump oil pressure sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module.
a. The disconnect switch and the key start switch remain in the OFF position.
The possible causes of this diagnostic code are listed here:
b. The machine harness remains disconnected from the VIMS interface module.
• The sensor has failed.
c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor.
• The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely.
d. At the machine harness connector for the VIMS interface module measure from the signal contact to all the possible sources of + Battery. Expected Results: Each measurement is greater than 5000 ohms.
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less
than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
i01306040
CID 0767 FMI 04 Pressure Sensor (Fixed Displacement Pump Oil) Voltage Below Normal - Test SMCS Code: 5084-038-PXS
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO
longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position.
Illustration 323
g00691823
Schematic of the Fxed Displacement Pump Oil Pressure Sensor
c. Disconnect the machine harness from the VIMS interface module.
400 Testing and Adjusting Section
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
i01306060
CID 0767 FMI 06 Pressure Sensor (Fixed Displacement Pump Oil) Current Above Normal - Test SMCS Code: 5084-038-PXS
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3.
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Clean the contacts of the harness connectors. Use established procedures. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0767 FMI 04 is no longer active. Results:
• YES - Diagnostic code is NOT active. The
diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “Module - Replace”. STOP.
Illustration 324
g00691823
Schematic of the Fixed Displacement Pump Oil Pressure Sensor
This diagnostic code is recorded when the VIMS reads the current of the fixed displacement pump oil pressure sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area.
401 Testing and Adjusting Section
Results:
Expected Result: The diagnostic code CID 0767FMI 06 is no longer active.
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness.
Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “Module - Replace”. STOP.
b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms.
i00992306
CID 0801 FMI 09 Interface Module (No. 1) Abnormal Update - Test SMCS Code: 7601-038 This failure is recorded if the VIMS main module cannot communicate with a module. Check for power and ground at the module. Check the CAT data link connectors for a good connection. If the power, ground and the CAT data link is correct, perform the troubleshooting procedure for a harness code fault (CID 0650).
The harness circuit resistance is correct. Proceed to 3.
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Clean the contacts of the harness connectors. Use established procedures. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code.
i00992784
CID 0802 FMI 09 Interface Module (No. 2) Abnormal Update - Test SMCS Code: 7601-038 This failure is recorded if the VIMS main module cannot communicate with a module. Check for power and ground at the module. Check the CAT data link connectors for a good connection. If the power, ground and the CAT data link is correct, perform the troubleshooting procedure for a harness code fault (CID 0650).
402 Testing and Adjusting Section
i00992787
i01009727
CID 0803 FMI 09 Interface Module (No. 3) Abnormal Update - Test
CID 0806 FMI 09 Interface Module (No. 6) Abnormal Update - Test
SMCS Code: 7601-038
SMCS Code: 7601-038
This failure is recorded if the VIMS main module cannot communicate with a module. Check for power and ground at the module. Check the CAT data link connectors for a good connection. If the power, ground and the CAT data link is correct, perform the troubleshooting procedure for a harness code fault (CID 0650).
This failure is recorded if the VIMS main module cannot communicate with a module. Check for power and ground at the module. Check the CAT data link connectors for a good connection. If the power, ground and the CAT data link is correct, perform the troubleshooting procedure for a harness code fault (CID 0650).
i01009704
i01009751
CID 0804 FMI 09 Interface Module (No. 4) Abnormal Update - Test
CID 0807 FMI 09 Interface Module (No. 7) Abnormal Update - Test
SMCS Code: 7601-038
SMCS Code: 7601-038
This failure is recorded if the VIMS main module cannot communicate with a module. Check for power and ground at the module. Check the CAT data link connectors for a good connection. If the power, ground and the CAT data link is correct, perform the troubleshooting procedure for a harness code fault (CID 0650).
This failure is recorded if the VIMS main module cannot communicate with a module. Check for power and ground at the module. Check the connectors of the CAT data link for a good connection. If the power, ground and the CAT data link is correct, perform the troubleshooting procedure for a harness code fault (CID 0650).
i01009722
i01009754
CID 0805 FMI 09 Interface Module (No. 5) Abnormal Update - Test
CID 0808 FMI 09 Interface Module (No. 8) Abnormal Update - Test
SMCS Code: 7601-038
SMCS Code: 7601-038
This failure is recorded if the VIMS main module cannot communicate with a module. Check for power and ground at the module. Check the CAT data link connectors for a good connection. If the power, ground and the CAT data link is correct, perform the troubleshooting procedure for a harness code fault (CID 0650).
This failure is recorded if the VIMS main module cannot communicate with a module. Check for power and ground at the module. Check the CAT data link connectors for a good connection. If the power, ground and the CAT data link is correct, perform the troubleshooting procedure for a harness code fault (CID 0650).
403 Testing and Adjusting Section
i00992806
i00992822
CID 0809 FMI 02 Speedometer/Tachometer Module (No. 1) Incorrect Signal - Test
CID 0811 FMI 02 Quad Gauge Module (No. 1) Incorrect Signal - Test
SMCS Code: 7450-038
This failure is recorded if the VIMS main module is getting erratic data from a display module. Check for loose connections of the Display data link. If this failure corresponds to the deactivation of any solenoids, then check for a failed diode assembly on the solenoid that was deactivated.
This failure is recorded if the VIMS main module is getting erratic data from a display module. Check for loose connections of the Display data link. If this failure corresponds to the deactivation of any solenoids, then check for a failed diode assembly on the solenoid that was deactivated.
SMCS Code: 7450-038-MGM
i00992844 i00992810
CID 0809 FMI 12 Speedometer/Tachometer Module (No. 1) Failed - Test SMCS Code: 7450-038 This failure is recorded if the VIMS main module cannot communicate with a display module. Check for power and ground at the module. Check for loose connections of the Display data link. i00992815
CID 0810 FMI 02 Speedometer/Tachometer Module (No. 2) Incorrect Signal - Test SMCS Code: 7450-038 This failure is recorded if the VIMS main module is getting erratic data from a display module. Check for loose connections of the Display data link. If this failure corresponds to the deactivation of any solenoids, then check for a failed diode assembly on the solenoid that was deactivated. i00992818
CID 0810 FMI 12 Speedometer/Tachometer Module (No. 2) Failed - Test SMCS Code: 7450-038 This failure is recorded if the VIMS main module cannot communicate with a display module. Check for power and ground at the module. Check for loose connections of the Display data link.
CID 0811 FMI 12 Quad Gauge Module (No. 1) Failed - Test SMCS Code: 7450-038-MGM This failure is recorded if the VIMS main module cannot communicate with a display module. Check for power and ground at the module. Check for loose connections of the Display data link. i00992845
CID 0812 FMI 02 Quad Gauge Module (No. 2) Incorrect Signal - Test SMCS Code: 7450-038-MGM This failure is recorded if the VIMS main module is getting erratic data from a display module. Check for loose connections of the Display data link. If this failure corresponds to the deactivation of any solenoids, then check for a failed diode assembly on the solenoid that was deactivated. i00992849
CID 0812 FMI 12 Quad Gauge Module (No. 2) Failed - Test SMCS Code: 7450-038-MGM This failure is recorded if the VIMS main module cannot communicate with a display module. Check for power and ground at the module. Check for loose connections of the display data link.
404 Testing and Adjusting Section
i00992851
i00992863
CID 0813 FMI 02 Quad Gauge Module (No. 3) Incorrect Signal - Test
CID 0815 FMI 02 Message Center Module (No. 1) Incorrect Signal - Test
SMCS Code: 7450-038-MGM
SMCS Code: 7450-038
This failure is recorded if the VIMS main module is getting erratic data from a display module. Check for loose connections of the Display data link. If this failure corresponds to the deactivation of any solenoids, then check for a failed diode assembly on the solenoid that was deactivated.
This failure is recorded if the VIMS main module is getting erratic data from a display module. Check for loose connections of the display data link. If this failure corresponds to the deactivation of any solenoids, then check for a failed diode assembly on the solenoid that was deactivated.
i00992852
CID 0813 FMI 12 Quad Gauge Module (No. 3) Failed - Test SMCS Code: 7450-038-MGM This failure is recorded if the VIMS main module cannot communicate with a display module. Check for power and ground at the module. Check for loose connections of the display data link.
i00992887
CID 0815 FMI 12 Message Center Module (No. 1) Failed Test SMCS Code: 7450-038 This failure is recorded if the VIMS main module cannot communicate with a display module. Check for power and ground at the module. Check for loose connections of the display data link.
i00992855
CID 0814 FMI 02 Quad Gauge Module (No. 4) Incorrect Signal - Test SMCS Code: 7450-038-MGM This failure is recorded if the VIMS main module is getting erratic data from a display module. Check for loose connections of the Display data link. If this failure corresponds to the deactivation of any solenoids, then check for a failed diode assembly on the solenoid that was deactivated.
i00992891
CID 0816 FMI 02 Message Center Module (No. 2) Incorrect Signal - Test SMCS Code: 7450-038 This failure is recorded if the VIMS main module is getting erratic data from a display module. Check for loose connections of the display data link. If this failure corresponds to the deactivation of any solenoids, then check for a failed diode assembly on the solenoid that was deactivated.
i00992857
CID 0814 FMI 12 Quad Gauge Module (No. 4) Failed - Test SMCS Code: 7450-038 This failure is recorded if the VIMS main module cannot communicate with a display module. Check for power and ground at the module. Check for loose connections of the display data link.
i00992898
CID 0816 FMI 12 Message Center Module (No. 2) Failed Test SMCS Code: 7450-038 This failure is recorded if the VIMS main module cannot communicate with a display module. Check for power and ground at the module. Check for loose connections of the display data link.
405 Testing and Adjusting Section
i00992902
CID 0817 FMI 02 Battery (Internal Backup) Incorrect Test
Expected Results: The fault CID 0819 FMI 03 remains. Results:
• OK - Fault has not changed. Fault CID 0819 FMI 03 remains. Repeat this process for each module. Proceed to 2.
SMCS Code: 1401-038-UB Reference the section Testing and Adjusting, “Troubleshooting Diagnostic Codes Using Abbreviated Procedure”.
• NOT OK - Failure is not displayed. Replace the module. STOP.
2. CHECK FOR SHORT TO +BATTERY i00992910
CID 0817 FMI 12 Battery (Internal Backup) Failed - Test SMCS Code: 1401-038-UB Reference the section Testing and Adjusting, “Troubleshooting Diagnostic Codes Using Abbreviated Procedure”. i00992933
CID 0819 FMI 02 Display Data Link Incorrect - Test SMCS Code: 7450-038
a. Turn the disconnect switch and the key start switch to the OFF position. b. Disconnect the machine harness from the VIMS main module and the display modules. c. At the machine harness connector for the VIMS main module, measure the resistance between +battery contact 1 and the display data link circuit connector contact 26, 27 or 28 . Expected Results:The Resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms.
This failure is recorded when the VIMS main module determines that information on the Display data link is erratic or the data makes no sense. Check for loose connections of the Display data link. If this failure corresponds to the deactivation of any solenoids, then check for a failed diode assembly on the solenoid that was deactivated. i00992940
CID 0819 FMI 03 Display Data Link Voltage Above Normal Test SMCS Code: 7450-038 This failure is recorded when the VIMS main module reads the voltage of the display data link and the voltage is above normal. 1. CHECKING THE DISPLAY MODULES a. Disconnect the display modules from the machine harness one at a time and reconnect the display modules from the machine harness one at a time. b. Check whether the fault CID 0819 FMI 03 is present.
The harness circuit resistance is correct. Proceed to 3.
• NOT OK - Resistance is less than 5000 ohms. The machine harness is faulty. The display data link is shorted to the +battery circuit. Repair the machine harness or replace the machine harness.STOP. 3. CHECK FOR OPEN HARNESS a. The disconnect switch remains in the OFF position and the key start switch remains in the OFF position. b. All modules remain disconnected from the machine harness. c. Check the continuity of the display data link circuits in the machine harness. Measure the resistance from the connector of the VIMS main module to the connector for each of the display modules. Expected Results: There is continuity. Results:
406 Testing and Adjusting Section
• OK - Circuit has continuity. The display data link circuit in the machine harness is correct. The VIMS main module is faulty. Replace the VIMS module. Refer to the section Testing and Adjusting, “Module-Replace”. STOP.
• NOT OK - Circuit has NO continuity. The
machine harness is faulty. The display data link circuit is open in the machine harness. Repair the machine harness or replace the machine harness. STOP.
Expected Results:The Resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. The VIMS main module is faulty. Replace the VIMS module. Refer to the Testing and Adjusting, “Module-Replace” section. STOP.
• NOT OK - Resistance is less than 5000 i00992943
CID 0819 FMI 06 Display Data Link Current Above Normal Test SMCS Code: 7450-038 This failure is recorded when the VIMS main module reads the voltage of the Display Data Link and the voltage is below normal. The circuit is shorted to ground. 1. DISCONNECT THE DISPLAY MODULES. a. Disconnect the display modules from the machine harness one at a time and reconnect the display modules from the machine harness one at a time. b. Check whether the fault CID 0819 FMI 06 is present. Expected Results: The fault CID 0819 FMI 06 remains. Results:
• OK - Fault has not changed. The fault CID 0819 FMI 06 remains. Repeat this process for each module. Proceed to Step 2.
• NOT OK - Fault is not displayed. Replace the module. 2. CHECK FOR SHORT TO GROUND a. Turn the disconnect switch and the key start switch to the OFFposition. b. Disconnect the machine harness from the VIMS main module and the display modules. c. Measure the resistance at the machine harness connector of the VIMS main module between frame ground and the Display Data Link circuit connector contacts: 26, 27, and 28
ohms. The machine harness is faulty. The display data link is shorted to ground. Repair the machine harness or replace the machine harness. STOP. i00992968
CID 0819 FMI 12 Display Data Link Failed - Test SMCS Code: 7450-038 This diagnostic code is recorded if the VIMS main module cannot communicate with any display modules. Check for power and ground at the display modules. Check for loose connections of the Display data link. The voltage of 9.0 ± 0.5 DCV should be present between the connector contacts 1 and 2 of the display modules. i00994182
CID 0820 FMI 02 Keypad Data Link Incorrect - Test SMCS Code: 7450-038-KPD This diagnostic code is recorded when the VIMS main module determines that information on the Keypad data link is erratic or the data makes no sense. Check for loose connections of the Keypad data link. If this diagnostic code corresponds to the deactivation of any solenoids, then check for a failed diode assembly on the solenoid that was deactivated.
407 Testing and Adjusting Section
i00994204
CID 0820 FMI 03 Keypad Data Link Voltage Above Normal Test SMCS Code: 7450-038-KPD This diagnostic code is recorded when the VIMS main module reads the voltage of the Keypad data link and the voltage is above normal. 1. DISCONNECT THE KEYPAD. a. Disconnect the machine harness from the keypad. b. Check whether the diagnostic code CID 0820 FMI 03 is active. Expected Results:The diagnostic CID 0820 FMI 03 is active. Results:
• OK - Diagnostic code remains active. The
fault CID 0820 FMI 03 is present. Proceed to 2.
• NOT OK - Diagnostic code is no longer present. CID 0820 FMI 03 is no longer present on the message center. Reconnect the keypad to the machine harness. Check for the fault CID 0820 FMI 03. If the fault is present replace the keypad. STOP. 2. CHECK FOR SHORT TO +BATTERY a. Turn the disconnect switch to the OFF position and the key start switch to the OFF position. b. Disconnect the machine harness from the VIMS main module. Disconnect the machine harness from the VIMS keypad module. c. measure the resistance at the machine harness connector for the VIMS main module between +battery contact 1 and the Keypad Data Link circuit connector contact 29. Expected Results:The Resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to Step 3.
• NOT OK - Resistance is less than 5000
ohms. The machine harness has failed. The Keypad data link is shorted to the +battery circuit. Repair the machine harness or replace the machine harness. STOP.
3. CHECK FOR OPEN HARNESS a. The disconnect switch remains in the OFF position and the key start switch remains in the OFF position. b. The keypad remains disconnected from the machine harness. c. Check the continuity of the Keypad data link circuit in the machine harness. Measure the resistance between the connector of the VIMS main module to the connector of the VIMS keypad module. Expected Results: There is continuity. Results:
• OK - Circuit has continuity. The Keypad data link circuit in the machine harness is correct. The VIMS main module has failed. Replace the VIMS module. Refer to the section Testing and Adjusting, “Module-Replace”. STOP.
• NOT OK - Circuit has NO continuity. The machine harness has failed. The Keypad data link circuit is open in the machine harness. Repair the machine harness or replace the machine harness. STOP. i00994207
CID 0820 FMI 06 Keypad Data Link Current Above Normal Test SMCS Code: 7450-038-KPD This diagnostic code is recorded when the VIMS main module reads the voltage of the keypad data link and the voltage is below normal. The keypad data link circuit is shorted to ground. 1. DISCONNECT THE KEYPAD. a. Disconnect the VIMS keypad module from the machine harness. b. Check whether the diagnostic code CID 0820 FMI 06 is active. Expected Results:The diagnostic code CID 0820 FMI 06 is active.
408 Testing and Adjusting Section
Results:
i00994246
• OK - Diagnostic code remains active. Proceed to 2.
• NOT OK - Diagnostic code is not active. Check the connector of the keypad for proper connections. Reconnect the VIMS keypad module to the machine harness. If the diagnostic code CID 0820 FMI 06 is active, then replace the VIMS main module. STOP. 2. CHECK FOR SHORT TO GROUND a. Turn the key start switch and the disconnect switch to the OFFposition. b. Disconnect the machine harness from the VIMS main module and the display modules. c. Measure the resistance at the machine harness connector for the VIMS main module between frame ground and the Keypad Data Link circuit connector contact 29.
CID 0821 FMI 03 Display Power Supply Voltage Above Normal - Test SMCS Code: 7450-038 This diagnostic code is recorded when the VIMS main module reads the voltage of the display power supply circuit and the voltage is above normal. The normal voltage of display power supply is 9.0 ± 0.5 DCV. 1. CHECK THE VOLTAGE AT MAIN MODULE CONNECTOR. a. Check the voltage at the connector of the main module from contact 25 to contact 37. Use the 7X-1710 Cable probes to make the measurement. Do NOT disconnect the machine harness from the VIMS main module. Expected Results:The voltage is 9.0 ± 0.5 DCV.
Expected Results:The Resistance is greater than 5000 ohms.
Results:
Results:
• OK - Voltage is 9.0 ± 0.5 DCV. The display
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. The VIMS main module has failed. Replace the VIMS module. Refer to the Testing and Adjusting, “Module-Replace” section. STOP.
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. The keypad data link is shorted to ground. Repair the machine harness or replace the machine harness. STOP. i00994210
CID 0820 FMI 12 Keypad Data Link Failed - Test SMCS Code: 7450-038-KPD This diagnostic code is recorded if the VIMS main module cannot communicate with the keypad module. Check for power and ground at the keypad module. Check for loose connections of the keypad data link. The voltage of 9.0 ± 0.5 DCV should be present between the connector contacts 1 and 2 of the display modules.
power supply voltage is correct. Check the message center for the same diagnostic code. If the diagnostic code is still present the main module has failed. Replace the main module. Refer to theTesting and Adjusting, “Module-Replace” section. STOP.
• NOT OK - Voltage is NOT 9.0 ± 0.5 DCV. The voltage of the display power supply is NOT correct. Proceed to 2. 2. CHECK THE HARNESS FOR A SHORT TO +BATTERY. a. Disconnect the machine harness from the VIMS main module. b. Measure the voltage at the machine harness connector of the VIMS main module between connector contact 25 to connector contact 37. Expected Results: The voltage is 0.0 ± 0.5 DCV. Results:
• OK - Voltage is 0.0 ± 0.5 DCV. The voltage is correct. The VIMS main module has failed. Replace the VIMS main module. Refer to the Testing and Adjusting, “Module-Replace”section.
409 Testing and Adjusting Section
• NOT OK - Voltage is NOT 0.0 ± 0.5 DCV.
The harness has failed. Repair the machine harness or replace the machine harness. STOP. i00993011
CID 0821 FMI 06 Display Power Supply Current Above Normal - Test SMCS Code: 7450-038 This diagnostic code is recorded when the VIMS main module reads the current of the display power supply circuit and the current is above normal. Normal voltage of the display power supply is 9.0 ± 0.5 DCV. 1. CHECK VOLTAGE AT THE MAIN MODULE. a. Use the 7X-1710 Cable probes to measure the voltage at the main module connector from contact 25 to contact 37. Do NOT disconnect the harness from the main module. Expected Results:The voltage is 9.0 ± 0.5 DCV. Results:
• OK - Voltage is 9.0 ± 0.5 DCV. The
voltage of the display power supply is correct. Check the message center for the same diagnostic code. If the same diagnostic code is still present the main module has failed. Replace the main module. Refer to the Testing and Adjusting, “Module-Replace” section. STOP.
• NOT OK - Voltage is NOT 9.0 ± 0.5 DCV.
The voltage of the display power supply is NOT correct. Proceed to 2.
• OK - Voltage is 9.0 ± 0.5 DCV. The
voltage of the display power supply is correct. The display module that was just disconnected has failed. Replace the VIMS module. Refer to the Testing and Adjusting, “Module-Replace” section.
• NOT OK - Voltage is NOT 9.0 ± 0.5 DCV. The voltage of the display power supply is NOT correct. Repeat 2. If the voltage of the display power supply is NOT 9.0 ± 0.5 DCV after disconnecting all the display modules. Proceed to 3 3. CHECK FOR SHORT TO GROUND a. Turn the key start switch and the disconnect switch to OFF position. b. Disconnect the machine harness from the VIMS main module and the display modules. c. Measure the resistance between frame ground and the display power supply circuit connectorcontact 25. d. Measure the resistance between display module ground contact 37 and the display power supply circuit connector contact 25. Expected Results: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. The VIMS main module has failed. Replace the VIMS module. Refer to the Testing and Adjusting, “Module-Replace” section.
• NOT OK Resistance is less than 5000 ohms. The machine harness has failed. Repair the machine harness or replace the machine harness.
2. DISCONNECT THE DISPLAY MODULES. i00994248
a. Monitor the voltage at the main module connector contact 25 to contact 37. b. Disconnect the display module from the machine harness one at a time. Expected Results:The voltage is 9.0 ± 0.5 DCV. Results:
CID 0822 FMI 03 Display Backlighting Voltage Above Normal - Test SMCS Code: 7450-038 This diagnostic code is recorded when the VIMS main module reads the voltage of the display back light return circuit and the voltage is above normal. 1. CHECK FOR SHORT TO +BATTERY
410 Testing and Adjusting Section
a. Turn the key start switch and the disconnect switch to the OFF position.
• OK - Bulbs are good. Proceed to Step 2. • NOT OK - Bulbs are open. Replace the
b. Disconnect the machine harness from the VIMS main module.
open bulbs. 2. CHECK FOR OPEN HARNESS
c. Disconnect the display back lights on the message center. d. Disconnect the bottom portion of the speedometer/tachometer module. e. At the machine harness connector for the VIMS main module, measure the resistance between +battery contact 1 and the display back light return circuit connector contact 3. Expected results:The resistance is greater than 5000 ohms.
a. Turn the key start switch and the disconnect switch to OFF position. b. Disconnect the VIMS main module and the message center back light from the machine harness. c. Measure the resistance of the display back light return circuit from the VIMS main module connector (contact 3) to the message center back light bulb socket (wire E710-BU).
Results:
Expected results:There is continuity (less than 5 ohms).
• OK - Resistance is greater than 5000 ohms.
Results:
The harness circuit resistance is correct. The VIMS main module has failed. Replace the VIMS main module. Refer to the Testing and Adjusting, “Module-Replace” section. STOP.
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between the +battery circuit and the ground circuit of the display back light in the machine harness. Repair the machine harness or replace the machine harness. STOP.
• OK - Circuit has continuity. The display back light return circuit in the machine harness is correct. The VIMS main module has failed. Replace the VIMS module. Refer to the Testing and Adjusting, “Module-Replace” section. STOP.
• NOT OK - Circuit has NO continuity. The machine harness has failed. The display back light return circuit is open in the machine harness. Repair the machine harness or replace the machine harness. STOP.
i00994250
CID 0822 FMI 05 Display Backlighting Current Below Normal - Test
i00994253
CID 0822 FMI 06 Display Backlighting Current Above Normal - Test
SMCS Code: 7450-038 SMCS Code: 7450-038 This diagnostic code is recorded when the VIMS main module determines that there is an open circuit in the display back light return circuit. 1. CHECK FOR OPEN BACKLIGHT BULBS. a. Check for open backlight bulbs in the message center and the bottom portion of the speedometer/tachometer module. Expected results:Bulbs are good. Results:
This diagnostic code is recorded when the VIMS main module reads the current of the display backlight return circuit and the current is above normal. 1. CHECK FOR SHORT TO GROUND a. Turn the key start switch and the disconnect switch to OFF position.
411 Testing and Adjusting Section
b. Disconnect the machine harness from the VIMS main module. Disconnect the message center display backlights and disconnect the speedometer/tachometer module’s display backlights. c. Measure the resistance at the machine harness connector of the VIMS main module between frame ground and the display backlight return circuit connector contact 3.
i00992797
CID 0823 FMI 03 Lamp (Service) Voltage Above Normal - Test SMCS Code: 7431-038-LMP
Expected Resutls: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. The VIMS main module has failed. Replace the VIMS module. Refer to the Testing and Adjusting, “Module-Replace” section. STOP.
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the display backlight return circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
Illustration 325
g00507787
Schematic of the VIMS service indicator lamp
This diagnostic code is recorded when the VIMS module reads the voltage of the service indicator lamp circuit (E709-WH) and the voltage is above normal. The service indicator lamp is ON CONTINUOUSLY as a result of this fault condition. 1. CHECK THE LAMP CIRCUIT. a. Turn the key start switch and the disconnect switch to the OFF position. b. Disconnect the machine harness from the VIMS main module. c. Turn the disconnect switch to the ON position. d. Observe the service indicator lamp. e. Turn the key start switch to the ON position. Expected Result: The service indicator lamp is ON. Results:
412 Testing and Adjusting Section
• OK - The service indicator lamp turned ON. The harness circuit E709-WH is shorted to the +battery. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The service indicator lamp is OFF. The VIMS interface module has failed. Replace the VIMS interface module. See Testing and Adjusting, “Module - Replace”. STOP. i00992800
CID 0823 FMI 05 Lamp (Service) Current Below Normal - Test
Expected Result: The diagnostic code CID 0823 FMI 05 is still active. Results:
• OK - This diagnostic code remains active. The service indicator lamp is not causing the fault. Proceed to 2.
• NOT OK - This diagnostic code is not
present. The lamp or the lamp socket is open. Replace the service indicator lamp. For the purposes of this procedure, the correct resistance for a lamp is less than 200 ohms. STOP.
2. CHECK THE HARNESS. SMCS Code: 7431-038-LMP a. Turn the key start switch and the disconnect switch to the OFF position. b. Remove the jumper wire between wire E709-WH and frame ground. Verify that the service indicator lamp is connected to the machine harness. c. Disconnect the machine harness from the VIMS main module. d. At the machine harness connector for the VIMS main module, measure the resistance between contact 21 (wire E709-WH) and frame ground. Expected Result: The resistance is greater than 100 ohms. Results:
• OK - Resistance is greater than 100 ohms. The harness circuit is open. Proceed to 3.
• NOT OK - Resistance is less than 100
Illustration 326
g00507787
ohms. The harness circuit resistance is correct. Replace the VIMS main module. Refer to the Testing and Adjusting, “Module - Replace”section. STOP.
Schematic of the VIMS service indicator lamp
3. CHECK THE HARNESS. This diagnostic code is recorded when the VIMS module reads the current of the service indicator lamp circuit (wire E709-WH) and the current is below normal. The service indicator lamp will not light if this diagnostic code is present. 1. CHECK THE LAMP. a. At the service indicator lamp, use a jumper to connect wire E709-WH to frame ground.
a. Disconnect the signal wire (E709-WH) from the service lamp socket. b. Measure the resistance between contact 21 of the VIMS main module harness connector and the lamp socket. c. Measure the resistance between the lamp socket and the frame ground.
413 Testing and Adjusting Section
Expected Result: The resistance is less than 5 ohms.
Expected Result: The service code CID 0823 FMI 06 is still active.
Results:
Results:
• OK - Resistance is less than 5 ohms. The
• OK - The diagnostic code is still active. The
circuit is correct. The failure is intermittent. Check all harness connections. STOP.
• NOT OK - Resistance is greater than 5
ohms. The circuit is NOT correct. Repair the machine harness or replace the machine harness. STOP. i00992801
CID 0823 FMI 06 Lamp (Service) Current Above Normal - Test
service indicator lamp is not causing the failure. Proceed to 2.
• NOT OK - The diagnostic code is NO
longer active. The lamp or the lamp socket have failed. Replace the service indicator lamp. For the purposes of this procedure, the correct resistance for a lamp is greater than 10 ohms. STOP.
2. CHECK THE HARNESS. a. Turn the disconnect switch to the OFF position.
SMCS Code: 7431-038-LMP b. Wire E709-WH remains disconnected from the service indicator lamp. c. Disconnect the machine harness from the VIMS main module. d. At the machine harness connector for the VIMS main module, measure the resistance between contact 21 (wire E709-WH) and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000 ohms. The harness resistance is correct. Proceed to 3.
• NOT OK - The resistance is less than 5000 ohms. The harness has failed. Repair the machine harness or replace the machine harness. STOP. 3. CHECK THE MODULE. Illustration 327
g00507787
Schematic of the VIMS service indicator lamp
This diagnostic code is recorded when the VIMS module reads the voltage of the service indicator lamp circuit (wire E709-WH) and the voltage is below normal. The service indicator lamp does not light when this failure is present. 1. CHECK THE LAMP. a. At the service indicator lamp, disconnect the signal wire (E709-WH) from the service lamp socket.
a. Remove contact 21 (wire E709-WH) from the machine harness connector for the VIMS main module. b. Reconnect the harness connector to the VIMS main module. c. Turn the disconnect switch and the key start switches to the ON position. Expected Result: The diagnostic code CID 0823 FMI 06 is still active. Results:
414 Testing and Adjusting Section
• OK - The fault remains active. The VIMS
module has failed. Replace the module. Refer to the Testing and Adjusting, “Module - Replace” section. STOP.
• NOT OK - The diagnostic code is NOT active. The VIMS module is not causing the failure. The failure is intermittent. The probable cause is a poor electrical connection at the harness connectors or a damaged harness. Check the harness for damage. Clean the harness connectors, as required. STOP. i01382387
CID 0824 FMI 03 Lamp (Green Payload) Voltage Above Normal - Test SMCS Code: 1430-038-LMP; 7494-038-LMP
Expected Result: The green payload lamps turns ON. Results:
• OK - Green payload lamps turn ON. The harness circuit (wire 636-GN) is shorted to the +battery. Repair the harness or replace the harness. STOP.
• NOT OK - Green payload lamps are OFF. The main module has failed. Replace the VIMS main module. Refer to the Testing and Adjusting, “Module - Replace” section. STOP. i01382378
CID 0824 FMI 05 Lamp (Green Payload) Current Below Normal - Test SMCS Code: 1430-038-LMP; 7494-038-LMP
Illustration 328
g00730054
Schematic of the Payload Lamps Illustration 329
This diagnostic code is recorded when the VIMS module reads the voltage of the payload lamp and the voltage is above normal. The green payload lamps are ON CONTINUOUSLY as a result of this fault condition.
g00730054
Schematic of the Payload Lamps
This diagnostic code is recorded when the VIMS module reads the current of the payload lamp and the current is below normal. The green payload lamp does not light when this failure is present.
1. CHECK THE LAMP CIRCUIT. 1. CHECK THE LAMP. a. Turn the key start switch and the disconnect switch to the OFF position. b. Disconnect the machine harness from the VIMS module.
a. At the green payload lamp, use a jumper to connect wire 636-GN to frame ground. Expected Result: The diagnostic code CID 0824 FMI 05 is active.
c. Turn the disconnect switch to the ON position. Results: d. Observe the green payload lamp.
• OK - The diagnostic code remains active. e. Turn the key start switch to the ON position.
The green payload lamp is not causing the failure. Proceed to 2.
415 Testing and Adjusting Section
• NOT OK - The diagnostic code is NO
longer active. The lamp or the lamp socket is open. Replace the green payload lamp. For the purposes of this procedure, the correct resistance for a lamp is less than 200 ohms. STOP.
2. CHECK THE HARNESS. a. Turn the key start switch and the disconnect switch to the OFF position. b. Remove the jumper wire between wire 636-GN and frame ground. Verify that the green payload lamp is connected to the machine harness.
• NOT OK - The resistance is greater than 5
ohms. The Circuit is NOT correct. Repair the machine harness or replace the machine harness. STOP. i01382375
CID 0824 FMI 06 Lamp (Green Payload) Current Above Normal - Test SMCS Code: 1430-038-LMP; 7494-038-LMP
c. Disconnect the machine harness from the VIMS main module. d. At the machine harness connector for the VIMS main module, measure the resistance between contact 22 (636-GN) and frame ground. Expected Result: The resistance is greater than 100 ohms. Results:
• OK - The resistance is greater than 100
ohms. The harness circuit is open. Proceed to 3.
• NOT OK - The resistance is less than 100 ohms. The harness circuit resistance is correct. Replace the VIMS main module. Refer to the Testing and Adjusting, “Module - Replace” section. STOP. 3. CHECK THE HARNESS. a. At the green payload lamp, disconnect wire 636-GN from the green payload lamp socket. b. Measure the resistance between contact 22 of the VIMS module harness connector and the lamp socket. c. Measure the resistance between the lamp socket and the frame ground. Expected Result: The resistance measurements were less than 5 ohms. Results:
• OK - The resistance is less than 5 ohms. The circuit is correct. STOP.
Illustration 330
g00730054
Schematic of the Payload Lamps
This diagnostic code is recorded when the VIMS module reads the current of the payload lamp and the current is above normal. The green payload lamp is ON CONTINUOUSLY whenever this failure is active. 1. CHECK THE LAMP. a. At the green payload lamp, disconnect wire 636-GN from the green payload lamp socket. Expected Result: The diagnostic code CID 0824 FMI 06 is still active. Results:
• OK - The diagnostic code is still active. The green payload lamp is not causing the failure. Proceed to 2.
• NOT OK - The diagnostic code is NO longer active. The lamp or the lamp socket have failed. Replace the green payload lamp. For the purposes of this procedure, the correct resistance for a lamp is greater than 10 ohms. STOP. 2. CHECK THE HARNESS. a. Turn the disconnect switch to the OFF position.
416 Testing and Adjusting Section
b. Wire 636-GN remains disconnected from the green payload lamp. c. Disconnect the machine harness from the VIMS main module. d. At the machine harness connector for the VIMS main module, measure the resistance between contact 22 (wire 636-GN) and frame ground.
i01382372
CID 0825 FMI 03 Lamp (Red Payload) Voltage Above Normal - Test SMCS Code: 1430-038-LMP; 7494-038-LMP
Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000 ohms. The harness resistance is correct. Proceed to 3.
• NOT OK - The resistance is less than 5000 ohms. The harness has failed. Repair the machine harness or replace the machine harness. STOP.
Illustration 331
g00730048
Schematic of the Payload Lamps
3. CHECK THE MODULE. a. Remove contact 22 from the machine harness connector for the VIMS module. b. Reconnect the harness connector to the VIMS module.
This diagnostic code is recorded when the VIMS module reads the voltage of the payload lamp and the voltage is above normal. The circuit is open. The red payload lamp does not light when this failure is active. 1. CHECK THE LAMP CIRCUIT.
c. Turn the disconnect switch and the key start switches to the ON position. Expected Result: The diagnostic code CID 0824 FMI 06 is still active.
a. Turn the key start switch and the disconnect switch to the OFF position. b. Disconnect the machine harness from the VIMS module.
Results: c. Turn the disconnect switch to the ON position.
• OK - The diagnostic code remains active. The VIMS main module has failed. Replace the VIMS main module. Refer to the Testing and Adjusting, “Module - Replace” section. STOP. • NOT OK - The diagnostic code is NO longer active. The VIMS main module is not causing the failure. The failure is intermittent. The probable cause is a poor electrical connection at the harness connectors or a damaged harness. Check the harness for damage. If necessary, clean the harness connectors. STOP.
d. Observe the red payload lamp. e. Turn the key start switch to the ON position. Expected Result: The red payload lamps turns ON. Results:
• OK - The red payload lamps turn ON. The harness circuit (wire 635-BU) is shorted to the +battery. Repair the harness or replace the harness. STOP.
• NOT OK - The red payload lamps are OFF. The main module has failed. Replace the VIMS main module. Refer to the Testing and Adjusting, “Module - Replace” section. STOP.
417 Testing and Adjusting Section
i01382355
CID 0825 FMI 05 Lamp (Red Payload) Current Below Normal - Test SMCS Code: 1430-038-LMP; 7494-038-LMP
c. Disconnect the machine harness from the VIMS main module. d. At the machine harness connector for the VIMS main module, measure the resistance between contact 23 (wire 636-BU) and frame ground. Expected Result: The resistance is greater than 100 ohms. Results:
• OK - The resistance is greater than 100 ohms. The harness circuit is open. Proceed to 3.
• NOT OK - The resistance is less than 100 ohms. The harness circuit resistance is correct. Replace the VIMS main module. Refer to the Testing and Adjusting, “Module - Replace” section. STOP. Illustration 332
g00730048
3. CHECK THE HARNESS.
Schematic of the Payload Lamps
This diagnostic code is recorded when the VIMS module reads the current of the payload lamp and the current is below normal. The circuit is open. When this failure is present the red payload lamps do not light.
a. At the payload lamp, disconnect wire 636-BU from the socket of the payload lamp. b. Measure the resistance in the signal circuit (wire 636-BU) between the connector contact 23 of the VIMS main module and the lamp socket.
1. CHECK THE LAMP. a. At the red payload lamp, use a jumper to connect wire 636-BU to frame ground.
c. Measure the resistance in the ground circuit (wire A251-BK or J841-YL) between the lamp socket and the frame ground.
Expected Result: The diagnostic code CID 0824 FMI 05 is active.
Expected Result: The resistance is less than 5 ohms.
Results:
Results:
• OK - The diagnostic code CID 0824 FMI 05
• OK - The resistance is less than 5 ohms.
is still active. The red payload lamps are not causing the failure. Proceed to 2.
• NOT OK - The diagnostic code CID 0824
FMI 05 is NO longer active. The lamp or the lamp socket is open. Replace the payload lamp. For the purposes of this procedure, the correct resistance for a lamp is less than 200 ohms. STOP.
