Surface Vehicle Recommended Practice

October 8, 2022 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Surface Vehicle Recommended Practice...

Description

 

SURFACE VEHICLE RECOMMENDED PRACTICE

J2293-1 Issued Stabilized

FEB2014  1997-03 2014-02

Superseding J2293-1 JUL2008

Energy Transfer System for Electric Vehicles - Part 1: Functional Requirements and System Architectures

RATIONALE This stabilized Recommended Practice documents for reference the historical state of energy transfer systems and communications for electric vehicles as they existed in 2008, as defined in SAE J1772 (per published version 11-1-2001) for conductive charging and SAE J1773 (per published version 11-1-1999) for inductive charging. SAE J1772 continues to be updated to reflect the latest in conductive charging technology. See the latest available version of J1772. SAE J1773 remains unchanged for inductive charging. Documentation for the now-emerging now-emerging “wireless” inductive charging systems will be published when available.  available.   Grid power quality for supplying charging systems is covered in SAE document series J2894. For state-of-the-art documentation on charging communications, refer to the SAE documents in the series J2836, J2847, J2931, and J2953. STABILIZED NOTICE This document has been declared "Stabilized" by the SAE Hybrid - EV Committee and will no longer be subjected to periodic reviews for currency. Users are responsible for verifying references and continued suitability of technical requirements. Newer technology may exist.

 ___________________________________  _______________ ______________________________________ ____________________________________ ______________________________________ _______________________________________ ______________________________________________ ____________________________ _ SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technicaland technicaland engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising herefrom, t is the sole responsibility of the user.”  SAE reviews each technical report at least every five years at which time it may be revised, reaffirmed, stabilized, or cancelled. SAE invites your written comments and suggestions. Copyright © 2014 SAE International  All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE. TO PLACE A DOCUMENT ORDER: --`,,,``,,`,,,,```,,`,,,,`,`,,``-`-`,,`,,`,`,,`---

SAE WEB ADDRESS:

SAE values your input. To provide feedback Tel: 877-606-7323 (inside USA and Canada) Tel: +1 724-776-4970 (outside USA) on this Technical Report, please visit Fax: 724-776-0790 http://www.sae.org/technical/standards/J2293/1_201402  Email: [email protected] http://www.sae.org Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

Page 1 of 84

FOREWORD This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. The ability of Electric Vehicles (EVs) to correctly operate with the off-board electrical   supply equipment used to charge them is a major concern for the producers and consumers of such vehicles. This concern stems from the cost of developing an electric “fueling” infrastructure. If EVs are to gain wide wide acceptance, this infrastructure must, at the least, least,   provide consumers with the same level of conven ience that is available for today’s fossil-fueled fossil-fueled vehicles. Ideally, there would be a single set of physical and functional requirements for the interaction between an EV and the off-board equipment. Designing to those requirements would allow any EV to charge with any off-board equipment, regardless of the producer of the vehicle or off-board off-board equipment. This would be similar to today’s internal combustion engine vehicles and gasoline pumps for unleaded fuels. Today, there are two electrical energy coupling methods under consideration for EVs. One conductively   transfers electrical energy (AC or DC) through metallic contacts. The other inductively   transfers electrical energy through a separable transformer. These couplings are detailed in SAE J1772 and SAE J1773, respectively. Each of these physical coupling methods includes a means to communicate data that is necessary to control the transfer of energy to the vehicle. Unfortunately, these coupling methods are not physically compatible. Therefore, inoperability between EVs and equipment using different methods is not possible. `    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , `  -

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

Page 2 of 84

While inoperability between conductively and inductively coupled systems is not physically possible, each coupling method performs the same basic functions. When the combination of the EV and the off-board equipment is considered as a complete energy transfer system, there is no reason for the system’s functional requirements to differ due to the physical coupling method. The only variation as a result of coupling method is the locati on (on-board or off-board) where specific functions are accomplished. Defining standards for certain functions of the total system and standards for the communication of data that pass between the EV and the off-board equipment will insure interoperability of equipment with common coupling methods. Different coupling methods will require a different system architecture, not different functional requirements. Control of the charging of an EV’s storage battery is specific to the type of battery and th e configuration of the vehicle.  Also, energy may be brought on-board a vehicle for purposes other than charging of the battery. These other purposes are specific to the needs of a particular vehicle. From these facts it follows that the EV should be in control of the transfer of energy from the off-board equipment. This way, EVs can have significantly different needs without forcing functional differences into the off-board equipment. It also establishes the EV (and its producer) as responsible to properl properly y charge batteries, and allows charging requirements to evolve with developing battery technologies and EV experience. This document will define a set of functional requirements for an Energy Transfer System (ETS) for Electric Vehicles, independent of energy coupling method. It will also serve serve as an “umbrella” document by reference of other SAE documents written or modified to accommodate this application. It will define three different physical system architectures that correspond to: a.

Conductive AC coupling

b.

Inductive coupling

c.

Conductive DC coupling

Requirements will be included and detailed only to the level that will insure functional interoperability for systems with common physical architectures. When designing systems, there will be additional requirements to consider that that do not affect interoperability and are not included here. If requirements are found that affect functional interoperablity, they should be considered for subsequent inclusion under the SAE J2293 umbrella. This document has been jointly developed by the Electric Power Research Institute-National Electric Vehicle Infrastructure Working Council (EPRI-IWC), Charging Controls and Communication Committee and the SAE Electric Vehicle Charging Controls Task Force. The efforts of all who participated are greatly appreciated. TABLE OF CONTENTS 1.   1.1  1.2  1.3 

SCOPE .......................................................................................................................................................... Document Overview ...................................................................................................................................... SAE Document Interrelationships ................................................................................................................. System Classification ....................................................................................................................................

2.  2.1  2.1.1  2.1.2 

REFERENCES ............................................................................................................................................ 10   Applicable Publications ................................................ .............................. ..................................... ...................................... .................................... .................................. ........................ ....... 10  SAE Publications ................ ................................. ................................... .................................... .................................... ................................... ................................... ................................. ............... 10   Additional References ................. .................................. .................................. .................................. .................................. .................................. .................................... ........................... ........ 10

3.  3.1  3.2  3.3  3.4 

DEFINITIONS ............................................................................................................................................. Battery ......................................................................................................................................................... Branch Circuit .............................................................................................................................................. Control Flow ................................................................................................................................................ Control Specification (C-spec) ....................................................................................................................

3.5 3.6   3.7  3.8  3.9 

Data Flow .................................................................................................................................................... 11 Data Flow Diagram (DFD)........................................................................................................................... 11   Decision Table (DT) .................................................................................................................................... 11   Electric Utility Power System (Utility) .......................................................................................................... 11   Electric Utility/Local Load Management System (LMS) .............................................................................. 11   --`,,,``,,`,,,,```,,`,,,,`,`,,``-`-`,,`,,`,`,,`---

Not for Resale, 06/12/2014 11:14:05 MDT

5   7  9  9

10  10  11   11   11  

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

Page 3 of 84

3.10  3.11  3.12  3.13  3.14  3.15  3.16  3.17  3.18  3.19  3.20  3.21  3.22  3.23  3.24  3.25  3.26  3.27 

Electric Vehicle Storage Battery (Battery)................................................................................................... 11   Electric Vehicle Supply Equipment (EVSE) ................................................................................................ 12   Elementary Process .................................................................................................................................... 12   Energy Transfer .......................................................................................................................................... 12   Energy Transfer Strategy ............................................................................................................................ 12  Energy Transfer System (ETS) ................................................................................................................... 12   Functional Decomposition ........................................................................................................................... 12  Interoperability ............................................................................................................................................. 12  Off-Board/On-Board Boundary ................................................................................................................... 12  Power Stage ................ .................................. ................................... ................................... .................................... .................................... ................................... .................................. ...................... ..... 12  Process ....................................................................................................................................................... 12  Process Activation Table (PAT) .................................................................................................................. 13   Process Specification (P-spec) ................................................................................................................... 13   State Transition Diagram (STD) ............... ................................ ................................... ................................... .................................. .................................... .............................. ........... 13  Type A Architecture .................. ................................... ................................... .................................... ................................... ................................... .................................... ........................... ......... 13  Type B Architecture .................. ................................... ................................... .................................... ................................... ................................... .................................... ........................... ......... 13  Type C Architecture .................................................................................................................................... 13   Utility............................................................................................................................................................ 13

4. 