2. CHECK THE HARNESS. a. Turn the key start switch and the disconnect switch to the OFF position. b. Remove the jumper wire from wire 636-BU to frame ground and make sure that the payload lamp is connected to the machine harness.
The circuits are correct. STOP.
• NOT OK - The resistance is greater than
5 ohms. The circuits are NOT correct. Repair the machine harness or replace the machine harness. STOP.
418 Testing and Adjusting Section
i01382348
CID 0825 FMI 06 Lamp (Red Payload) Current Above Normal - Test SMCS Code: 1430-038-LMP; 7494-038-LMP
c. Disconnect the machine harness from the VIMS main module. d. At the machine harness connector for the VIMS main module, measure the resistance between contact 23 (wire 636-BU) and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000 ohms. The harness resistance is correct. Proceed to 3.
• NOT OK - The resistance is less than 5000 ohms. The harness has failed. Repair the machine harness or replace the machine harness. STOP. Illustration 333
g00730048
Schematic of the Payload Lamps
3. CHECK THE MODULE. a. Remove contact 23 from the machine harness connector for the VIMS main module.
This diagnostic code is recorded when the VIMS module reads the current of the payload lamp and the current is above normal. The payload lamp will not illuminate when this failure is active.
b. Reconnect the harness connector to the VIMS main module.
1. CHECK THE LAMP.
c. Turn the disconnect switch and the key start switches to the ON position.
a. At the payload lamp, disconnect wire636-BU from the socket of the red payload lamp. Expected Result: The diagnostic code CID 0824 FMI 06 is still active. Results:
• OK - The diagnostic code CID 0824 FMI 06 is still active. The red payload lamp is not causing the failure. Proceed to 2.
• NOT OK - The CID 0824 FMI 06 is NO longer present. The lamp or the lamp socket have failed. Replace the red payload lamp. For the purposes of this procedure, the correct resistance for a lamp is greater than 10 ohms. STOP. 2. CHECK THE HARNESS. a. Turn the key start switch and the disconnect switch to the OFF position. b. Wire 636-BU remains disconnected from the payload lamp.
Expected Result: The diagnostic code CID 0824 FMI 06 is still active. Results:
• OK - The diagnostic code CID 0824 FMI 06 is still active. The VIMS main module has failed. Replace the module. Refer to the Testing and Adjusting, “Module Replace”section. STOP.
• NOT OK - The diagnostic code CID 0824 FMI 06 is NO longer active. The VIMS main module is not causing the failure. The failure is intermittent. The probable cause is a poor electrical connection at the harness connectors or a damaged harness. Check the harness for damage. Clean the harness connectors, as required. STOP.
419 Testing and Adjusting Section
i00989889
CID 0826 FMI 03 Temperature Sensor (Torque Converter Oil) Voltage Above Normal - Test
• An open supply circuit to the sensor • A failed sensor • An open circuit • The VIMS interface Module may have failed. This
SMCS Code: 3101-038-NS
is unlikely.
Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 8 DCV. Results:
• OK - The voltage is approximately 8 DCV. The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately 8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2. 2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. Illustration 334
g00504167
Schematic of the Torque Converter Oil Temperature Sensor
This diagnostic code is recorded when VIMS reads the signal wire of the torque converter oil temperature sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• A shorted harness
b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground. Expected Results: The voltage should measure approximately 8 DCV. Results:
420 Testing and Adjusting Section
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP. 3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground).
• NOT OK - The resistance is greater than
5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP.
5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module. c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts.
Expected Results: The voltage should measure approximately 5 DCV.
Expected Results: Each measurement is greater than 5000 ohms.
• OK - The voltage is approximately 5 DCV.
• OK - Each measurement is greater than
The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT. a. Turn the key start switch and the disconnect switch to the OFF position. b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms. Results:
• OK - The resistance measures less than 10 ohms. The circuit is correct. Proceed to 5.
5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less
than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP.
421 Testing and Adjusting Section
i00984790
CID 0826 FMI 04 Temperature Sensor (Torque Converter Oil) Voltage Below Normal - Test
• The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR.
SMCS Code: 3101-038-NS
a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO
longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position.
Illustration 335
g00504167
Schematic of the Torque Converter Oil Temperature Sensor
This diagnostic code is recorded when VIMS reads the voltage of the torque converter oil temperature sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module.
c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
The possible causes of this diagnostic code are listed here:
• The sensor has failed.
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
422 Testing and Adjusting Section
• NOT OK - Resistance is less than 5000
ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
i00984791
CID 0826 FMI 06 Temperature Sensor (Torque Converter Oil) Current Above Normal - Test SMCS Code: 3101-038-NS
a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0826 FMI 04 is no longer active. Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
Illustration 336
g00504167
Schematic of the Torque Converter Oil Temperature Sensor
This diagnostic code is recorded when VIMS reads the current of the torque converter oil temperature sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
423 Testing and Adjusting Section
• The sensor has failed. • The signal circuit in the machine harness is
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
shorted to ground.
• The VIMS interface module has failed. This is unlikely. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor.
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors.
Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active.
c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code.
Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0826 FMI 06 is no longer active. Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
424 Testing and Adjusting Section
i01092836
CID 0826 FMI 11 Temperature Sensor (Torque Converter Oil) Failure Mode Not Identifiable Test SMCS Code: 3101-038-NS
This diagnostic code is recorded when the VIMS interface module has failed internally. Turn the disconnect switch and the key start switch to the OFF position. Wait for ten seconds. Turn the disconnect switch and the key start switch to the ON position. Check the message center for the same diagnostic code. If the diagnostic code is still active, the VIMS interface module has failed. Replace the VIMS interface module. Refer to the Testing and Adjusting, “Module-Replace” section. i00984792
CID 0827 FMI 03 Temperature Sensor (Left Exhaust) Voltage Above Normal - Test SMCS Code: 1919-038-LT
Illustration 338
g00504201
Schematic of the Left Exhaust Temperature Sensor
This diagnostic code is recorded when VIMS reads the signal wire of the left exhaust temperature sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module.
Illustration 337
g00504167
Schematic of the Torque Converter Oil Temperature Sensor
The possible causes of this diagnostic code are listed here:
• A shorted harness • An open supply circuit to the sensor • A failed sensor • An open circuit
425 Testing and Adjusting Section
• The VIMS interface module may have failed. This is unlikely.
Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 8 DCV.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP.
3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
• OK - The voltage is approximately 5 DCV. The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4.
Results: 4. CHECK FOR AN OPEN SIGNAL CIRCUIT.
• OK - The voltage is approximately 8 DCV. The voltage is correct. Proceed to 3.
a. Turn the key start switch and the disconnect switch to the OFF position.
• NOT OK - The voltage is not approximately 8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2. 2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground. Expected Results: The voltage should measure approximately 8 DCV.
b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms. Results:
• OK - The resistance measures less than 10 Results:
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
ohms. The circuit is correct. Proceed to 5.
• NOT OK - The resistance is greater than 5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP. 5. CHECK THE SIGNAL WIRE FOR SHORTS.
426 Testing and Adjusting Section
a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module. c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts.
This diagnostic code is recorded when VIMS reads the voltage of the left exhaust temperature sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is Expected Results: Each measurement is greater than 5000 ohms.
unlikely. 1. CHECK THE SENSOR.
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
a. Turn the disconnect switch and the key start switch to the ON position.
• NOT OK - The resistance measured less
b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor.
than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP. i00984793
CID 0827 FMI 04 Temperature Sensor (Left Exhaust) Voltage Below Normal - Test
Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active.
SMCS Code: 1919-038-LT
The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. Illustration 339 Schematic of the Left Exhaust Temperature Sensor
g00504201
c. Disconnect the machine harness from the VIMS interface module.
427 Testing and Adjusting Section
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms.
i00984794
CID 0827 FMI 06 Temperature Sensor (Left Exhaust) Current Above Normal - Test SMCS Code: 1919-038-LT
Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0827 FMI 04 is no longer active. Results:
• YES - Diagnostic code is NOT active. The
diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “ Module - Replace”. STOP.
Illustration 340
g00504201
Schematic of the Left Exhaust Temperature Sensor
This diagnostic code is recorded when VIMS reads the current of the left exhaust temperature sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active.
428 Testing and Adjusting Section
Note: VIMS may wait up to approximately 30 seconds before updating the message area.
d. Observe the status of the diagnostic code. e. Operate the machine.
Results: f. Observe the status of the diagnostic code.
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
Expected Result: The diagnostic code CID 0827 FMI 06 is no longer active. Results:
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position.
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “Module - Replace”. STOP.
c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms.
i01092837
CID 0827 FMI 08 Temperature Sensor (Left Exhaust) Abnormal Signal - Test SMCS Code: 1919-038-LT
Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. Illustration 341
c. Turn the disconnect switch and the key start switch to the ON position.
Schematic of the Left Exhaust Temperature Sensor
g00504201
429 Testing and Adjusting Section
This diagnostic code is recorded when VIMS reads the signal from the left exhaust temperature sensor and the frequency of the signal or pulse of the signal is not within an expected range. The sensor sends a PWM signal to the VIMS module.
Expected Results: Each resistance measurement should be greater than 5000 ohms.
The possible causes of this diagnostic code are listed here:
• YES - Each resistance measurement
• The sensor has failed. • Intermittent or poor connections • The VIMS interface module has failed. This is unlikely. Note: The following diagnostic code procedure can create other related diagnostic codes. Perform the following procedure. Reconnect all harnesses. Then clear all the related diagnostic codes. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
Results: measures greater than 5000 ohms. The harness is correct. It is unlikely that the VIMS interface module has failed. Exit this procedure and perform this diagnostic code procedure again. If the cause of the diagnostic code is not found, replace the VIMS interface module. See Testing and Adjusting, “ Module - Replace”. STOP.
• NO - The resistance measurement does not measure greater than 5000 ohms for all measurements. The machine harness has failed. There is a short in the machine harness. The short is between the signal circuit and the circuit with the low resistance measurement. Repair the machine harness or replace the machine harness. STOP.
b. Ensure that the diagnostic code is active.
i00984796
c. Disconnect the sensor from the machine harness.
CID 0828 FMI 03 Temperature Sensor (Right Exhaust) Voltage Above Normal - Test
Expected Results: The diagnostic code is NO longer active.
SMCS Code: 1919-038-RI
Results:
• YES - The diagnostic code is NO longer
active. The sensor is faulty. Replace the sensor. Verify that the new sensor corrected this diagnostic code. The diagnostic code should NOT be active.
• NO - The diagnostic code remains
active. The sensor is not the cause of the diagnostic code. Proceed to 2.
2. CHECK FOR A SHORT IN THE HARNESS. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness connector from the VIMS interface module.
Illustration 342
g00504269
Schematic of the Right Exhaust Temperature Sensor
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and all other contacts of the machine harness.
This diagnostic code is recorded when VIMS reads the signal wire of the right exhaust temperature sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module.
430 Testing and Adjusting Section
The possible causes of this diagnostic code are listed here:
Expected Results: The voltage should measure approximately 8 DCV.
• A shorted harness
Results:
• An open supply circuit to the sensor
• OK - The voltage measures approximately 8
• A failed sensor • An open circuit • The VIMS interface module may have failed. This is unlikely.
DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP.
Note: Ensure that the diagnostic code is still active. 3. CHECK THE SIGNAL CIRCUIT. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage.
a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
• OK - The voltage is approximately 5 DCV.
The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately Expected Results: The voltage should measure approximately 8 DCV. Results:
• OK - The voltage is approximately 8 DCV. The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately 8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2. 2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground.
5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT. a. Turn the key start switch and the disconnect switch to the OFF position. b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms. Results:
431 Testing and Adjusting Section
• OK - The resistance measures less than 10 ohms. The circuit is correct. Proceed to 5.
• NOT OK - The resistance is greater than
5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP.
i00984797
CID 0828 FMI 04 Temperature Sensor (Right Exhaust) Voltage Below Normal - Test SMCS Code: 1919-038-RI
5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module. c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts. Expected Results: Each measurement is greater than 5000 ohms.
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less
than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP.
Illustration 343
g00504269
Schematic of the Right Exhaust Temperature Sensor
This diagnostic code is recorded when VIMS reads the voltage of the right exhaust temperature sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active.
432 Testing and Adjusting Section
Note: VIMS may wait up to approximately 30 seconds before updating the message area.
d. Observe the status of the diagnostic code. e. Operate the machine.
Results: f. Observe the status of the diagnostic code.
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
Expected Result: The diagnostic code CID 0828 FMI 04 is no longer active. Results:
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position.
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “Module - Replace”. STOP.
c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms.
i00984798
CID 0828 FMI 06 Temperature Sensor (Right Exhaust) Current Above Normal - Test SMCS Code: 1919-038-RI
Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. Illustration 344
c. Turn the disconnect switch and the key start switch to the ON position.
Schematic of the Right Exhaust Temperature Sensor
g00504269
433 Testing and Adjusting Section
This diagnostic code is recorded when VIMS reads the current of the right exhaust temperature sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area.
a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine.
Results: f. Observe the status of the diagnostic code.
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
Expected Result: The diagnostic code CID 0828 FMI 06 is no longer active. Results:
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module.
• YES - Diagnostic code is NOT active. The
diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “Module - Replace”. STOP.
434 Testing and Adjusting Section
i01092839
CID 0828 FMI 08 Temperature Sensor (Right Exhaust) - Test
Expected Results: The diagnostic code is NO longer active. Results:
• YES - The diagnostic code is NO longer
SMCS Code: 1919-038-RI
active. The sensor has failed. Replace the sensor. Verify that the new sensor corrected this diagnostic code. The diagnostic code should NOT be active.
• NO - The diagnostic code remains active. The sensor is not the cause of the diagnostic code. Proceed to 2. 2. CHECK FOR A SHORT IN THE HARNESS. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness connector from the VIMS interface module.
Illustration 345
g00504269
Schematic for the Right Exhaust Temperature Sensor
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and all contacts of the machine harness connector.
This diagnostic code is recorded when VIMS reads the signal from the right exhaust temperature sensor and the frequency of the signal or pulse of the signal is not within an expected range. The sensor sends a PWM signal to the VIMS module.
Expected Results: Each resistance measurement should be greater than 5000 ohms.
The possible causes of this diagnostic code are listed here:
• YES - Each resistance measurement
• The sensor has failed. • Intermittent or poor connections • The VIMS interface module has failed. This is unlikely.
Note: The following diagnostic code procedure can create other related diagnostic codes. Perform the following procedure. Reconnect all harnesses. Then clear all the related diagnostic codes. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Ensure that the diagnostic code is active. c. Disconnect the sensor from the machine harness.
Results: measures greater than 5000 ohms. The harness is correct. It is unlikely that the VIMS interface module has failed. Exit this procedure and perform this diagnostic code procedure again. If the cause of the diagnostic code is not found, replace the VIMS interface module. See Testing and Adjusting, “ Module - Replace”. STOP.
• NO - The resistance measurement does not measure greater than 5000 ohms for all measurements. The machine harness has failed. There is a short in the machine harness. The short is between the signal circuit and the circuit with the low resistance measurement. Repair the machine harness or replace the machine harness. STOP.
435 Testing and Adjusting Section
i00984799
CID 0829 FMI 03 Temperature Sensor (Rear Aftercooler Coolant) Voltage Above Normal - Test SMCS Code: 1063-038-NS
b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 8 DCV. Results:
• OK - The voltage is approximately 8 DCV. The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately 8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2. 2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. Illustration 346
g00504272
Schematic of the Rear Aftercooler Coolant Temperature Sensor
b. Disconnect the sensor from the machine harness.
This diagnostic code is recorded when VIMS reads the signal wire of the rear aftercooler coolant temperature sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module.
c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground.
The possible causes of this diagnostic code are listed here:
• A shorted harness • An open supply circuit to the sensor • A failed sensor • An open circuit • The VIMS interface module may have failed. This is unlikely. Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
Expected Results: The voltage should measure approximately 8 DCV. Results:
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP.
3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
436 Testing and Adjusting Section
• OK - The voltage is approximately 5 DCV.
The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT.
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP.
a. Turn the key start switch and the disconnect switch to the OFF position. b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor.
i00984800
CID 0829 FMI 04 Temperature Sensor (Rear Aftercooler Coolant) Voltage Below Normal - Test SMCS Code: 1063-038-NS
e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms. Results:
• OK - The resistance measures less than 10 ohms. The circuit is correct. Proceed to 5.
• NOT OK - The resistance is greater than 5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP. 5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module. c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor.
Illustration 347
g00504272
Schematic of the Rear Aftercooler Coolant Temperature Sensor
This diagnostic code is recorded when VIMS reads the voltage of the rear aftercooler coolant temperature sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is
d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts. Expected Results: Each measurement is greater than 5000 ohms.
shorted to ground.
• The VIMS interface module has failed. This is unlikely. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
437 Testing and Adjusting Section
b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor.
a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors.
Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active.
c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code.
Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms.
e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0829 FMI 04 is no longer active. Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “Module - Replace”. STOP. i00984801
CID 0829 FMI 06 Temperature Sensor (Rear Aftercooler Coolant) Current Above Normal - Test SMCS Code: 1063-038-NS
Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
Illustration 348
g00504272
Schematic of the Rear Aftercooler Coolant Temperature Sensor
438 Testing and Adjusting Section
This diagnostic code is recorded when VIMS reads the current of the rear aftercooler coolant temperature sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module.
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms.
The possible causes of this diagnostic code are listed here:
Results:
• The sensor has failed.
• OK - Resistance is greater than 5000 ohms.
• The signal circuit in the machine harness is
The harness circuit resistance is correct. Proceed to 3
shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor.
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors.
Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active.
c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code.
Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO
longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module.
e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0829 FMI 06 is no longer active. Results:
• YES - Diagnostic code is NOT active. The
diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “Module - Replace”. STOP.
439 Testing and Adjusting Section
i00984802
CID 0830 FMI 03 Temperature Sensor (Front Brake Oil) Voltage Above Normal - Test
2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position.
SMCS Code: 4251-038-NS
b. Disconnect the sensor from the machine harness.
This diagnostic code is recorded when VIMS reads the signal wire of the front brake oil temperature sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module.
c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground.
The possible causes of this diagnostic code are listed here:
• A shorted harness • An open supply circuit to the sensor • A failed sensor • An open circuit • The VIMS interface module may have failed. This is unlikely. Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR.
Expected Results: The voltage should measure approximately 8 DCV. Results:
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP. 3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground).
a. Turn the disconnect switch and the key start switch to the ON position.
Expected Results: The voltage should measure approximately 5 DCV.
b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage.
• OK - The voltage is approximately 5 DCV.
Expected Results: The voltage should measure approximately 8 DCV. Results:
• OK - The voltage is approximately 8 DCV. The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately 8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2.
The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT. a. Turn the key start switch and the disconnect switch to the OFF position. b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module.
440 Testing and Adjusting Section
d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms. Results:
• OK - The resistance measures less than 10 ohms. The circuit is correct. Proceed to 5.
• NOT OK - The resistance is greater than 5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP. 5. CHECK THE SIGNAL WIRE FOR SHORTS.
i00984803
CID 0830 FMI 04 Temperature Sensor (Front Brake Oil) Voltage Below Normal - Test SMCS Code: 4251-038-NS This diagnostic code is recorded when VIMS reads the voltage of the front brake oil sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
a. The disconnect switch and the key start switch remain in the OFF position.
• The VIMS interface module has failed. This is
b. The machine harness remains disconnected from the VIMS interface module.
1. CHECK THE SENSOR.
c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts. Expected Results: Each measurement is greater than 5000 ohms.
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP. • NOT OK - The resistance measured less than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP.
unlikely.
a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO
longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND.
441 Testing and Adjusting Section
a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0830 FMI 04 is no longer active. Results:
• YES - Diagnostic code is NOT active. The
diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “Module - Replace”. STOP. i00984824
CID 0830 FMI 06 Temperature Sensor (Front Brake Oil) Current Above Normal - Test SMCS Code: 4251-038-NS This diagnostic code is recorded when VIMS reads the current of the front brake oil temperature sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
442 Testing and Adjusting Section
• NOT OK - This diagnostic code is NO
longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0830 FMI 06 is no longer active. Results:
• YES - Diagnostic code is NOT active. The
diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “Module - Replace”. STOP. i00984825
CID 0833 FMI 03 Temperature Sensor (Rear Brake Oil) Voltage Above Normal - Test SMCS Code: 4251-038-NS This diagnostic code is recorded when VIMS reads the signal wire of the rear brake oil temperature sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• A shorted harness • An open supply circuit to the sensor • A failed sensor • An open circuit • The VIMS interface module may have failed. This is unlikely. Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
443 Testing and Adjusting Section
b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 8 DCV.
• OK - The voltage is approximately 5 DCV.
The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT.
Results:
• OK - The voltage is approximately 8 DCV.
a. Turn the key start switch and the disconnect switch to the OFF position.
The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately 8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2. 2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground.
b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms. Results:
Expected Results: The voltage should measure approximately 8 DCV.
• OK - The resistance measures less than 10
Results:
• NOT OK - The resistance is greater than
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP.
ohms. The circuit is correct. Proceed to 5. 5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP. 5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module.
3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts. Expected Results: Each measurement is greater than 5000 ohms.
444 Testing and Adjusting Section
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP. i00984826
CID 0833 FMI 04 Temperature Sensor (Rear Brake Oil) Voltage Below Normal - Test SMCS Code: 4251-038-NS This diagnostic code is recorded when VIMS reads the voltage of the rear brake oil sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO
longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0833 FMI 04 is no longer active. Results:
445 Testing and Adjusting Section
• YES - Diagnostic code is NOT active. The
diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “Module - Replace”. STOP. i00984827
CID 0833 FMI 06 Temperature Sensor (Rear Brake Oil) Current Above Normal - Test SMCS Code: 4251-038-NS This diagnostic code is recorded when VIMS reads the current of the rear brake oil temperature sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000
ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code.
446 Testing and Adjusting Section
Expected Result: The diagnostic code CID 0833 FMI 06 is no longer active.
• An open circuit • The VIMS interface module may have failed. This is unlikely.
Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “Module - Replace”. STOP. i00984828
CID 0835 FMI 03 Temperature Sensor (Differential Oil) Voltage Above Normal - Test SMCS Code: 3258-038-NS
1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 8 DCV. Results:
• OK - The voltage is approximately 8 DCV. The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately 8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2. 2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. Illustration 349
g00504303
Schematic of the Differential Oil Temperature Sensor
b. Disconnect the sensor from the machine harness.
This diagnostic code is recorded when VIMS reads the signal wire of the differential oil temperature sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module.
c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground.
The possible causes of this diagnostic code are listed here:
Expected Results: The voltage should measure approximately 8 DCV.
• A shorted harness
Results:
• An open supply circuit to the sensor
• OK - The voltage measures approximately 8
• A failed sensor
DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
447 Testing and Adjusting Section
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP.
a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module.
3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
• OK - The voltage is approximately 5 DCV. The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4.
c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts. Expected Results: Each measurement is greater than 5000 ohms.
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP.
4. CHECK FOR AN OPEN SIGNAL CIRCUIT. a. Turn the key start switch and the disconnect switch to the OFF position. b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module.
i00984829
CID 0835 FMI 04 Temperature Sensor (Differential Oil) Voltage Below Normal - Test SMCS Code: 3258-038-NS
d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms. Results:
• OK - The resistance measures less than 10 ohms. The circuit is correct. Proceed to 5.
• NOT OK - The resistance is greater than 5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP. 5. CHECK THE SIGNAL WIRE FOR SHORTS.
Illustration 350
g00504303
Schematic of the Differential Oil Temperature Sensor
This diagnostic code is recorded when VIMS reads the voltage of the differential oil temperature sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
448 Testing and Adjusting Section
• The sensor has failed. • The signal circuit in the machine harness is
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
shorted to ground.
• The VIMS interface module has failed. This is unlikely. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor.
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors.
Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active.
c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code.
Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0835 FMI 04 is no longer active. Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “Module - Replace”. STOP.
449 Testing and Adjusting Section
i00984830
CID 0835 FMI 06 Temperature Sensor (Differential Oil) Current Above Normal - Test
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
SMCS Code: 3258-038-NS
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. Illustration 351
g00504303
c. Disconnect the machine harness from the VIMS interface module.
Schematic of the Differential Oil Temperature Sensor
This diagnostic code is recorded when VIMS reads the current of the differential oil temperature sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000
ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code.
450 Testing and Adjusting Section
Expected Result: The diagnostic code CID 0835 FMI 06 is no longer active. Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “Module - Replace”. STOP. i01491604
CID 0838 FMI 02 Pressure Sensor (Left Front Suspension Cylinder) Incorrect Signal Test SMCS Code: 7201-038-PXS The output frequency of the sensor changes as the pressure in the suspension cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Suspension Cylinder Sensor-Troublehoot” section for troubleshooting of this failure. i01491607
CID 0838 FMI 03 Pressure Sensor (Left Front Suspension Cylinder) Voltage Above Normal - Test SMCS Code: 7201-038-PXS The output frequency of the sensor changes as the pressure in the suspension cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Suspension Cylinder Sensor-Troublehoot” section for troubleshooting ofthis failure.
i01491610
CID 0838 FMI 04 Pressure Sensor (Left Front Suspension Cylinder) Voltage Below Normal - Test SMCS Code: 7201-038-PXS The output frequency of the sensor changes as the pressure in the suspension cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Suspension Cylinder Sensor-Troublehoot” section for troubleshooting of this failure. i01491613
CID 0838 FMI 06 Pressure Sensor (Left Front Suspension Cylinder) Current Above Normal - Test SMCS Code: 7201-038-PXS The output frequency of the sensor changes as the pressure in the suspension cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Suspension Cylinder Sensor-Troublehoot” section for troubleshooting ofthis failure. i01491616
CID 0838 FMI 08 Pressure Sensor (Left Front Suspension Cylinder) Abnormal Signal Test SMCS Code: 7201-038-PXS The output frequency of the sensor changes as the pressure in the suspension cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Suspension Cylinder Sensor-Troublehoot” section for troubleshooting of this failure.
451 Testing and Adjusting Section
i01491617
i01491622
CID 0839 FMI 02 Pressure Sensor (Right Front Suspension Cylinder) Incorrect Signal - Test
CID 0839 FMI 06 Pressure Sensor (Right Front Suspension Cylinder) Current Above Normal - Test
SMCS Code: 7201-038-PXS
SMCS Code: 7201-038-PXS
The output frequency of the sensor changes as the pressure in the suspension cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Suspension Cylinder Sensor-Troublehoot” section for troubleshooting ofthis failure.
The output frequency of the sensor changes as the pressure in the suspension cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Suspension Cylinder Sensor-Troublehoot” section for troubleshooting of this failure.
i01491619
i01491623
CID 0839 FMI 03 Pressure Sensor (Right Front Suspension Cylinder) Voltage Above Normal - Test
CID 0839 FMI 08 Pressure Sensor (Right Front Suspension Cylinder) Abnormal Signal - Test
SMCS Code: 7201-038-PXS
SMCS Code: 7201-038-PXS
The output frequency of the sensor changes as the pressure in the suspension cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Suspension Cylinder Sensor-Troublehoot” section for troubleshooting ofthis failure.
The output frequency of the sensor changes as the pressure in the suspension cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Suspension Cylinder Sensor-Troublehoot” section for troubleshooting of this failure.
i01491621
i01491624
CID 0839 FMI 04 Pressure Sensor (Right Front Suspension Cylinder) Voltage Below Normal - Test
CID 0840 FMI 02 Pressure Sensor (Left Rear Suspension Cylinder) Voltage Above Normal - Test
SMCS Code: 7201-038-PXS
SMCS Code: 7201-038-PXS
The output frequency of the sensor changes as the pressure in the suspension cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Suspension Cylinder Sensor-Troublehoot” section for troubleshooting of this failure.
The output frequency of the sensor changes as the pressure in the suspension cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Suspension Cylinder Sensor-Troubleshoot” section for troubleshooting of this failure.
452 Testing and Adjusting Section
i01491629
i01491636
CID 0840 FMI 03 Pressure Sensor (Left Rear Suspension Cylinder) Voltage Above Normal - Test
CID 0840 FMI 08 Pressure Sensor (Left Rear Suspension Cylinder) Abnormal Signal Test
SMCS Code: 7201-038-PXS
SMCS Code: 7201-038-PXS
The output frequency of the sensor changes as the pressure in the suspension cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Suspension Cylinder Sensor-Troubleshoot” section for troubleshooting ofthis failure.
The output frequency of the sensor changes as the pressure in the suspension cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Suspension Cylinder Sensor-Troubleshoot” section for troubleshooting of this failure.
i01491632
i01491637
CID 0840 FMI 04 Pressure Sensor (Left Rear Suspension Cylinder) Voltage Below Normal - Test
CID 0841 FMI 02 Pressure Sensor (Right Rear Suspension Cylinder) Incorrect Signal - Test
SMCS Code: 7201-038-PXS
SMCS Code: 7201-038-PXS
The output frequency of the sensor changes as the pressure in the suspension cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Suspension Cylinder Sensor-Troubleshoot” section for troubleshooting of this failure.
The output frequency of the sensor changes as the pressure in the suspension cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Suspension Cylinder Sensor-Troubleshoot” section for troubleshooting ofthis failure.
i01491634
i01491639
CID 0840 FMI 06 Pressure Sensor (Left Rear Suspension Cylinder) Current Above Normal - Test
CID 0841 FMI 03 Pressure Sensor (Right Rear Suspension Cylinder) Voltage Above Normal - Test
SMCS Code: 7201-038-PXS
SMCS Code: 7201-038-PXS
The output frequency of the sensor changes as the pressure in the suspension cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Suspension Cylinder Sensor-Troubleshoot” section for troubleshooting ofthis failure.
The output frequency of the sensor changes as the pressure in the suspension cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Suspension Cylinder Sensor-Troubleshoot” section for troubleshooting of all the related failure mode identifiers.
453 Testing and Adjusting Section
i01491641
CID 0841 FMI 04 Pressure Sensor (Right Rear Suspension Cylinder) Voltage Below Normal - Test
i01382342
CID 0849 FMI 03 Pressure Sensor (Air System) Voltage Above Normal - Test SMCS Code: 4272-038-PXS
SMCS Code: 7201-038-PXS The output frequency of the sensor changes as the pressure in the suspension cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Suspension Cylinder Sensor-Troubleshoot” section for troubleshooting of this failure. i01491642
CID 0841 FMI 06 Pressure Sensor (Right Rear Suspension Cylinder) Current Above Normal - Test SMCS Code: 7201-038-PXS The output frequency of the sensor changes as the pressure in the suspension cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Suspension Cylinder Sensor-Troubleshoot” section for troubleshooting ofthis failure. i01491643
CID 0841 FMI 08 Pressure Sensor (Right Rear Suspension Cylinder) Abnormal Signal - Test SMCS Code: 7201-038-PXS The output frequency of the sensor changes as the pressure in the suspension cylinder changes. The sensor is powered by the machine electrical system. Refer to the Testing and Adjusting, “Suspension Cylinder Sensor-Troubleshoot” section for troubleshooting ofthis failure.
Illustration 352
g00730025
Schematic of the Air Pressure Sensor
This diagnostic code is recorded when the VIMS reads the voltage of the air pressure sensor and the voltage is above normal. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• A shorted harness • An open supply circuit to the sensor
454 Testing and Adjusting Section
• A failed sensor • An open circuit • The VIMS interface module may have failed. This is unlikely. Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 8 DCV. Results:
• OK - The voltage is approximately 8 DCV.
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP. 3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
• OK - The voltage is approximately 5 DCV. The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT.
The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately
8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2.
2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground.
a. Turn the key start switch and the disconnect switch to the OFF position. b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms.
Expected Results: The voltage should measure approximately 8 DCV.
Results:
Results:
• OK - The resistance measures less than 10 ohms. The circuit is correct. Proceed to 5.
455 Testing and Adjusting Section
• NOT OK - The resistance is greater than
5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP.
5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position.
i01382310
CID 0849 FMI 04 Pressure Sensor (Air System) Voltage Below Normal - Test SMCS Code: 4272-038-PXS
b. The machine harness remains disconnected from the VIMS interface module. c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts. Expected Results: Each measurement is greater than 5000 ohms.
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less
than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP.
Illustration 353
g00730025
Schematic of the Air Pressure Sensor
This diagnostic code is recorded when the VIMS reads the voltage of the air pressure sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed.
456 Testing and Adjusting Section
• The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: The VIMS may wait up to approximately 30 seconds before updating the message area.
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3.
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code.
Results:
e. Operate the machine.
• OK - This diagnostic code remains active.
f. Observe the status of the diagnostic code.
The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO
longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND.
Expected Result: The diagnostic code CID 0849 FMI 04 is no longer active. Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “Module - Replace”. STOP.
457 Testing and Adjusting Section
i01382294
CID 0849 FMI 06 Pressure Sensor (Air System) Current Above Normal - Test
• The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR.
SMCS Code: 4272-038-PXS
a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: The VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO
longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position.
Illustration 354
g00730025
Schematic of the Air Pressure Sensor This diagnostic code is recorded when the VIMS reads the current of the air pressure sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module.
c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
The possible causes of this diagnostic code are listed here:
• The sensor has failed.
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
458 Testing and Adjusting Section
• NOT OK - Resistance is less than 5000
ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
i00984835
CID 0851 FMI 03 Pressure Sensor (Pump Drive) Voltage Above Normal - Test SMCS Code: 3108-038-PXS
a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0849 FMI 06 is no longer active. Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “Module - Replace”. STOP.
Illustration 355
g00504479
Schematic of the Pump Drive Pressure Sensor
This diagnostic code is recorded when VIMS reads the signal wire of the pump drive pressure sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• A shorted harness • An open supply circuit to the sensor • A failed sensor • An open circuit • The VIMS interface module may have failed. This is unlikely. Note: Ensure that the diagnostic code is still active.
459 Testing and Adjusting Section
Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR.
a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground).
a. Turn the disconnect switch and the key start switch to the ON position.
Expected Results: The voltage should measure approximately 5 DCV.
b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage.
• OK - The voltage is approximately 5 DCV.
Expected Results: The voltage should measure approximately 8 DCV.
The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT.
Results:
• OK - The voltage is approximately 8 DCV.
a. Turn the key start switch and the disconnect switch to the OFF position.
• NOT OK - The voltage is not approximately
b. The sensor remains disconnected from the machine harness.
The voltage is correct. Proceed to 3.
8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2.
2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground.
c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms. Results:
Expected Results: The voltage should measure approximately 8 DCV.
• OK - The resistance measures less than 10
Results:
• NOT OK - The resistance is greater than
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP. 3. CHECK THE SIGNAL CIRCUIT.
ohms. The circuit is correct. Proceed to 5. 5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP.
5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module.
460 Testing and Adjusting Section
c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts.
i00984836
CID 0851 FMI 04 Pressure Sensor (Pump Drive) Voltage Below Normal - Test SMCS Code: 3108-038-PXS
Expected Results: Each measurement is greater than 5000 ohms.
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP.
Illustration 356
g00504479
Schematic of the Pump Drive Pressure Sensor
This diagnostic code is recorded when VIMS reads the voltage of the pump drive pressure sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
461 Testing and Adjusting Section
b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor.
a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors.
Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active.
c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code.
Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0851 FMI 04 is no longer active. Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “Module - Replace”. STOP.
462 Testing and Adjusting Section
i00984837
CID 0851 FMI 06 Pressure Sensor (Pump Drive) Current Above Normal - Test SMCS Code: 3108-038-PXS
b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. Illustration 357
g00504479
Schematic of the Pump Drive Pressure Sensor
This diagnostic code is recorded when VIMS reads the current of the pump drive pressure sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
463 Testing and Adjusting Section
a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position.
i00984838
CID 0852 FMI 03 Temperature Sensor (Right Front Brake Oil) Voltage Above Normal - Test SMCS Code: 1408-038-NS
d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0851 FMI 06 is no longer active. Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “Module - Replace”. STOP. Illustration 358
g00504487
Schematic of the Right Front Brake Oil Temperature Sensor
This diagnostic code is recorded when VIMS reads the signal wire of the right front brake oil temperature sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• A shorted harness • An open supply circuit to the sensor • A failed sensor • An open circuit • The VIMS interface module may have failed. This is unlikely. Note: Ensure that the diagnostic code is still active.
464 Testing and Adjusting Section
Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR.
a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground).
a. Turn the disconnect switch and the key start switch to the ON position.
Expected Results: The voltage should measure approximately 5 DCV.
b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage.
• OK - The voltage is approximately 5 DCV.
Expected Results: The voltage should measure approximately 8 DCV.
The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT.
Results:
• OK - The voltage is approximately 8 DCV.
a. Turn the key start switch and the disconnect switch to the OFF position.
• NOT OK - The voltage is not approximately
b. The sensor remains disconnected from the machine harness.
The voltage is correct. Proceed to 3.
8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2.
2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground.
c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms. Results:
Expected Results: The voltage should measure approximately 8 DCV.
• OK - The resistance measures less than 10
Results:
• NOT OK - The resistance is greater than
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP. 3. CHECK THE SIGNAL CIRCUIT.
ohms. The circuit is correct. Proceed to 5. 5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP.
5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module.
465 Testing and Adjusting Section
c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts.
This diagnostic code is recorded when VIMS reads the voltage of the right front brake oil temperature sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
Expected Results: Each measurement is greater than 5000 ohms.
• The sensor has failed.
• OK - Each measurement is greater than
• The signal circuit in the machine harness is
5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
shorted to ground.
• The VIMS interface module has failed. This is unlikely.
• NOT OK - The resistance measured less than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP. i00984839
CID 0852 FMI 04 Temperature Sensor (Right Front Brake Oil) Voltage Below Normal - Test SMCS Code: 4251-038-NS
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO
longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. Illustration 359
g00504487
Schematic of the Right Front Brake Oil Temperature Sensor
c. Disconnect the machine harness from the VIMS interface module.
466 Testing and Adjusting Section
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms.
i00984840
CID 0852 FMI 06 Temperature Sensor (Right Front Brake Oil) Current Above Normal - Test SMCS Code: 4251-038-NS
Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0852 FMI 04 is no longer active. Results:
• YES - Diagnostic code is NOT active. The
diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
Illustration 360
g00504487
Schematic of the Right Front Brake Oil Temperature Sensor
This diagnostic code is recorded when VIMS reads the current of the right front brake oil temperature sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “Module - Replace”. STOP.