 ABBREVIATIONS AND ACRONYMS ACRON YMS............... ................................. .................................... .................................... ................................... ................................... .................... 13

5.  5.1  5.1.1 

SYSTEM DEFINITION AND CONTEXT ..................................................................................................... 14   External Interfaces ...................................................................................................................................... 14   Electric Utility Power System (Utility) .......................................................................................................... 14  

5.1.2 5.1.3   5.1.4  5.1.5  5.1.6  5.1.7  5.2  5.3  5.4  5.5  5.5.1  5.5.2  5.5.3  5.5.4  5.5.5 

Electric Utility/Local Load Management System (LMS) .............................................................................. 15 Indoor Charge Site Ventilation System (VS) ................. ................................... .................................... ................................... .................................. ......................... ........ 15   EV Storage Battery ..................................................................................................................................... 15   EV Mobility Management System (MMS) ................................................................................................... 15   Other On-Board Vehicle Systems ............................................................................................................... 16   EV User ....................................................................................................................................................... 16  Functional Content ...................................................................................................................................... 16  Functional Constraints ................................................................................................................................ 17  Physical Content ......................................................................................................................................... 18   Physical Constraints .................................................................................................................................... 18  EVSE - EV Connection ............................................................................................................................... 18   EVSE - EV Communication ........................................................................................................................ 18   Type A and Type C EVSE - EV Connection Detection ............................................................................... 18   Type B EVSE - EV Connection Detection................................................................................................... 18   Network Communication Delay ................................................................................................................... 19  

5.5.6

EV Readiness to Communicate .................................................................................................................. 19

 

6.  6.1  6.1.1  6.1.2  6.1.3  6.1.4  6.1.5  6.1.6  6.1.7  6.2  6.2.1  6.2.2  6.2.3 

FUNCTIONAL SYSTEM REQUIREMENTS ............................................................................................... Switch and Convert Electrical Energy ......................................................................................................... Detect AC Present ...................................................................................................................................... Switch AC On/Off ........................................................................................................................................ Convert AC to DC ....................................................................................................................................... Switch DC On/Off ........................................................................................................................................ Detect DC Present ...................................................................................................................................... Detect Switched AC Present ....................................................................................................................... Detect Switched DC Present ...................................................................................................................... Determine Ready to Transfer Electrical Energy ......................................................................................... Determine EVSE Ready to Transfer ........................................................................................................... Determine Vehicle Ready to Transfer ......................................................................................................... Utility Recovery Delay .................................................................................................................................

6.2.4 6.2.5  6.2.6 

Determine Ventilation Fault (Optional) ........................................................................................................ 41 Identify EVSE Location (Optional) .............................................................................................................. 42  Detect Coupling Proximity ........................................................................................................................... 43  

`    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , `  -

 

Not for Resale, 06/12/2014 11:14:05 MDT

19  19   19   21   22  33   34   34   35   36   39   39   40  

 

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

Page 4 of 84

6.3  6.3.1  6.3.2  6.3.3  6.3.4  6.3.5 

Control Transfer of Electrical Energy .......................................................................................................... Select Conversion Configuration ................................................................................................................ Determine Conversion Load Limit ............................................................................................................... Determine Energy Transfer Status ............................................................................................................. Control Power Conversion of Electrical Energy .......................................................................................... (Section Deleted) ........................................................................................................................................

43   45   56   62   64  65

7.  7.1  7.1.1  7.1.2  7.1.3  7.1.4  7.2  7.2.1  7.2.2  7.2.3 

SYSTEM ARCHITECTURE ........................................................................................................................ 65   Requirements Allocation ............................................................................................................................. 66   Functional Group #1 .................................................................................................................................... 66   Functional Group #2 .................................................................................................................................... 67   Functional Group #3 .................................................................................................................................... 68   Functional Group #4 .................................................................................................................................... 68    Architecture Variations ................ ................................. .................................. .................................. .................................. .................................. .................................... ........................... ........ 68  Type A Architecture - AC Conductive ......................................................................................................... 69  Type B Architecture - Inductive ................................................................................................................... 70  Type C Architecture - DC Conductive ......................................................................................................... 71

8. 

VALIDATION ............................................................................................................................................... 73

9. 