• The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
467 Testing and Adjusting Section
b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor.
a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors.
Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active.
c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code.
Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground.
e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0852 FMI 06 is no longer active. Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “Module - Replace”. STOP. i00984842
CID 0853 FMI 03 Temperature Sensor (Left Front Brake Oil) Voltage Above Normal - Test SMCS Code: 4251-038-NS
Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS.
Illustration 361
g00504558
Schematic of the Left Front Brake Oil Temperature Sensor
468 Testing and Adjusting Section
This diagnostic code is recorded when VIMS reads the signal wire of the left front brake oil temperature sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground. Expected Results: The voltage should measure approximately 8 DCV. Results:
• A shorted harness • An open supply circuit to the sensor • A failed sensor • An open circuit • The VIMS interface module may have failed. This is unlikely. Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR.
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP. 3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground).
a. Turn the disconnect switch and the key start switch to the ON position.
Expected Results: The voltage should measure approximately 5 DCV.
b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage.
• OK - The voltage is approximately 5 DCV.
Expected Results: The voltage should measure approximately 8 DCV.
The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT.
Results:
• OK - The voltage is approximately 8 DCV. The voltage is correct. Proceed to 3. • NOT OK - The voltage is not approximately
8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2.
2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. a. The key start switch and the disconnect switch remain in the ON position. b. Disconnect the sensor from the machine harness.
a. Turn the key start switch and the disconnect switch to the OFF position. b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor. e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground.
469 Testing and Adjusting Section
Expected Result: The resistance measures less than 10 ohms. Results:
• OK - The resistance measures less than 10 ohms. The circuit is correct. Proceed to 5.
i00984843
CID 0853 FMI 04 Temperature Sensor (Left Front Brake Oil) Voltage Below Normal - Test SMCS Code: 4251-038-NS
• NOT OK - The resistance is greater than 5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP. 5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module. c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor.
Illustration 362
g00504558
Schematic of the Left Front Brake Oil Temperature Sensor
d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts. Expected Results: Each measurement is greater than 5000 ohms.
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP.
This diagnostic code is recorded when VIMS reads the voltage of the left front brake oil temperature sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely. 1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
470 Testing and Adjusting Section
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP. 2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground.
Expected Result: The diagnostic code CID 0853 FMI 04 is no longer active. Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “Module - Replace”. STOP. i00984864
CID 0853 FMI 06 Temperature Sensor (Left Front Brake Oil) Current Above Normal - Test SMCS Code: 4251-038-NS
Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000
ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine. f. Observe the status of the diagnostic code.
Illustration 363
g00504558
Schematic of the Left Front Brake Oil Temperture Sensor
This diagnostic code is recorded when VIMS reads the current of the left front brake oil temperature sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed.
471 Testing and Adjusting Section
• The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely.
• NOT OK - Resistance is less than 5000
ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
1. CHECK THE SENSOR. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor. Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active.
a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine.
Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0853 FMI 06 is no longer active.
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO
longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
Results:
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “Module - Replace”. STOP.
472 Testing and Adjusting Section
i00984944
CID 0854 FMI 03 Temperature Sensor (Right Rear Brake Oil) Voltage Above Normal - Test
b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 8 DCV.
SMCS Code: 4251-038-NS
Results:
• OK - The voltage is approximately 8 DCV. The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately 8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2. 2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. Illustration 364
g00504559
a. The key start switch and the disconnect switch remain in the ON position.
Schematic of the Right Rear Brake Oil Temperature Sensor
This diagnostic code is recorded when VIMS reads the signal wire of the right rear brake oil temperature sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• A shorted harness • An open supply circuit to the sensor • A failed sensor • An open circuit • The VIMS interface module may have failed. This is unlikely. Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground. Expected Results: The voltage should measure approximately 8 DCV. Results:
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP.
3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
473 Testing and Adjusting Section
• OK - The voltage is approximately 5 DCV.
The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT.
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP.
a. Turn the key start switch and the disconnect switch to the OFF position. b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor.
i00984945
CID 0854 FMI 04 Temperature Sensor (Right Rear Brake Oil) Voltage Below Normal - Test SMCS Code: 4251-038-NS
e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms. Results:
• OK - The resistance measures less than 10 ohms. The circuit is correct. Proceed to 5.
• NOT OK - The resistance is greater than 5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP. 5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module. c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts. Expected Results: Each measurement is greater than 5000 ohms.
Illustration 365
g00504559
Schematic of the Right Rear Brake Oil Temperature Sensor
This diagnostic code is recorded when VIMS reads the voltage of the right rear brake oil temperature sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor.
474 Testing and Adjusting Section
Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area.
b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine.
Results: f. Observe the status of the diagnostic code.
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
Expected Result: The diagnostic code CID 0854 FMI 04 is no longer active. Results:
• NOT OK - This diagnostic code is NO
longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position.
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “Module - Replace”. STOP.
c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms.
i00984946
CID 0854 FMI 06 Temperature Sensor (Right Rear Brake Oil) Current Above Normal - Test SMCS Code: 4251-038-NS
Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors.
Illustration 366
g00504559
Schematic of the Right Rear Brake Oil Temperature Sensor
475 Testing and Adjusting Section
This diagnostic code is recorded when VIMS reads the current of the right rear brake oil temperature sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module.
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms.
The possible causes of this diagnostic code are listed here:
Results:
• The sensor has failed.
• OK - Resistance is greater than 5000 ohms.
• The signal circuit in the machine harness is
The harness circuit resistance is correct. Proceed to 3
shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor.
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors.
Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active.
c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code.
Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO
longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module.
e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0854 FMI 06 is no longer active. Results:
• YES - Diagnostic code is NOT active. The
diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “Module - Replace”. STOP.
476 Testing and Adjusting Section
i00984947
CID 0855 FMI 03 Temperature Sensor (Left Rear Brake Oil) Voltage Above Normal - Test
b. Check the voltage at the machine harness connector of the sensor from contact A (sensor supply) to contact B (ground). Do NOT disconnect the sensor. Use the 7X-1710 Cable probes to measure the voltage. Expected Results: The voltage should measure approximately 8 DCV.
SMCS Code: 4251-038-NS
Results:
• OK - The voltage is approximately 8 DCV. The voltage is correct. Proceed to 3.
• NOT OK - The voltage is not approximately 8 DCV. There is an open in the machine harness or the ECM has failed. It is unlikely that the ECM has failed. Proceed to 2. 2. CHECK FOR AN OPEN IN THE SUPPLY CIRCUIT. Illustration 367
g00504561
a. The key start switch and the disconnect switch remain in the ON position.
Schematic of the Left Rear Brake Oil Temperature Sensor
This diagnostic code is recorded when VIMS reads the signal wire of the left rear brake oil temperature sensor as a continuous “high” voltage. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• A shorted harness • An open supply circuit to the sensor • A failed sensor • An open circuit • The VIMS interface module may have failed. This is unlikely. Note: Ensure that the diagnostic code is still active. Note: The following procedure can create numerous related diagnostic codes. Reconnect all harnesses. Then, the related diagnostic codes will be shown as being NOT active. Complete the following procedure. Then, clear all of the related diagnostic codes. 1. CHECK THE SUPPLY VOLTAGE AT THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position.
b. Disconnect the sensor from the machine harness. c. At the machine harness connector for the sensor, measure the voltage from contact A (sensor supply) to frame ground. Expected Results: The voltage should measure approximately 8 DCV. Results:
• OK - The voltage measures approximately 8 DCV. The return circuit is open. Repair the machine harness or replace the machine harness. STOP.
• NOT OK - The voltage does not measure approximately 8 DCV. The supply circuit is open. Repair the machine harness or replace the machine harness. STOP.
3. CHECK THE SIGNAL CIRCUIT. a. Turn the disconnect switch and the key start switch to the ON position. b. Disconnect the machine harness connector from the sensor. c. At the machine harness connector for the sensor, measure the voltage between contact C (signal) and contact B (ground). Expected Results: The voltage should measure approximately 5 DCV.
477 Testing and Adjusting Section
• OK - The voltage is approximately 5 DCV.
The voltage is correct. Replace the sensor. STOP
• NOT OK - The voltage is NOT approximately 5 DCV. The voltage is NOT correct. Proceed to 4. 4. CHECK FOR AN OPEN SIGNAL CIRCUIT.
• OK - Each measurement is greater than 5000 ohms. The ECM has failed. Refer to the Testing and Adjusting, “Module Replace” section. STOP.
• NOT OK - The resistance measured less than 5000 ohms. There is a short in the machine harness. Repair the machine harness or replace the machine harness. STOP.
a. Turn the key start switch and the disconnect switch to the OFF position. b. The sensor remains disconnected from the machine harness. c. Disconnect the machine harness from the interface module. d. Place a jumper wire between contact C (signal) and contact B (ground) of the machine harness connector for the sensor.
i00984948
CID 0855 FMI 04 Temperature Sensor (Left Rear Brake Oil) Voltage Below Normal - Test SMCS Code: 4251-038-NS
e. At the machine harness connector of the interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance measures less than 10 ohms. Results:
• OK - The resistance measures less than 10 ohms. The circuit is correct. Proceed to 5.
• NOT OK - The resistance is greater than 5000 ohm. The circuit is open. Repair the machine harness or replace the machine harness. STOP. 5. CHECK THE SIGNAL WIRE FOR SHORTS. a. The disconnect switch and the key start switch remain in the OFF position. b. The machine harness remains disconnected from the VIMS interface module. c. Remove the jumper wire from contact C and contact B on the machine harness connector for the sensor. d. At the machine harness connector for the VIMS interface module measure from the signal contact to all possible sources of + Battery contacts. Expected Results: Each measurement is greater than 5000 ohms.
Illustration 368
g00504561
Schematic of the Left Rear Brake Oil Temperature Sensor
This diagnostic code is recorded when VIMS reads the voltage of the left rear brake oil temperature sensor as being below normal. The voltage of the signal wire is below normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module. The possible causes of this diagnostic code are listed here:
• The sensor has failed. • The signal circuit in the machine harness is shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor.
478 Testing and Adjusting Section
Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active. Note: VIMS may wait up to approximately 30 seconds before updating the message area.
b. Reconnect all harness connectors. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code. e. Operate the machine.
Results: f. Observe the status of the diagnostic code.
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
Expected Result: The diagnostic code CID 0855 FMI 04 is no longer active. Results:
• NOT OK - This diagnostic code is NO
longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position.
• YES - Diagnostic code is NOT active. The diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been
corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “Module - Replace”. STOP.
c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms.
i00984949
CID 0855 FMI 06 Temperature Sensor (Left Rear Brake Oil) Current Above Normal - Test SMCS Code: 4251-038-NS
Results:
• OK - Resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 3
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors.
Illustration 369
g00504561
Schematic of the Left Rear Brake Oil Temperature Sensor
479 Testing and Adjusting Section
This diagnostic code is recorded when VIMS reads the current of the left rear brake oil temperature sensor as being above normal. The current of the signal wire is above normal and/or shorted to ground. The sensor sends a PWM signal to the VIMS module.
d. At the machine harness connector for the VIMS interface module, measure the resistance between the signal contact and frame ground. Expected Result: The resistance is greater than 5000 ohms.
The possible causes of this diagnostic code are listed here:
Results:
• The sensor has failed.
• OK - Resistance is greater than 5000 ohms.
• The signal circuit in the machine harness is
The harness circuit resistance is correct. Proceed to 3
shorted to ground.
• The VIMS interface module has failed. This is unlikely.
1. CHECK THE SENSOR. a. Turn the disconnect switch and the key start switch to the ON position. b. Observe the status of the diagnostic code. Then disconnect the machine harness from the sensor.
• NOT OK - Resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the signal circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 3. CHECK IF THE DIAGNOSTIC CODE REMAINS. a. Using established procedures, clean the contacts of the harness connectors. b. Reconnect all harness connectors.
Expected Result: If the sensor is not the cause of the diagnostic code, the diagnostic code remains active. If the sensor has failed, the diagnostic code is NO longer active.
c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the status of the diagnostic code.
Note: VIMS may wait up to approximately 30 seconds before updating the message area. Results:
• OK - This diagnostic code remains active. The sensor is not causing the diagnostic code. The machine harness or the ECM may have failed. Proceed to 2.
• NOT OK - This diagnostic code is NO
longer active. The machine harness is correct and the ECM is operating properly. The sensor has failed. Replace the sensor. Refer to the Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor -Test” section. STOP.
2. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. The sensor remains disconnected from the machine harness. b. Turn the key start switch and the disconnect switch to the OFF position. c. Disconnect the machine harness from the VIMS interface module.
e. Operate the machine. f. Observe the status of the diagnostic code. Expected Result: The diagnostic code CID 0855 FMI 06 is no longer active. Results:
• YES - Diagnostic code is NOT active. The
diagnostic code does not exist at this time. The initial diagnostic code was probably caused by a poor electrical connection or a short at one of the harness connectors that was disconnected and then reconnected. Resume normal machine operation. STOP.
• NO - Diagnostic code has not been corrected. It is unlikely that the ECM is faulty. Exit this CID/FMI procedure and perform this CID/FMI procedure again. If the cause of the fault is not found, then replace the VIMS interface module. See Testing And Adjusting, “Module - Replace”. STOP.
480 Testing and Adjusting Section
i01325180
CID 0890 FMI 09 Telemetry Data Link Abnormal Update Test SMCS Code: 1408-038 This diagnostic code is recorded when data link communication with the VIMS electronic control module has been broken for more than 5 seconds. 1. VERIFY THAT THE BROADCAST SYSTEM IS FUNCTIONING CORRECTLY. a. Verify that the broadcast system (transmitter) is operating correctly. Expected Results:The broadcast system (transmitter) is operating correctly. Result:
• YES - The broadcast system (transmitter) is operating correctly. Proceed to step 1.b.
• NO The broadcast system (transmitter) is NOT operating correctly. Repair the broadcast system. STOP. b. CHECK FOR AN OPEN IN THE MACHINE HARNESS c. Turn the key start switch and the disconnect switch to the OFF position. d. Disconnect connector J2 from the VIMS electronic control module. e. Disconnect the RS-232 broadcast port from the broadcast system. f. Measure the resistance of the circuits that are listed below:
• Measure the resistance between contact 2 (wire E972-BU) of the RS-232 broadcast port and contact J2-66 (wire E972-BU) of the VIMS electronic control module.
• Measure the resistance between contact 3 (wire 876-OR) of the RS-232 broadcast port and contact J2-33 (wire 86-OR) of the VIMS electronic control module.
• Measure the resistance between contact
4 (wire 875-BU) of the RS-232 broadcast port and contact J2-32 (wire 875-BU) of the VIMS electronic control module.
Expected Results: All the measurements are less than 5.0 ohms. Result: OK- All the measurements are less than 5.0 ohms. Proceed to step 2. NOT OK - All the measurements are greater than 5000 ohms. The machine harness has failed. Repair the machine harness or replace the machine harness. STOP. 2. CHECK THE MACHINE HARNESS FOR A SHORT TO GROUND. a. The machine harness remains disconnected from the VIMS electronic control module and the broadcast system. b. Measure the resistance of the circuits that are listed below:
• Measure the resistance between contact 2 (wire E972-BU) of the RS-232 broadcast port and frame ground.
• Measure the resistance between contact 3
(wire 876-OR) of the RS-232 broadcast port and frame ground.
• Measure the resistance between contact 4 (wire 875-BU) of the RS-232 broadcast port and frame ground. Expected Results: All the measurements are greater than 5000 ohms. Result:
• OK - All the measurements are greater than 5000 ohms. The machine harness is correct. The VIMS electronic control module has failed. It is unlikely that the VIMS electronic control module has failed. Exit this procedure and perform this procedure again. If the failure is not found, replace the VIMS electronic control module. Refer to the Testing and Adjusting, “Module-Replace” section.
• NOT OK - All the measurements are less
than 5000 ohms. The machine harness has failed. Repair the machine harness or replace the machine harness. STOP.
481 Testing and Adjusting Section
i01305339
CID 1089 FMI 02 Analysis Control Module Incorrect Signal - Test SMCS Code: 7610-038 This diagnostic code is recorded when the analysis control ECM has dropped off the CAT data link 10 times within a ten minute period. The event is active until communication is reliable for more than ten minutes. This failure results in events that are logged against an ECM that can not be explained. The VIMS main module cannot communicate with this ECM or the ECM appears to work intermittently. 1. VERIFY THE HARDWARE AND THE SOFTWARE PART NUMBERS. a. Verify that the following information is correct:
• The part number of the VIMS configuration software
• The part number of the analysis control ECM flash software.
• The part number of the VIMS main module • The part number of the analysis control ECM Note: Consult the Business Unit that produces the product for the correct part numbers of the configuration software. Expected Result: All part numbers are correct. Results:
• OK - All part numbers are correct. Proceed to 2.
• NOT OK - All part numbers are NOT correct. The installed VIMS main module or the analysis control ECM has the wrong part number or the incorrect configuration software is installed. Replace the incorrect VIMS main module or the analysis control ECM with a module that has the correct part number. Flash the correct configuration software. STOP. 2. INSPECT THE HARNESS CONNECTIONS. a. Turn the disconnect switch to the OFF position.
b. Inspect all harness connections that are related to the CAT data link. Make sure that the connectors are clean and tight. c. Check the connectors for proper mating. d. Check the wires at the connector. e. Check each wire for nicks or signs of abrasion in the insulation. f. Check for moisture at the connector. g. Check the connectors for dirty contacts or corroded contacts. h. Check each pin and each socket of the machine harness connectors. Expected Result: The machine harness connectors are tight and free of corrosion. Results:
• OK - The machine harness connectors are tight and free of corrosion. Proceed to 3.
• NOT OK - The machine harness connectors are in need of repair. Repair the machine harness or replace the machine harness. STOP.
3. CHECK FOR SHORTS TO GROUND a. The disconnect switch remains in the OFF position. b. Disconnect the machine harness from all electronic control modules that use the CATdata link. c. At the machine harness for the VIMS main module, measure the resistance between frame ground and connector contacts 6 (wire 882-PK) and 7 (wire 893-GY) of the CAT data link circuit. Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 4.
• NOT OK - The resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP.
482 Testing and Adjusting Section
4. CHECK FOR SHORT TO +BATTERY a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness. c. At the machine harness connector for the VIMS main module, perform the checks that are listed here:
• Measure the resistance between (+battery)
connector contact 1 (wire 113-OR) and contact 6 (wire 882-PK) of the CAT data link circuit connector.
• Measure the resistance between (+battery) connector contact 1 (wire 113-OR), to the CAT data link circuit connector contact 7 (wire 893-GY).
Results:
• OK - The resistance is less than 5 ohms. The CAT data link circuit in the machine harness is correct. Proceed to 6.
• NOT OK - The resistance is greater than 5
ohms. The machine harness has failed. the CAT data link circuit is open in the machine harness. Repair the machine harness or replace the machine harness. STOP.
6. CHECK FOR ADDITIONAL DIAGNOSTIC CODES FOR THE OTHER ELECTRONIC CONTROL MODULES. a. Turn the key start switch and the disconnect switch to the OFF position. b. One at a time, reconnect the electronic control modules that use the CAT data link.
Expected Result: The resistance is greater than 5000 ohms.
c. Turn the disconnect switch and the key start switch to the ON position.
Results:
d. After each of the electronic control modules has been reconnected, check the Event List for diagnostic codes that are logged against the electronic control module.
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 5.
• NOT OK - The resistance is less than 5000 ohms. The machine harness has failed. There is a short between +battery and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 5. CHECK FOR OPEN HARNESS a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness. c. Measure the resistance of the CAT data link circuit in the machine harness:
• Measure from connector contact 6 (wire 882-PK) of the VIMS main module to the CAT data link circuit of the analysis control ECM connector.
• Measure from connector contact 7 (wire
893-GY) of the VIMS main module to the CAT data link circuit of the analysis control ECM connector.
Expected Result: The resistance measures less than 5 Ohms.
Expected Result: Diagnostic codes are not present for the other electronic control modules in the event list. Results:
• OK - Diagnostic codes are not present for
the other electronic control modules in the event list. The analysis control ECM has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, check the +battery contacts and ground contacts of the ECM. If these contacts are correct, replace the ECM. STOP.
• NOT OK - Diagnostic codes are present for the other electronic control modules (ECM) in the event list. The VIMS main module has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, replace the ECM. See the Testing and Adjusting, “Module - Replace” section of this manual. STOP.
483 Testing and Adjusting Section
i01305700
CID 1089 FMI 09 Analysis Control Module Abnormal Update - Test SMCS Code: 7610-038 This diagnostic code is recorded when the VIMS main module does not receive expected information from the machine ECM through the CAT data link. This failure may cause the readouts that depend on the information from the CAT data link to display information incorrectly. 1. VERIFY THE HARDWARE AND THE SOFTWARE PART NUMBERS. a. Verify that the following information is correct:
• The part number of the VIMS configuration software
• The part number of the machine ECM flash software
• The part number of the VIMS main module • The part number of the machine ECM Note: Consult the Business Unit that produces the product for the correct part numbers of the configuration software. Expected Result: All part numbers are correct. Results:
d. Check the wires at the connector. e. Check each wire for nicks or signs of abrasion in the insulation. f. Check for moisture at the connector. g. Check the connectors for dirty contacts or corroded contacts. h. Check each pin and each socket of the machine harness connectors. Expected Result: The machine harness connectors are tight and free of corrosion. Results:
• OK - The machine harness connectors are tight and free of corrosion. Proceed to 3.
• NOT OK - The machine harness connectors are in need of repair. Repair the machine harness or replace the machine harness. STOP.
3. CHECK FOR SHORTS TO GROUND a. The disconnect switch remains in the OFF position. b. Disconnect the machine harness from all electronic control modules that use the CATdata link. c. At the machine harness for the VIMS main module, measure the resistance between frame ground and connector contacts 6 (wire 882-PK) and 7 (wire 893-GY) of the CAT data link circuit.
• OK - All part numbers are correct. Proceed
Expected Result: The resistance is greater than 5000 ohms.
• NOT OK - All part numbers are NOT correct.
Results:
to 2.
The installed VIMS main module or the machine ECM has the wrong part number or the incorrect configuration software is installed. Replace the incorrect VIMS main module or the machine ECM with a module that has the correct part number. Flash the correct configuration software. STOP.
2. INSPECT THE HARNESS CONNECTIONS. a. Turn the disconnect switch to the OFF position. b. Inspect all harness connections that are related to the CAT data link. Make sure that the connectors are clean and tight. c. Check the connectors for proper mating.
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 4.
• NOT OK - The resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 4. CHECK FOR SHORT TO +BATTERY a. The disconnect switch remains in the OFF position.
484 Testing and Adjusting Section
b. All related electronic control modules remain disconnected from the machine harness. c. At the machine harness connector for the VIMS main module, perform the checks that are listed here:
• Measure the resistance between (+battery) connector contact 1 (wire 113-OR) and contact 6 (wire 882-PK) of the CAT data link circuit connector.
• Measure the resistance between the contact 1 (wire 113-OR) (+battery) and contact 7 (wire 893-GN) of the CAT data link circuit.
• NOT OK - The resistance is greater than 5
ohms. The machine harness has failed. the CAT data link circuit is open in the machine harness. Repair the machine harness or replace the machine harness. STOP.
6. CHECK FOR ADDITIONAL DIAGNOSTIC CODES FOR THE OTHER ELECTRONIC CONTROL MODULES. a. Turn the key start switch and the disconnect switch to the OFF position. b. One at a time, reconnect the electronic control modules that use the CAT data link.
Expected Result: The resistance is greater than 5000 ohms.
c. Turn the disconnect switch and the key start switch to the ON position.
Results:
d. After each of the electronic control modules has been reconnected, check the Event List for diagnostic codes that are logged against the electronic control module.
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 5.
• NOT OK - The resistance is less than 5000 ohms. The machine harness has failed. There is a short between +battery and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 5. CHECK FOR OPEN HARNESS a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness. c. Measure the resistance of the CAT data link circuit in the machine harness:
• Measure between contact 6 (wire 882-PK) of the VIMS main module to the CAT data link circuit of the machine ECM.
• Measure from connector contact 7 (wire 893-GY) of the VIMS main module to the CAT data link circuit of the machine ECM. Expected Result: The resistance measures less than 5 Ohms.
Expected Result: Diagnostic codes are not present for the other electronic control modules in the event list. Results:
• OK - Diagnostic codes are not present for
the other electronic control modules in the event list. The Machine control ECM has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, check the +battery contacts and ground contacts of the ECM. If these contacts are correct, replace the ECM. STOP.
• NOT OK - Diagnostic codes are present for the other electronic control modules (ECM) in the event list. The VIMS main module has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, replace the ECM. See the Testing and Adjusting, “Module - Replace” section of this manual. STOP. i01305701
Results:
CID 1089 FMI 12 Analysis Control Module Failed - Test
• OK - The resistance is less than 5 ohms.
SMCS Code: 7610-038
The CAT data link circuit in the machine harness is correct. Proceed to 6.
This diagnostic code is recorded when the VIMS main module can not communicate with the analysis control ECM through the CAT data link.
485 Testing and Adjusting Section
This diagnostic code results in failed VIMS operations that are related to the analysis control ECM. The VIMS operations may work intermittently. 1. VERIFY THE HARDWARE AND THE SOFTWARE PART NUMBERS.
h. Check each pin and each socket of the machine harness connectors. Expected Result: The machine harness connectors are tight and free of corrosion. Results:
a. Verify that the following information is correct:
• The part number of the VIMS configuration
• OK - The machine harness connectors are tight and free of corrosion. Proceed to 3.
software
• The part number of the analysis control ECM flash software.
• NOT OK - The machine harness connectors are in need of repair. Repair the machine harness or replace the machine harness. STOP.
• The part number of the VIMS main module 3. CHECK FOR SHORTS TO GROUND
• The part number of the analysis control ECM Note: Consult the Business Unit that produces the product for the correct part numbers of the configuration software. Expected Result: All part numbers are correct. Results:
• OK - All part numbers are correct. Proceed
a. The disconnect switch remains in the OFF position. b. Disconnect the machine harness from all electronic control modules that use the CATdata link. c. At the machine harness for the VIMS main module, measure the resistance between frame ground and connector contacts 6 (wire 882-PK) and 7 (wire 893-GY) of the CAT data link circuit.
to 2.
• NOT OK - All part numbers are NOT correct. The installed VIMS main module or the analysis control ECM has the wrong part number or the incorrect configuration software is installed. Replace the incorrect VIMS main module or the analysis control ECM with a module that has the correct part number. Flash the correct configuration software. STOP. 2. INSPECT THE HARNESS CONNECTIONS. a. Turn the disconnect switch to the OFF position. b. Inspect all harness connections that are related to the CAT data link. Make sure that the connectors are clean and tight.
Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 4.
• NOT OK - The resistance is less than 5000 ohms. The machine harness has failed. There is a short between frame ground and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 4. CHECK FOR SHORT TO +BATTERY a. The disconnect switch remains in the OFF position.
c. Check the connectors for proper mating. d. Check the wires at the connector. e. Check each wire for nicks or signs of abrasion in the insulation.
b. All related electronic control modules remain disconnected from the machine harness. c. At the machine harness connector for the VIMS main module, perform the checks that are listed here:
f. Check for moisture at the connector.
• Measure the resistance between the contact g. Check the connectors for dirty contacts or corroded contacts.
1 (wire 113-OR) (+battery) and contact 6 (wire 882-PK) of the CAT data link circuit.
486 Testing and Adjusting Section
• Measure the resistance between the contact 1 (wire 113-OR) (+battery) and contact 7 (wire 893-GN) of the CAT data link circuit.
Expected Result: The resistance is greater than 5000 ohms. Results:
• OK - The resistance is greater than 5000 ohms. The harness circuit resistance is correct. Proceed to 5.
a. Turn the key start switch and the disconnect switch to the OFF position. b. One at a time, reconnect the electronic control modules that use the CAT data link. c. Turn the disconnect switch and the key start switch to the ON position. d. After each of the electronic control modules has been reconnected, check the Event List for diagnostic codes that are logged against the electronic control module.
• NOT OK - The resistance is less than 5000 ohms. The machine harness has failed. There is a short between +battery and the CAT data link circuit in the machine harness. Repair the machine harness or replace the machine harness. STOP. 5. CHECK FOR OPEN HARNESS a. The disconnect switch remains in the OFF position. b. All related electronic control modules remain disconnected from the machine harness. c. Measure the resistance of the CAT data link circuit in the machine harness:
• Measure between contact 6 (wire 882-PK) of the VIMS main module and the contact of the CAT data link circuit of the analysis control ECM.
• Measure from connector contact 7 (wire
893-GY) of the VIMS main module and the contact of CAT data link circuit of the analysis control ECM.
Expected Result: The resistance measures less than 5 Ohms. Results:
• OK - The resistance is less than 5 ohms. The CAT data link circuit in the machine harness is correct. Proceed to 6.
• NOT OK - The resistance is greater than 5 ohms. The machine harness has failed. the CAT data link circuit is open in the machine harness. Repair the machine harness or replace the machine harness. STOP. 6. CHECK FOR ADDITIONAL DIAGNOSTIC CODES FOR THE OTHER ELECTRONIC CONTROL MODULES.
Expected Result: Diagnostic codes are not present for the other electronic control modules in the event list. Results:
• OK - Diagnostic codes are not present for the other electronic control modules in the event list. The Machine control ECM has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, check the +battery contacts and ground contacts of the ECM. If these contacts are correct, replace the ECM. STOP.
• NOT OK - Diagnostic codes are present for
the other electronic control modules (ECM) in the event list. The VIMS main module has failed. It is unlikely that the ECM has failed. Exit this procedure. Perform this procedure again. If the failure is not found, replace the ECM. See the Testing and Adjusting, “Module - Replace” section of this manual. STOP.
487 Testing and Adjusting Section
i01382261
Alert Indicator - Troubleshoot SMCS Code: 7400-035 VIMS is unable to identify system errors in simple single pole single throw switch circuits that are open or closed. Because the VIMS is unable to identify system errors that involve single pole single throw switch circuits no system event (MID/CID/FMI) information is available to assist the service technician in troubleshooting. When a machine event is in conflict with the present machine operating condition, a possible failure exists in the switch circuitry. An example of this behavior is a FLASHING alert indicator for the brake oil temperature after an overnight shutdown of the machine. Before you troubleshoot, ensure that a problem exists. Refer to the Operation and Maintenance Manual for a description of the normal conditions that trigger a system event. Perform the following procedures only if a failure is suspected. The possible failed conditions for the alert indicator during the normal operation of the VIMS are listed here:
• The alert indicator is always FLASHING for the same parameter. Refer to the “Alert Indicator Always FLASHING (Open Switch)” procedure.
• The alert indicator never FLASHES for a parameter. Refer to the “Alert Indicator Never FLASHES (Shorted Switch)” procedure. Note: The alert indicator reflects the open condition or grounded condition of the switch inputs. When the input of a switch is open the alert indicator FLASHES and the name of the parameter is shown on the VIMS message center module. When a switch input is grounded, the alert indicator is OFF and no parameter is shown. The switch circuit is tested by opening the switch circuit or the switch circuit is tested by grounding the switch circuit. Alert Indicator is Always FLASHING. (Open Switch) This procedure is for the parameter that causes the alert indicator to FLASH all of the time. The continuous FLASHING of the alert indicator is likely to occur because of an open circuit or a failed VIMS interface module. Procedure 1. LOCATE THE SWITCH. a. Locate the switch that corresponds to the parameter that is causing the alert indicator to always FLASH. (If necessary, use the Electrical System Schematic to assist in locating the switch.) Proceed to 2.
2. CHECK THE HARNESS. a. Disconnect the signal wire from the switch. b. Place a jumper wire from the signal wire to the ground wire. (If a ground wire is not present, connect the signal wire to frame ground.) Expected Result: The alert indicator stops FLASHING. Result:
• OK - Alert indicator stops FLASHING. The circuit is operating correctly. The switch has failed. Check the switch or replace the switch. STOP.
• NOT OK - Alert indicator continues to
FLASH. The machine harness is open or the control has failed. Proceed to 3.
3. CHECK THE PULL-UP VOLTAGE. a. Use a digital multimeter to measure the pull-up voltage from the signal wire to the ground wire. Expected Result:The voltage is 5 ± .5 VDC. Result:
• OK - Voltage is 5 ± .5 VDC. The control has failed. Replace the control. STOP.
• NOT OK - Voltage is not 5 ± .5 VDC. The harness or the control are the cause. Proceed to 4. 4. CHECK THE HARNESS. a. Turn the disconnect switch and the key start switch to the OFF position. b. Trace the signal wire from the switch to the VIMS interface module on the Electrical System Schematic. Determine the signal contact (connector contact) of the machine harness at the VIMS interface module. c. Disconnect the machine harness from the VIMS interface module. d. At the machine harness connector for the VIMS interface module, check for continuity between the signal contact and contact 2 or frame ground if a ground wire is not present at contact 2. (The jumper is still in place from 2.) Expected Result:The approximate resistance is less than 5.0 ohms. Result:
488 Testing and Adjusting Section
• OK - Resistance is less than 5.0 ohms.
The harness is not causing the failure. The control has failed. Replace the VIMS interface module. Refer to the Testing and Adjusting, “Module-Replace” section. STOP.
• NOT OK - Resistance is greater than 5.0
ohms. The harness has failed. Repair the harness or replace the harness. STOP.
Alert Indicator Never Flashes. (Shorted Switch)
a. Turn the disconnect switch and the key start switch to the OFF position. b. The signal wire remains disconnected from the switch. Do not allow the wire to touch frame ground. c. Trace the signal wire from the switch to the VIMS interface module. Use the Electrical System Schematic to determine the signal contact (connector contact) of the machine harness at the VIMS interface module.
Procedure This procedure is used when the alert indicator never FLASHES for any parameter. The alert indicator will not FLASH if the switch is shorted to ground or the VIMS interface module has failed. 1. LOCATE THE SWITCH. a. Locate the switch that is responsible for not FLASHING the alert indicator. (If necessary, use the Electrical System Schematic to assist in locating the switch.) Proceed to 2.
d. Disconnect the machine harness from the VIMS interface module. e. At the machine harness connector for the VIMS interface module, check for continuity between the signal contact and contact 2 or frame ground if a ground wire is not present at contact 2. Expected Result:The resistance is greater than 10,000 ohms. Result:
2. CHECK THE HARNESS. a. Disconnect the signal wire from the switch. Expected Result:The alert indicator FLASHES.
• OK - Resistance is greater than 10,000
ohms. The harness is not causing the failure. The module has failed. Replace the VIMS interface module. Refer to the Testing and Adjusting, “Module-Replace” section. STOP.
Result:
• OK - Alert indicator FLASHES. The circuit is operating correctly. The switch has failed. Check the switch or replace the switch.
• NOT OK - Alert indicator does NOT FLASH. The circuit has failed. The signal wire is probably shorted to ground. Proceed to 3.
3. CHECK THE PULL-UP VOLTAGE. a. Use a digital multimeter to measure the pull-up voltage from the signal wire to the ground wire. Expected Result:The voltage is 5 ± .5 VDC. Result:
• OK - Voltage is 5 ± .5 VDC. control has failed. Replace the control. STOP.
• NOT OK - Voltage is not 5 ± .5 VDC. The harness is possibly the cause. Proceed to 4. 4. CHECK THE HARNESS.
• NOT OK -Resistance is less than 10,000 ohms. The harness has failed. The signal wire within the harness is shorted to ground. Repair the harness or replace the harness. STOP.
489 Testing and Adjusting Section
Troubleshooting The Action Lamp Action Lamp - Does not Illuminate During the Power Up Cycle
b. Disconnect the machine harness from the VIMS main module. c. Turn the disconnect switch and the key start switch to the ON position. d. At the machine harness connector for the VIMS main module, check the voltage at contact 1 (170-YL). The voltage must be above 20.5 DCV in order to illuminate the action lamp. e. Turn the disconnect switch and the key start switch to the OFF position. f. Place a jumper wire between contact 1 (170-YL) and contact 20 (411-PK).
Illustration 370
g00730011
Schematic of the Action Lamp Circuit
This failure occurs when the current of the action lamp circuit (wire 411-PK) is below normal. There is an open circuit. When this failed condition is present the action lamp will NOT illuminate. Note: The dash indicators illuminate for three seconds upon power up. If the action lamp does NOT illuminate during the power up self test perform the following procedure. 1. CHECK THE ACTION LAMP. a. Turn the disconnect switch and the key start switch to the OFF position. b. Replace the action lamp with a known working lamp. c. Turn the disconnect switch and the key start switch to the ON position. d. Observe the action lamp. Expected Result: The action lamp illuminates during the power up cycle. Results:
• OK - The action lamp illuminates properly during the 3 second start up test. STOP.
• NOT OK - The action lamp is not the problem. Proceed to 2.
2. CHECK THE HARNESS. a. Turn the disconnect switch and the key start switch to the OFF position.
g. At the machine harness connector to the VIMS interface module (797), connect J1-25 (J846-WH) to frame ground. On all other VIMS machines, place the jumper wire from the negative post of the LED to frame ground. h. Turn the disconnect switch and the key start switch to the ON position. Expected Result: The action lamp illuminates. Results:
• OK - The action lamp illuminates. The harness is correct. Replace the VIMS main module. Refer to the Testing and Adjusting, “Module-Replace” section. STOP.
• NOT OK - The action lamp DOES NOT
illuminate. The harness is an open circuit. Proceed to 3.
3. CHECK THE HARNESS. a. At the action lamp, disconnect the signal wire (411-PK) from the dash socket. b. Check for an open circuit in the signal wire. Measure the resistance from contact 20 (wire 411-PK) of the VIMS main module connector to the action lamp. c. On the 797, check for an open circuit in the ground wire. Measure the resistance between the socket of the action lamp and contact J1-25 (wire J846-WH) of the VIMS interface module. On all other VIMS machines, check for an open circuit in the ground wire from the socket of the action lamp to frame ground. Expected Result: There is continuity (less than 5 ohms). The circuits are correct. Results:
490 Testing and Adjusting Section
• OK - There is continuity. The circuits are correct. STOP.
• NOT OK - There is NO continuity. The
• NOT OK - The action lamp is OFF. The
VIMS main module has failed. Replace the VIMS main module. Refer to the Testing and Adjusting, “Module-Replace” section. STOP.
circuits are NOT correct. Repair the machine harness or replace the machine harness. STOP.
i01303675
Chip Detector - Test
Action Lamp - On Continuously
SMCS Code: 5050-038-NS The chip detectors are simple switches. The switch closes when enough particles of metal debris attach to the switch. The amount of debris and the electrical conductivity of the debris determines when a warning occurs. The operator will be warned when the chip detector resistance is approximately 500 ohms. The warning is deactivated when the resistance is approximately 2,000 ohms. Perform the following chip detector circuit checks that are listed here: Illustration 371
g00730011
Schematic of the Action Lamp Circuit This failure occurs when the voltage of the action lamp circuit (wire H430-BU) is above normal. This failure results in the continuous illumination of the action lamp. Note: The dash indicators illuminate for three seconds upon power up. If the action lamp does not shut off after this power up self-test perform this procedure. 1. CHECK THE ACTION LAMP. a. Turn the disconnect switch and the key start switch to the OFF position. b. Disconnect the machine harness from the VIMS main module. c. Turn the disconnect switch to the ON position. d. Observe the action lamp. e. Turn the key start switch to the ON position. Expected Result: The action lamp illuminates. Results:
• OK - The action lamp illuminates. Contact 20 (wire 411-PK) of the VIMS main module is shorted to +battery. Repair the machine harness or replace the machine harness. STOP.
Ensure that the resistance of the chip detector is greater than 10,000 ohms. Then check the harnesses for the same resistance. Disconnect the harness from the detector. At the VIMS interface module, measure the resistance from the signal circuit to ground and +battery. Resistance should always be greater than 10,000 ohms. If the resistance is less than 10,000 ohms repair the harness or replace the harness. If the chip detector and the harness have signal resistance that is greater than 10,000 ohms and the warning is still present, replace the VIMS interface module. Refer to the Testing and Adjusting, “Module-Replace” section.
491 Testing and Adjusting Section
i01325156
Lift or Tilt Cylinder Sensor Troubleshoot
Note: In addition to the Testing and Adjusting, “Tilt or Lift Cylinder Sensor Test”, the VIMS diagnostics are helpful in troubleshooting sensors. Use the “Lift or Tilt Cylinder Sensor - Test” to troubleshoot any fault that is associated with tilt cylinders and lift cylinders.
SMCS Code: 5102-035-PXS; 5104-035-PXS
Troubleshoot sensor circuits in the following order. 1. Perform the Testing and Adjusting, “Lift or Tilt Clyinder Pressure Sensor Signal Voltage Test”. This test checks for sensor voltages at the sensor, when all the circuits are connected. DISCONNECT NOTHING. Troubleshoot as is before disconnecting any circuits. Disconnecting the sensor from the harness before measuring the voltage may alter a poor connection. This will make the proof of cause difficult or impossible. 2. Perform the Testing and Adjusting, “Lift or Tilt Cylinder Sensor Dynamic Test”, if necessary. 3. The VIMS interface module is the cause of the fault if the sensor and the harness are correct. Replace the VIMS interface module. Refer to the Testing and Adjusting, “Module-Replace”section.
Lift or Tilt Cylinder Sensor Signal Voltage - Test Note: This procedure is performed while the VIMS interface module is connected to the sensor. g00508961
Illustration 372
Procedure
Schematic of the Lift Cylinder Head Pressure Sensor
Locate the suspect sensor. Identify the sensor wires and connector contacts. DO NOT DISCONNECT ANY HARNESS CONNECTORS AT THIS TIME. Turn the key start switch to the ON position. DO NOT START THE ENGINE. 1. CHECK THE SENSOR POWER. a. At the sensor connector, identify the +V and ground circuits. b. Insert the 7X-1710 Multimeter Probe leads into the back of the sensor connector between the +V and the ground circuit wire. g00508965
Illustration 373
c. Measure the system voltage.
Schematic of the Tilt Cylinder Rod Pressure Sensor
Expected Result: The voltage is between 18 and 32 DCV.
Table 29
Tools Needed 9U-7330
Multimeter
1
Results:
7X-1710
Multimeter Probe
1
• OK - Voltage is between 18 and 32 DCV. The system voltage is present. Proceed to Step 2.
492 Testing and Adjusting Section
• NOT OK - Voltage is not between 18 and 32
DCV. There is an open circuit. Trace the +V and ground circuits in the machine harness. Repair the machine harness or replace the machine harness. Repair the charging system of the machine. STOP.
2. CHECK THE SIGNAL VOLTAGE. a. At the sensor connector, identify the signal and ground circuits. b. Insert the 7X-1710 Multimeter Probe leads into the back of the sensor connector along side of the signal and ground circuit wires.
• OK - Signal voltage is equal to the voltage
that was recorded in Step 2. The VIMS interface module is receiving a valid signal voltage. Proceed to Step 10.
• NOT OK - Signal voltage is NOT equal to the voltage that was recorded in Step 2. The machine harness has an open in the signal or ground circuits. Repair the machine harness or replace the machine harness. STOP. 4. CHECK THE MACHINE HARNESS.
c. Measure the signal voltage and record the signal voltage.
a. Signal voltage is greater than 6.0 DCV. The probable cause is a short to +battery in the machine harness or the sensor could be the cause.
Expected Result: The signal voltage is approximately 5.0 DCV.
b. Disconnect the machine harness connector for the sensor.
Results:
c. At the machine harness connector for the sensor, measure the voltage between the signal contact and the ground contact.
• VOLTAGE is 5.0 DCV. The signal voltage is approximately 5.0 DCV. The signal voltage at the sensor is correct. Proceed to Step 3.
Expected Result: The voltage that is measured is less than 0.5 DCV.
• VOLTAGE is GREATER THAN 6.0 DCV. The voltage is greater than 6.0 DCV. The signal voltage is not correct. Proceed to Step 4.
• VOLTAGE is LESS THAN 1.0 DCV. The voltage is less than 1.0 DCV. Proceed to Step 2. 3. CHECK THE SIGNAL CIRCUIT OF THE MACHINE HARNESS. a. At the machine harness connector for the VIMS interface module, identify the signal and ground circuits. DO NOT DISCONNECT THE HARNESS CONNECTOR. b. Insert the 7X-1710 Multimeter Probe leads in the back of the machine harness connector along side of the signal and ground circuit wires. c. Measure the signal voltage. d. Compare this measurement with the voltage that was recorded in Step 2. CHECK THE SIGNAL VOLTAGE. Expected Result: The signal voltage is equal to the voltage that was recorded in Step 2. Results:
Results:
• OK - Voltage is less than 0.5 DCV. The voltage is correct for a good harness. The sensor has failed. Replace the sensor. STOP.
• NOT OK - Voltage is greater than 0.5 DCV. The voltage is not correct. The signal circuit of the machine harness is shorted to the +battery circuit. Repair the machine harness or replace the machine harness. If the machine harness is not the cause, replace the VIMS interface module. STOP.
5. CHECK THE VOLTAGE OF THE SIGNAL CIRCUIT. a. Signal voltage is less than 1.0 DCV. The probable cause of this fault is a short to ground in the machine harness, the sensor or the VIMS interface module. Disconnect the machine harness from the sensor. b. At the machine harness connector for the sensor, measure the voltage between the signal contact and the ground contact. Expected Result: The voltage is less than 0.5 DCV. Results:
493 Testing and Adjusting Section
• OK - Voltage is less than 0.5 DCV. The voltage is correct. Proceed to Step 6.
• NOT OK - Voltage is greater than 0.5 DCV. Disconnect the VIMS interface module. Recheck the voltage measurement. If the voltage is less than 0.5 DCV, replace the VIMS interface module. If the voltage is greater than 0.5 DCV, repair the machine harness or replace the machine harness. STOP.
6. CHECK THE RESISTANCE OF THE SIGNAL CIRCUIT.
a. Check continuity of harness. Place a jumper wire at the machine harness connector of the VIMS interface module between contact 2 and the sensor signal wire that is being tested. b. At the machine harness connector for the sensor, measure the resistance between the signal contact and the ground contact. Expected Results: The resistance is less than 5 ohms. Results:
• OK - Resistance is less than 5 ohms . The a. Disconnect the sensor. At the machine harness connector for the sensor, measure the resistance between the signal contact and the ground contact.
harness resistance is correct. The VIMS interface module has failed. Replace the VIMS interface module. STOP.
• NOT OK - Resistance is greater than 5 Expected Results: The resistance is approximately 47 K ohms. Results:
ohms. The harness has failed. There is an open in the sensor signal circuit or the ground circuit of the machine harness. Repair the machine harness or replace the machine harness. STOP.
• OK - Resistance is approximately 47 K ohms. The resistance is correct. The sensor has failed. Replace the sensor. STOP.
• NOT OK - Resistance is less than 30 K ohms or the resistance is greater than 50 K ohms. The resistance is not correct. The machine harness or the VIMS interface module have failed. Proceed to 7. 7. CHECK THE HARNESS. a. Disconnect the VIMS interface module from the machine harness. b. At the machine harness connector for the sensor, measure the resistance between the signal contact and the ground contact. Expected Results: The resistance is greater than 100 K ohms. Results:
• OK - Resistance is greater than 100 K ohms. The resistance is correct. Proceed to Step 8.
• NOT OK - Resistance is less than 30 K ohms. The resistance is not correct. There is a short in the machine harness from ground to the sensor signal circuit. Repair the machine harness or replace the machine harness. 8. CHECK THE HARNESS.
9. CHECK THE SIGNAL CIRCUIT. VOLTAGE a. Disconnect the VIMS interface module from the machine harness. b. At the machine harness connector for the sensor, measure the voltage between the signal contact and the ground contact. Expected Results: The voltage is less than 0.5 DCV. Results:
• OK - Voltage is less than 0.5 DCV. The voltage is correct. The VIMS interface module has failed. Replace the VIMS interface module. STOP.
• NOT OK - Voltage is greater than 0.5 DCV.
there is a short in the machine harness from +battery to the sensor signal circuit. Repair the machine harness or replace the machine harness. STOP.
10. CHECK THE FREQUENCY OF THE SENSOR. a. At the machine harness connector for the VIMS interface module, identify the signal and ground circuits. DO NOT DISCONNECT THE HARNESS CONNECTOR. b. Insert the 7X-1710 Multimeter Probe leads in the back of the machine harness connector along side of the signal and ground circuit wires.
494 Testing and Adjusting Section
c. Measure the frequency of the signal. Expected Results: The frequency is between 150 and 2500 Hz. Results:
• OK - Frequency is between 150 and 2500 Hz. The frequency is valid. The VIMS is receiving a good signal. If the problem still persists, further testing is required. Refer to the Testing and Adjusting, “Lift or Tilt Cylinder Sensor Dynamic Test”.
• NOT OK - Frequency is NOT between 150 Hz and 2500 Hz. The sensor frequency is out of range. Replace the sensor. STOP.
Lift or Tilt Cylinder Sensor Dynamic - Test Note: This procedure is performed while the signal wire is disconnected from the VIMS interface module. This quick check is used to determine if the sensor is functioning. The accuracy of the sensor is not checked. Perform this test only after successfully completing the Testing and Adjusting, “Lift or Tilt Cylinder Sensor Dynamic Test”. The Electrical System Schematic can be used to determine the connector contacts that correspond to a failed machine condition. Use the proper service tools to remove the connector contact of the signal wire from the machine harness connector of the VIMS interface module. Two items are checked in this test:
• A sensor signal is present at the VIMS interface module.
• The signal voltage increases with a corresponding increase in the monitored system. The signal voltage decreases with a corresponding decrease in the monitored system.
c. Turn the key start switch to the ON position. DO NOT START THE ENGINE. d. Measure the frequency between the signal contact and the ground contact. Record the frequency. Expected Result: The frequency is between 150 Hz and 2500 Hz. Results:
• OK - Frequency is between 150 Hz and 2500 Hz. The frequency is correct. The VIMS is receiving a valid signal. If the problem still persists further testing is required. Proceed to Step 2.
• NOT OK - Frequency is NOT between 150
Hz and 2500 Hz. The frequency is not correct. The sensor is out of range. Replace the sensor. STOP.
2. CHANGE THE LIFT OR TILT CYLINDER PRESSURE. a. Load the bucket in order to increase the cylinder pressure. Proceed to Step 3. 3. CHECK THE FREQUENCY OF THE SIGNAL. a. At the machine harness connector for the VIMS interface module, measure the frequency between the signal contact and the ground contact. Expected Result: The frequency is greater than the value that was recorded in Step 1. Note: The frequency should increment smoothly. The difference between the frequencies of this test CHECK THE FREQUENCY OF THE SIGNAL and the previous step CHECK THE FREQUENCY OF THE SIGNAL depend on the amount of change that is introduced into the system. Results:
• OK - Frequency is greater. The frequency Procedure 1. CHECK THE FREQUENCY OF THE SIGNAL. . a. Ensure that the key start switch is in the OFF position and that the sensor is connected to the machine harness. b. Insert the 7X-1710 Multimeter Probeleads in the back of the machine harness connector along side of the signal and ground circuit wires.
incremented smoothly. The sensor is not the cause. STOP.
• NOT OK - Frequency is NOT greater. The probable cause is a failed sensor. Replace the sensor. STOP.
495 Testing and Adjusting Section
i01491485
Suspension Cylinder Sensor Troubleshoot SMCS Code: 7201-035-PXS
g00774508
Illustration 377 Schematic of the Right Rear Suspension Cylinder Table 30
Tools Needed Illustration 374
g00774499
Schematic of the Left Front Suspension Cylinder
9U-7330
Multimeter
1
7X-1710
Multimeter Probe
1
Note: In addition to the Testing and Adjusting, “Suspension Cylinder Pressure Sensor -Troubleshoot ”procedure, the VIMS diagnostics are helpful in the troubleshooting of sensors. Use this procedure to troubleshoot the suspect performance of suspension cylinder pressure sensors or any failure that is associated with the suspension cylinder pressure sensors.
Illustration 375
g00774502
Schematic of the Right Front Suspension Cylinder
Note: This test checks for sensor voltages at the sensor when all the circuits are connected. DISCONNECT NOTHING, unless directed to do so. Troubleshoot the circuit “as is” before disconnecting any circuits. Disconnecting the sensor from the harness before measuring the voltage may alter a poor connection. This will make the proof of cause difficult or impossible. Locate the suspect sensor. Identify the sensor wires and connector contacts. DO NOT DISCONNECT ANY HARNESS CONNECTORS AT THIS TIME. Turn the key start switch to the ON position. Do not shut off the engine, unless conditions require the engine to be on. The truck can be empty or the truck can be loaded. 1. CHECK THE SENSOR SUPPLY VOLTAGE.
Illustration 376 Schematic of the Left Rear Suspension Cylinder
g00774507
a. At the connector of the sensor, identify the +V circuit and the ground circuit. b. Insert the 7X-1710 Multimeter Probe leads into the back of the sensor’s connector along side of “+V” and ground circuit wires. c. Measure the system voltage.
496 Testing and Adjusting Section
Expected Results: The voltage is between 22.0 DCV and 29.5 DCV.
Results:
• YES - The voltage is above 9.0 DCV. The Note: System voltage at the battery must be above 24.3 DCV. Results:
• YES - The voltage is between 22.0 DCV and 29.5 DCV. The system voltage is present. Proceed to test step 2.
• NO - The voltage is less than 22.0 DCV.
The circuit is not correct. Trace the “+V” circuit and the ground circuit in the machine harness. Repair the machine harness or replace the machine harness. If the machine harness has not failed the sensor is the cause of the failure. Replace the sensor. A failed sensor is unlikely. STOP.
signal circuit is shorted to the +battery circuit or the VIMS interface module has failed. Trace the signal circuit and the ground circuits in the harness. Repair the harness or replace the harness. If the harness is correct, the VIMS interface module has failed. Replace the VIMS interface module. STOP.
• NO - The voltage is between 1.0 and 9.0
DCV. The voltage is correct. The sensor has failed. Replace the sensor. STOP.
4. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO GROUND. a. Disconnect the sensor from the machine harness.
2. CHECK THE SENSOR SIGNAL VOLTAGE. a. At the sensor connector, identify the signal and ground circuits. b. Insert the 7X-1710 Multimeter Probe leads into the back of the sensor’s connector along side of the signal and ground circuit wires.
b. At the machine harness connector for the sensor, measure the voltage between the signal contact and the ground contact. Expected Results: The voltage is less than 1.0 DCV. Results:
c. Measure the signal voltage.
• YES -The voltage is less than 1.0 DCV. Expected Results: The signal voltage is between approximately 1.0 DCV and 9.0 DCV. Results:
• The voltage is greater than 9.0 DCV. The signal voltage is not correct. Proceed to test step 3.
• The voltage is less than 1.0 DCV. The signal voltage is not correct. Proceed to test step 4.
• The voltage is between 1.0 DCV and 9.0 DCV. The signal circuit is correct. Proceed to test step 5. 3. CHECK THE SIGNAL CIRCUIT FOR A SHORT TO THE +BATTERY CIRCUIT. a. Disconnect the sensor from the machine harness. b. At the machine harness connector for the sensor, measure the voltage between the signal contact and the ground contact.
The possible cause of the failure is listed here: The incorrect VIMS onboard software is installed, the signal circuit is shorted to ground in the machine harness or the VIMS interface module has failed. Verify the possible causes in the order that is listed below: Verify that the correct VIMS onboard software is installed. Install the correct VIMS onboard software. If the software is correct, trace the signal circuit and the ground circuit in the harness. Repair the harness or replace the harness. If the harness is correct, the VIMS interface module has failed. Replace the VIMS interface module. STOP.
• NO - The voltage is between 1.0 and 9.0
DCV. The voltage is correct. The sensor has failed. Replace the sensor.
STOP. Expected Results: The voltage is above 9.0 DCV.
497 Testing and Adjusting Section
5. CHECK THE FREQUENCY OF THE SENSOR SIGNAL.
Expected Results: The problem followed the sensor to the other suspension cylinder.
a. Remove the SENSOR from the suspension cylinder. This is done so the sensor can not sense the pressure within the suspension cylinder. DO NOT DISCONNECT THE HARNESS CONNECTOR.
Results:
b. At the machine harness connector of the sensor, identify the signal and ground circuits. DO NOT DISCONNECT THE HARNESS CONNECTOR OR RECONNECT THE HARNESS CONNECTOR.
• NO - The problem did not follow the sensor
c. Insert the 7X-1710 Multimeter Probe leads into the back of the sensor’s connector along side of the signal and ground circuit wires. d. Measure the frequency between the signal and the ground contacts.
• YES - The problem followed the sensor to the other suspension cylinder. The sensor has failed. Replace the sensor. STOP. to the other suspension cylinder. The suspension cylinder is causing the failure. Proceed to test step 7.
7. CHECK THE SUSPENSION CYLINDERS. a. Verify that the conditions that are listed below are not present.
• The suspension cylinders are NOT sticking when the truck is empty.
Expected Results: The frequency is between 186 Hz and 214 Hz.
• The suspension cylinders are NOT
Results:
The service technician can verify that the conditions that are listed above are present by riding in the truck during the loading operation. The service technician can observe the operation of the four suspension cylinder pressure sensors with the “VIMSpc99 View Real Time” option. The service technician may also activate a “data logger” in order to observe the performance of the suspension cylinder. Compare the signal outputs of the four sensors. Verify that the sensor responds to the loading of the truck in the same manner as the other sensors.
• YES - The frequency is between 186 Hz
and 214 Hz when ambient temperature is between 10 C (50 F) and 40 C (104 F). The sensor is generating a valid frequency. If the problem of incorrect payload measurement persists proceed to test step 6.
• NO -The frequency is NOT between 186 Hz and 214 Hz. The sensor is generating an incorrect frequency. The sensor has failed. Replace the sensor. STOP. 6. MOVE THE SENSOR. a. Substitute the suspect sensor with a sensor that is functioning correctly. For example, substitute a good left rear suspension cylinder pressure sensor with the suspect right rear suspension cylinder pressure sensor. b. Verify that the problem followed the suspect sensor to the other suspension cylinder. The service technician can verify that the problem followed the suspect sensor by riding in the truck during the loading operation. The service technician can observe the performance of the four suspension cylinder pressure sensors by using the “VIMSpc99 View Real Time” option. The service technician can also activate a “data logger”. Compare the signal outputs of the four sensors. Verify that the suspect sensor does not respond to the loading of the truck in the same manner as the other sensors.
bottoming out when the truck is loaded.
Expected Results: The conditions that are listed above are not present. Results:
• YES -The conditions that are listed above are not present. Perform the “Payload System - Troubleshoot procedure” that is provided below.
• NO - The conditions that are listed above are present. Service the suspension cylinder in accordance with the Special Instruction, SEHS9411, “Charging Procedure for Front and Rear Suspension Cylinders”. STOP.
498 Testing and Adjusting Section
Payload System - Troubleshoot NOTICE Prior to performing this procedure use VIMSpc99 to verify that the Event List is free of events that could affect the payload measurements. Some examples of EVENTS that would affect the payload measurements are listed here: the body up switch, the body raise switch, the transmission control, incorrectly charged suspension cylnders, and any other event that is payload related.
Verify that no “active diagnostic events” or “intermittently active diagnostic events” are present for the suspension cylinder pressure sensors or other components of the payload system. Expected Result: No active diagnostic events are present for the suspension cylinder pressure sensors. There are no diagnostic events listed in the event list for the suspension cylinder pressure sensors. Result:
1. PAYLOAD WEIGHT DOES NOT SEEM CORRECT FOR A GIVEN TRUCK. The VIMS does not indicate that a diagnostic code is present for one or more of the suspension cylinder pressure sensors. Expected Result: There are no active diagnostic codes present for one or more of the suspension cylinder pressure sensors. Result:
• YES - The VIMS does not indicate that a diagnostic code is present for one or more of the suspension cylinder pressure sensors. Proceed to test step 2.
• NO - Diagnostic codes are present for one
or more of the suspension cylinder pressure sensors. Perform the Testing and Adjusting, “Suspension Cylinder Pressure Sensor -Troubleshoot ” procedure that is listed above. STOP.
2. PAYLOAD WEIGHTS ONLY APPEAR TO BE INCORRECT OCCASIONALLY. a. Verify that SOME of the payload measurements appear to be correct. Expected Result: SOME of the payload measurements seem correct. Result:
• YES - No active diagnostic events are present for the suspension cylinder pressure sensors and there are no diagnostic events listed in the event list for the suspension cylinder pressure sensors. Proceed to test step 4.
• NO - There are active diagnostic events present for the suspension cylinder pressure sensors or there are diagnostic events shown in the event list for the suspension cylinder pressure sensors. Perform the Testing and Adjusting, “Suspension Cylinder Pressure Sensor -Troubleshoot ” procedure that is listed above. STOP. 4. CALIBRATE THE PAYLOAD SYSTEM. a. Ensure that the truck body is empty. Carryback weight in the truck body can affect the payload measurements. b. Operate the empty truck to a minimum ground speed of four mph on hard level ground. c. Move the transmission gear selector to the neutral position and allow the truck to coast to a stop. Do not use the service brakes or the retarder. d. After the truck stops moving, manually calibrate the payload system by entering the service program code of 729225 (“PAYCAL”). Then press the “OK” key. The following message will appear if the calibration was successful.
• YES - Some of the payload measurements appear to be correct. Proceed to test step 3.
Table 31
PAYLOAD CALIBRATED
• NO - All payload measurements appear to be incorrect. Proceed to test step 6. 3. CHECK FOR DIAGNOSTIC EVENTS
Expected Result: The payload weights for a given truck seem correct after performing the calibration of the payload system. Result:
499 Testing and Adjusting Section
• YES - The payload weights for a given
truck seem correct after performing the calibration of the payload system. The condition that was responsible for the incorrect payload measurement has been eliminated. Return the truck to service. STOP.
• NO - The payload weights for a given truck remain incorrect after performing the calibration of the payload system. Proceed to test step 5.
Check the maintenance records of the suspect truck for any work that was performed on the suspension CYLINDERS or payload related VIMS components. This includes replacement of the body raise switch, the truck body or any other payload related component. Expected Result: No work that is related to the payload system was performed on the machine. Result:
• YES - No work that is related to the payload 5. CHECK FOR THE CORRECT PLACEMENT OF THE LOAD
system was performed on the machine. Proceed to test step 7.
• NO - Work was performed on the truck that is related to the payload system. If the payload system was not calibrated after the components were replaced, proceed to test step 8. Otherwise, analyze the possible effects that the service work could have had on payload accuracy. 7. CHECK FOR DIAGNOSTIC EVENTS
Illustration 378
g00670357
The 175-2624 Center of Load Markers are available via MSO through the machine order system. For information on proper placement of the marker on the body, contact your Caterpillar Dealer. Product Support will need the information that is listed here: the serial number of the truck, the part number of the truck body, the sequence number of the truck body , and information on modifications that have been made to the body (such as side board or tail extensions).
Verify that no active diagnostic events or intermittent diagnostic events are present for the suspension cylinder pressure sensors or other components of the payload system. Expected Result: No active diagnostic events are present for the suspension cylinder pressure sensors and there are no diagnostic events listed in the event list for the suspension cylinder pressure sensors. Result:
(1) Center of Load Marker
a. Observe the loading operation. Ensure that the operator of “loading tool” is placing the load in the truck body in the proper area. Expected Result: The operator is loading the truck correctly. Refer to Illustration 378. Result:
• YES - The operator of the loading tool is positioning the load correctly. Proceed to test step 6.
• NO - The operator of the loading tool is not
positioning the load correctly in the body. Provide the operator of the loading tool with training/supervision in order to ensure that the load will be placed properly. STOP.
6. CHECK FOR SERVICE WORK THAT MAY HAVE AN AFFECT ON THE MEASUREMENT OF THE PAYLOAD.
• YES - No active diagnostic events are present
for the suspension cylinder pressure sensors and there are no diagnostic events listed in the event list for the suspension cylinder pressure sensors. Proceed to test step 8.
• NO - There are active diagnostic events
present for the suspension cylinder pressure sensors or there are diagnostic events shown in the event list for the suspension cylinder pressure sensors. Perform the Testing and Adjusting, “Suspension Cylinder Pressure Sensor -Troubleshoot ” procedure that is listed above. STOP.
8. CALIBRATE THE PAYLOAD SYSTEM. a. Ensure that the truck body is empty. Carryback weight in the truck body can affect the payload measurements. b. Operate the empty truck to a minimum ground speed of four mph on hard level ground.
500 Testing and Adjusting Section
c. Move the transmission gear selector to the neutral position and allow the truck to coast to a stop. Do not use the service brakes or the retarder.
Expected Result: The payload configuration is correct.
d. After the truck stops moving, manually calibrate the payload system by entering the service program code of “729225” (PAYCAL). Then press the “OK” key. The following message will appear if the calibration was successful.
• YES - The payload configuration is correct.
Table 32
PAYLOAD CALIBRATED
Result: Proceed to test step 10.
• NO - The payload configuration is incorrect. Perform the Payload Configuration procedure that is located in the Systems Operation, “TPS Service Operation” section of this manual. STOP. 10. CHECK THE PART NUMBER OF THE VIMS ONBOARD SOFTWARE.
Expected Result: The payload weights for a given truck seem correct after performing the calibration of the payload system. Result:
• YES - The payload weights for a given truck seem correct after performing the calibration of the payload system. The condition that was responsible for the incorrect payload measurement has been eliminated. Return the truck to service. STOP.
Verify that the correct VIMS onboard software is installed in the VIMS interface module. Contact the Product Support staff of the appropriate Business Unit for a list of compatible VIMS software or reference the Service Magazine announcement that listed the available VIMS onboard software. Expected Result: The correct software is installed on the machine. Result:
• YES - The correct software is installed on the • NO - The payload weights for a given
truck remain incorrect after performing the calibration of the payload system. Proceed to test step 9.
9. CHECK THE PAYLOAD CONFIGURATION SETTING Check the payload configuration setting by entering the service program code 7292663 (“PAYCONF”) via the keypad. This will display the maximum payload weight of the truck. Verify that the payload weight is correct for the suspect truck.
machine. Proceed to test step 11.
• NO - The software is incorrect. Install the
correct VIMS software and then perform the Payload Calibration. The “Payload Calibration ” procedure is located in the of the Systems Operation, “TPS Service Operation” section of this manual. STOP.
11. CHECK THE SUSPENSION CYLINDERS. Verify that the conditions that are listed below are not present.
• The suspension cylinders are NOT sticking when the truck is empty.
Table 33
Maximum Payload Weight by Model
Model(1)
Maximum Payload Weight
• The suspension cylinders are not bottoming out when the truck is loaded.
Tonnes
Tons
785B 785C
136
150
Expected Result: The conditions that are listed above are not present.
789B 789C
177
195
Result:
793B 793C
219
240
(1)
The information in this table was obtained from the Caterpillar Performance Handbook, Edition 30.
• YES - The conditions that are listed above are not present. This failure was likely caused by a failed sensor. Perform the Troubleshooting, “Suspension Cylinder Pressure Sensor Troubleshoot” procedure. STOP.
501 Testing and Adjusting Section
• NO - The conditions that are listed above
are present. The cause of the failure is likely related to an incorrectly charged suspension cylinder. The service technician can verify that the conditions that are listed above are present by any of the means listed below:
The service technician can ride in the truck during the loading operation. During the loading operation the service technician observes the operation of the four suspension cylinder pressure sensors. This is done with the “VIMSpc99 View Real Time” option. The service technician can activate a data logger. Compare the signal outputs of the four sensors. Verify that the suspect sensor or the suspect suspension cylinder does not respond to truck loading in the same manner as the other sensors or suspension cylinders. Service the suspension cylinder in accordance with the Special Instruction, SEHS9411-01, 04 1992, “Charging Procedure for Front and Rear Suspension Cylinders”. STOP.
502 Testing and Adjusting Section
i00963625
Troubleshooting Electrical System Using Abbreviated Procedures SMCS Code: 1406-035 Table 34
ELECTRICAL SYSTEM TROUBLESHOOTING FAULT DESCRIPTION
RESULT OF FAULT (“during normal operation”).
POSSIBLE CAUSES
System voltage is high.
1. Category warning I - (“Voltage over 29.5V”).
1. Faulty alternator (“voltage regulator”)
System voltage is too high.
1. Category III warning - (“Voltage over 32.0V”)
1. Faulty alternator (“voltage regulator”)
System voltage is low.
1. Category I warning - (“Voltage below 24.8V”)
1. Idling over 30 minutes with all electronic loads 2. The alternator belt is slipping. 3. The “pulley drive nut ”of the alternator is loose. 4. Engine low idle speed is too low. 5. The electrical loads are too high for the alternator output . 6. Faulty battery(ies) 7. Faulty alternator 8. The wrong alternator is being used. The capacity is too low. 9. Battery wiring is shorted to the frame.
System voltage is too low.
1. Category III warning - (“Voltage is below 23.0 VDC”) 2. Dim headlights 3. Possible loss of some electrical controls
1. Idling over 30 minutes with all electronic loads 2. The alternator belt is slipping. 3. The “pulley drive nut ”of the alternator is loose. 4. Engine low idle speed is too low. 5. The electrical loads are too high for the alternator output . 6. Faulty battery(ies) 7. Faulty alternator 8. The wrong alternator is being used. The capacity is too low. 9. Battery wiring is shorted to the frame.
FAULT DESCRIPTION
RESULT OF FAULT (“during normal operation”).
POSSIBLE CAUSE
1. The message center shows “CAB DISPLAY ERR”. 2. The display modules may not work during normal operation and self-test operation. 3. The display modules may function erratically during operation or self-test operation. 4. The display modules now appear to work normally.
1. The harness is open or shorted in one or more of the following circuits that are listed here. A. E707-GN (“9 VDC Power”) B. E708-PK (Clock) C. C413-YL (Data) D. C414-BU (Load) 2. Wire E972-BU is open or intermittent. 3. One or more of the display modules are faulty. 4. The main module is faulty.
“CAB DISPLAY ERROR”
503 Testing and Adjusting Section
i01010973
Charging System - Test SMCS Code: 1406-038 Often when problems with the charging system are being investigated, the alternator is not the problem. If a low battery condition is present test the batteries first. See Special Instruction, SEHS7633, “Battery Test Procedure” for more information. If the engine cranks slowly, then test the starting system. See Service Magazine, SEPD0020, “Testing The Starter On The Engine” for more information. When a problem with the charging system is suspected, then complete the testing that is outlined in this Special Instruction. See “Initial Troubleshooting Procedure” in order to begin troubleshooting. If a warning indicator for the charging system is ON, see Service Magazine, SEBD1751, “Difference Between Alternator Indicator In Electronic Monitoring System (EMS) And Low Voltage Indicator In Operating Monitoring System (OMS)”. The procedures in this Special Instruction are designed to guide you to the problem with as little testing as possible. In most cases, you will only use a few of the tests to diagnose a problem. The tests are labelled as T1 - T8 for easy reference. A descriptive title for each test is included as well.
• NO - Voltage is less than .2 volts. There is a fault in the wiring harness to the alternator or there is a poor electrical connection. Correct the problem and operate the machine. Watch for a recurrence of the problem.
2. CHECK THE RESISTANCE IN THE EXCITATION CIRCUIT (CONTINUED). This step is only for alternators with external excitation when the terminal for excitation is labelled: “IG”. See “Alternator Specifications” if the method of excitation is unknown. Go to Step 3 if your alternator is self-excited. a. Turn the key start switch to the ON position. b. Verify voltage at the excitation terminal. Connect the red lead from a multimeter to the excitation terminal. Connect the black lead to a ground source (the case of the alternator). Note: For Denso G3B, K3A, and L3A alternators, Insert a 7X-1710 Multimeter Probe Group into the rear of the middle wire in the connector. See figure 379 below. Insert the probe (“spoon” lead) between the black seal that surrounds the wire and the outer shell of the connector. Do not insert the probe between the wire insulation and the black seal. This terminal (IG) is the terminal for excitation.
Initial Troubleshooting Procedure 1. CHECK THE RESISTANCE IN EXCITATION CIRCUIT. This step is only for alternators with external excitation when the terminal for excitation is labelled: “1”, “REG”, and “D+”. See “Alternator Specifications” if the method of excitation is unknown. Go to Step 3 if your alternator is self-excited. If the alternator’s terminal for excitation is labelled “IG” Go to Step 2. a. Turn the key start switch to the ON position. b. Verify voltage at the excitation terminal. Connect the red lead from a multimeter to the excitation terminal. Connect the black lead to a ground source (the case of alternator). c. Read the voltage that is shown on the multimeter. Expected Result: The voltage reads at least .2 volts. Results:
• YES - Voltage reads .2 volts or more. The
excitation circuit is correct. Proceed to Step 3.
Illustration 379
g00496660
Special Wire Probe Technique For Denso Alternators
c. Read the voltage that is shown on the multimeter. Expected Result: The voltage is within .5 volts of battery voltage. Results:
504 Testing and Adjusting Section
• YES - Voltage reads battery voltage. The
excitation circuit is correct. Proceed to Step 3.
• NO - Voltage is lower than .5 volts of the battery voltage. There is a fault in the wiring harness to the alternator or there is a poor electrical connection. Correct the problem and operate the machine. Watch for a recurrence of the problem.
• YES - Voltage is higher than the voltage
observed in the previous Step 3. The voltage is also higher than the maximum voltage that is listed in the specifications for the alternator. The alternator is over charging. Proceed to “T8 Alternator Overcharging - Test”.
• NO - Voltage is not higher than the voltage that was observed in Step 3. Proceed to “T4 Alternator Drive System - Check”.
3. CHECK THE SYSTEM VOLTAGE. a. Before starting the machine, connect a voltmeter between the “B+” terminal and the case of the alternator. Turn OFF all electrical loads. b. Turn the key to the ON position but do not start the engine. Expected Result: This voltage should be system voltage. Results:
• YES - System voltage is present. Go to Step 4
• NO - Voltage is less than system voltage. Verify that the batteries are good and verify that battery connections are good. Go to “T4 Alternator Drive System - Check” if the batteries are good. 4. INITIAL CHECK OF ALTERNATOR OPERATION a. The voltmeter remains connected in the configuration from Step 3. b. Start the machine. Set the throttle to at least 75%. Read the voltage on the voltmeter. Expected Result: The voltage is higher than the voltage recorded in the previous Step 3. Results:
• YES -Voltage is higher than the voltage
observed in the previous Step 3. The voltage is also lower than the maximum voltage that is listed in the specifications for the alternator. The alternator is charging partially. See the following diagnostic flow chart for reference in continued testing. Proceed to “T1 Alternator Output - Test”.
Note: Severely discharged batteries can cause low system voltage. This can occur even while the engine is running above idle, and the alternator is working properly. Proper low engine idle is also important. Most of the alternators in Caterpillar applications are self-excited. These alternators must exceed a turn-on speed before charging will begin. Alternator output can be very low at idle.
505 Testing and Adjusting Section
g00508188
Illustration 380
T1 Alternator Output - Test
3. Set the digital multimeter to “peak hold” or “max mode” on the “mV” scale.
1. Ensure that the batteries are NOT fully charged. a. Fully charged batteries have open circuit voltage above 12.5 volts on 12 volt systems or 25 volts on 24 volt systems. b. If the batteries are fully charged then crank the engine for 30 seconds. This action reduces the battery voltage. Operate the lights for 10 minutes while the engine is off as an alternative. 2. Connect the 9U-5795 Current Probe or 8T-0900 Ammeter to a DMM (digital multimeter). The multimeter must have a peak hold feature. Clamp the probe around alternator output wire (“B+”). Before clamping the probe around the wire, ensure that the probe is “zeroed” .
4. Turn on all electrical accessories: lights, air conditioning, and radio. 5. Start the machine, and immediately set the throttle to at least 75%. The peak current will appear on the voltmeter in “peak hold” or “max” mode. Expected Result: This current reading should be at least 90% of the specified peak output. Results:
• OK - Current is at least 90% of the specified peak output. See “Alternator Specifications” for exact numbers. Go to “T2 Electrical System Current - Test”.
506 Testing and Adjusting Section
• NOT OK - Current is less than 90% of the
specified peak output. Go to “T4 Alternator Drive System - Check”.
T2a - Test For Machines Equipped With A Main Disconnect Switch 1. Turn off all of the accessories. Turn the key switch to the OFF position. 2. Clamp a 9U-5795 Current Probe or 8T-0900 Ammeter around the main ground cable. Clamp the tool with the positive side away from the battery. Reset the probe (zero) before clamping the probe around the wire. Read the current. Expected Result: The current is below 2 amperes. Results:
T2b - Test For Any Machine 1. Turn off all accessories. Turn the key switch to the OFF position. 2. Clamp a 9U-5795 Current Probe or 8T-0900 Ammeter around the main ground cable. Clamp the tool with the positive side away from the battery. Reset the probe (zero) before clamping around the wire. Read the current. Expected Result: The current is below 2 amperes. Results:
• YES - The current is below 2 amperes. Continue to Step 3.