DATA DICTIONARY ................................................................................................................................... 73

10.  10.1 

NOTES ........................................................................................................................................................ 84   Marginal Indicia ........................................................................................................................................... 84 

FIGURE 1 - ELECTRIC VEHICLE ENERGY TRANSFER SYSTEM PHYSICAL CONTEXT ................................................ 6   FIGURE 2 - EV ETS FUNCTIONAL GROUP SERIES ENERGY CONVERSION ................................................................. 7   FIGURE 3 - SAE J2293 J2293 PART 1 - PART 2 SPLIT ............... ............................... ................................. .................................. ................................. .................................... ................................. ............. 8  FIGURE 4 - SAE J2293 DOCUMENT INTERRELATIONSHIP .............................................................................................. 9   FIGURE 5 - ELECTRIC VEHICLE ENERGY TRANSFER SYSTEM FUNCTIONAL CONTEXT DIAGRAM ....................... 14   FIGURE 6 - 0.0: ELECTRIC VEHICLE ENERGY TRANSFER SYSTEM DFD .................................................................... 17   FIGURE 7 - 1.0: SWITCH AND CONVERT ELECTRICAL ENERGY DFD................ ................................. .................................. .................................. ....................... ...... 20  FIGURE 8 - 1.3: CONVERT AC TO DC DFD ....................................................................................................................... 23   FIGURE 9 - AC-TO-AC CONVERSION STEADY-STATE RESPONSE .............................................................................. 25   FIGURE 10 - AC-TO-AC CONVERSION TRANSIENT RESPONSE ................................................................................... 26   FIGURE 11 - AC-TO-AC CONVERSION PULSE MODE TIMING ....................................................................................... 29   FIGURE 12 - AC-TO-DC VOLTAGE CONVERSION RESPONSE ...................................................................................... 31   FIGURE 13 - 2.0: DETERMINE READY TO TRANSFER ELECTRICAL ENERGY DFD ................ .................................. ................................... ................. 37  FIGURE 14 - 3.0: CONTROL TRANSFER OF ELECTRICAL ENERGY DFD ..................................................................... 44   FIGURE 15 - 3.1: SELECT CONVERSION CONFIGURATION DFD .................................................................................. 46 FIGURE 16 - RELATIVE CONVERSION STAGE POWER RANGE .................................................................................... 47   FIGURE 17 - 3.2: DETERMINE CONVERSION LOAD LIMITS DFD ................. .................................. .................................. ................................... ................................ .............. 57  FIGURE 18 - 3.2-S1: LMS PREFERENCE OVERRIDE STD ................ ................................. .................................. .................................. ................................... .......................... ........ 58  FIGURE 19 - TYPE A ARCHITECTURE - AC CONDUCTIVE ............................................................................................. 69   FIGURE 20 - TYPE B ARCHITECTURE - INDUCTIVE........................................................................................................ 71   FIGURE 21 - TYPE C ARCHITECTURE - DC CONDUCTIVE ................ ................................. ................................. ................................. .................................... ........................... ........ 72 72                      `   ,   ,         `   ,         `   ,   ,         `   ,   ,         `             `             `         `   ,   ,         `   ,         `   ,   ,   ,   ,         `   ,   ,         `         `         `   ,   ,   ,   ,         `   ,   ,         `         `   ,   ,   ,         `         -

TABLE TABLE TABLE TABLE TABLE TABLE TABLE

1 - DETECT AC PRESENT— PRESENT—INPUT/OUTPUT FLOWS .......................................................................................... 21   2 - SWITCH AC ON/OFF— ON/OFF —INPUT/OUTPUT FLOWS ............................................................................................. 21   3 - 1.3-S1: CONVERSION MODE PAT ................. .................................. .................................. ................................... ................................... .................................... ............................. .......... 22  4 - 1.3-S2: PULSE MODE PAT .................. ..................................... ..................................... ..................................... ..................................... .................................. ................................. ................... .. 22  5 - 1.3-S3: VOLTAGE MODE PAT ................. ................................... .................................... .................................... .................................... ................................... ................................. ................ 22  6 - DETERMINE CONVERSION LOAD— LOAD —INPUT/OUTPUT FLOWS ....................................................................... 24  7 - CONVERT AC-TO-AC— AC-TO-AC—INPUT/OUTPUT FLOWS ............................................................................................ 24  

TABLE TABLE TABLE TABLE

8 -- TIME TO STEADY-STATE ................................... ................. ..................................... ..................................... ................................... .................................. ....................... ..... 27 9 MINIMUM CONVERSION POWER POW ER AND MAXIMUM STAGE ..................................... POWER STEP .................................... .................. ................................. ............... 27  10 - PASS AC POWER— POWER—INPUT/OUTPUT FLOWS ................................................................................................ 28  11 - MODULATE AC POWER— POWER —INPUT/OUTPUT FLOWS ...................................................................................... 29  

 

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

Page 5 of 84

TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE TABLE

12 - CONVERT AC-TO-DC VOLTAGE INPUT/OUTPUT FLOWS........................................................................... 30   13 - CONVERT AC-TO-DC POWER INPUT/OUTPUT FLOWS .............................................................................. 32   14 - MAXIMUM RATIO OF RMS TO AVERAGE POWER POW ER ................ .................................. .................................... .................................... ................................... ................. 33  15 - SWITCH DC ON/OFF INPUT/OUTPUT FLOWS .............................................................................................. 33   16 - DETECT DC PRESENT INPUT/OUTPUT FLOWS .......................................................................................... 34  17 - DETECT SWITCHED AC PRESENT INPUT/OUTPUT FLOWS ...................................................................... 35   18 - DETECT SWITCHED DC PRESENT INPUT/OUTPUT FLOWS ...................................................................... 35   19 - 2-S1: TRANSFER READY DT .......................................................................................................................... 38   20 - 2-S2: AC SWITCH REQUEST DT .................................................................................................................... 38   21 - 2-S3: VENT REQUEST DT ............................................................................................................................... 38   22 - 2-S4: DC SWITCH REQUEST DT .................................................................................................................... 38   23 - DETERMINE EVSE READY TO TRANSFER— TRANSFER—INPUT/OUTPUT FLOWS ...................................................... 39  24 - DETERMINE VEHICLE READY TO TRANSFER— TRANSFER—INPUT/OUTPUT FLOWS.................. .................................... ............................... ............. 40  25 - UTILITY RECOVERY DELAY— DELAY—INPUT/OUTPUT FLOWS ............................................................................... 41  26 - DETERMINE VENTILATION FAULT— FAULT —INPUT/OUTPUT FLOWS .................................................................... 41   27 - IDENTIFY EVSE LOCATION— LOCATION—INPUT/OUTPUT FLOWS ................................................................................ 42  28 - DETECT COUPLING PROXIMITY— PROXIMITY—INPUT/OUTPUT FLOWS ....................................................................... 43   29 - 3.0-S1: VOLTAGE MODE PAT ......................................................................................................................... 45  30 - 3.1-S1: CONVERSION IDENTIFICATION PAT ................................................................................................ 45  31 - 3.1-S2: CONVERSION SELECTION PAT ........................................................................................................ 45   32 - SELECT POWER STAGE INPUT/OUTPUT FLOWS ....................................................................................... 47   33 - IDENTIFY STAGE DESIGN RANGE— RANGE —INPUT/OUTPUT FLOWS .................................................................... 48  34 - MINIMUM STAGE POWER VALUES ............................................................................................................... 49   35 - MAXIMUM STAGE POWER VALUES .............................................................................................................. 50   36 - SELECT CONVERSION CONTROL— CONTROL —INPUT/OUTPUT FLOWS .................................................................... 50 37 - IDENTIFY EVSE CONFIGURATION— CONFIGURATION —INPUT/OUTPUT FLOWS .................................................................... 51    38 - SELECT TRANSFER TYPE— TYPE—INPUT/OUTPUT FLOWS ................................................................................. 52   39 - TRANSFER TYPE OPTIONS ........................................................................................................................... 53   40 - TRANSFER TYPE DEFINITION ....................................................................................................................... 53  41 - VALIDATE TRANSFER TYPE— TYPE—INPUT/OUTPUT FLOWS .............................................................................. 54   42 - IDENTIFY CONVERSION POWER RANGE— RANGE —INPUT/OUTPUT FLOWS ........................................................ 54  43 - IDENTIFY MAXIMUM TRANSFER POWER— POWER —INPUT/OUTPUT FLOWS ........................................................ 55  44 - VALIDATE MAXIMUM TRANSFER POWER— POWER —INPUT/OUTPUT FLOWS ....................................................... 56   45 - DETERMINE INPUT CURRENT LIMIT— LIMIT —INPUT/OUTPUT FLOWS ................................................................ 59   46 - DETERMINE MAXIMUM POWER LEVEL— LEVEL —INPUT/OUTPUT FLOWS ............................................................ 60  47 - DETERMINE MAXIMUM POWER LEVEL MANDATE— MANDATE —INPUT/OUTPUT FLOWS FLOW S ................ ................................. ......................... ........ 60  48 - IDENTIFY BRANCH CIRCUIT RATING— RATING —INPUT/OUTPUT FLOWS ............................................................... 61  49 - DETERMINE ENERGY TRANSFER STATUS— STATUS—INPUT/OUTPUT FLOWS ..................................................... 62  50 - USAGE_MODE DEFINITION................ ................................. ................................... ................................... .................................. ..................................... ..................................... ................... .. 63 