• NO - The current is above 2 amperes. There is a current draw in the system. Go to “T5 Alternator Current - Test”.
• YES - The current is below 2 amperes. Continue to Step 3.
• NO - The current is above 2 amperes. There is a current draw in the system. Go to “T5 Alternator Current - Test”. 3. Turn the disconnect switch to the ON position. Connect an ammeter across the disconnect switch terminals. Connect the red lead to the terminal on the frame side. Connect the black lead to the terminal on the battery side. If a multimeter is being utilized for this test, use the 10A connections in order to avoid damage. 4. Turn off the disconnect switch and read the current. Expected Result: The current is below .050 amperes (50 milliamperes). Note: The standard acceptable current draw is 50 milliamperes. A current draw above 50 milliamperes usually indicates a problem. However, some large machines with multiple electronic control modules have a higher acceptable limit. Contact a Caterpillar dealer for more information. Results:
• YES - The current is below 0.050 amperes. The charging system is currently good. The fault is possibly an intermittent draw in the system. The batteries may be faulty. Check that NO accessories were ON during the test.
• NO - The current is above 0.050 amperes. There is a draw in the system. Go to “T5 Alternator Current - Test”.
3. Remove the ground cable from the battery terminal. For systems with 4 batteries, or 12 volt systems with 2 batteries, disconnect the ground cables from both negative batteries. 4. Connect an ammeter between the disconnected battery ground cable and one of the negative battery terminals. Connect the red positive lead of the ammeter to the cable. The negative lead should be connected to the battery terminal. If a multimeter is being utilized for this test, use the 10 ampere connections in order to avoid damage. Expected Result: The current is below .050 amperes (50 milliamperes). Note: The standard acceptable current draw is 50 milliamperes. A current draw above 50 milliamperes usually indicates a problem. However, some large machines with multiple electronic control modules have a higher acceptable limit. Contact a Caterpillar dealer for more information. Results:
• YES - The current is below 0.050 amperes. The charging system is currently good. The fault is possibly an intermittent draw in the system. The batteries may be faulty. Check that NO accessories were ON during the test.
• NO - The current is above 0.050 amperes. There is a draw in the system. Go to “T5 Alternator Current - Test”.
507 Testing and Adjusting Section
Note: The following alternators have a connector for a regulator: 6T-1193, 6T-1194, 6T-1195, 6T-1196, 9G-6079, and 9G-6081. Disconnect the regulator connector from the alternator. Recheck the current that was found in the previous Step. If the current is below 0.050 amperes (50 milliamperes) the regulator is faulty.
• YES - If the voltage in Step 4 is not more than 1 volt for 12 volt systems (2 volts for 24 volt systems) higher than the voltage in Step 5, this test is complete and the related wiring is correct at this time. Replace the alternator or disassemble the alternator and repair.
• NO - If the voltage in Step 4 is more than 1
T3 Charging System - Test 1. Verify that the alternator B+ terminal nut is tight and verify that the wire has a good connection to the B+ terminal. 2. Many Caterpillar machines are equipped with a connector for the 6V-2150 Starting/Charging Analyzer. Use of this tester replaces the testing below. 3. Start the engine and set the throttle to at least 75 percent. Turn ON all electrical accessories for all test steps below. Allow the engine to run for at least 3 minutes before continuing to Step 4. The following table will assist in making calculations during this test. Table 35
Test Step 4 5 4 minus 5 =
Voltage Reading
Voltage should be below this for 12 volt system
Voltage should be below this for 24 volt system
1.0 volt
2.0 volts
6 7 6 minus 7 =
0.5 volt
1.0 volt
8
0.5 volt
1.0 volt
4. Measure the voltage between the alternator B+ terminal and the alternator case ground. 5. Measure the voltage across the battery. Put the red lead on the positive battery terminal, and put the black lead on the negative battery terminal. Step 5should be completed as quickly as possible after Step 4. Expected Result: On 12 volt systems, the voltage is less than or equal to voltage recorded in Step 4, but the voltage is within one volt. On 24 volt systems, the voltage is within 2 volts. Results:
volt for 12 volt systems (2 volts for 24 volt systems) higher than the voltage in Step 5, there is high circuit resistance: corrosion, loose connections, and damaged wiring. Continue to Step 6. 6. Check the voltage between the machine frame and the alternator B+ terminal. Record the voltage. 7. Check the voltage between the machine frame and the positive battery post. Step 7 should be completed as quickly as possible after Step 6. Expected Result: The voltage difference between Step 6 and Step 7 does not exceed 1 volt on 24 volt systems or 0.5 volts on 12 volt systems. Results:
• YES - The voltage difference does not exceed the tolerance. The charging circuit is good. Go to Step 8.
• NO - The voltage difference exceeds the
tolerance. There is high resistance in the charging circuit: loose cables, corroded cables, damaged cables, and faulty circuit breaker. Correct the problem and retest the system.
8. Check the voltage between the negative battery post and the alternator case ground. Expected Result: The voltage does not exceed 1 volt on 24 volt systems or 0.5 volts on 12 volt systems. Results:
• YES - The voltage difference does not exceed the tolerance. The ground circuit is good. There is an internal problem with the alternator. Go to “T6 Residual Magnetism Restoration”.
• NO - The voltage difference exceeds the
tolerance. There is high resistance in the ground circuit: loose cables, corroded cables, loose alternator mounting, and poor engine ground. Correct the problem and retest the system.
508 Testing and Adjusting Section
T4 Alternator Drive System - Check 1. Check the condition of the alternator drive belt. If the drive belt is oily, clean the pulleys. Replace the drive belt, and retest the system. If the drive belt is wet, dry the belt and retest the system. If the drive belt is worn, replace the belt and retest the system. 2. Check the tension of the alternator drive belt. If the tension is off, adjust the tension. 3. Check the nut on the alternator pulley. If the nut is loose, tighten the nut and retest the system. 4. If all of the previous steps find no problems go to “T3 Charging System - Test”.
T5 Alternator Current - Test
• NO - The current is over 0.015 amperes. There is an internal problem with the alternator. Go to “T6 Residual Magnetism Restoration”.
T6 Residual Magnetism Restoration This test is only for self-excited alternators. See Service Magazine, SEBD1672, July 1986, “Brushless Alternators May Not Charge In Certain Conditions” for additional information. 1. Start the engine and set the throttle to at least 75%. 2. Connect a voltmeter between the “B+” terminal and the alternator case ground. 3. If a wire is connected, disconnect the wire from the “R” terminal.
1. Turn the key switch to the OFF position.
Expected Result: The voltage stays the same.
2. Connect the 9U-5795 Current Probe or 8T-0900 Ammeter to a DMM (digital multimeter). Clamp the probe around the alternator output wire (“B+”). Before clamping the probe around the wire, ensure that the probe is “zeroed” .
Results:
• YES - The voltage stays the same. Continue to Step 4.
• NO - The voltage rises and the alternator 3. Read the current. Expected Result: The current is under 2 amperes. Results:
• YES - The current is under 2 amperes. Continue to Step 4.
• NO - The current is over 2 amperes. There is an internal problem with the alternator. Replace the alternator or disassemble the alternator and repair. 4. Disconnect the B+ terminal wire from the alternator. Connect the red lead of the multimeter to the wire that was just disconnected. Connect the black lead of the multimeter to the alternator B+ terminal. Set the multimeter on the 10 amp scale. Read the current.
begins charging. The wire to the “R” terminal is shorted. Repair the wiring or replace the wiring. Go to “Initial Troubleshooting Procedure” and retest the system. 4. Connect one end of a jumper wire to the “B+” terminal of the alternator. 5. Connect the other end of the jumper wire to the “R” terminal (“D+” terminal for Bosch) of the alternator for two seconds. Expected Result: The voltage output rises on the “B+” terminal. Results:
• OK - The voltage output rises. The alternator is now charging. Go to “Initial Troubleshooting Procedure” and retest the system.
• NOT OK - The voltage output does not rise. Expected Result: The current is under 0.015 amperes. Results:
• YES - The current is under 0.015 amperes.
The alternator is operating correctly. There is a current draw on the machine. Go to “T7 Identifying Source Of Current Draw - Test”.
If the alternator has a wire connected to the “I” terminal, then go to Step 6. Otherwise, disassemble and repair the alternator, or replace the alternator. 6. Remove the wire that is connected to the “I” terminal. Check for a rise in voltage on the “B+” terminal. Expected Result: The voltage rises.
509 Testing and Adjusting Section
Results:
T8a- Alternator Overcharging - Test
• YES - The voltage rises. There is a short
This test is for alternators with an “IG”, “S”, or other sense terminal.
in the wiring to the terminal. Repair the wiring or replace the wiring. Go to “Initial Troubleshooting Procedure” and retest the system.
• NOT OK - The voltage output does not rise. If the alternator has a wire connected to the “I” terminal, go to Step 6. Otherwise, disassemble and repair the alternator, or replace the alternator.
T7 Identifying Source Of Current Draw - Test 1. Make sure that every electrical component is turned OFF. Make sure that the key switch is turned OFF. Make sure that the dome lights are OFF. 2. Clamp a 9U-5795 Current Probe or 8T-0900 Ammeter around the main ground cable. Clamp the tool with the positive side away from the battery. Reset the probe (zero) before clamping the probe around the wire. Use the current probe if the draw is above approximately 2 amperes. Use the Ammeter if the draw is below approximately 2 amperes. 3. Monitor the current and remove fuses and breakers one at a time. Check the current after each fuse (breaker) is removed. After removing a fuse (breaker) and observing the current, reinstall the fuse (breaker). Start with the main fuses (circuit breakers) first, and proceed to smaller circuits. 4. If a removal of a fuse causes the current to drop, then the problem is in that circuit. a. Check if any components on the circuit are ON. b. If everything is OFF, disconnect electrical components on that circuit one at a time and monitor current. c. After all of the components in that circuit have been disconnected, check the current. If the problem still exists then check the wiring for corrosion or shorts to ground. Note: The standard acceptable current draw is 50 milliamperes. A current draw above 50 milliamperes usually indicates a problem. However, some large machines with multiple electronic control modules have a higher acceptable limit. Contact a Caterpillar dealer for more information.
1. Clean the connection and tighten the connection to the wiring terminal on the alternator. 2. Verify that the alternator B+ terminal nut is tight and verify that the wire has a good connection to the “B+” terminal. 3. Many Caterpillar machines are equipped with a connector for the 6V-2150 Starting/Charging Analyzer. Use of this analyzer replaces the testing below through Step 8. Therefore, if the testing is good, go to Step 9. If the analyzer finds a problem, correct the problem and retest the system. Go to “Initial Troubleshooting Procedure”. 4. Start the engine and set the throttle to at least 75 percent. Turn ON all electrical accessories for all test steps below. Allow the engine to run for at least 3 minutes before continuing to Step 5. The following table will assist in making calculations during this test. Table 36
Test Step 5 6 5 minus 6 =
Voltage Reading
Voltage should be below this for 12 volt system
Voltage should be below this for 24 volt system
1.0 volt
2.0 volts
0.5 volt
1.0 volt
7 8 7 minus 8 =
5. Measure the voltage between the alternator B+ terminal and the alternator case ground. 6. Measure the voltage across the battery. Put the red lead on the positive battery terminal, and put the black lead on the negative battery terminal. Step 6 should be completed as quickly as possible after Step 5. Expected Result: On 12 volt systems, the voltage is within one volt of the voltage recorded in Step 5. On 24 volt systems, the voltage is within 2 volts. Results:
• YES - If the voltage in Step 5 is not more than 1 volt for 12 volt systems (2 volts for 24 volt systems) higher than the voltage in Step 6, this step is complete and the related wiring is correct at this time. Go to Step 9.
510 Testing and Adjusting Section
• NO - If the voltage in Step 5 is more than 1
volt for 12 volt systems (2 volts for 24 volt systems) higher than the voltage in Step 6, there is high circuit resistance: corrosion, loose connections, and damaged wiring. Go to Step 7.
7. Check the voltage between the machine frame and the alternator B+ terminal. Record the voltage. 8. Check the voltage between the machine frame and the positive battery post. Step 8 should be completed as quickly as possible after Step 7. Expected Result: The voltage difference between Step 7 and Step 8 does not exceed 1 volt on 24 volt systems or 0.5 volts on 12 volt systems.
Note: Denso G3B, K3A, and L3A Alternators Only: Insert a 7X-1710 Multimeter Probe Group into the rear of the middle wire in the connector. See figure 381. Insert the probe (spoon lead) between the black seal that surrounds the wire and the outer shell of the connector. Do not insert the probe between the wire insulation and the black seal. This terminal (“IG”) is the terminal for excitation. 10. Measure the voltage between the sense terminal and the case of the alternator. Expected Result: The voltage at the sense terminal is above the specification. Results:
• YES - The voltage is over specification. The alternator is faulty or the regulator is faulty. Replace the alternator or repair the alternator.
Results:
• YES - The voltage difference does not exceed the tolerance. The charging circuit is good. Go to Step 9.
• NO - The voltage is below that found in the
initial tests (B+ to alternator case). The sense circuit in the machine has high resistance. Correct the problem and retest the system . Go to “Initial Troubleshooting Procedure”.
• NO - The voltage difference exceeds the tolerance. There is high resistance in the charging circuit: loose cables, corroded cables, damaged cables, faulty circuit breaker, and faulty main relay. Correct the problem. Go to “Initial Troubleshooting Procedure” and retest the system. 9. Start the engine and set the throttle to at least 75 percent. Turn OFF all of the accessories.
T8b - Alternator Overcharging Test (Continued) This test is for alternators without an “IG”, “S”, or other sense terminal. 1. Clean and tighten the connection to the wiring terminal on the alternator. 2. Verify that the alternator B+ terminal nut is tight and verify that the wire has a good connection to the B+ terminal. 3. Many Caterpillar machines are equipped with a connector for the 6V-2150 Starting/Charging Analyzer. Use of this analyzer replaces the testing below up to Step 8. If the testing is good, go to Step 9. If the analyzer finds a problem, correct the problem and retest the system. Go to “Initial Troubleshooting Procedure”. 4. Run the engine at 75 percent. Turn ON all electrical accessories for all test steps below. Allow the engine to run for at least 3 minutes before continuing to Step 5. The following table shows how the measurements taken during this test will be used.
Illustration 381 Special Wire Probe Technique For Denso Alternators
g00496660
511 Testing and Adjusting Section
• NO - The voltage difference exceeds the
Table 37
Test Step 5 6 5 minus 6 =
Voltage Reading
Voltage should be below this for 12 volt system
Voltage should be below this for 24 volt system
1.0 volt
2.0 volts
Alternator Specifications
7 8 7 minus 8 =
tolerance. There is high resistance in the charging circuit: loose cables, corroded cables, damaged cables, faulty circuit breaker, and faulty main relay. Correct the problem. Go to “Initial Troubleshooting Procedure” and retest the system.
Table 38
0.5 volt
1.0 volt
Alternator Specifications Peak Current Rating (Amps)
Minimum Peak Current (Amps)
8C-5535
32
28
7N-4784, OR-5201
40
36
6T-1396, 7T-2096, 8C-5908, OR-3654
51
46
55
49
Results:
9W-2648, 9W-2949, 8T-9700, 105-2811(IG), OR-4327(IG), 105-2812(IG), OR-9273(IG), 34-3268, 68-4139, 3E-7295(D+), 7T-2876(D+), 100-8223
• YES - If the voltage in Step 5 is not more than
7G-7889
60
54
8C-5510(I), OR5200
61
55
8N-2268
75
68
3E-7892, OR-3616
85
77
105-2813(IG), OR-9274(IG), 105-2814(IG), OR-4328(IG), 149-2064(REG), OR-9410(REG), 9X-0341(D+)
90
81
8C-6163, OR-1699, 107-2519
105
95
9X-6796, 9X-9096, 121-4134, 121-4136, OR-3527
115
104
3E-8827, 121-4135, 117-1379(I)
130
117
152-8746
135
122
125-9597, OR-8332
145
131
2P-1204, 3Y-8200
19
17
2Y-8310
21
19
6T-1395, 7T-2095, OR-3653
33
30
6N-9294, OR-5217, OR-3482
35
32
Results:
5N-5692, OR-2698
45
41
• YES - The voltage difference does not exceed
5S-9088, 100-5047, 112-5041, OR-5206, OR-3667, OR-3668
50
45
109-2362, 9W-3043 , OR-3652(D+), 112-8032
55
50
5. Measure the voltage between the alternator B+ terminal and the alternator case ground. 6. Measure the voltage across the battery. Put the red lead on the positive battery terminal, and put the black lead on the negative battery terminal. Step 6 should be comleted as quickly as possible after Step 5. Expected Result: On 12 volt systems, the voltage is within one volt of the voltage recorded in Step 5. On 24 volt systems, the voltage is within 2 volts.
1 volt for 12 volt systems (2 volts for 24 volt systems) higher than the voltage in Step 6, this step is complete and the related wiring is correct at this time. Go to Step 9.
• NO - If the voltage in Step 5 is more than 1 volt for 12 volt systems (2 volts for 24 volt systems) higher than the voltage in Step 6, there is high circuit resistance: corrosion, loose connections, and damaged wiring. Go to Step 7. 7. Check the voltage between the machine frame and the alternator B+ terminal. Record the voltage. 8. Check the voltage between the machine frame and the positive battery post. Step 8 should be completed as quickly as possible after Step 7. Expected Result: The voltage difference between Step 7 and Step 8 does not exceed 1 volt on 24 volt systems or 0.5 volts on 12 volt systems.
the tolerance. The charging circuit is good. The regulator is faulty or the alternator is faulty. Replace the defective component, and retest the system.
12 Volt Alternators
24 Volt Alternators
(continued)
512 Testing and Adjusting Section
(Table 38, contd)
i00995530
Alternator Specifications Peak Current Rating (Amps)
Minimum Peak Current (Amps)
3E-7772(IG), OR-9437(IG), 105-3132(IG), 4N-3986, OR-5203
60
54
155-7434, 132-2156(I), 107-7977(I), OR-8279(I)
70
63
107-7976, 114-2401, OR-8997, 3E-7577, OR-3615
75
68
9X-7803, OR-3749, 122-6657100
100
90
Pulse Width Modulated (PWM) Sensor - Test SMCS Code: 7601-038-NS
Identification of Sensor Wire and Contacts
Parts-Service Only Discontinued 12 Volt Alternators 6T-1193
18
16
7N-6118, 6N-5460, 4N-4540
40
36
6T-1195
42
38
7X-1340
45
41
9G-6079, 6T-1194
63
57
Parts-Service Only Discontinued 24 Volt Alternators 9G-6081, 6T-1196
40
36
D+ - Diode trio output. Alternator requires external excitation. REG - Regulator Terminal. Alternator requires external excitation. I - Ignition Terminal. Alternator can be externally excited through this terminal. IG - Ignition Terminal. System voltage must be supplied to this terminal to turn on the alternator. Some of these alternators use the IG terminal as a sense terminal.
Illustration 382
g00315944
Typical Schematic Symbol of a Pulse Width Modulated Sensor
Note: In addition to the “Pulse Width Modulated (PWM) Sensor - Test”, the VIMS diagnostics are helpful in troubleshooting sensors. When you are testing a sensor, it is necessary to identify the connector contacts and the harness wires. The Electrical System Schematic shows the numbers of the connector contacts which correspond to the wire numbers. See the Electrical System Schematic in the Service Manual for the machine. On all machines, the wire numbers and connector contacts are identified by these general rules:
• The +V wire number (power) is between 100 and 199. The +V contact corresponds to this wire number.
• The ground wire number is between 200 and 299. The ground contact corresponds to this wire number.
• The number of the signal wire is between 400 and 499. The signal contact corresponds to this wire number. For an example, see Illustration 382:
• The +V wire is wire number 113. • The +V contact is contact A.
513 Testing and Adjusting Section
• The ground wire is wire number 201.
Table 40
Specifications for the Sensor Signal Voltage Test.(1)
• The ground contact is contact B.
Temperature Sensor
• The signal wire is wire number 443.
Temperature
• The signal contact is contact C.
Procedure Table 39
Tools Needed 9U-7330
Multimeter
1
7X-1710
Multimeter Probe
1
1. TROUBLESHOOT THE SENSORS. Troubleshoot sensor circuits in the following order. a. Perform the “Sensor Signal Voltage -Tests”. This test checks the sensor voltages at the sensor, when all the circuits are connected. DISCONNECT NOTHING. Troubleshoot “as is” before disconnecting any circuits. Disconnecting the sensor from the harness before measuring the voltage may alter a poor connection. This will make the proof of cause difficult or impossible.
Signal Voltage(2)
Duty Cycle(2)
−40 to 20C (−40 to −4F)
1.0 to 1.1 DCV
10 to 11%
−20 to 0C (−4 to 32F)
1.1 to 1.4 DCV
11 to 15%
0 to 20C (32 to 68F)
1.4 to 1.9 DCV
15 to 23%
20 to 40C (68 to 104F)
1.9 to 2.9 DCV
23 to 37%
40 to 60C (104 to 140F)
2.9 to 4.0 DCV
37 to 55%
60 to 80C (140 to 176F)
4.0 to 5.1 DCV
55 to 71%
80 to 100C (176 to 212F)
5.1 to 5.8 DCV
71 to 82%
100 to 120C (212 to 248F)
5.8 to 6.3 DCV
82 to 89%
120 to 140C (248 to 275F)
6.3 to 6.5 DCV
89 to 93%
(1) (2)
b. Perform the Sensor Dynamic Test, if necessary. c. The VIMS interface module is the cause of the fault if the sensor and the harness are correct. Replace the VIMS interface module. Refer to the Testing and Adjusting, “Module Replace”.
These specifications may be used in Step 2 of the following procedure. The voltages that are listed here are guidelines for troubleshooting. The values are not considered to be exact. The tolerance is ±10%. The tolerance depends on the condition of the harness. The voltage output should change smoothly with the change in temperature.
Table 41
Specifications for Sensor Voltage Test(1) Temperature Sensor (Exhaust) Temperature
Signal Voltage(2)
Duty Cycle (2)
50 to 200 C (122 to 392F)
1.4 to 2.0 DCV
22 to 33%
200 to 400 C (392 to 725F)
2.0 to 2.8 DCV
35 to 50%
Sensor Signal Voltage - Test
400 to 600 C (725 to 1112F)
2.8 to 3.7 DCV
50 to 67%
SMCS Code: 7601-038-NS
600 to 850 C (1112 to 1562F)
3.7 to 4.8 DCV
67 to 88%
To identify the sensor wires and connector contacts, see “Identification of Sensor Wire and Contacts”. Otherwise, proceed to “Sensor Signal Voltage -Test”. i01382202
Note: This procedure is performed while the VIMS interface module is connected to the sensor.
(1) (2)
These specifications may be used with Step 2 of the following procedure. The voltages that are listed here are guidelines for troubleshooting. The values are not considered to be exact. The tolerance is ±10%. The tolerance depends on the condition of the harness. The voltage output should change smoothly with the change in temperature.
514 Testing and Adjusting Section
Table 42
Specifications for Sensor Voltage Test(1) Pressure Sensor (AIR) Air Pressure
Signal Voltage(2)
Duty Cycle(2)
0 to 200 kPa (0 to 29 psi)
0.9 to 1.8 DCV
10 to 27%
200 to 400 kPa (29 to 58 psi)
1.8 to 2.8 DCV
27 to 45%
400 to 600 kPa (58 to 88 psi)
2.8 to 3.7 DCV
45to 62%
600 to 800 kPa (88 to 115 psi)
3.7 to 4.6 DCV
62 to 80%
800 to 1000 kPa (115 to 145 psi)
4.6 to 5.5 DCV
80to 97%
(1) (2)
These specifications may be used with Step 2 of the following procedure. The voltages that are listed here are guidelines for troubleshooting. The values are not considered to be exact. The tolerance is ±10%. The tolerance depends on the condition of the harness. The voltage output should change smoothly with the change in air pressure.
Table 43
Specifications for the Sensor Voltage Test
(1)
Ultrasonic Fuel Level Sensor Depth of Fuel (Deep Tank)(2)
Depth of Fuel(2)(Shallow Tank)
Signal (3) Voltage
Duty Cycle
0 to 500 mm (0 to 19.7 inch)
0 to 250 mm (0 to 9.9 inch)
0.6 to 1.9 DCV
6 to 25%
500 to 1000 mm (19.7 to 39.4 inch)
250 to 500 mm (9.9 to 19.7 inch)
1.9 to 3.2 DCV
25 to 45%
1000 to 1500 mm (39.4 to 59.1 inch)
500 to 750 mm (19.7 to 29.6 inch)
3.2 to 4.5 DCV
45 to 64%
1500 to 2000 mm (59.1 to 78.8 inch)
750 to 1000 mm (29.6 to 39.4 inch)
4.5 to 5.7 DCV
64 to 84%
(1) (2) (3)
These specifications may be used with Step 2 of the following procedure. Connector contact 3 is used to program the sensor for the proper depth of the tank . Contact 3 is grounded for shallow tanks and open for deep tanks. See the Electrical System Schematic for the machine that is being serviced. The voltages that are listed here are guidelines for troubleshooting. The values are not considered to be exact. The tolerance is ±10%. The tolerance depends on the condition of the harness. The voltage output should change smoothly as the signal changes.
Note: The actual fuel level may not agree with the sensor. The fuel level reading depends on the location of the sensor in the fuel tank.
Table 44
Specifications for Sensor Voltage Test Fuel Level Sensor (Resistive Type) Machine
Fuel Level
Sensor Resistance
Buffer Duty Cycle
994
Empty
0-5
994
Full
90-100
992G
Empty
90-100
28-21%
992G
Full
0-5
94-90%
94-90% 28-21%
515 Testing and Adjusting Section
Procedure Locate the suspect sensor. Identify the sensor wires and connector contacts. See Testing and Adjusting, “Pulse Width Modulated (PWM) Sensor - Test”. DO NOT DISCONNECT ANY HARNESS CONNECTORS AT THIS TIME. Turn the key start switch to the ON position. DO NOT START THE ENGINE. Note: Some sensors are powered by the VIMS interface modules and use 8 volts and other sensors are powered from the battery and use 24 volts. Refer to the Electrical System Schematic in order to determine the voltage that is required for the sensor that is being checked. 1. CHECK THE SENSOR POWER. a. At the sensor connector, identify the +V and ground circuits. b. Insert the 7X-1710 Multimeter Probe leads into the back of the sensor connector along side of the +V and ground circuit wires. c. Measure the system voltage.
Expected Result: The signal voltage is between approximately 1.0 DCV and 8.0 DCV. Results:
• VOLTAGE is FROM 1.0 DCV TO 8.0 DCV. The signal voltage at the sensor is correct. Proceed to Step 3.
• VOLTAGE is GREATER THAN 9.0 VDC.
The voltage is NOT between approximately 1.0 DCV and 8.0 DCV. The signal voltage is not correct. Proceed to Step 4.
• VOLTAGE is LESS THAN 1.0 DCV. The voltage is less than 1.0 DCV. Proceed to Step 5. 3. CHECK THE SIGNAL CIRCUIT OF THE MACHINE HARNESS. a. At the machine harness connector for the main display module, identify the signal and ground circuits. DO NOT DISCONNECT THE HARNESS CONNECTOR.
Expected Result: The voltage is between 7.5 DCV and 8.5 DCV or the voltage is between 24 DCV and 29.5 DCV.
b. Insert the 7X-1710 Multimeter Probe leads into the back of the machine harness connector along side of the signal and ground circuit wires.
Results:
c. Measure the signal voltage.
• OK - Voltage is between 7.5 DCV and 8.5
d. Compare this measurement with the voltage that was measured in the previous test “CHECK THE SIGNAL VOLTAGE”.
DCV or the voltage is between 24 DCV and 29.5 DCV. The system voltage is present. Proceed to Step 2.
• NOT OK - Voltage is not between 7.5 DCV and 8.5 DCV or the voltage is not between 24 DCV and 29.5 DCV. There is an open circuit. Trace the +V and ground circuits in the machine harness. Repair the machine harness or replace the machine harness. STOP. 2. CHECK THE SIGNAL VOLTAGE. a. At the sensor connector, identify the signal and ground circuits. b. Insert the 7X-1710 Multimeter Probe leads into the back of the sensor connector along side of the signal and ground circuit wires. c. Measure the signal voltage and record the signal voltage. Note: If more precise specifications of the signal voltage are necessary, use the specifications that are listed in the tables of “Specifications for Sensor Voltage Test”.
Expected Result: The signal voltage is equal to the voltage that was recorded in Step 2.a. Results:
• OK - Signal voltage is equal to the voltage
that was recorded in Step 2.a. The VIMS interface module is receiving a valid signal voltage. If the problem still persists, further testing is required. Proceed to Step 6.
• NOT OK - Signal voltage is NOT equal
to the voltage that was recorded in Step 2.a. The machine harness has an open in the signal or ground circuits. Repair the machine harness or replace the machine harness. STOP.
4. CHECK THE MACHINE HARNESS. a. Signal voltage is greater than 7.0 DCV. The probable cause is a short to system voltage (+battery) in the machine harness or the sensor has failed.
516 Testing and Adjusting Section
b. Disconnect the machine harness connector for the sensor. c. At the machine harness connector for the sensor, measure the voltage between the signal contact and the ground contact. Expected Result: The voltage is greater than 9.0 DCV.
i01382179
Sensor Dynamic Test SMCS Code: 7601-038-NS Note: The VIMS module is disconnected. Table 45
Specifications for the Sensor Signal Voltage Test.(1)
Results:
Temperature Sensor
• YES - Voltage is greater than 9.0 DCV. The
Signal Voltage(2)
Duty Cycle(2)(3)
−40 to 20C (−40 to −4F)
1.0 to 1.1 DCV
10 to 11%
−20 to 0C (−4 to 32F)
1.1 to 1.4 DCV
11 to 15%
0 to 20C (32 to 68F)
1.4 to 1.9 DCV
15 to 23%
20 to 40 C (68 to 104F)
1.9 to 2.9 DCV
23 to 37%
40 to 60C (104 to 140F)
2.9 to 4.0 DCV
37 to 55%
60 to 80C (140 to 176F)
4.0 to 5.1 DCV
55 to 71%
80 to 100C (176 to 212F)
5.1 to 5.8 DCV
71 to 82%
a. Disconnect the machine harness connector for the sensor.
100 to 120C (212 to 248F)
5.8 to 6.3 DCV
82 to 89%
b. Measure the voltage between the signal contact and the ground contact.
120 to 140C (248 to 275F)
6.3 to 6.5 DCV
89 to 93%
voltage is not correct. The signal circuit of the machine harness is shorted to the +battery. Repair the machine harness or replace the machine harness. If the machine harness is not the cause, replace the VIMS module. STOP.
• NO - Voltage is 7.0 ± 1.0 DCV. The voltage is correct for a good harness. The sensor has failed. Replace the sensor. STOP. 5. CHECK THE MACHINE HARNESS. The signal voltage is less than 1.0 DCV. The probable cause is a short to ground in the machine harness or the sensor has failed.
Temperature
(1)
Expected Result: The voltage that is measured is less than 6.0 ± 0.5 DCV.
(2)
Results:
• YES - Voltage is less than 1.0 DCV. The voltage is not correct. The signal circuit of the machine harness is shorted to ground. Repair the machine harness or replace the machine harness. If the machine harness is not the cause, replace the VIMS module. STOP.
• NO - Voltage is 7.0 DCV. The voltage is correct for a good harness and the main display module. The sensor has failed. Replace the sensor. STOP. 6. PERFORM THE SENSOR DYNAMIC TEST.
(3)
These specifications may be used with Step 2 of the following procedure. The voltages that are listed here are guidelines for troubleshooting. The values are not considered to be exact. The tolerance is ±10%. The tolerance depends on the condition of the harness. The voltage output should change smoothly with the change in temperature. Frequency of the 100-3055 Sensor is 5 kHz.
517 Testing and Adjusting Section
Table 46
Specifications for Sensor Voltage Test
(1)
Exhaust Temperature Sensor Temperature
Signal Voltage(2)
Duty Cycle (2)(3)
50 to 200 C (122 to 392F)
1.4 to 2.0 DCV
22 to 33%
200 to 400 C (392 to 725F)
2.0 to 2.8 DCV
35 to 50%
400 to 600 C (725 to 1112F)
2.8 to 3.7 DCV
50 to 67%
600 to 850 C (1112 to 1562F)
3.7 to 4.8 DCV
67 to 88%
(1) (2)
(3)
These specifications may be used with Step 2 of the following procedure. The voltages that are listed here are guidelines for troubleshooting. The values are not considered to be exact. The tolerance is ±10%. The tolerance depends on the condition of the harness. The voltage output should change smoothly with the change in temperature. Frequency of the 3E-7826 Sensor is 500 Hz.
Table 47
Specifications for Sensor Voltage Test
(1)
Pressure Sensor (Air) Air Pressure
Signal Voltage(2)
Duty Cycle(2)(3)
0 to 200 kPa (0 to 29 psi)
0.9 to 1.8 DCV
10 to 27%
200 to 400 kPa (29 to 58 psi)
1.8 to 2.8 DCV
27 to 45%
400 to 600 kPa (58 to 88 psi)
2.8 to 3.7 DCV
45 to 62%
600 to 800 kPa (88 to 115 psi)
3.7 to 4.6 DCV
62 to 80%
800 to 1000 kPa (115 to 145 psi)
4.6 to 5.5 DCV
80 to 100%
(1) (2)
(3)
These specifications may be used with Step 2 of the following procedure. The voltages that are listed here are guidelines for troubleshooting. The values are not considered to be exact. The tolerance is ±10%. The tolerance depends on the condition of the harness. The voltage output should change smoothly with the change in air pressure. Frequency of the 100-4311 Sensor is 5 kHz.
518 Testing and Adjusting Section
Table 48
Specifications for the Sensor Voltage Test
(1)
Ultrasonic Fuel Level Sensor Depth of Fuel (Deep Tank)(2)
Depth of Fuel (2)(Shallow Tank)
Signal (3) Voltage
Duty Cycle(3)(4)
0 to 500 mm (0 to 19.7 inch)
0 to 250 mm (0 to 9.9 inch)
0.6 to 1.9 DCV
6 to 25%
500 to 1000 mm (19.7 to 39.4 inch)
250 to 500 mm (9.9 to 19.7 inch)
1.9 to 3.2 DCV
25 to 45%
1000 to 1500 mm (39.4 to 59.1 inch)
500 to 750 mm (19.7 to 29.6 inch)
3.2 to 4.5 DCV
45 to 64%
1500 to 2000 mm (59.1 to 78.8 inch)
750 to 1000 mm (29.6 to 39.4 inch)
4.5 to 5.7 DCV
64 to 84%
(1) (2) (3) (4)
These specifications may be used with Step 2 of the following procedure. Connector contact 3 is used to program the sensor for the proper depth of the tank . Contact 3 is grounded for shallow tanks and open for deep tanks. See the Electrical System Schematic for the machine that is being serviced. The voltages that are listed here are guidelines for troubleshooting. The values are not considered to be exact. The tolerance is ±10%. The tolerance depends on the condition of the harness. The voltage output should change smoothly as the signal changes. Frequency of the sensor is 4 kHz.
Note: The actual fuel level may not agree with the sensor. The fuel level reading depends on the location of the sensor in the fuel tank.
Procedure
Table 49
• For temperature sensors, the coolant is below
Specifications for the Lift Position Sensor that is used with the Large Wheel Loaders Mechanical Range (MAX) 102 Degrees (1)
Duty Cycle(1) 3 to 97 %
Frequency of the sensor is 600 Hz.
This quick check is used to determine if the sensor is functioning. The accuracy of the sensor is not checked. Perform this test only after successfully completing the Sensor Voltage Test. Use the Electrical System Schematic in the machine Service Manual in order to determine the VIMS connector contact that corresponds to the failed machine condition. Use the correct service tool to remove the signal wire connector contact from the machine harness connector of the VIMS module. Note: The sensors are powered by the VIMS module with the exception of the fuel level sensor. System voltage is the power source of the fuel level sensor. The VIMS module must be connected in order to provide power for the sensors. Two items are checked in this test:
• A sensor signal is present at the VIMS module. • The signal voltage increases with a corresponding increase in the monitored system. The signal voltage decreases with a corresponding decrease in the monitored system.
The required machine conditions are listed here: operating temperature.
• For pressure sensors, the pressure is below operating pressure.
• For fuel level sensors (buffer and sender), the fuel level is low.
1. CHECK THE SIGNAL VOLTAGE. a. Turn the key start switch to theOFFposition. b. Ensure that the sensor is connected to the machine harness. c. Remove the contact of the signal wire from the connector of the VIMS interface module. d. Turn the key start switch to the ON position. DO NOT START THE ENGINE. e. At the machine harness connector for the VIMS module, measure voltage (DCV) between the signal contact and frame ground and record the voltage. Note: If more precise specifications of the signal voltage are necessary, use the specifications that are listed in the tables of “Specifications for Sensor Voltage Test”. Expected Results: The voltage is between 0.9 and 9.6 DCV. Results:
519 Testing and Adjusting Section
• OK - Voltage is between approximately 0.9
DCV and 9.6 DCV. The signal voltage to the VIMS interface module is correct. Proceed to 3.
i00996605
Diode Assembly - Test SMCS Code: 1408-038
• NOT OK - Voltage is NOT between approximately 0.9 DCV and 9.6 DCV. The signal voltage to the VIMS interface module is not correct. The probable cause is a failed sensor. Replace the sensor. STOP. 2. CHANGE THE RELATED CONDITION OF THE MACHINE. a. Increase the temperature, pressure or fuel level of the system that is being tested. An example would be running the engine in order to increase the coolant temperature of the engine. Another example would be operating the implement controls in order to increase the temperature of the hydraulic oil. Proceed to 3. 3. CHECK THE SIGNAL VOLTAGE. a. At the machine harness connector for the VIMS module, measure the voltage (DCV) between the signal contact and frame ground. Expected Results: The voltage is greater than the voltage that was recorded in the “CHECK THE SIGNAL VOLTAGE” test. The voltage increased smoothly. There were no large increases in the voltage. Note: The difference in voltage that is seen between this step and the previous step is dependent on the amount of change that was introduced into the system. Results:
• OK - Voltage is greater and the sensor operates smoothly. The sensor is correct. STOP.
• NOT OK - Voltage is NOT greater. The
probable cause is a failed sensor. Replace the sensor. STOP.
Illustration 383
g00509113
Connector A (Typical Example)
1. Disconnect the diode assembly from the machine harness. 2. Set the 6V-7070 Digital Multimeter on the diode test function. Connect the one meter lead to contact 1 of connector “A”. Connect the second meter lead to contact 2 of connector “A”. The meter should indicate OL or 0.3 to 0.9 DCV. 3. Reverse the meter leads. If the first reading was 0.3 to 0.9 DCV, the second reading should be OL. Replace the diode assembly if the diode assembly does NOT test correctly.
520 Testing and Adjusting Section
i00996791
Position Sensor (Lift Arm) Adjust
6. Put the key start switch in the ON position. Select the parameter for the lift linkage position sensor. Use the VIMS keypad module to enter the number 5-8-4. Then press the gauge key. 7. Carefully rotate position sensor shaft (3) in the counterclockwise direction with a screwdriver until the sensor is at the physical limit.
SMCS Code: 6119-025-PSN
8. Rotate position sensor shaft (3) clockwise with a screwdriver until the message center reads 8 ± 1 degrees. Loosely tighten bolt (4) in position lever (2) in order to hold position sensor shaft (3) in place. NOTICE If the position sensor is extended beyond maximum limits, damage to the sensor will occur. 9. Check the lift linkage position on the message center. When the message center shows 8 ± 1 degrees the adjustment is correct. Repeat STEP 7 if further adjustments are required. When adjustments are complete tighten bolt (4) in position lever (2). Illustration 384
g00540697
Adjusting Rod Ends (A) Dimension. (1) Lift arm bail. (2) Position lever. (3) Position sensor shaft. (4) Nut. (5) Shaft. (6) Locknuts.
1. Put the lift arms in the fully lowered position on flat level ground. Tilt back the bucket completely. Stop the engine.
10. Start the engine and slowly raise the lift arms. Watch the value of the lift linkage position sensor (STEP 6) that is displayed on the message center while the lift arms are rising. The display reading should not be more than 95 degrees. If the value is greater than 95 degrees verify that the machine is on flat ground. Then repeat STEP 7 with a value that is less than 8 ± 1 degrees and a value that is greater than 5.0 degrees.
2. Loosen bolt (4) until postiion sensor shaft (3) is able to move freely within position lever (2). 3. Assemble the adjusting rod to the length of dimension (A) between the pivot centerlines of the rod ends. Refer to illustration 384. The length of the adjusting rod is adjusted by loosening locknuts (6) and turning the rod ends on shaft (5).
i00996814
Speed Sensor (Engine) - Adjust SMCS Code: 1907-025-NS
Table 50
Model
Dimension “A”
994
149 mm (5.9 inch)
994D
149 mm (5.9 inch)
4. Connect the adjusting rod to lift arm bail (1) and position lever (2). 5. Make sure that position lever (2) can rotate freely on position sensor shaft (3).
Illustration 385 994 Engine Output Speed Sensor (1) Speed sensor. (2) Locknut. (A) Air gap.
g00289497
521 Testing and Adjusting Section
1. Remove speed sensor (1). Align a gear tooth directly in the center of the threaded sensor opening. 2. By hand, screw the speed sensor (1) into the hole until the end of the sensor contacts the gear tooth. 3. Set the air gap of the speed sensor to 0.89 mm (0.035 inch). The air gap is set by turning the sensor 180 degrees in the counterclockwise direction. 4. Tighten locknut (2) to 20 ± 5 N·m (15 ± 4 lb ft).
6. When the main module is replaced, the off-board service tool must be used to install the source and the configuration software. For more information, refer to the Testing and Adjusting, “Off Board Service Tool” section. 7. Ensure the correct operation of the VIMS module. i00996899
Battery - Replace SMCS Code: 1401-510-UB Table 51
Note: Do not allow speed sensor (1) to turn as locknut (2) is tightened.
Internal Battery Replacement Hardware Version
i00996822
Module - Replace SMCS Code: 7601-510; 7610-510
V2.0
Every two years(1)
V3.0
Every five years(2)
(1)
Prior to replacement of a VIMS module, ensure that replacement is absolutely necessary. The VIMS module is seldom the cause of a failure. Always check that power is available to the VIMS module. The system voltage should be present at connector contacts 1 and 2 of the machine harness. During operation, the key start switch also supplies system voltage to connector contact 8 of the main module. Note: When possible, record the information that is listed here prior to replacing a VIMS main module:
• Serial number • Unit number • SMH • Odometer (OHT)
Recommended Battery Replacement Interval
(2)
Battery replacement should be performed annually in climates with ambient temperatures in the range of 0 to −40 C (32 to −40 F). Battery replacement should be performed at a 2 to 3 year interval in climates with ambient temperatures of 0 to −40 C (32 to −40 F).
See the preceding table for recommended internal battery replacement interval. In order to ensure that stored information is retained, periodic replacement of the backup battery is essential. When a failed battery is detected the Vital Information Management System displays an operator warning on the message center. The operator warning indicates a need for battery replacement. Note: If the main module is disconnected from the supply voltage during replacement of the V2.0 internal battery, at least 60 seconds must elapse before communications with the service tool (laptop computer) can be established.
• Date and the time
Procedure
Procedure
Note: If the warning is present for B/U BATT LO, DO NOT turn the key start switch to the OFF position. Go directly to STEP 3.
1. Turn the disconnect switch and the key start switch to the OFF position. Disconnect the machine harness from the VIMS module. 2. Ensure that the part number of the control is correct prior to replacement. 3. Install the VIMS module. 4. Connect the machine harness to the VIMS module. 5. Turn the disconnect switch and the key start switches to the ON position.
1. Stop the machine and shut down the engine. The disconnect switch must remain in the ON position. 2. Turn the key start switch or the VIMS service key switch to the ON position. 3. Connect the off-board service tool to the RS-232 port and download all stored information. Failure to download the information may cause the loss of all data.
522 Testing and Adjusting Section
4. The following switches remain in the ON position: disconnect switch and key start switch or the VIMS service key switch. With these switches in the ON position during battery replacement, the date and time of day are less likely to require re programming. 5. Remove the battery from the side of the VIMS main module for V2.0 hardware. For V3.0 hardware, remove the cover that is formed in the shape of an egg on the top of the main module. This battery has four pin shaped contacts on the bottom side. Pry the battery out with a seal ring pick.
i00996948
Cable Connections SMCS Code: 0785
Printer Cable (Payload) for Large Wheel Loader
Note: This opening exposes the inside of the main module to dirt and water. Be sure to keep this area clean. 6. Remove the insulating sleeve from the new V2.0 battery. Install the battery into the holder. The button (+) faces away from the cap. 7. Check the cover O-ring seal. Make sure that the cover O-ring seal is properly placed and that the cover O-ring seal is not damaged. Install the cover and the cover O-ring seal. Tighten the cover securely. 8. The circuit of the real time clock in the main module is powered by this battery. A failure of the battery may result in the loss of the settings for the VIMS date/time clock. Battery replacement may also result in the loss of the settings of the VIMS date/time clock . Power up after replacing the battery may cause the settings of the VIMS date/time clock to the default setting of 01/01/00 00:00:00. Use the off-board service tool to set the VIMS date/time clock , if necessary. Refer to the Testing and Adjusting, “Off Board Service Tool”section. 9. Return the machine to service.
Illustration 386
g00509378
Printer Cable (Payload ) for Large Wheel Loader
The Large Wheel Loaders have a RS-232 port that may be used as a printer port. The configuration software determines whether the RS-232 port will be used as a printer port or configured for a radio telemetry system (broadcast). The port can not be configured for use with both functions simultaneously. Fabricate the cable that is shown in illustration 386. A modified 127-9797 Cable Assembly may also be used. Modify the cable by removing the PC connector and installing a connector that is compatible with the printer.
523 Testing and Adjusting Section
Connections of the Radio Telemetry System (Broadcast)
Illustration 387 Cables for the Radio Telemetry System (broadcast) All connections for Off-highway Trucks are made in the cabinet that is behind the cab. Be sure that all connections are tight.
g00509379
524 Testing and Adjusting Section
Power Connections (OHT)
i01308270
Off-Board Service Tool
+24 DCV The main power connection is on the lower 3T-0376 Magnetic Switch (relay) of the two 3T-0376 Magnetic Switches. The magnetic switch is located in the upper center portion of the cabinet. The output of the magnetic switch (relay) is powered only when the key start switch is in the ON position. This circuit also connects to circuits that are marked with the wire number 112-PU. The other output on this magnetic switch is live when the disconnect switch is closed. This circuit also connects with circuits that are marked with the wire number 109-OR. Provide circuit protection by placing a 10 amp fuse as close as possible to the magnetic switch. A 10 amp circuit breaker should be used when the load on the circuit is between 12 DCV and 24 DCV. Use 16 gauge or larger wire. DO NOT use a fuse or load that is larger than 10 amperes.
Ground Connect to the cab ground post. The cab ground post is located to the right and below the +24 DCV connection.
Data Connections (OHT) A sure-seal connector is located to the right of center near the bottom of the cabinet. There are seven contacts in the connector. A 6V-3000 Sure-Seal Repair Kit can be used to help make connections to the data wiring. Connections are listed in the following table: Table 52
Pin or Socket
Contact No.
Circuit Function/ID
1
Socket
N/A
2
Pin
Ground /201-BK
3
Pin
Receive/876-OR
4
Pin
Transmit/875-BU
5
Socket
N/A
6
Plug
N/A
7
Plug
N/A
Contact Caterpillar for information on the RS-232data that is used with the VIMS.
SMCS Code: 0785
Illustration 388
g00509768
Cable for the Service Tool
The VIMS has extensive off-board capabilities. The information that is stored in the onboard memory can be downloaded. The service tool is used by the service technician to download the on board information. The service technician can choose from two locations to connect the service tool to a machine. There is a RS-232 port in the machine cab and there is a port available ground level on the bumper. If the ground level port is used, it is necessary for the service technician to turn the VIMS service keyswitch to the ON position. The VIMS service keyswitch is located next to the ground level port. The on board information may be downloaded in order to help the service technician identify problems and correct problems. Note: The 127-9797 Cable Assembly can be modified for use with the Truck Payload Measurement System (TPMS). The modified cable can be used at the ground level port of a machine that is equipped with the VIMS. However, the service technician needs to turn the key start switch to the ON position in order to power up the electrical system. This information can be used to create reports as a graph or in a “tabular form”. The reports supply information on a variety of topics. The following topics are included: repair management, repair intervals, modification to the application of the site, operator training, evaluation of the site, and evaluating productivity.
525 Testing and Adjusting Section
The programs that interface with the on board system and the programs that are used to analyze the data from the on board system are listed here: The Caterpillar Vital Information Management System (Vehicle Off-board Bundle), JERD2137 and Annual Subscription, JERD2138. After June 1, 1996 Information System Builder (ISB) is included. This allows the user to configure the payload information on the large wheel loaders and view/print parameter information and limits in a given configuration. Refer to the documentation for ISB for more information. The Caterpillar Vital Information Management System (Vehicle Off-board Bundle), JERD2137 software consists of four programs: Utilities – Allow the user to set up machines in the data base.
• Information System Builder (ISB) V1.1-Up All Caterpillar software programs contain security. The security access limits the use of the program. The security for the VIMS-PC software is maintained by the Caterpillar Common Services software. Each service technician that performs maintenance on a machine that is equipped with the VIMS needs the Caterpillar dealer system administrator to assign a user ID, a password and security access. The security access determines the options and functions that may be accessed. The security access also determines the data that can be modified. The computer hardware that is required to successfully run the VIMS-PC software is listed below:
Communications – Allow the user to view data and download data by communicating with the on board system.
Laptop Computer
Analysis – Allow the user to view reports. The user may create reports in the form of graphs or in a tabular form from downloaded data and historical data.
• 1 “Gbyte” hard drive.
Merge – Allow the user to incorporate downloaded data into historical data.
• IBM-COMPATIBLE 166 MHz processor or better
• CD-ROM • 3.5 inch 1.44 “Mbyte” disk drive. • Mouse
Note: Never attempt to merge more than 99 files.
• Microsoft Windows ’95
Note: The service technician will be primarily interested in the programs of Communications and Analysis.
• RS-232 port with 16550AF UART
This section will only cover the off-board applications that directly relate to the specific needs of the service technician. The functions of VIMS that are associated with management are not covered. Consult the appropriate service information for specific details that concern the application of the software. The various manuals are provided with the VIMS off-board software.
The software that is required for the service tool is listed here:
Note: All documentation on the Vital Information Management System assumes that the user is familiar with the operation of Microsoft Windows 3.1 software. Service personnel that work on machines that are equipped with the VIMS need a working knowledge of the service tool (PC) and the associated off-board software. Caterpillar does not recommend using early versions of the off-board software with Microsoft Windows ’95. Use Microsoft Windows ’95 only with the versions of off-board software that are listed here:
• VIMS-PC software V2.0-Up • Caterpillar Common Services V1.3 or later
• An additional RS-232 port
Software
• Caterpillar Vital Information Management System (Vehicular Off-board Bundle), JERD2137
Note: Caterpillar provides a well trained Technical Support Hot Line for assistance. The Technical Support Hot Line is open Monday through Friday. The hours of operation are from 7:30 AM to 5:30 PM Central Standard Time (CST). Call 1-800-290-1808 within the United States and parts of Canada and 309-494-4151 from all other locations. The Technical Support Hot Line may be contacted via internet E-Mail at:
[email protected]
526 Testing and Adjusting Section
Related Support Material The off-board VIMS-PC software is included in the Vehicular Off-board Bundle (VOB). The VOB includes three off-board software packages that are listed here: Truck Payload Measurement System, the Wheel Loader Payload Management System, and the VIMS-PC Software. The VIMS off-board software includes the items that are listed below:
• Dealer VOB Site License, JERD2137 • Dealer VOB Annual Subscription, JERD2138 • Dealer Common Services (CSS) License and Annual Subscription, JERD2093
• Customer Site License Annual Subscription, JERD2175
Note: The software packages that are listed above are the minimum purchases that are required for the dealer to run the VIMS off-board software. Other support materials are listed here:
• Customer Site License For VOB, JERD2092. The software that is included is listed here: VIMS-PC software, ISB and CSS
• VIMS Getting Started Booklet and Quick Reference, JERD2135
• VIMS User Procedures Manual , JERD2136 • VOB Additional Diskettes and Documentation , JERD2139
• VOB Additional Getting Started Books, JERD2140 • Technical Information Manual (TIM) , SEGV2597, “VIMS Introduction”
• Technical Information Manual (TIM) , SEGV2605, “VIMS Large Hydraulic Excavators”
• Technical Information Manual (TIM) , SEGV2610, “VIMS Off Highway Trucks”
• Systems Operation, RENR2517, “Large Wheel Loader VIMS Payload Users Manual”
• Window Cling Film, SEEU6995, “Keypad Commands for VIMS Off Highway Trucks”
• Window Cling Film, SEEU7071, “Keypad Commands for VIMS Excavators”
• Window Cling Film, SEEU7027, “Keypad Commands for VIMS Large Wheel Loaders”
Connection Procedure for VIMS-PC to VIMS Note: The information that is provided in this section is for the most recent version of VIMS-PC. This information may not match future versions of the program exactly. However, operation of the program should remain similar. 1. The VIMS-PC software is automatically configured for use with the machine after connecting to the machine. This procedure assumes that the following PC settings have been previously configured. a. The parity of Windows communication port protocol is set to “NONE”. Some “PC’s” default to the “XON/XOFF” setting. This can cause problems with the hardware. For additional information on this function, consult the documentation that came with the PC. b. The power management routine that is used by the PC has the “COM port” turned ON. Some computers conserve power by setting the “COM port” to OFF. For additional information on this function, consult the documentation that came with the PC. 2. Once the PC is configured connecting to the machine is relatively simple. a. Connect the 127-9797 Cable Assembly between the machine’s download port and the serial COM port on the PC. Each machine usually has two service ports. One port will be located inside the machine cab and the other port will be located outside of the machine cab. Refer to the Operation And Maintenance Manual for the exact location. b. Turn the key start switch or the VIMS service keyswitch to the ON position if the switch is not already ON. The engine does not need to be running in order to activate the VIMS. The VIMS service keyswitch is mounted near the ground level port on some machines. c. Turn on the PC and start Windows, if necessary. Typing the command “WIN” at the C:\ prompt will start Windows for most PC’s automatically. d. Double click on the “VIMS-PC Communicate” icon. The “VIMS-PC Communicate” icon is located within the “VIMS-PC group”. The “VIMS-PC Communicate” program will automatically perform the actions that are listed here:
527 Testing and Adjusting Section
• The VIMS will select a baud rate that
will allow optimum communication with VIMS-PC. The baud rate is automatically set to the fastest speed that is possible. For most applications, this speed will be 19,200 baud. The highest possible setting is 38,400 baud, only if the PC is capable of the setting.
• VIMS-PC software will check for the
presence of the operating software (source). If no source software is found, an error message will be displayed. Refer to the Testing and Adjusting, “Uploading Source Software and Configuration Software” section for instructions on the uploading of the source software. The connection proceeds, if the source software is present.
• VIMS-PC software will check for the presence of an operating machine configuration. If no configuration is found, an error message is displayed. Refer to the Testing and Adjusting, “Uploading Only a Machine Configuration Software” section for instructions on the uploading of the machine configuration. The connection proceeds, if configuration software is found.
• VIMS-PC software will check the machine
serial number and the equipment number. If the numbers for the machine do not exist in the “VIMS-PC Utilities database”, the user is prompted by the VIMS-PC software to modify the number or the user may accept the number. Generally, this prompt appears only when a specific PC is connected to the VIMS for the first time. When the dialog box that is shown in illustration 389 is displayed the service technician may update the machine serial number and the equipment number or the service technician can press the “OK” key in order to accept the present values. A validation of the machine serial number and equipment number is performed after the service technician presses the “OK” key or the “CANCEL” key. The user is prompted to change the machine serial number and the equipment number when the numbers that have been assigned are not valid according to the software.
• VIMS-PC software will check the time
that is reported by the on board clock. If the time differs by more than the allowable amount that is specified under the “FILE/PREFERENCES” button, the user will be prompted to correct the differences. For additional information on this function, consult the “VIMS-PC User’s Manual” or consult the help program that is contained in the VIMS-PC software.
• VIMS-PC software automatically updates some “decoding files” for the onboard “channel arrangement”. This information affects the downloading of “Dataloggers” and “Snapshots”.
Illustration 389
g00509769
Note: Older VIMS machines may have non-printable characters at the end of the machine serial number and equipment number. The non-printable characters may cause the values that are entered by the user to appear acceptable. However, these values may cause problems later. Generally, when a user is prompted to re-enter the machine serial number and the equipment number, the user may delete the previous text. The user may then re-enter the appropriate values. e. When the user has changed the machine serial number and the equipment number, the VIMS-PC software will then abort communications with the machine. When the VIMS accepts the values that have been entered by the user, the VIMS-PC software will break communication with the onboard system. Proceed to Step 2.d to continue with this procedure.
528 Testing and Adjusting Section
f. If the user has not changed the machine serial number and the equipment number, the sequence of connection for the VIMS-PC software is complete. The “Machine Status” screen will be shown if the user has selected “Display Machine Status on Connect” in the “FILE/PREFERENCE” dialog box. For more information on this option, consult the “VIMS-PC User’s Manual” or the on-line help in the VIMS-PC software.
Uploading the Source Software and the Configuration Software Uploading Into V3.0 Hardware While the service tool is connected to the VIMS main module the category 3 alarms that are associated with invalid software will be silenced. The alarm will remain silenced until the valid software has been loaded into the main module. Once valid software has been loaded, the main module will no longer be in the limited mode. Note: Limited Mode is explained in the Systems Operation, “Limited Mode/Application Mode (V3.0 Hardware)” section of this manual. Service light is on. Display text: “ S:---------- H:3.0 ” “C:---------- ” If there is a valid source or configuration software, the dashes will be replaced with the part number of loaded source or configuration software. Diagnostics that are Associated with the Connection of the Service Tool Diagnostic messages have been added in the main module for problems that are associated with loading of the source and configuration software. The diagnostic messages are displayed on the message center. The text that is shown in the following examples is for the source software, but the configuration software will also display the same messages. Display Text: “S:ERASING H:3.0” – The PC has issued the command that starts the flash program and the flash memory chip is being erased.
“S:PROGRAMMING H:3.0” – The flash memory chip has been erased and the transfer of the data (programming) has started. Error Messages that are associated with onboard software: “S:ERASE ERR1 H:3.0” – The flash memory chip has not been erased. “S:PROGRAM ERR2 H:3.0” – The flash memory chip has not been programmed. “S:FILE ERR3 H:3.0” – The source or configuration software has attempted to load into the wrong location or the incorrect type of binary file was loaded. “S:CHKSUM EER4 H:3.0” – The source software or configuration software has failed the verification of the checksum. “S:PC COMM EER5 H:3.0” – A failure has occurred during the xmodem transfer due to the corruption of multiple packets of data. The failure may also occur because of a time out of communication. S:ABORT EER6 H:3.0 – The PC has aborted operations. S:LO VOLT EER7 H:3.0 – The flash process has failed because the system voltage is below 20 volts and the flash memory chip failed to verify. “S:INVALID EER8” – A pre-9.x configuration was loaded. A VIMS configuration was loaded into a VIDS main module. A different type of VIMS configuration (793 versus 789) was loaded into the main module. Uploading the source software and the configuration software is a common service procedure for a machine that is equipped with the VIMS. This process is accomplished by using VIMS-PC software and the appropriate on board software. For a list of source software and configuration software that is compatible with a given machine, contact the product support of the appropriate Business Unit. The following step-by-step procedure is provided for loading these files: 1. Connect the 127-9797 Cable Assembly between the data communications port of the machine and the serial communications port of the PC. Each machine usually has two service ports. The port is located in the cab of the machine. An additional port is located outside the cab.
529 Testing and Adjusting Section
2. Turn the key start switch or the VIMS service keyswitch to the ON position if the switch is not already in the ON position. The engine does not need to be running in order to activate the VIMS. The VIMS service keyswitch is mounted near the ground level port on some machines. 3. Turn on the PC and start Windows, if necessary. Typing the command WIN at the C:\ prompt will start Windows for most PC automatically. 4. Double click on the “VIMS-PC Communicate” icon. The “VIMS-PC Communicate” icon is located within the “VIMS-PC group”. This starts the initial connection sequence. Refer to the explanation of the connection sequence earlier in this section for more information. 5. The service technician should make a copy of any existing on board software before proceeding. Refer to the Testing and Adjusting, “Copying a Machine’s Configuration” for information regarding this function. Note: Configurations can NOT be mixed and matched within a machine model in all cases. For example, a given configuration for a 793B may not be compatible with any other 793B. For a list of configuration software that is compatible with a given machine, contact the product support of the appropriate Business Unit.
Illustration 390
g00509770
10. The V3.0 main module and all cases of source software will display the messages that are shown here on the VIMS message center module:
6. Select “CONFIGURE/Upload Source Code... ” from the “VIMS-PC Communicate menu”. 7. Select the source software (file) to load and select “OK”. Be sure that the name of the file appears in the “File:” window before selecting “OK”.
Illustration 391
g00509771
11. The following message is then displayed.
8. Select the Configuration software (file) to load and select “OK”. Be sure that the name of the file appears in the “File:” window before selecting “OK”. 9. The starts the loading of the source software. The display that appears on VIMS-PC display is shown here:
Illustration 392
g00509772
12. The pre-V3.0 main module and all cases of source software will display the message that is shown here on the VIMS message center module:
Illustration 393
g00509773
530 Testing and Adjusting Section
13. The VIMS-PC software prompts the user to verify that the on board time is correct. If necessary, the user can adjust the on board time. Setting the time at this point prevents an event from entering the event list with incorrect time stamped information. VIMS-PC software uses the dialog box that is shown here for setting the time:
Illustration 395
g00509775
16. The V3.0 main module and all cases of source software will display the messages that are shown here on the VIMS message center module:
Illustration 394
g00509774
14. The data that is displayed can be changed by deleting the current entry and inputting the desired data. If no change is desired, do not update the fields. The information is confirmed by selecting the “check boxes” and pressing “OK”. Note: Confirm the time entries by selecting the “check boxes” that are located to the left of the fields. Change the time entries by selecting the “check boxes ” that are to the left of the fields. If neither box is checked, the VIMS-PC software will not proceed with the loading of configuration software since the accuracy of the on board clock can not be confirmed. 15. The loading of the configuration software will begin. The VIMS-PC software will display the dialog box that is similar to the one that is shown here:
Illustration 396
g00509776
17. The following message is then displayed.
Illustration 397
g00509777
18. The pre-V3.0 main module and all cases of source software will display the message that is shown here on the VIMS message center module:
Illustration 398
g00509773
531 Testing and Adjusting Section
Note: If the configuration software that was chosen was not compatible with the source software that was loaded, the VIMS-PC software will display the following message: “The Upload Configuration Was Successful”. However, the message center will display the following message for the V3.0 main module:
Illustration 399
g00510503
19. For the V2.0 main module, the message center will continue to display a message that can not be cleared:
Note: Older VIMS machines may have non-printable characters at the end of the machine serial number and equipment number. The non-printable characters may cause the values that are entered by the user to appear acceptable. However, these values may cause problems later. Generally, when a user is prompted to re-enter the machine serial number and the equipment number, the user may delete the previous text. The user may then re-enter the appropriate values. 22. When the user has changed the machine serial number and the equipment number, the VIMS-PC software will then abort communications with the machine. Refer to the Testing and Adjusting, “Connection Procedure for VIMS-PC to VIMS” section for information regarding this function.
Uploading of the Machine Configuration Only In some cases, it may not be necessary to change both the source software and the machine configuration. A few reasons that changing both the source software and the machine configuration are not always necessary are listed here:
Illustration 400
g00509773
Note: In such a case, the configuration software must be loaded again with source software that is compatible. 20. When the configuration software has been loaded, the user is prompted to supply a serial number and the equipment number. The following message will be displayed:
• Adding a new sensor to a machine • Modifying the configuration software for improvements to the Payload system of VIMS equipped Large Wheel Loader.
• Update the machine in order to obtain a new feature and enhancements.
• An initial upload to a machine that does not have a configuration
The following step-by-step procedure is provided in order to load only a machine configuration. The procedure to load the source software is skipped completely. If this procedure fails, perform the procedure that is listed in the Testing and Adjusting, “Uploading Source Software and a Configuration” section of this manual.
Illustration 401
g00509769
21. Update the serial number and the equipment number or press “OK” in order to accept the values. A validation of the machine serial number and equipment number is performed after the service technician presses “OK” or “Cancel”. The user is prompted to change the machine serial number and the equipment number when the numbers are not valid according to the software.
1. Connect the 127-9797 Cable Assembly between the machine’s download port and the serial COM port on the PC. Each machine usually has two service ports. One port will be located inside the machine cab and the other port will be located outside of the machine cab. Refer to the Operation And Maintenance Manual for the exact location. 2. Turn the key start switch or the VIMS service keyswitch to the ON position if the switch is not already ON. The engine does not need to be running in order to activate the VIMS. The VIMS service keyswitch is mounted near the ground level port on some machines.
532 Testing and Adjusting Section
3. Turn on the PC and start Windows, if necessary. Typing the command WIN at the C:\ prompt will start Windows for most PC’s automatically. 4. Double click on the “VIMS-PC Communicate” icon. The “VIMS-PC Communicate” icon is located within the “VIMS-PC group”. The starts the initial connection sequence. Refer to the explanation of the connection sequence earlier in this section for more information. 5. The service technician should make a copy of any existing onboard software before proceeding. Refer to the Testing and Adjusting, “Copying a Machine’s Configuration” for information regarding this function. Note: Configurations can NOT be mixed and matched within a machine model in all cases. For example, a given configuration for a 793B may not be compatible with any other 793B. For a list of configuration software that is compatible with a given machine, contact the product support of the appropriate Business Unit. 6. Select “CONFIGURE/Upload Source Code... ” from the “VIMS-PC Communicate menu”. 7. Select the Configuration software (file) to load and select “OK”. Be sure that the name of the file appears in the “File” window before selecting “OK”. 8. The VIMS-PC software prompts the user to verify that the on board time is correct. If necessary, the user can adjust the on board time. Setting the time at this point prevents an event from entering the event list with incorrect time stamped information. VIMS-PC software uses the dialog box that is shown here for setting the time:
Illustration 402
g00509774
9. The data that is displayed can be changed by deleting the current entry and inputting the desired data. If no change is desired, do not update the fields. The information is confirmed by selecting the “check boxes” and pressing “OK”. Note: Confirm the time entries by selecting the “check boxes” that are located to the left of the fields. Change the time entries by selecting the “check boxes” that are to the left of the fields. If neither box is checked, the VIMS-PC software will not proceed with the loading of configuration software since the accuracy of the onboard clock can not be confirmed. 10. The loading of the configuration software will begin. The VIMS-PC software will display the dialog box that is similar to the one that is shown here:
533 Testing and Adjusting Section
Illustration 406
g00510503
Note: For the V2.0 main module, the message center will continue to display a message that can not be cleared:
Illustration 403
g00509775
11. The V3.0 main module and all cases of source software will display the messages that are shown here on the VIMS message center module:
Illustration 407
g00509773
Note: In such a case, the configuration software must be loaded again with source software that is compatible. 14. When the configuration software has been loaded, the user is prompted to supply a serial number and the equipment number. The following message will be displayed:
Illustration 404
g00509776
12. The following message will then be displayed.
Illustration 405
g00509777
13. For the V2.0 main module, the message center will continue to display a message that can not be cleared: Note: If the configuration software that was chosen was not compatible with the source software that was loaded, the VIMS-PC software will display the following message: “The Upload Configuration Was Successful”. However, the message center will display the following message for the V3.0 main module:
Illustration 408
g00509769
15. Update the serial number and the equipment number or press “OK” in order to accept the values. A validation of the machine serial number and equipment number is performed after the service technician presses “OK” or “Cancel”. The user is prompted to change the machine serial number and the equipment number when the numbers are not valid according to the software.
534 Testing and Adjusting Section
Note: Older VIMS machines may have non-printable characters at the end of the machine serial number and equipment number. The non-printable characters may cause the values that are entered by the user to appear acceptable. However, these values may cause problems later. Generally, when a user is prompted to re-enter the machine serial number and the equipment number, the user may delete the previous text. The user may then re-enter the appropriate values. 16. When the user has changed the machine serial number and the equipment number, the VIMS-PC software will then abort communications with the machine. Refer to the Testing and Adjusting, “Connection Procedure for VIMS-PC to VIMS” section for information regarding this function.
4. Double click on the “VIMS-PC Communicate” icon. The “VIMS-PC Communicate” icon is located within the “VIMS-PC group”. The initial connection sequence begins. Refer to the explanation of the connection sequence earlier in this section for more information. 5. Select the “Configure/Copy Configuration” option from the menu. 6. The downloading of the configuration software begins. A dialog box that is similar to the dialog box that is shown here is displayed by the VIMS-PC software:
Copying A Machine’s Configuration Making a backup copy of a machine configuration can be helpful under the conditions that are listed here:
• The service technician is loading new on board software. This erases the current configuration.
• The service technician is obtaining a copy of the configuration for use with Information System Builder (ISB). Refer to the “ISB User Guide”for more information. Note: Configurations can NOT be mixed and matched within a machine model in all cases. For example, a given configuration for a 793B may not be compatible with any other 793B. For a list of configuration software that is compatible with a given machine, contact the product support of the appropriate Business Unit. Use the steps that are listed here to copy a machine’s configuration: 1. Connect the 127-9797 Cable Assembly between the data communications port of the machine and the serial communications port of the PC. Each machine usually has two service ports. The port is located in the cab of the machine. An additional port is located outside of the cab. 2. Turn the key start switch or the VIMS service keyswitch to the ON position if the switch is not already on. The engine does not need to be running in order to activate the VIMS. The VIMS service keyswitch is mounted near the ground level port on some machines. 3. Turn on the PC and start Windows, if necessary. Typing the command WIN at the C:\ prompt will start Windows for most PC’s automatically.
Illustration 409
g00509778
7. A prompt will appear after the file has been copied. The prompt appears in order to provide a name for the configuration and a storage location for the configuration.
Downloading Data From The Machine Downloading data from the VIMS is the most common operation that is performed with the VIMS-PC Communicate program. This step-by-step procedure assumes that the download preferences have been set for the specific data. For more information on downloading data, see the “VIMS-PC User Manual” or the on-line “help system”. 1. Connect the 127-9797 Cable Assembly between the data communications port of the machine and the serial communications port of the PC. Each machine usually has two service ports. The port is located in the cab of the machine. An additional port is located outside the cab.
535 Testing and Adjusting Section
2. Turn the key start switch or the VIMS service keyswitch to the ON position if the switch is not already on. The engine does not need to be running in order to activate the VIMS. The VIMS service keyswitch is mounted near the ground level port on some machines. 3. Turn on the PC and start Windows, if necessary. Typing the command WIN at the C:\ prompt will start Windows for most PC’s automatically. 4. Select the “DATA/DOWNLOAD DATA” option from the menu. The dialog box that is shown here will appear. The dialog box reflects the current preference settings.
Illustration 411
g00509780
6. “CANCEL” aborts the downloading of the current file. The downloading of the next file in the list begins. The on board data of the skipped downloads will not be reset. “CANCEL ALL” will completely terminate the download. After selecting “CANCEL ALL”, no on board data will be reset. i00997435
Glossary of Terms Illustration 410
g00509779
5. Select the type of download and then select “OK”. The download begins and the dialog box that is shown here will be displayed:
SMCS Code: 7601 Abuse – A machine or a engine is operated in a way that could possibly damage the machine. Also see “Operational Event”. Abnormal – The condition of a machine system is not normal or a signal of a machine system is not within expected limits. An abnormal condition or a abnormal signal means that a problem exists. The operator should be notified with a warning when an abnormal condition exists. Absolute Pressure (PSIA) – The pressure is measured with respect to the atmospheric pressure. Atmospheric pressure is approximately 101 kPa (14.7 psi). See “Gauge Pressure”. Active – This pertains to the status of a fault or to the status of a service code. When the fault is active, the fault is currently present.
536 Testing and Adjusting Section
Active Fault – This is a type of diagnostic maintenance event. The maintenance event identifies a specific failure in an electronic control system. This condition is better described as an active data event or an active maintenance event. See “Event” and “Fault”. Active Sensor – The sensor is externally powered. The sensor must have at least three lead wires. See “Passive Sensor”. Advanced Diesel Engine Management (ADEM) – This electronic engine control is used by Caterpillar gas engines and diesel engines. Air Gap – This is the distance between a gear tooth and the tip of a magnetic pickup. This is also the distance between the rotor and the stator of an alternator or a generator. Alert Indicator – This is the red indicator lamp that is located in the display area. The lamp flashes when a problem exists. The associated warning indicator pictograph or the VIMS message center module identify the abnormal condition of a machine system. This is part of the operator warning system. The indicator typically means that the machine needs attention. However, the machine is able to continue operation. The abnormal condition must be checked in accordance with the machine’s Operation and Maintenance Manual. Alternator – This is a electromechanical device that converts rotating mechanical energy into electrical energy in the form of alternating current. Alternating Current (AC) – This is a flow of current that flows in both directions. This process repeats continuously. The number of such cycles per second is called the frequency. American Wire Gauge (AWG) – This is a measure of the diameter of electrical wire. As the AWG number becomes smaller, the wire diameter becomes larger. Thicker wires handle more current. Ampere “I” – The standard unit of measure for current flow in a circuit. Analog Display – A type of readout that shows information with a needle that sweeps across a dial face. See “Digital Display”. Analog Sensor Power Supply – This is a power source in a Caterpillar electronic control system, that powers analog sensors. The power source is usually rated at 5 DCV.
Analog Signal – This is a signal voltage from an analog sensor. The signal varies smoothly over time. The variations are caused by the changing conditions that are sensed. Analog Sensor – This is a device that generates a DC signal between +0.2 and 4.8 Volts. The sensor signal is proportional to the mechanical system that is being monitored. Analog sensors are most often used with electronic engine controls. See “Digital Sensor”. ARC – See “Automatic Retarder Control”. Atmospheric Pressure Sensor – This is a device that generates a signal that is proportional to atmospheric pressure. This is usually an analog sensor. Automatic Braking System (ABS) – An electronic control system for controlling brakes in slippery underfoot conditions. Automatic Engine Speed Control (AESC) – This is used by excavators in order to reduce the engine speed to about 1300 rpm. This is used in order to save fuel during periods when the hydraulic system is not being used. Automatic Electronic Traction Aid (AETA) – This is an electronic control system for Off Highway Trucks. The system reduces the wheel slip that is caused by poor underfoot conditions. Automatic Retarder Control (ARC) – This is an electronic control that monitors the engine speed. The control automatically applies the retarder on downhill slopes. This is done in order to reduce the possibility of an engine overspeed. Base Sample Rate – This is the fastest available sample rate that is available for configuring a snapshot recorder or other stored data. See “Sample Rate”. Battery – This is a device that stores electrical energy. The typical battery that is used in Caterpillar electrical systems is the 12 Volt lead acid. The batteries are used to start the engine. Each battery is made up of six cells. +Battery – This is the voltage that is found on all wiring harnesses that connect to the positive battery post of the electrical system. The +Battery voltage is also known as the “system voltage”. -Battery – This term is sometimes used to designate the chassis ground or the negative side of the battery. See “Ground”.
537 Testing and Adjusting Section
Battery Backed Up RAM (BBR or BBRam) – This is the Random Access Memory (RAM) that is contained in an electronic control that is protected by an internal battery. The data that is held in the Random Access Memory will be lost if the external power is disconnected without the internal battery. See “Volatile Memory”. Breakout T-Harness – This is a test harness that connects into a machine harness or a engine harness. The breakout T-harness connector cable allows the normal operation of the system. The cable also provides a connector that allows the hookup of test equipment. Broadcast – This is a process that transfers data from a mobile unit (machine or vehicle) to a stationary location. This transfer is usually wireless. See “Telemetry”. This term also describes the Data Link communication between electronic controls. One control automatically sends a message to other controls on the Data Link.