TABLE TABLE TABLE TABLE TABLE TABLE TABLE

51 - CONTROL POWER CONVERSION OF ELECTRICAL ENERGY— ENERGY —INPUT/OUTPUT FLOWS FLOW S ............... ....................... ........ 64 52 - ALLOCATION TO FUNCTIONAL GROUP #1 (FG#1) ...................................................................................... 67   53 - ALLOCATIONS TO FUNCTIONAL GROUP #2 (FG#2) ................................................................................... 67  54 - ALLOCATIONS TO FUNCTIONAL GROUP #3 (FG#3) ................................................................................... 68  55 - ALLOCATIONS TO FUNCTIONAL GROUP #4 (FG#4) ................................................................................... 68  56 - CONTROL PILOT DATA INTERFACE FLOWS ............................................................................................... 69   57 - DATA DICTIONARY .......................................................................................................................................... 74 

1.

                    `   ,   ,         `   ,         `   ,   ,         `   ,   ,         `             `             `         `   ,   ,         `   ,         `   ,   ,   ,   ,         `   ,   ,         `         `         `   ,   ,   ,   ,         `   ,   ,         `         `   ,   ,   ,         `         -

SCOPE

SAE J2293 establishes requirements for Electric Vehicles (EV) and the off-board Electric Vehicle Supply Equipment (EVSE) used to transfer electrical energy energy to an EV from an Electric Utility Power System (Utility) in North America. This document defines, either directly or by reference, all characteristics of the total EV Energy Transfer System (EV-ETS) necessary to insure the functional interoperability of an EV and EVSE of the same physical system architecture. The ETS, of architecture, is Battery responsible conversion of AC can beregardless used to charge the Storage of an for EV,the as shown in Figure 1. electrical energy into DC electrical energy that

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

Page 6 of 84

FIGURE 1 - ELECTRIC VEHICLE ENERGY TRANSFER SYSTEM PHYSICAL CONTEXT The different physical ETS system architectures are identified by the form of the energy that is transferred between the EV and the EVSE, as shown in Figure 2. It is possible for an EV and EVSE to support support more than one architecture. This document does not contain all requirements related to EV energy transfer, as there are many aspects of an EV and EVSE that do not not affect their interoperability. Specifically, this document does does not deal with the characteristics of the interface between the EVSE and the Utility, except to acknowledge the Utility as the source of energy to be transferred to the EV. `    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , `  -

The functional requirements for the ETS are described using a functional decomposition method. This is where requirements are successively broken down into simpler requirements and the relationships between requirements are captured in a graphic form. The requirements are written as the transformation of inputs into outputs, resulting in a model of the total system. Each lowest level requirement is then allocated to one of four functional groups (FG) shown in Figure 2. These groups illustrate the variations of the three different system architectures, as the functions they represent will be accomplished either on an EV or within the EVSE, depending on on the architecture. Physical requirements for the channels used to transfer the power communicate information between EV and the EVSE are then defined as a function of architecture. Systemand architecture variations are referred to asthe follows: a.

Type A—Conductive AC System Architecture— Architecture —Section 7.2.1

b.

Type B—Inductive System Architecture— Architecture—Section 7.2.2

c.