Category 2S Warning – This is a special version of the standard “Category 2 ”warning that includes a CONTINUOUS action alarm. The action alarm is used in order to get the operator’s attention in situations that may be normally overlooked. Category 3 Warning – This is a red alert indicator that flashes in order to warn the operator that a “Category 3” condition exists. The indicator also indicates the failed machine system. The action lamp also flashes in order to indicate a “Category 3 warning”. The action alarm sounds ON and OFF. This warns the operator to safely shut down the machine. There is an exception to this warning. When the parking brake is turned ONand the transmission is in gear. Caterpillar Electronic Technician (ET) – This is a Windows based program, that is used to service Caterpillar products. The software operates on a service tool (personal computer). CDL – See “CAT Data Link”.
Bypass Circuit – This is a circuit that temporarily replaces the existing circuit during a test. Calibration – This is the adjustment of an electrical signal that is related to a mechanical linkage or a component. For example, the small differences that occur between the output of the atmospheric pressure sensor and the boost pressure sensor can be corrected by calibration. CAT Data Link (CDL) – The CAT data link is an electrical connection for communication with onboard devices that use the Data Link (ECM, CMS, VIMS, electronic power train, electronic dashboards and service tools such as Caterpillar Electronic Technician). The CAT data link is also the medium that is used for programming with Caterpillar service tools and for troubleshooting with Caterpillar service tools. Category 1 Warning – This is a red alert indicator that flashes in order to warn the operator that a “Category 1 Warning” condition exists. The indicator also indicates the failed machine system. The “Category 1” condition needs attention by the end of the shift. Category 2 Warning – This is a red alert indicator that flashes in order to warn the operator that a “Category 2” condition exists. The indicator also indicates the failed machine system. The action lamp also flashes in order to indicate “Category 2 warning”. The presence of this category usually indicates that the operator must alter the operation of the machine or that the service technician must perform maintenance. This warning most often relates to a system temperature that is too high.
CD-ROM – See “Compact Disk Read Only Memory”. CE Connector – This is a multipin connector with a hard shell. This connector is made by Deutsch for use in the “Caterpillar Environment” (CE). The contacts of the connector are serviceable. The contacts are interchangeable with the contacts of the VE Connector. The locking ring is a “quick disconnect”. Central Processing Unit (CPU) – This is the hardware that makes up the part of a computer system that actually processes data. Channel – This describes an input to an electronic control. This may also be a frequency that is used for a voice transmission and/or the transmission of data. CID – See “Component Identifier”. Circuit – This is a path for the continuous flow of electrical current. The current will flow from a power source through various conductors and back to the source. Clear – This is the removal of diagnostic information that is stored in the memory of an electronic control. Before clearing a failure, the failure must be on hold and the failure must not be present. This has the same meaning as “Reset”. “Clear” is the preferred term. See “Reset”.
538 Testing and Adjusting Section
Communication Adapter – This is a device that allows the service tool to communicate with an electronic control over the CAT Data Link and the ATA Data Link. “The communication adapter converts the CAT Data Link Communications and the ATA Data Link communications to RS-232and vice versa”. Compact Disc-Read Only Memory (CD-ROM) – This is Read Only Memory. The data is stored on a compact disk. This memory is used by theCaterpillarService Information System and the CaterpillarElectronic Technician. Component Identifier (CID) – This is a diagnostic code that identifies a component or a system that is faulty. This is a four digit diagnostic code. The code is sometimes preceded by a C or CID. Conductor – This is any material that can carry an electrical current. An example of a conductor would be a wire in a wiring harness. Configuration Software – This is the information that is provided for use by the on board system. This information contains specific characteristics of the machine. Connector – This is a device that is usually constructed of two pieces that mate. A connector provides a way to easily disconnect circuits or separate circuits. Connectors are also used for hydraulic circuits or pneumatic circuits. Connector Contact – This is a component of a harness connector that actually makes the electrical connection. Connector contacts can be either pins (male) or sockets (female). Continuity – This is one property of a complete electrical circuit. The correct resistance depends on the circuit that is being tested.
Data Event – This is an abnormal machine or engine condition. These conditions can affect the machine or the engine life. Data Link – This is a circuit that is used for digital communications. The communications occur between electronic controls or the communications occur between electronic controls and a service tool. Deadband – This is a range of input signal values that are specified so the output of a control will remain constant. Decibel (dB) – This is approximately the smallest change in sound volume that can be detected by the “human ear”. Default – This is the initial value of a parameter prior to programming by the customer. This is also the value of the parameter after the system has been reset. Derate – This is the operation of the system at a setting that is below a desired limit. Detected Fault – See “System Event” and “Diagnostic Code”. Diagnostic – This is a process that takes place within an electronic control. The control senses the abnormal machine information. The control displays the abnormal machine information. The control stores the abnormal machine information. This stored information can aid the service technician. Diagnostic Clock – This is a clock within an electronic control. The clock increments time only when +Battery is connected to the control by turning the key start switch to the ON position. This time is known as “diagnostic hours”. This time will always be MORE than engine running time or the true “Service Meter Hours”. See “Diagnostic Hours”.
Control – See “Electronic Control”. Coolant Temperature Sensor (CTS) – This is a device that generates a signal that is proportional to the engine coolant temperature. Cumulatives – This term is sometimes referred to as “Cums”. “Cums” relate to data that is stored on board the machine. This information consists of totals such as total engine revolutions, total distance travelled or total fuel burned. The Cumulatives can be used to schedule maintenance prior to a expected failure. Current – This is the flow of electrons in a circuit. Current is measured in Amperes. The standard symbol for current is the letter “I”.
Diagnostic Code – This is a code that is generated from a diagnostic type of maintenance event. This code relates to an abnormal condition in an electrical system that has been detected by an electronic control. See “Service Code”. Diagnostic Connector – This is a service connector. This is normally a CE connector that contains 20 sockets. The connector brings the test points that are required in testing the starting and charging circuits to a common point. This permits testing with either a multimeter or dedicated 6V-2150 Starting/Charging Analyzer. A Deutsch connector with 12 contacts is used on products that use only one starter. On products that use twin starter applications, a second Deutsch connector with 8 contacts is necessary.
539 Testing and Adjusting Section
Diagnostic Event – This is a type of maintenance event. This event is displayed when an electronic control detects an abnormal condition in the electrical system. Sometimes abnormal conditions in the mechanical system can be detected through the electrical system. Diagnostic Event Code – See “Event” and “Diagnostic Code”. Diagnostic Fault Code – See “Diagnostic Code”. Digital Display – This is a type of readout that shows information in the digital format (“numbers and letters”). See “Analog Display”. Digital Power Supply – This is a power source that powers digital sensors in a control system. This is usually 8 Volts DC power supply. Digital Sensor – This is a device that generates an output signal that oscillates between two different voltage levels. Either the frequency of the signal or the duty cycle of the signal changes in order to carry the sensed information. The digital sensor can be powered by voltages that are between 8 and 28 DCV. The voltage that is used depends on the sensor. See “Analog Sensor”. Digital Voltmeter (DVM) – This is a voltmeter with a digital display. Direct Current (DC) – This is flow of electrons (current) in a closed circuit, that moves in only one direction through a conductor. Disconnect Switch – This is a battery disconnect switch that is connected between the battery’s negative terminal and frame ground (chassis). This switch is most often a keyswitch. This switch may be controlled electronically on some machines. The switch is used in order to disconnect the electrical system from the machine for service. The switch is used when a machine is placed in storage for periods longer than one month. Display – A gauge, indicator, and digital readout. The display is used to view the status of a machine. Disk Operating System (DOS) – This is the software that contains the “internal operating instructions” for the computer. This software also allows the manual input of commands by the “computer operator”. All computer systems have some type of operating system in order to function. Download – The process of moving or transferring stored information from an electronic control to an off-board system such as a service tool. See “Upload”.
Driver – This is the electrical circuit that powers an output of an electronic control. The “driver” turns on lamps, solenoids, relays, etc. Duty Cycle (DC) – This is the ratio of “ON”time to the total time of a digital signal. An example of duty cycle of 50 percent is a signal that is “ON” for one second and “Off” for one second. See “Pulse Width Modulation”. Electrically Erasable Programmable Read Only Memory (EEPROM) – This is a version of EPROM that can be programmed. Sometimes, an electronic control can WRITE to this memory. See “Erasable Programmable Read Only Memory”. Electromagnet – This is a temporary magnet that consists of a coil of wire that is wrapped around an iron core. The assembly becomes a magnet only when a magnetic field is produced by an electric current passing through the coil. Relays work on this principle. Electromagnetic Interference (EMI) – This is the response of an electronic component or system to electromagnetic radiation. The interference usually causes a reduction of performance. Electronic Control Analyzer Programmer (ECAP) – This is “computer based service tool” that is dedicated to programming and diagnosing a variety of electronic controls. The service tool uses the Communications Adapter in order to communicate through the CAT Data Link or the ATA Data Links (SAE J1708/1587). Electronic Control Module (ECM) – This is an electronic control. The control monitors machine systems. The control also outputs commands to drive components. The term was formerly used to specifically describe an electronic engine control. Electromagnetic Pickup – This is a permanent magnet that is wrapped with many turns of small wire that becomes a pickup coil. The pickup coil will generate an electrical pulse whenever a gear tooth passes the tip of the magnet. Because this type of sensor is self-generating, the sensor does not require power. Electronic Programmable Transmission Control II (EPTC II) – This is the second generation of the Electronic Programmable Transmission Control that includes advanced diagnostics. Electronic Unit Injector (EUI) – This is an electro-mechanical fuel injector. The pump, the metering and the injection elements are contained in a single unit. The pump is mechanically actuated and the fuel discharge is electronically controlled.
540 Testing and Adjusting Section
Electrostatic Discharge (ESD) – This is the release of electrical energy that is caused by the buildup of static between two components. Engine Speed/Timing Sensor – This is a device that generates a signal that is based on the crankshaft ’s: position, speed, and direction of rotation. Erasable Programmable Read Only Memory (EPROM) – This is a type of computer memory that requires special equipment in order to erase stored data. After the device is programmed and then installed the computer can only READ the software program. See “Electrically Erasable Programmable Read Only Memory”. Error – This is a type of operator warning that results from a system event (VIMS). See “System Event”. ET – See “Caterpillar Electronic Technician”. Event – This is a detected failure. The failure may be caused by a sensor that is out of range or an abnormal condition. Events are separated into two basic categories “DATA events” and “MAINTENANCE events”. A stored event has a fixed duration (“start and end time”). An active event is present at the time of troubleshooting. This event has not yet ended so the event has no duration. The conditions that define this event will determine if the event will be stored and/or displayed. Event Category Indicator (ECI) – This is a designation that shows the “event warning category”. This is a direct indication of the severity of the event. An example of the indicators are listed here: 1, 2, 2S and 3 Event Count – This is the number of occurrences for a “particular event”since the last reset of the on board data. See “Occurrence Count” which is the preferred term. Event Duration – This is the recorded duration of an event that was active. Event Recorder – This is a six minute recording that was first used with the Vital Information Management System. This term is now referred to as a snapshot recorder. See “Snapshot Recorder”.
Failure – This is a malfunction of a component or an incorrect calibration of an electronic control system. This condition can occur during normal operation of the engine or machine and AFTER a period of known correct operation. Failures are detected by an electronic control when a signal does not exist or a signal is outside a valid range. Failures usually cause diagnostic information to be stored. However, not all maintenance information represents a failure. A “failure” is often referred to as a “fault”. This is an incorrect use of the term. See “Fault”, “Event” and “Diagnostic Event”. Failure Mode Identifier (FMI) – This is a portion of the total diagnostic code. The FMI identifies a type of failure that is detected by an electronic control. The FMI is a two digit code. The code describes the failure mode of the component that is described by the Component Identifier. A Component Identifier (CID) is always displayed in conjunction with the FMI. Fault – This is a “pre-existing” defect in a component or a system. The fault is identified at the initial assembly or at the time of purchase. See “Failure”. An example of a fault is a PWM sensor that will not function at the time of initial installation. Flash Files – These Software programs contain instructions on the operation of electronic controls. The programs are transferred from the off-board service tool to any on board electronic control. See “Flash Programming”. Flash Memory – This is “solid state memory” that is used in electronic controls. The memory can be reprogrammed with an off-board service tool through a data link without being removed from the control. Other types of memory can only be programmed outside of the control. Flash Programming – This is a means of “programming, reprogramming or updating (uploading) an electronic control with an off-board service tool instead of replacing the control or personality module”. This process involves the transfer of configuration software from the service tool to the electronic control. Communication is done over a data link. See “Flash Memory” and “Uploading”. Floating – This describes the end of a circuit that is open. The circuit is not connected to any other component. Frame Stress Analyzer – This is an attachment to the Vital Information Management System. The system measures the stress on Off-Highway Truck frames and structures. The measurement relates to the condition of the haul roads. This system is actually a monitor of the condition of the haul road.
541 Testing and Adjusting Section
Fuse – This is a replaceable safety device for an electrical circuit.
Histogram – This is a bar graph that shows the number of occurrences for a given range.
Gage – See “Gauge”.
Hysteresis – This is a measure of the “lag time that occurs between the turn ON and turn OFF values of a switch or a sensor”. An example would be “the EUI oil pressure warning lamp may turn on at 40 psi with decreasing pressure and turn off at 45 psi with increasing pressure”. The hysteresis is 5 psi.
Gauge – This is a type of “display device”. The gauge is usually a circular shape with a indicator needle. The gauge can be a mechanical device or a solid state device. Gauge Pressure (PSIG) – This is the pressure that is measured with respect to atmospheric pressure. See “Absolute Pressure”. Ground (B-) – This is the reference point for the electrical system. On CAT products, ground is the machine frame or the engine. This is the connection point for the negative side of the battery. Grounded Circuit – This is the connection point of any electrical circuit to the machine frame, engine or any part of the machine. This is considered to be the ground reference point for the electrical system. This connection can be either “wanted” or “unwanted” (fault). Ground Level Shutdown – This is a remote means of shutting down the engine without turning off the key switch. This lever can usually be reached from the ground without entering the operator’s station (cab). Hall Effect Speed Sensor (HESS) – This is an active sensor for sensing the speed of slow moving gears or targets. This sensor uses a silicon chip that is called a “Hall Cell” to sense a moving target. Hardware (H/W) – This is the electrical components and electronic components that make up an electrical system. Hard Wired – These permanent connections are made within the wiring harness. These “soldered or crimped” connections are not meant to be altered. Harness – This is an “assembly or bundle” of two or more wires that electrically connect system components. The harness is usually held together by a loom. Harness Code – This refers to the grounded condition or open condition of the harness code inputs. The harness code provides the characteristics of the machine such as engine oil pressure, maximum engine speed, etc. This code is usually “model specific”. The VIMS uses this hard wired code in order to determine the module identifier (MID) that is used for data link communications. Hertz (Hz) – This is a measure of frequency. The units are cycles per second.
I – This is the standard symbol for current. The unit of measure is the Ampere. Icon – This is a symbol that is used instead of words in order to convey a message in any language. Indicator – This is a lamp, gauge, etc. The indicator calls attention to service related conditions regarding a machine. Information System Builder (ISB) – This is a “software tool” that is used to generate configurations for the Vital Information Management System. The software can also modify existing configuration software. The software can also be used in order to view the items that are listed here: parameters and limits of the parameters. The software can also be used to change the “customer values” in the “Large Wheel Loader Payload portion” of the configuration. Input/Output (I/O) – This describes “the electronic circuits within an electronic control that are used for inputs (such as sensors and switches) to the control and the outputs from the control to the external circuits (such as horns, lamps and solenoids)”. Instrument Data Link – This is a four-wire Data Link. The Data Link is used with the display modules that are used in monitoring systems. Interface Module – This is an electronic control that collects information from sensors. The control then sends the results to another electronic control over a data link. The control can also energize output devices such as solenoids. Jumper – This is a piece of wire that is used to make a temporary electrical connection during troubleshooting. Keypad – This is a panel of keys that is similar to the one that is used on a “push button telephone”. The keypad is used as an interface to the on board electrical system. Key Start Switch – This is a “key actuated, automotive type, engine cranking/starting switch including functions such as the ON (relay), CRANK and, sometimes, ACCESSORY”.
542 Testing and Adjusting Section
Kilopascal (kPa) – This is a Metric unit of pressure. The force that is applied to one square meter is one Newton (6.89 kPa (1.000 psi)).
Message Center Module – This is a VIMS module that contains the main display for the operator warning system. This module also displays information for the service technician.
kPa – See “Kilopascal”. Lamp – This is a component of the machine electrical system that emits light by converting electrical energy into light. Large Hydraulic Excavator (LHEX) – This is a machine that is usually propelled on tracks. The machine uses hydraulic power to travel. The machine uses hydraulic power to dig up material with a bucket. LHEX – See “ Large Hydraulic Excavator”. Large Wheel Loader (LWL) – This is a machine on wheels that moves material with a bucket. Light Emitting Diode (LED) – This is a solid state device. The device emits light that is visible to the human eye when an electrical current is passed through the device. the LED is used as a “lamp” in electronic controls because the device is very reliable. Liquid Crystal Display (LCD) – this is a type of solid state display that uses a liquid crystalline material that is sealed between two glass sheets. An electrical signal causes segments of the crystal material to be visible to the eye. Load – This is a device that is connected to the electrical system. The load consumes power or the load dissipates power. Log (Logged) – This is the process of saving information (“stored or recorded”) within an electronic control. See “Store”.
Module – This is a shortened term that is used in place of the electronic control module. See “electronic control module”. Module Identifier (MID) – This is a three digit number that identifies an electronic control. Non-Volatile Memory (NVM) – This is a type of data storage that is not lost after an interruption of power. See “Volatile Memory”. Normal Condition – “Normal” describes the contact position of a switch or relay. This is the condition when the component is not controlled by the application of the conditions that are listed here:force, temperature, pressure, and electricity. This is usually the condition that is found when the component is installed on a machine. This condition can be different when the component has been removed from the machine prior to testing. The Electrical System Schematic shows the condition of the components as the component is installed on a machine. “Normal” also describes the status of a machine system. Occurrence Count – This is the number of occurrences for a “particular event”since the last reset of the on board data. This is the preferred term. See “Event Count”and “Event”. Off-Board – This refers to hardware and software that is located off the machine. The hardware and software can be temporarily connected to the electrical system. Off Highway Truck (OHT) – This is a hauling unit that is used primarily for off road mining applications.
LWL – See “Large Wheel Loader”. MAC-14 – This is a multipurpose electronic control that contains 14 solenoid driver outputs. Machine Event – This is an event that describes an abnormal MACHINE condition in the VIMS. Machine events relate to any system except the events that deal with the electrical system. This term is now referred to as a “Data Event”. See “Event”,“System Event” and “Operational Event”. Machine Service Connector – This is a harness connector for the machine or engine electrical systems that allow the connection of a service tool.
Ohm – This is the standard unit for measuring resistance. This is represented by the letter “R”. On Board – This refers to hardware and software that is located on the machine as part of the electrical system. Open Circuit – This is a condition that exists when an electrical circuit is broken. Parameter – This is a value or a limit that is sometimes programmable. The parameter determines the characteristics or behavior of the engine and/or machine electrical system. See “Protected Parameter”. A parameter can also refer to the “gauge functions” and/or the “monitored channels” of information (Vital Information Management System).
543 Testing and Adjusting Section
Parameter Identifier (PID) – This is a code that is assigned to each packet of digital information. This code is shared between controls over the CAT Data Link and the American Trucking Association (ATA). Data Link. Passive Sensor – This is a sensor that does not require external power in order to operate. See “Active Sensor”. Password – This is a group of numeric characters or alpha-numeric characters that restrict the access to information in a control system. A password is used with the Caterpillar Common Service software in order to restrict access to off-board data. A password is required by Caterpillar electronic service tools in order to change information. Personality Module – This is a small module (hardware) or software that is inserted into the engine control which contains all the instructions (software) and performance maps for the engine within a specific horsepower family. Plug – This is the male end of a connector. The plug makes an electrical connection to a circuit by inserting into a receptacle. Polled Data – This is data that is requested by an electronic control. The data is not brought in automatically. Potentiometer (Pot) – This is a variable resistor that has three terminals. The potentiometer can be easily adjusted by using a knob or a screwdriver. Pounds per square inch (psi) – This is an English unit of pressure measurement. The measurement represents the force that is applied to one square inch. The value is measured in pounds. 6.89 kPa (1 psi) Pressure Sensor – This is a device that generates a signal that is proportional to the pressure that is sensed. Pressure Switch – This is a device that senses pressure. The pressure causes the switch contacts to open or the pressure causes the switch contacts to close. This signal can be used by an electronic control. The signal can also be used with a “signalling device” such as a lamp. Problem – This is an abnormal “machine/engine” condition. Pull up Voltage – This is the voltage that is measured on the input of an electronic control when the input device has been disconnected. (sensor, switch, etc.)
Pulse Width Modulation (PWM) – This is a signal that is made up of a string of pulses that vary in width. The “time on” versus “time off” varies according to the system that is being sensed. The frequency of the signal (“repetition rate”) of the pulses and the height of the signal (“amplitude”) remain constant. Quad Gauge Module – This is an display module that contains four analog gauges. Radio Frequency (RF) – “Frequencies that are between about 150 kHz and infrared (invisible light)”. This range of frequencies are capable of carrying data via radio telemetry systems. Random Access Memory (RAM) – This is a type of computer memory that is usually volatile. This memory is used for the temporary storage of data. Read Only Memory (ROM) – This is a type of computer memory that is programmed during the manufacturing process. The memory cannot be reprogrammed later. See “Erasable Programmable Read Only Memory”. Real Time – This term is used to describe the relationship of information (events) that is based on a true clock “24 hours represents one day”. Real Time Clock (RTC) – This is the method that is used by electronic controls to measure time. The time is based upon true clock hours. See “Diagnostic Clock”, “Service Meter Hours” and “Service Meter Units”. Receptacle – This is a female component of the connector that makes an electrical connection to a circuit. The receptacle will receive a plug assembly. Rectifier – This is an electrical device that converts alternating current into pulsating dc current. Relay – This is an electromechanical device. The relay uses an electromagnet in order to actuate the electrical contacts. The contacts switch large currents with a relatively small amount of control current to the electromagnet. Reset – This is a command that restores memory to a default state. The default state is usually “zero”. This means that all of the data has been removed or erased. See “Clear”. Resistor – This is an electrical component. The resistor is usually made of “resistance wire” or of carbon that has a resistance. Resistance opposes the flow of current.
544 Testing and Adjusting Section
Rheostat – This is a variable resistor. The rheostat is usually a “two terminal version” of the potentiometer. The rheostat is often used in applications that require a higher dissipation of power than a potentiometer. RS-232 Data Link – This is a serial data link that transfers data between electronic devices such as a personal computer and a printer. See “Serial Data Link”. Sample Rate – This is the “rate or frequency that data is captured and/or stored”. This is usually measured in samples per second. Scroll – This is the process of showing all available sets of “event information”within a digital display area. The information is shown one set at a time. A set of “event information” is shown briefly. The display will automatically advance to the next set. After all the sets are shown the process is repeated. Some controls will show the message “END” before the control repeats the process. Sender – This is a device that changes resistance according to a physical condition. The sender then sends a signal to a gauge. A single connection provides the signal and the power. Sensor – This is a device that monitors the physical condition of a machine system. The sensors can monitor the conditions that are listed here: pressure, temperature, flow, and mechanical movement. The sensors convert the condition into an electrical signal that can be understood by an electronic control. Also see “Transducer” and “Sender”. Serial Data Link – This is a type of data link that transfers one bit of data at a time. The data link is most often used to transfer information between computer devices. Service Code – This is a type of maintenance code that describes a condition that has been identified by an electronic control system. The code indicates when “service” is required. This code is stored in the control for the service technician. This term was previously referred to as a “fault code”. This code is now referred to as a “service type” of maintenance event. See “Event” and “Diagnostic Code”. Service Event – This is a type of maintenance event that requires a service technician to perform service. This is usually routine service that is performed on the machine. Examples of “service” are changing the engine oil or transmission filters. See “Event”. Service Hour Meter (SHM) – This is a meter on the machine that totals the “engine running hours”.
Service Meter Hours (SMH) – This meter increments time only when the engine is running. This meter is most often used in order to determine the intervals for servicing the machine. This meter is also used to identify the time of occurrence of an event. This is used as part of the diagnostic process. Also see “Service Meter Units”. Service Program Code (SPC) – These codes are entered into the electrical system by the user through the keypad. The codes initiate the requested operation. Service Tool – This is a tool that is used in order to service Caterpillar machines. This term most often refers to the service equipment that is listed here: Electronic Control Analyzer Programmer (ECAP), Caterpillar Electronic Technician (ET), a digital multimeter, and laptop computer This may also refer to any other dedicated service equipment. Service Tool Connector – See “Machine Service Connector”. Short Circuit – A connection between two points in a circuit that is normally unwanted. Signal – This is the changing voltage that is used to carry information. A signal is typically sent from a sensor to an electronic control. For example, a signal is sent from the transmission output speed sensor (TOS) to the transmission control. Signal Wire – This is the harness wire that carries the signal voltage to the electronic control. The signal is sent by any of the components that are listed here: a sensor, a switch, and any other similar components. Snapshot Recorder – This is a set of machine information that is captured and stored for later use by the service technician. The snapshot is similar to a picture of information. The picture often contains multiple channels over a given time period. This was formerly called an event recorder in the Vital Information Management System. The snapshot recorder that is used by the Vital Information Management System records data for six minutes. “This six minute period contains five minutes of information before the event started and one more minute after.” Software (S/W) – This is a step-by-step instruction that defines the operation of a computer system. This is often called a program.
545 Testing and Adjusting Section
Solenoid – This is a coil assembly that is used to perform some type of mechanical work. The solenoid converts electrical energy into linear mechanical motion with an electrical coil (electromagnet) that produces a magnetic field around an armature (slug or plunger). Solenoid Valve – This is a device that uses a solenoid in order to actuate a valve (“hydraulic or pneumatic”). The valve is used to control the flow or pressure of a liquid or gas. Solid State – This refers to circuits or components that use semiconductors. Examples of solid state devices: transistors, diodes, and integrated circuits (IC). Source Software – This is software that contains detailed operating instruction for the on board system. This is software that is similar to the operating system that is used with a personal computer. Sourcing Driver – This is a type of output of an electronic control. When the driver (output) is on +Battery is supplied to the load. The other connection must be connected to ground. This is sometimes referred to as a high side driver. Speed Burp – This is a sudden unwanted change in engine speed. Speedometer/Tachometer Module – This is a display module that contains the components that are listed here: speedometer for machine ground speed, a tachometer for engine speed, and a display for actual gear. Store – This is the process that is used to record the “event information” in an electronic control. See “Log”. Subsystem – This is a system that is part of a larger system. Supply Voltage – This is a constant voltage that is supplied to a component such as a sensor. The supply voltage provides the electrical power for the operation of the component. The voltage may be generated by the electronic control or supplied from the machine electrical system.
Switch – This is a device with electrical contacts that opens under specified conditions. This is a device with electrical contacts that closes under specified conditions. Switch Input – This is the input to an electronic control that is expecting to be a ground, a open or +Battery. System Clock – “This is a device within a machine or engine electrical system, usually in the monitoring system if present, that synchronizes or forces the clock within each electronic control module on a data link to display the same machine or engine hours. The primary use of this clock is for time stamping of events used for service, maintenance and/or warranty, etc.” System Event – This is an abnormal condition in the ELECTRICAL SYSTEM that has been detected by an electronic control in the Vital Information Management System (VIMS). This term is now called a diagnostic type of “maintenance” event. See “Event” and “Diagnostic Code”. System Voltage – This is the actual voltage that exists between the positive battery post and frame ground. This is sometimes referred to as +Battery voltage. Temperature Sensor – This is a device that generates a signal that is proportional to the change in temperature. Temperature Switch – This is a switch that monitors temperature. The switch sends a signal to an electronic control or signal lamp. Telemetry – This is a wireless method of broadcasting data between two points. This method most often uses a radio. The mobile unit transfers the data to the “data collection area”. Test Probe – This is a device for connecting a service tool in order to test a circuit. The probe provides access to a circuit that is being tested. The probes provide access to the circuit without disconnecting the circuit. Trend – This is a type of graph that shows the changes of a parameter value over time.
Sure-Seal Connector – This is a multi-contact connector that holds pins and sockets in a rubber housing.
Trigger point – This is the starting point in the process of storing a snapshot. This is also the beginning of an event.
Suspension Cylinder Pressure Sensor – This is a device that generates a signal that is proportional to suspension cylinder pressure. This sensor is a digital type. The signal changes frequency as the pressure changes.
Uncommitted Switch Input – This is a switch input for an electronic control. The function varies according to the application. A harness code or programmable software is most often used to determine the function of these inputs.
546 Testing and Adjusting Section
Undetected Fault – This is a system event that cannot be detected by the electronic control. The fault must be detected by the operator or a service technician. Upload – This is the process of transferring a program and/or configuration into an electronic control from an off-board service tool. See “Flash Programming ”and “Download”. +V – This is a constant voltage that is supplied to a component that provides electrical power for the operation of the component. The voltage is provided by an electronic control module. The voltage is always less than +Battery. VIMS-PC – This is a Windows based off-board software. The software is used with a service tool. The service tool communicates with the VIMS through the RS-232data link. Vital Information Display System (VIDS) – This is an electronic monitoring system that is based on the Vital Information Management System. However, the VIDS has reduced features. Vital Information Management System (VIMS) – This is a system that is designed to monitor all on board systems for abnormal conditions. The VIMS controls the operator’s electronic instrument panel via a special data link. Volatile Memory (VM) – This is a type of “data storage” that is lost with a interruption of power. Warning Category – This describes the severity of an operator warning. This is based on one of three categories. Wiring Harness – See “Harness”. Wring Out – Wring out refers to checking a harness for opens, shorts or grounds. Zener Diode – This is a special diode that conducts current in the reverse direction when this reverse voltage becomes higher than a specified value. When this specified value is reached, the voltage across this diode remains constant.
i01382149
System Schematic SMCS Code: 7566 The following schematics are typical VIMS system schematics. Each schematic shows only one module that is a portion of the entire system. Each schematic shows the inputs of each module. On some machines, certain sensors are not part of VIMS. The CAT data link provides sensor information from other electronic controls. For a complete schematic of a particular machine, always see the Electrical System Schematic module in the machine Service Manual.
547 Testing and Adjusting Section
793C VIMS Main Module Schematic
Illustration 412
g00493747
548 Testing and Adjusting Section
793C VIMS Interface Module No. 1
Illustration 413
g00493771
549 Testing and Adjusting Section
793C VIMS Interface Module No. 2
Illustration 414
g00493777
550 Testing and Adjusting Section
785C and 789C VIMS Main Module
Illustration 415
g00496410
551 Testing and Adjusting Section
785C and 789C VIMS Interface Module No. 1
Illustration 416
g00496412
552 Testing and Adjusting Section
785C and 789C VIMS Interface Module No. 2
Illustration 417
g00496414
553 Testing and Adjusting Section
785B, 789B and 793B VIMS Main Module
Illustration 418
g00495917
554 Testing and Adjusting Section
785B, 789B and 793B VIMS Interface Module No. 1
Illustration 419
g00495918
555 Testing and Adjusting Section
785B, 789B and 793B VIMS Interface Module No. 2
Illustration 420
g00495919
556 Testing and Adjusting Section
5130B VIMS Main Module
Illustration 421
g00546550
557 Testing and Adjusting Section
5130B VIMS Interface Module No. 1
Illustration 422
g00546554
558 Testing and Adjusting Section
5130B VIMS Interface Module No. 2
Illustration 423
g00546555
559 Testing and Adjusting Section
5130 and 5230 VIMS Main Module
Illustration 424
g00495941
560 Testing and Adjusting Section
5130 and 5230 VIMS Interface Module No. 1
Illustration 425
g00495942
561 Testing and Adjusting Section
5130 and 5230 VIMS Interface Module No. 2
Illustration 426
g00495943
562 Testing and Adjusting Section
992G VIMS Main Module
Illustration 427
g00495950
563 Testing and Adjusting Section
992G VIMS Interface Module No. 1
Illustration 428
g00495952
564 Testing and Adjusting Section
992G VIMS Interface Module No. 2
Illustration 429
g00495953
565 Testing and Adjusting Section
994 VIMS Main Module
Illustration 430
g00495945
566 Testing and Adjusting Section
994 VIMS Interface Module No. 1
Illustration 431
g00495947
567 Testing and Adjusting Section
994 VIMS Interface Module No. 2
Illustration 432
g00495949
568 Testing and Adjusting Section
994D VIMS Main Module
Illustration 433
g00495253
569 Testing and Adjusting Section
994D VIMS Interface Module No. 1
Illustration 434
g00495296
570 Testing and Adjusting Section
994D VIMS Interface Module No. 2
Illustration 435
g00495297
571 Testing and Adjusting Section
VIMS 9.0X or Later Class of Onboard Software Update Worksheet This worksheet should be completed prior to uploading of any new VIMS on boad software. This worksheet will help prevent the loss of stored on board data. This worksheet will also help prevent the loss of user settings in the configuration. Note: The service program codes (SPC) can be used to access the information that is required to complete this work sheet. Refer to the Systems Operation, “Service Operation” section of this manual for more information on the service program codes. 1. Service Meter Hour (SMH) : _________________________ 2. Onboard Clock Time: _________________________________
9. Contrast Setting (SPC: CON): ________________________________________________ 10. Service Light Setting(9.5X or later) (SPC: SVCSET): ____________________________________________________ 11. Snapshot Configure Setting(9.5X or later): (SPC: ERSET): ______________________________________________________ 12. Event Configure Setting(9.6X or later): (SPC: ESET): Use table 53 to record the Event Configure Settings. Table 53
Event
Log(1)
Display(1)
Telemetry(1)
Service Light(1)
1. 2. 3.
3. Document All Resettable Totals. (SPC:TOT):
4.
_________________________________________________________________
6. 7.
_________________________________________________________________
8.
_________________________________________________________________
9.
_________________________________________________________________
10. 11.
4. Enter the present machine statistics (SPC:MSTAT):
12.
Source Software: __________________________________________
13
Configuration Software: __________________________________
14 15
Hardware Version: _________________________________________ Model Number: ____________________________________________ Serial Number: _____________________________________________ Equipment Number: ______________________________________ Attachment Code: _________________________________________ Language: __________________________________________________ Configuration Type: _______________________________________ Operator ID: ________________________________________________ 5. Unit Setting (SPC: UN): English/Metric (circle one) 6. Download all on board data files. 7. Auto Lube Cycle Time (SPC: LUBSET): __________ 7a. Auto Lube Duration (SPC: LUBSET): ____________ 8. Backlight Setting (SPC: BLT): _______________________
(1)
Indicate (E)nabled or (D)isabled.
13. Max Payload Weight (SPC: PAYCONF): __________ 13a. Last Pass Indicator (PAYCONF): ________________ Note: Customizing the new large wheel loader VIMS configuration software to the same settings as the presently installed software with the Information System Builder software is mandatory prior to putting the machine back into service. Refer to , RENR2517, “Large Wheel Loader VIMS Payload Users Manual” for instructions on how to update the new configuration.
572 Testing and Adjusting Section
Note: It is highly recommended that the user have a copy of the present VIMS source software and VIMS configuration software available before the uploading the NEW VIMS source and configuration software. Note: If desired a screen print of the VIMS-PC Machine Status Display may be used in place of item 4. This screen print can be used to reference important information about the setup of the machine. Perform the following procedure to make a file that will save the screen print. Screen Print Procedure 1. Connect VIMS-PC to the machine and establish communication. Then access the Machine Status Display screen. 2. In order to place the screen print onto the clipboard, press the Print Screen key as required on the PC that is being used. 3. Open Windows Paintbrush, the Clipboard Viewer, Microsoft Word or WordPad program on the PC. 4. Use the “paste” option in the “Edit” menu or press Ctrl-V in order to place the image on the desktop. 5. Save the file by opening the “File” Menu and selecting the “Save As” option. 6. Name the file in the “Save As” dialog box. Using the machine serial number or equipment number will make the file easier to track. Select a directory in which to store the file. Click on the save button in the “Save As” dialog box. The file is now saved for later use and can be moved to the same subdirectory as the downloaded files.