Type C—Conductive DC System Architecture— Architecture —Section 7.2.3

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

Page 7 of 84

FIGURE 2 - EV ETS FUNCTIONAL GROUP SERIES ENERGY CONVERSION The requirements model in Section 6 is not intended to dictate a specific design or physical implementation, but rather to provide a functional description of of the system’s expected operational results. These results can be compared against the operation of any specific specific design. Validation against this document is only appropriate at the physical boundary between the EVSE and EV. See Section 8. 1.1

Document Overview

This document consists of two parts, as shown in Figure 3. Each part is published separately. separately. Part 1 of SAE J2293 (Titled: Functional Requirements and System Architectures) describes the total EV-ETS and allocates requirements to the EV or EVSE for the various system system architectures. It requires an SAE J1850-compliant network for communicating data and control information between an EV and EVSE.

`    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , `  -

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

Page 8 of 84

FIGURE 3 - S AE J2293 PART 1 - PART 2 SPLIT Part 2 of SAE J2293 (Titled: Communication Requirements And Network Architecture) describes the SAE J1850compliant communication network between the EV and EVSE for this application (ETS Network). It treats the network as a system with the EV and EVSE from Part 1 as external elements using the network. Each part has the following outline: Section 1

Scope— Scope —Defines the purpose and content of the document.

Section 2

References— References —Identifies the version and source of all other documents referenced within this document.

Section 3

Definitions—Defines terms that are specific to the subject of this document and are not defined in another Definitions— reference.

Section 4

Abbreviations and Acronyms Acronyms— —Defines abbreviations and acronyms that are specific to the subject of this document and are not defined in another reference.

Section 5

System Definition and Context Context— —Defines the purpose and content of the system by describing the relationship of the system system to its environment (external elements). This section also defines specific constraints that will shape the functional and physical requirements.

Section 6

`    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , `  -

Functional System Requirements Requirements— —Defines the specific requirements of the system using the functional decomposition method. The major functions are decomposed into simple, interrelated elements, without regard for whether a function will be implemented off-board or on-board the EV. These elements form a model of the total requirements.

Section 7

System Architecture Architecture— —Defines the architecture(s) of the system. Each of the elements of the model in Section 6 are assigned to an EV or the EVSE. In Part 1, elements are first grouped into four functional groups. These groups form a series chain of energy conversations, as shown in Figure 2, that is representative of any of the ETS architectures.

Section 8

Validation—Identifies which of the requirements in Section 6 shall be validated for each of the architectures Validation— described in Section Section 7. Specific test procedures are defined as required.

Section 9

Data Dictionary Dictionary— —Defines each flow used as a part of of the requirements model in Section 6. These are the minimum requirements that shall be considered when the system is actually implemented.

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL 1.2

J2293-1 Stabilized FEB2014

Page 9 of 84

SAE Document Interrelationships

Figure 4 shows the interrelationships of SAE J1772, J1772, SAE J1773, SAE J1850, SAE J2178, J2178, and this document. SAE J2293 references these documents and provides additional information to form a complete set  of requirements. There are other documents that will have an influence influence on the design of EV energy transfer system equipment. Where any conflicts exist in the following documents, the documents shall have the following order of precedence: 1.

SAE J2293

2.

SAE J2178

3.

SAE J1850

4.

SAE J1772

5.

SAE J1773

FIGURE 4 - SAE J2293 DOCUMENT INTERRELATIONSHIP 1.3

System Classification

System architecture variations shall be referred to as the following: a.

Type A—Conductive AC System Architecture

b.

Type B—Inductive System Architecture

c.

Type C—Conductive DC System Architecture

Optional content for each each system type is identified separately. See Section 7.

`    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  ` 

Not for Resale, 06/12/2014 11:14:05 MDT

  ,   , `    ,   ,   ,

 

SAE INTERNATIONAL 2.