573 Index Section
Index A Action Alarm .......................................................... 97 Action Lamp........................................................... 97 Alert Indicator - Troubleshoot .............................. 487 Troubleshooting The Action Lamp ................... 489 Attachment Code - Configure ................................ 20 B Battery - Replace................................................. 521 Procedure ........................................................ 521 C Cable Connections .............................................. 522 Connections of the Radio Telemetry System (Broadcast) .................................................... 523 Data Connections (OHT) ................................. 524 Power Connections (OHT) ............................... 524 Printer Cable (Payload) for Large Wheel Loader ....................................................................... 522 Calibration Mode - Enter........................................ 21 Charging System - Test ....................................... 503 Alternator Specifications .................................. 511 Initial Troubleshooting Procedure..................... 503 T1 Alternator Output - Test .............................. 505 T2a - Test For Machines Equipped With A Main Disconnect Switch.......................................... 506 T2b - Test For Any Machine ............................. 506 T3 Charging System - Test .............................. 507 T4 Alternator Drive System - Check ................ 508 T5 Alternator Current - Test ............................. 508 T6 Residual Magnetism Restoration................ 508 T7 Identifying Source Of Current Draw - Test .. 509 T8a- Alternator Overcharging - Test................. 509 T8b - Alternator Overcharging - Test (Continued) .................................................... 510 Chip Detector - Test............................................. 490 CID 0041 FMI 03 Sensor Power Supply (8 DCV) Voltage Above Normal - Test ............................. 209 CID 0041 FMI 04 Sensor Power Supply (8 DCV) Voltage Below Normal - Test.............................. 210 CID 0041 FMI 06 Sensor Power Supply (8 DCV) Current Above Normal - Test ............................. 211 CID 0075 FMI 03 Temperature Sensor (Steering Oil) Voltage Above Normal - Test ............................. 212 CID 0075 FMI 04 Temperature Sensor (Steering Oil) Voltage Below Normal - Test.............................. 214 CID 0075 FMI 06 Temperature Sensor (Steering Oil) Current Above Normal - Test ............................. 215 CID 0096 FMI 03 Level Sensor (Fuel) Voltage Above Normal - Test ..................................................... 217 CID 0096 FMI 04 Level Sensor (Fuel) Voltage Below Normal - Test ..................................................... 218 CID 0096 FMI 06 Level Sensor (Fuel) Current Above Normal - Test ..................................................... 220
CID 0100 FMI 03 Pressure Sensor (Engine Oil) Voltage Above Normal - Test ............................. 221 CID 0100 FMI 04 Pressure Sensor (Engine Oil) Voltage Below Normal - Test.............................. 223 CID 0100 FMI 06 Pressure Sensor (Engine Oil) Current Above Normal - Test ............................. 224 CID 0110 FMI 03 Temperature Sensor (Engine Coolant) Voltage Above Normal - Test............... 225 CID 0110 FMI 04 Temperature Sensor (Engine Coolant) Voltage Below Normal - Test ............... 227 CID 0110 FMI 06 Temperature Sensor (Engine Coolant) Current Above Normal - Test............... 228 CID 0127 FMI 03 Pressure Sensor (Transmission Oil) Voltage Above Normal - Test ............................. 229 CID 0127 FMI 04 Pressure Sensor (Transmission Oil) Voltage Below Normal - Test.............................. 231 CID 0127 FMI 06 Pressure Sensor (Transmission Oil) Current Above Normal - Test ............................. 232 CID 0171 FMI 03 Temperature Sensor (Ambient Air) Voltage Above Normal - Test ............................. 233 CID 0171 FMI 04 Temperature Sensor (Ambient Air) Voltage Below Normal - Test.............................. 235 CID 0171 FMI 06 Temperature Sensor (Ambient Air) Current Above Normal - Test ............................. 237 CID 0177 FMI 03 Temperature Sensor (Transmission Oil) Voltage Above Normal - Test....................... 238 CID 0177 FMI 04 Temperature Sensor (Transmission Oil) Voltage Below Normal - Test ....................... 240 CID 0177 FMI 06 Temperature Sensor (Transmission Oil) Current Above Normal - Test....................... 241 CID 0190 FMI 02 Speed Sensor (Engine) Incorrect Signal - Test ....................................................... 242 CID 0190 FMI 03 Speed Sensor (Engine) Voltage Above Normal - Test .......................................... 244 CID 0190 FMI 04 Speed Sensor (Engine) Voltage Below Normal - Test........................................... 245 CID 0190 FMI 08 Speed Sensor (Engine) Abnormal Signal - Test ....................................................... 246 CID 0248 FMI 09 CAT Data Link Abnormal Update Test .................................................................... 247 CID 0262 FMI 03 Sensor Power Supply (5 DCV) Voltage Above Normal - Test ............................. 249 CID 0262 FMI 04 Sensor Power Supply (5 DCV) Voltage Below Normal - Test.............................. 250 CID 0262 FMI 06 Sensor Power Supply (5 DCV) Current Above Normal - Test ............................. 251 CID 0263 FMI 03 Sensor Power Supply (8 or 12 DCV) Voltage Above Normal - Test.................... 251 CID 0263 FMI 04 Sensor Power Supply (8 or 12 DCV) Voltage Below Normal - Test.................... 252 CID 0263 FMI 06 Sensor Power Supply (8 or 12 DCV) Current Above Normal - Test ................... 253 CID 0271 FMI 03 Alarm (Action) Voltage Above Normal - Test ..................................................... 254 CID 0271 FMI 05 Alarm (Action) Current Below Normal - Test ..................................................... 255 CID 0271 FMI 06 Alarm (Action) Current Above Normal - Test ..................................................... 256
574 Index Section
CID 0279 FMI 03 Temperature Sensor (Front Aftercooler Coolant) Voltage Above Normal Test .................................................................... 257 CID 0279 FMI 04 Temperature Sensor (Front Aftercooler Coolant) Voltage Below Normal Test .................................................................... 259 CID 0279 FMI 06 Temperature Sensor (Front Aftercooler Coolant) Current Above Normal Test .................................................................... 261 CID 0280 FMI 03 Temperature Sensor (Pump Drive) Voltage Above Normal - Test ............................. 262 CID 0280 FMI 04 Temperature Sensor (Pump Drive) Voltage Below Normal - Test.............................. 264 CID 0280 FMI 06 Temperature Sensor (Pump Drive) Current Above Normal - Test ............................. 265 CID 0295 FMI 02 Electronic Control Module (Machine) Incorrect Signal - Test ....................... 266 CID 0295 FMI 09 Electronic Control Module (Machine) Abnormal Update - Test.................... 268 CID 0295 FMI 12 Electronic Control Module (Machine) Failed - Test ...................................... 270 CID 0296 FMI 02 Power Train Electronic Control Module (Electronic Clutch Pressure Control) Incorrect Signal - Test ........................................ 272 CID 0296 FMI 09 Power Train Electronic Control Module (Electronic Clutch Pressure Control) Abnormal Update) - Test.................................... 274 CID 0296 FMI 12 Power Train Electronic Control Module (Electronic Clutch Pressure Control) Failed Test .................................................................... 276 CID 0324 FMI 03 Lamp (Action) Voltage Above Normal - Test ..................................................... 278 CID 0324 FMI 05 Lamp (Action) Current Below Normal - Test ..................................................... 278 CID 0324 FMI 06 Lamp (Action) Current Above Normal - Test ..................................................... 279 CID 0341 FMI 03 Solenoid Valve (No. 4) (Warm Up) Voltage Above Normal - Test ............................. 281 CID 0341 FMI 05 Solenoid Valve (No. 4) (Warm Up) Current Below Normal - Test.............................. 281 CID 0341 FMI 06 Solenoid Valve (No. 4) (Warm Up) Current Above Normal - Test ............................. 282 CID 0341 FMI 11 Solenoid Valve (No. 4) (Warm Up) Failure Mode Not Identifiable - Test ................... 282 CID 0350 FMI 00 Position Sensor (Lift Linkage) Above Normal Range - Test............................... 283 CID 0350 FMI 01 Position Sensor (Lift Linkage) Below Normal Range - Test ............................... 283 CID 0350 FMI 02 Position Sensor (Lift Linkage) Incorrect Signal - Test ........................................ 284 CID 0350 FMI 03 Position Sensor (Lift Linkage) Voltage Above Normal - Test ............................. 284 CID 0350 FMI 04 Position Sensor (Lift Linkage) Voltage Below Normal - Test.............................. 285 CID 0350 FMI 06 Position Sensor (Lift Linkage) Current Above Normal - Test ............................. 285 CID 0350 FMI 08 Position Sensor (Lift Linkage) Abnormal Signal - Test ...................................... 286 CID 0350 FMI 11 Position Sensor (Lift Linkage) Failure Mode Not Identifiable - Test ................... 286
CID 0350 FMI 13 Position Sensor (Lift Linkage) Out of Calibration - Test............................................ 287 CID 0364 FMI 03 Pressure Sensor (Lift Cylinder Head End) Voltage Below Normal - Test ........... 287 CID 0364 FMI 04 Pressure Sensor (Lift Cylinder Head End) Voltage Below Normal - Test ........... 287 CID 0364 FMI 06 Pressure Sensor (Lift Cylinder Head End) Current Above Normal - Test ........... 287 CID 0371 FMI 03 Solenoid Valve (Air Horn) Voltage Above Normal - Test .......................................... 287 CID 0371 FMI 05 Solenoid Valve (Air Horn) Current Below Normal - Test........................................... 288 CID 0371 FMI 06 Solenoid Valve (Air Horn) Current Above Normal - Test .......................................... 289 CID 0371 FMI 11 Solenoid Valve (Air Horn) Failure Mode Not Identifiable - Test ............................... 289 CID 0378 FMI 03 Solenoid Valve (Automatic Lubrication) Voltage Above Normal - Test ......... 290 CID 0378 FMI 05 Solenoid Valve (Automatic Lubrication) Current Below Normal - Test.......... 291 CID 0378 FMI 06 Solenoid Valve (Automatic Lubrication) Current Above Normal - Test ......... 292 CID 0378 FMI 11 Solenoid Valve (Automatic Lubrication) Failure Mode Not Identifiable Test .................................................................... 293 CID 0379 FMI 03 Pressure Sensor (Automatic Lubrication) Voltage Above Normal - Test ......... 293 CID 0379 FMI 04 Pressure Sensor (Automatic Lubrication) Voltage Below Normal - Test.......... 295 CID 0379 FMI 06 Pressure Sensor (Automatic Lubrication) Current Above Normal - Test ......... 297 CID 0425 FMI 03 Pressure Sensor (Front Brake Oil) Voltage Above Normal - Test ............................. 298 CID 0425 FMI 04 Pressure Sensor (Front Brake Oil) Voltage Below Normal - Test.............................. 300 CID 0425 FMI 06 Pressure Sensor (Front Brake Oil) Current Above Normal - Test ............................. 301 CID 0426 FMI 03 Pressure Sensor (Rear Brake Oil) Voltage Above Normal - Test ............................. 302 CID 0426 FMI 04 Pressure Sensor (Rear Brake Oil) Voltage Below Normal - Test.............................. 304 CID 0426 FMI 06 Pressure Sensor (Rear Brake Oil) Current Above Normal - Test ............................. 305 CID 0427 FMI 03 Temperature Sensor (Front Axle Oil) Voltage Above Normal - Test....................... 306 CID 0427 FMI 04 Temperature Sensor (Front Axle Oil) Voltage Below Normal - Test ....................... 308 CID 0427 FMI 06 Temperature Sensor (Front Axle Oil) Current Above Normal - Test....................... 309 CID 0428 FMI 03 Temperature Sensor (Rear Axle Oil) Voltage Above Normal - Test....................... 310 CID 0428 FMI 04 Temperature Sensor (Rear Axle Oil) Voltage Below Normal - Test ....................... 312 CID 0428 FMI 06 Temperature Sensor (Rear Axle Oil) Current Above Normal - Test....................... 313 CID 0429 FMI 03 Pressure Sensor (Steering Oil) Voltage Above Normal - Test ............................. 314 CID 0429 FMI 04 Pressure Sensor (Steering Oil) Voltage Below Normal - Test.............................. 316 CID 0429 FMI 06 Pressure Sensor (Steering Oil) Current Above Normal - Test ............................. 317
575 Index Section
CID 0430 FMI 03 Pressure Sensor (Steering Pilot Oil) Voltage Above Normal - Test....................... 318 CID 0430 FMI 04 Pressure Sensor (Steering Pilot Oil) Voltage Below Normal - Test ....................... 320 CID 0430 FMI 06 Pressure Sensor (Steering Pilot Oil) Current Above Normal - Test....................... 321 CID 0434 FMI 03 Pressure Sensor (Hydraulic Pilot Oil) Voltage Above Normal - Test....................... 322 CID 0434 FMI 04 Pressure Sensor (Hydraulic Pilot Oil) Voltage Below Normal - Test ....................... 324 CID 0434 FMI 06 Pressure Sensor (Hydraulic Pilot Oil) Current Above Normal - Test....................... 325 CID 0436 FMI 03 Pressure Sensor (Torque Converter Oil) Voltage Above Normal - Test....................... 326 CID 0436 FMI 04 Pressure Sensor (Torque Converter Oil) Voltage Below Normal - Test ....................... 328 CID 0436 FMI 06 Pressure Sensor (Torque Converter Oil) Current Above Normal - Test....................... 329 CID 0438 FMI 03 Solenoid Valve (No. 1) (Warm Up) Voltage Above Normal - Test ............................. 330 CID 0438 FMI 05 Solenoid Valve (No. 1) (Warm Up) Current Below Normal - Test.............................. 331 CID 0438 FMI 06 Solenoid Valve (No. 1) (Warm Up) Current Above Normal - Test ............................. 331 CID 0438 FMI 11 Solenoid Valve (No. 1) (Warm Up) Failure Mode Not Identifiable - Test ................... 332 CID 0439 FMI 03 Solenoid Valve (No. 2) (Warm Up) Voltage Above Normal - Test ............................. 333 CID 0439 FMI 05 Solenoid Valve (No. 2) (Warm Up) Current Below Normal - Test.............................. 333 CID 0439 FMI 06 Solenoid Valve (No. 2) (Warm Up) Current Above Normal - Test ............................. 334 CID 0439 FMI 11 Solenoid Valve (No. 2) (Warm Up) Failure Mode Not Identifiable - Test ................... 334 CID 0440 FMI 03 Solenoid Valve (No. 3) (Warm Up) Voltage Above Normal - Test ............................. 335 CID 0440 FMI 05 Solenoid Valve (No. 3) (Warm Up) Current Below Normal - Test.............................. 336 CID 0440 FMI 06 Solenoid Valve (No. 3) (Warm Up) Current Above Normal - Test ............................. 336 CID 0440 FMI 11 Solenoid Valve (No. 3) (Warm Up) Failure Mode Not Identifiable - Test ................... 337 CID 0457 FMI 03 Temperature Sensor (Brake Oil) Voltage Above Normal - Test ............................. 338 CID 0457 FMI 04 Temperature Sensor (Brake Oil) Voltage Below Normal - Test.............................. 339 CID 0457 FMI 06 Temperature Sensor (Brake Oil) Current Above Normal - Test ............................. 340 CID 0458 FMI 03 Pressure Sensor (Tilt Cylinder Rod) Voltage Above Normal - Test ............................. 342 CID 0458 FMI 04 Pressure Sensor (Tilt Cylinder Rod) Voltage Below Normal - Test.............................. 342 CID 0458 FMI 06 Pressure Sensor (Tilt Cylinder Rod) Current Above Normal - Test ............................. 342 CID 0533 FMI 02 Machine Electronic Control Module (Integrated Brake) Incorrect Signal - Test .......... 342 CID 0533 FMI 09 Machine Electronic Control Module (Integrated Brake) Abnormal Update - Test ....... 344 CID 0533 FMI 12 Machine Electronic Control Module (Integrated Brake) Failed - Test.......................... 346 CID 0541 FMI 03 Pressure Sensor (Differential Oil) Voltage Above Normal - Test ............................. 348
CID 0541 FMI 04 Pressure Sensor (Differential Oil) Voltage Below Normal - Test.............................. 350 CID 0541 FMI 06 Pressure Sensor (Differential Oil) Current Above Normal - Test ............................. 351 CID 0562 FMI 02 Caterpillar Monitoring System Incorrect Signal - Test ........................................ 352 CID 0562 FMI 09 Caterpillar Monitoring System Abnormal Update - Test..................................... 354 CID 0562 FMI 12 Caterpillar Monitoring System Failed - Test ....................................................... 356 CID 0590 FMI 02 Electronic Control Module (Engine) Incorrect Signal - Test ........................................ 358 CID 0590 FMI 09 Electronic Control Module (Engine) Abnormal Update - Test..................................... 360 CID 0590 FMI 12 Electronic Control Module (Engine) Failed - Test ....................................................... 362 CID 0596 FMI 02 Electronic Control Module (Implement) Incorrect Signal - Test.................... 364 CID 0596 FMI 09 Electronic Control Module (Implement) Abnormal Update - Test................. 366 CID 0596 FMI 12 Electronic Control Module (Implement) Failed - Test ................................... 368 CID 0600 FMI 03 Temperature Sensor (Hydraulic Oil) Voltage Above Normal - Test ............................. 370 CID 0600 FMI 04 Temperature Sensor (Hydraulic Oil) Voltage Below Normal - Test.............................. 372 CID 0600 FMI 06 Temperature Sensor (Hydraulic Oil) Current Above Normal - Test ............................. 374 CID 0650 FMI 02 Harness Code Incorrect - Test.. 375 CID 0654 FMI 03 Temperature Sensor (Trailer Right Brake Oil) Voltage Above Normal - Test ............ 376 CID 0654 FMI 04 Temperature Sensor (Trailer Right Brake Oil) Voltage Below Normal - Test............. 378 CID 0654 FMI 06 Temperature Sensor (Trailer Right Brake Oil) Current Above Normal - Test ............ 379 CID 0655 FMI 03 Temperature Sensor (Trailer Left Brake Oil) Voltage Above Normal - Test ............ 380 CID 0655 FMI 04 Temperature Sensor (Trailer Left Brake Oil) Voltage Below Normal - Test............. 381 CID 0655 FMI 06 Temperature Sensor (Trailer Left Brake Oil) Current Above Normal - Test ............ 382 CID 0656 FMI 03 Temperature Sensor (Trailer Brake Oil Cooler Inlet) Voltage Above Normal - Test ... 383 CID 0656 FMI 04 Temperature Sensor (Trailer Brake Oil Cooler Inlet) Voltage Below Normal - Test.... 385 CID 0656 FMI 06 Temperature Sensor (Trailer Brake Oil Cooler Inlet) Current Above Normal - Test ... 386 CID 0657 FMI 03 Temperature Sensor (Trailer Brake Oil Cooler Outlet) Voltage Above Normal - Test.. 387 CID 0657 FMI 04 Temperature Sensor (Trailer Brake Oil Cooler Outlet) Voltage Below Normal - Test.. 388 CID 0657 FMI 06 Temperature Sensor (Trailer Brake Oil Cooler Outlet) Current Above Normal - Test.. 389 CID 0658 FMI 02 Pressure Sensor (Trailer Right Suspension Cylinder) Incorrect Signal - Test..... 390 CID 0658 FMI 03 Pressure Sensor (Trailer Right Suspension Cylinder) Voltage Above Normal Test .................................................................... 391 CID 0658 FMI 04 Pressure Sensor (Trailer Right Suspension Cylinder) Voltage Below Normal Test .................................................................... 391
576 Index Section
CID 0658 FMI 06 Pressure Sensor (Trailer Right Suspension Cylinder) Current Above Normal Test .................................................................... 391 CID 0659 FMI 02 Pressure Sensor (Trailer Left Suspension Cylinder) Incorrect Signal - Test..... 391 CID 0659 FMI 03 Pressure Sensor (Trailer Left Suspension Cylinder) Voltage Above Normal Test .................................................................... 391 CID 0659 FMI 04 Pressure Sensor (Trailer Left Suspension Cylinder) Voltage Below Normal Test .................................................................... 391 CID 0659 FMI 06 Pressure Sensor (Trailer Left Suspension Cylinder) Current Above Normal Test .................................................................... 392 CID 0672 FMI 01 Speed Sensor (Torque Converter Output) Below Normal Range - Test .................. 392 CID 0672 FMI 02 Speed Sensor (Torque Converter Output) Incorrect Signal - Test ........................... 392 CID 0672 FMI 03 Speed Sensor (Torque Converter Output) Voltage Above Normal - Test ................ 394 CID 0672 FMI 04 Speed Sensor (Torque Converter Output) Voltage Below Normal - Test................. 395 CID 0672 FMI 08 Speed Sensor (Torque Converter Output) Abnormal Signal - Test ......................... 396 CID 0767 FMI 03 Pressure Sensor (Fixed Displacement Pump Oil) Voltage Above Normal Test .................................................................... 397 CID 0767 FMI 04 Pressure Sensor (Fixed Displacement Pump Oil) Voltage Below Normal Test .................................................................... 399 CID 0767 FMI 06 Pressure Sensor (Fixed Displacement Pump Oil) Current Above Normal Test .................................................................... 400 CID 0801 FMI 09 Interface Module (No. 1) Abnormal Update - Test ..................................................... 401 CID 0802 FMI 09 Interface Module (No. 2) Abnormal Update - Test ..................................................... 401 CID 0803 FMI 09 Interface Module (No. 3) Abnormal Update - Test ..................................................... 402 CID 0804 FMI 09 Interface Module (No. 4) Abnormal Update - Test ..................................................... 402 CID 0805 FMI 09 Interface Module (No. 5) Abnormal Update - Test ..................................................... 402 CID 0806 FMI 09 Interface Module (No. 6) Abnormal Update - Test ..................................................... 402 CID 0807 FMI 09 Interface Module (No. 7) Abnormal Update - Test ..................................................... 402 CID 0808 FMI 09 Interface Module (No. 8) Abnormal Update - Test ..................................................... 402 CID 0809 FMI 02 Speedometer/Tachometer Module (No. 1) Incorrect Signal - Test ............................ 403 CID 0809 FMI 12 Speedometer/Tachometer Module (No. 1) Failed - Test ........................................... 403 CID 0810 FMI 02 Speedometer/Tachometer Module (No. 2) Incorrect Signal - Test ............................ 403 CID 0810 FMI 12 Speedometer/Tachometer Module (No. 2) Failed - Test ........................................... 403 CID 0811 FMI 02 Quad Gauge Module (No. 1) Incorrect Signal - Test ........................................ 403 CID 0811 FMI 12 Quad Gauge Module (No. 1) Failed - Test .................................................................. 403
CID 0812 FMI 02 Quad Gauge Module (No. 2) Incorrect Signal - Test ........................................ 403 CID 0812 FMI 12 Quad Gauge Module (No. 2) Failed - Test .................................................................. 403 CID 0813 FMI 02 Quad Gauge Module (No. 3) Incorrect Signal - Test ........................................ 404 CID 0813 FMI 12 Quad Gauge Module (No. 3) Failed - Test .................................................................. 404 CID 0814 FMI 02 Quad Gauge Module (No. 4) Incorrect Signal - Test ........................................ 404 CID 0814 FMI 12 Quad Gauge Module (No. 4) Failed - Test .................................................................. 404 CID 0815 FMI 02 Message Center Module (No. 1) Incorrect Signal - Test ........................................ 404 CID 0815 FMI 12 Message Center Module (No. 1) Failed - Test ....................................................... 404 CID 0816 FMI 02 Message Center Module (No. 2) Incorrect Signal - Test ........................................ 404 CID 0816 FMI 12 Message Center Module (No. 2) Failed - Test ....................................................... 404 CID 0817 FMI 02 Battery (Internal Backup) Incorrect - Test .................................................................. 405 CID 0817 FMI 12 Battery (Internal Backup) Failed Test .................................................................... 405 CID 0819 FMI 02 Display Data Link Incorrect Test .................................................................... 405 CID 0819 FMI 03 Display Data Link Voltage Above Normal - Test ..................................................... 405 CID 0819 FMI 06 Display Data Link Current Above Normal - Test ..................................................... 406 CID 0819 FMI 12 Display Data Link Failed - Test.. 406 CID 0820 FMI 02 Keypad Data Link Incorrect Test .................................................................... 406 CID 0820 FMI 03 Keypad Data Link Voltage Above Normal - Test ..................................................... 407 CID 0820 FMI 06 Keypad Data Link Current Above Normal - Test ..................................................... 407 CID 0820 FMI 12 Keypad Data Link Failed Test .................................................................... 408 CID 0821 FMI 03 Display Power Supply Voltage Above Normal - Test .......................................... 408 CID 0821 FMI 06 Display Power Supply Current Above Normal - Test .......................................... 409 CID 0822 FMI 03 Display Backlighting Voltage Above Normal - Test ..................................................... 409 CID 0822 FMI 05 Display Backlighting Current Below Normal - Test ..................................................... 410 CID 0822 FMI 06 Display Backlighting Current Above Normal - Test ..................................................... 410 CID 0823 FMI 03 Lamp (Service) Voltage Above Normal - Test ..................................................... 411 CID 0823 FMI 05 Lamp (Service) Current Below Normal - Test ..................................................... 412 CID 0823 FMI 06 Lamp (Service) Current Above Normal - Test ..................................................... 413 CID 0824 FMI 03 Lamp (Green Payload) Voltage Above Normal - Test .......................................... 414 CID 0824 FMI 05 Lamp (Green Payload) Current Below Normal - Test........................................... 414 CID 0824 FMI 06 Lamp (Green Payload) Current Above Normal - Test .......................................... 415
577 Index Section
CID 0825 FMI 03 Lamp (Red Payload) Voltage Above Normal - Test ..................................................... 416 CID 0825 FMI 05 Lamp (Red Payload) Current Below Normal - Test ..................................................... 417 CID 0825 FMI 06 Lamp (Red Payload) Current Above Normal - Test ..................................................... 418 CID 0826 FMI 03 Temperature Sensor (Torque Converter Oil) Voltage Above Normal - Test ...... 419 CID 0826 FMI 04 Temperature Sensor (Torque Converter Oil) Voltage Below Normal - Test ...... 421 CID 0826 FMI 06 Temperature Sensor (Torque Converter Oil) Current Above Normal - Test...... 422 CID 0826 FMI 11 Temperature Sensor (Torque Converter Oil) Failure Mode Not Identifiable Test .................................................................... 424 CID 0827 FMI 03 Temperature Sensor (Left Exhaust) Voltage Above Normal - Test ............................. 424 CID 0827 FMI 04 Temperature Sensor (Left Exhaust) Voltage Below Normal - Test.............................. 426 CID 0827 FMI 06 Temperature Sensor (Left Exhaust) Current Above Normal - Test ............................. 427 CID 0827 FMI 08 Temperature Sensor (Left Exhaust) Abnormal Signal - Test ...................................... 428 CID 0828 FMI 03 Temperature Sensor (Right Exhaust) Voltage Above Normal - Test .............. 429 CID 0828 FMI 04 Temperature Sensor (Right Exhaust) Voltage Below Normal - Test .............. 431 CID 0828 FMI 06 Temperature Sensor (Right Exhaust) Current Above Normal - Test .............. 432 CID 0828 FMI 08 Temperature Sensor (Right Exhaust) - Test................................................... 434 CID 0829 FMI 03 Temperature Sensor (Rear Aftercooler Coolant) Voltage Above Normal Test .................................................................... 435 CID 0829 FMI 04 Temperature Sensor (Rear Aftercooler Coolant) Voltage Below Normal Test .................................................................... 436 CID 0829 FMI 06 Temperature Sensor (Rear Aftercooler Coolant) Current Above Normal Test .................................................................... 437 CID 0830 FMI 03 Temperature Sensor (Front Brake Oil) Voltage Above Normal - Test....................... 439 CID 0830 FMI 04 Temperature Sensor (Front Brake Oil) Voltage Below Normal - Test ....................... 440 CID 0830 FMI 06 Temperature Sensor (Front Brake Oil) Current Above Normal - Test....................... 441 CID 0833 FMI 03 Temperature Sensor (Rear Brake Oil) Voltage Above Normal - Test....................... 442 CID 0833 FMI 04 Temperature Sensor (Rear Brake Oil) Voltage Below Normal - Test ....................... 444 CID 0833 FMI 06 Temperature Sensor (Rear Brake Oil) Current Above Normal - Test....................... 445 CID 0835 FMI 03 Temperature Sensor (Differential Oil) Voltage Above Normal - Test....................... 446 CID 0835 FMI 04 Temperature Sensor (Differential Oil) Voltage Below Normal - Test ....................... 447 CID 0835 FMI 06 Temperature Sensor (Differential Oil) Current Above Normal - Test....................... 449 CID 0838 FMI 02 Pressure Sensor (Left Front Suspension Cylinder) Incorrect Signal - Test..... 450 CID 0838 FMI 03 Pressure Sensor (Left Front Suspension Cylinder) Voltage Above Normal Test .................................................................... 450
CID 0838 FMI 04 Pressure Sensor (Left Front Suspension Cylinder) Voltage Below Normal Test .................................................................... 450 CID 0838 FMI 06 Pressure Sensor (Left Front Suspension Cylinder) Current Above Normal Test .................................................................... 450 CID 0838 FMI 08 Pressure Sensor (Left Front Suspension Cylinder) Abnormal Signal - Test ... 450 CID 0839 FMI 02 Pressure Sensor (Right Front Suspension Cylinder) Incorrect Signal - Test..... 451 CID 0839 FMI 03 Pressure Sensor (Right Front Suspension Cylinder) Voltage Above Normal Test .................................................................... 451 CID 0839 FMI 04 Pressure Sensor (Right Front Suspension Cylinder) Voltage Below Normal Test .................................................................... 451 CID 0839 FMI 06 Pressure Sensor (Right Front Suspension Cylinder) Current Above Normal Test .................................................................... 451 CID 0839 FMI 08 Pressure Sensor (Right Front Suspension Cylinder) Abnormal Signal - Test ... 451 CID 0840 FMI 02 Pressure Sensor (Left Rear Suspension Cylinder) Voltage Above Normal Test .................................................................... 451 CID 0840 FMI 03 Pressure Sensor (Left Rear Suspension Cylinder) Voltage Above Normal Test .................................................................... 452 CID 0840 FMI 04 Pressure Sensor (Left Rear Suspension Cylinder) Voltage Below Normal Test .................................................................... 452 CID 0840 FMI 06 Pressure Sensor (Left Rear Suspension Cylinder) Current Above Normal Test .................................................................... 452 CID 0840 FMI 08 Pressure Sensor (Left Rear Suspension Cylinder) Abnormal Signal - Test ... 452 CID 0841 FMI 02 Pressure Sensor (Right Rear Suspension Cylinder) Incorrect Signal - Test..... 452 CID 0841 FMI 03 Pressure Sensor (Right Rear Suspension Cylinder) Voltage Above Normal Test .................................................................... 452 CID 0841 FMI 04 Pressure Sensor (Right Rear Suspension Cylinder) Voltage Below Normal Test .................................................................... 453 CID 0841 FMI 06 Pressure Sensor (Right Rear Suspension Cylinder) Current Above Normal Test .................................................................... 453 CID 0841 FMI 08 Pressure Sensor (Right Rear Suspension Cylinder) Abnormal Signal - Test ... 453 CID 0849 FMI 03 Pressure Sensor (Air System) Voltage Above Normal - Test ............................. 453 CID 0849 FMI 04 Pressure Sensor (Air System) Voltage Below Normal - Test.............................. 455 CID 0849 FMI 06 Pressure Sensor (Air System) Current Above Normal - Test ............................. 457 CID 0851 FMI 03 Pressure Sensor (Pump Drive) Voltage Above Normal - Test ............................. 458 CID 0851 FMI 04 Pressure Sensor (Pump Drive) Voltage Below Normal - Test.............................. 460 CID 0851 FMI 06 Pressure Sensor (Pump Drive) Current Above Normal - Test ............................. 462 CID 0852 FMI 03 Temperature Sensor (Right Front Brake Oil) Voltage Above Normal - Test ............ 463
578 Index Section
CID 0852 FMI 04 Temperature Sensor (Right Front Brake Oil) Voltage Below Normal - Test............. 465 CID 0852 FMI 06 Temperature Sensor (Right Front Brake Oil) Current Above Normal - Test ............ 466 CID 0853 FMI 03 Temperature Sensor (Left Front Brake Oil) Voltage Above Normal - Test ............ 467 CID 0853 FMI 04 Temperature Sensor (Left Front Brake Oil) Voltage Below Normal - Test............. 469 CID 0853 FMI 06 Temperature Sensor (Left Front Brake Oil) Current Above Normal - Test ............ 470 CID 0854 FMI 03 Temperature Sensor (Right Rear Brake Oil) Voltage Above Normal - Test ............ 472 CID 0854 FMI 04 Temperature Sensor (Right Rear Brake Oil) Voltage Below Normal - Test............. 473 CID 0854 FMI 06 Temperature Sensor (Right Rear Brake Oil) Current Above Normal - Test ............ 474 CID 0855 FMI 03 Temperature Sensor (Left Rear Brake Oil) Voltage Above Normal - Test ............ 476 CID 0855 FMI 04 Temperature Sensor (Left Rear Brake Oil) Voltage Below Normal - Test............. 477 CID 0855 FMI 06 Temperature Sensor (Left Rear Brake Oil) Current Above Normal - Test ............ 478 CID 0890 FMI 09 Telemetry Data Link Abnormal Update - Test ..................................................... 480 CID 1089 FMI 02 Analysis Control Module Incorrect Signal - Test ....................................................... 481 CID 1089 FMI 09 Analysis Control Module Abnormal Update - Test ..................................................... 483 CID 1089 FMI 12 Analysis Control Module Failed Test .................................................................... 484 Component Descriptions ....................................... 68 D Data Connectors.................................................... 96 Data Logger - Reset .............................................. 21 Data Logger - Start/Stop ....................................... 22 Diode Assembly - Test ......................................... 519 Display Backlighting - Set ...................................... 22 Display Contrast - Set............................................ 23 Display Language - Set ......................................... 23 Display Modules .................................................... 76 Display Units - Set ................................................. 23 E Event - Configure................................................... Event Acknowledged - Show ................................. Event List - Show................................................... Event Recorder - Start........................................... Event Statistics - Show..........................................
23 25 25 26 27
I Important Safety Information ................................... 2 Interface Module.................................................... 74 K Keypad................................................................... “F1” Key ............................................................ “F2” Key ............................................................ “F3” Key ............................................................ FORWARD and BACKWARD Arrow Keys ......... “GAUGE” Key..................................................... “ID” Key ............................................................. Numeric Keys (0 - 9) ......................................... OK Key...............................................................
85 88 89 89 88 87 86 86 86
L Lift or Tilt Cylinder Sensor - Troubleshoot ........... 491 Lift or Tilt Cylinder Sensor Dynamic - Test....... 494 Lift or Tilt Cylinder Sensor Signal Voltage Test................................................................. 491 Loader Payload System (LPS) General Information........................................................... 41 LPS Calibration...................................................... 43 Check Calibration Information............................ 43 Check the Weigh Range .................................... 44 Enter the Calibration Weight ............................. 46 Enter the Carryback Weight............................... 45 Set the Weigh Range......................................... 44 Start a New Calibration...................................... 47 LPS Menu Functions Summary............................. 42 Lubrication Interval - Set ....................................... 27 Lubrication Manual - Start ..................................... 28 M Machine Status - Show.......................................... 28 Main Module .......................................................... 69 Message Center Module ....................................... 79 Message Center Abbreviations.......................... 80 Module - Replace ................................................ 521 Procedure ........................................................ 521 N Normal Operation .................................................. 18 O
G Odometer - Set ...................................................... 29 General Information......................................... 9, 155 Quick Reference .............................................. 156 Glossary of Terms ............................................... 535
579 Index Section
Off-Board Service Tool ........................................ Connection Procedure for VIMS-PC to VIMS .. Related Support Material ................................. Uploading the Source Software and the Configuration Software...................................
524 526 526 528
P Parameters .......................................................... 100 Payload Lamps ...................................................... 98 Position Sensor (Lift Arm) - Adjust ...................... 520 Pulse Width Modulated (PWM) Sensor - Test ..... 512 Identification of Sensor Wire and Contacts ..... 512 Procedure ........................................................ 513 Q Quad Gauge Module ............................................. 77 R Related Components............................................. 99 Diode Assemblies .............................................. 99 Service Key Switch .......................................... 100 Solenoids ........................................................... 99 Resettable Totals - Reset ...................................... 30 Resettable Totals - Show ....................................... 30 Large Hydraulic Excavators ............................... 30 Off-Highway Trucks ............................................ 30 S Sensor Dynamic Test........................................... 516 Procedure ........................................................ 518 Sensor Signal Voltage - Test ............................... 513 Procedure ........................................................ 515 Sensors ................................................................. 92 Frequency Sensors ............................................ 92 Pulse Width Modulated Sensors (PWM)............ 94 Resistive Sensors .............................................. 93 Service Lamp ........................................................ 98 Service Lamp - Reset............................................ 31 Service Lamp - Set................................................ 31 Service Operations................................................ 19 Service Tools ....................................................... 156 Snapshot Trigger - Configure ................................ 34 Speed Sensor (Engine) - Adjust .......................... 520 Speedometer/Tachometer Module ........................ 78 Suspension Cylinder Sensor - Troubleshoot ....... 495 Payload System - Troubleshoot ....................... 498
Switches ................................................................ 89 Automatic Lubrication Grease Level Switch (LWL)................................................................ 92 Chip Detector Switch (LHEX) ............................ 90 Coolant Flow Switch .......................................... 91 Filter Indicator Switches..................................... 90 Oil Level Switch.................................................. 89 Pump Inlet Valve Switch (LHEX)........................ 89 Steering Flow Switches...................................... 90 Steering Pressure Switch .................................. 91 System Schematic............................................... 546 5130 and 5230 VIMS Interface Module No. 1 .. 560 5130 and 5230 VIMS Interface Module No. 2 .. 561 5130 and 5230 VIMS Main Module ................. 559 5130B VIMS Interface Module No. 1................ 557 5130B VIMS Interface Module No. 2................ 558 5130B VIMS Main Module ............................... 556 785B, 789B and 793B VIMS Interface Module No. 1 .................................................................... 554 785B, 789B and 793B VIMS Interface Module No. 2 .................................................................... 555 785B, 789B and 793B VIMS Main Module ..... 553 785C and 789C VIMS Interface Module No. 1.. 551 785C and 789C VIMS Interface Module No. 2 ....................................................................... 552 785C and 789C VIMS Main Module ............... 550 793C VIMS Interface Module No. 1 ................. 548 793C VIMS Interface Module No. 2 ................ 549 793C VIMS Main Module Schematic ............... 547 992G VIMS Interface Module No. 1 ................ 563 992G VIMS Interface Module No. 2 ................ 564 992G VIMS Main Module ................................ 562 994 VIMS Interface Module No. 1 ................... 566 994 VIMS Interface Module No. 2 ................... 567 994 VIMS Main Module ................................... 565 994D VIMS Interface Module No. 1 ................ 569 994D VIMS Interface Module No. 2 ................ 570 994D VIMS Main Module ................................ 568 VIMS 9.0X or Later Class of Onboard Software Update Worksheet ......................................... 571 System Self Test.................................................... 36 Systems Operation Section ..................................... 9 T Table of Contents..................................................... 3 Testing and Adjusting .......................................... 155 Testing and Adjusting Section ............................. 155 TPS Accuracy........................................................ 67 Distance Measurements .................................... 68 Time Measurements .......................................... 68 Weight Measurements ....................................... 67 TPS Component Function ..................................... 54 TPS Maximum Payload Speed Manager............... 62 Operation of the Maximum Payload Speed Manager ........................................................... 62 Setup of the Maximum Payload Speed Manager ........................................................... 64
TPS Normal Operation .......................................... 57 Automatic Calibration Adjustment...................... 59 Automatic Payload Communication ................... 59 Basic Loading and Weighing ............................ 57 Collapsed Suspension Cylinder Detection......... 59 General Description of the Payload Cycle ......... 57 Off-Board Communication ................................. 59 TPS Off-Board Features........................................ 57 TPS On-Board Features........................................ 55 TPS Service Operation.......................................... 60 Payload Calibration ............................................ 60 Payload Configuration........................................ 60 Payload Show/Reset Resettable Totals ............. 61 Troubleshooting Diagnostic Codes ...................... 157 Component Identifier (CID) .............................. 158 Failure Mode Identifier (FMI)............................ 160 Module Identifier (MID) .................................... 157 Troubleshooting Procedures ............................ 164 Troubleshooting Diagnostic Codes Using Abbreviated Procedure .......................................................... 164 Troubleshooting Electrical System Using Abbreviated Procedures ........................................................ 502 Truck Payload - Calibrate....................................... 38 Truck Payload - Configure ..................................... 38 Truck Payload System (TPS) General Information.. 53 V VIMS History ......................................................... 16 Hardware ........................................................... 16 Software............................................................. 16 W Warning Operation ................................................ 39
©2001 Caterpillar All Rights Reserved
Printed in U.S.A.