J2293-1 Stabilized FEB2014

Page 10 of 84

REFERENCES

2.1

Applicable Publications

The following publications form a part of this document to the extent specified h erein. Unless otherwise indicated, the latest issue of SAE publications shall apply. 2.1.1

SAE Publications

 Available from SAE International, Int ernational, 400 Commonwealth Drive, W arrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or 724-776-4970 (outside USA), www.sae.org www.sae.org.. SAE J1715

Electric Vehicle Terminology

SAE J1772

SAE Electric Vehicle Conductive Charge Coupler

SAE J1773

SAE Electric Vehicle Inductively Coupled Charging

SAE J1798

Recommended Practice for Performance Rating of Electric Vehicle Battery Modules

SAE J1850

Class B Data Communications Network Interface

SAE J2178-1

Class B Data Communication Network Messages— Messages—Detailed Header Formats and Physical Address  Assignments

SAE J2178-2

Class B Data Communication Network Messages Messages— —Part 2: Data Parameter Definitions

SAE J2178-3

Class B Data Communication Network Messages Messages— —Part 3: Frame IDs for Single-Byte Forms of Headers

SAE J2178-4

Class B Data Communication Network Messages Messages— —Message Definitions for Three Byte Headers

2.1.2

Additional References

The following publications are mentioned herein and should be considered for reference. 2.1.2.1

NFPA Publication

 Available from. the National Fire Protection Agency, 1 Batterymarch Park, Quincy, MA 02169-7471, Tel: 617-770-3000, www.nfpa.org. www.nfpa.org NFPA-70-1996 2.1.2.2

National Electric Code (NEC)® - Article 625

Other Publication

 Available from Dorset House Publishing, 353 West 12th Street, New York, NY 10014, Tel: 1-800-DH-BOOKS, www.dorsethouse.com.. www.dorsethouse.com Strategies for Real-Time System Specification; Derek J. Hatley and Imtiaz A. Pirbhai, 1988 3. 3.1

DEFINITIONS Battery

See Electric Vehicle Storage Battery.

Not for Resale, 06/12/2014 11:14:05 MDT

                    `   ,   ,         `   ,         `   ,   ,         `   ,   ,         `             `             `         `   ,   ,         `   ,         `   ,   ,   ,   ,         `   ,   ,         `         `         `   ,   ,   ,   ,         `   ,   ,         `         `   ,   ,   ,         `         -

 

SAE INTERNATIONAL 3.2

J2293-1 Stabilized FEB2014

Page 11 of 84

Branch Circuit

The circuit conductors between the final overcurrent device protecting the circuit and the equipment supplied by the circuit. It is typically an unswitched circuit from the service equipment (fuse box) to an appliance. For this application, the appliance is the Electric Vehicle Supply Equipment (EVSE). 3.3

Control Flow

The representation of information, energy, or matter that is used to alter the behavior of a system. These are shown as dotted arrows on a data flow diagram (DFD) to indicate the source and destination of the flow. A flow may be both a data and a control flow, depending on how it is used by the system. This construct is used as a part of the functional decomposition process. 3.4

Control Specification (C-spec)

The description of a combinational or sequential logic operation, the results of which can be used as the input to a process specification (P-spec), or to describe when a process is to be operational. Types include decision tables (DT), state transition diagrams (STD), and process activation tables (PAT). C-specs are shown as a single vertical bar on a data flow diagram (DFD) and are referenced by the DFD level they appear on, followed by an s-index (e.g., 2.3.3-s1, 4-s7). This construct is used as a part of the Functional Decomposition process. 3.5

Data Flow

The representation of information, energy, or physical matter that is transformed by a system. These are shown as solid arrows on a Data Flow Diagram (DFD) to indicate the source and destination of the flow. A flow may be both a data and a control flow, depending on how it is used by the system. This construct is used as a part of the Functional Decomposition process. 3.6

Data Flow Diagram (DFD)

 A diagram that shows the relationship between portions of a larger, more complex process as the process is decomposed. It captures the flow of data, energy, or physical matter between the portions. portions. This construct is used as a part of the Functional Decomposition process. 3.7

Decision Table (DT)

 A type of C-spec that defines the conditions required to determine the value of a combinational logic function. A combinational logic function, as opposed to a sequential logic function, is one where its present value (output) is dependent only on the present value of its arguments (inputs). See State Transition Diagram. 3.8

Electric Utility Power System (Utility)

The system that generates and delivers commercial electrical power to a residential or commercial building or facility. It extends to and includes a billing apparatus (electric meter). 3.9

Electric Utility/Local Load Management System (LMS)

 A system that is responsible to monitor and control co ntrol the load on some portion of the Utility or local premi premises’ ses’ feeder and branch circuits. The goal of control may be to prevent overload or to reduce the cost of energy based on a specific billing agreement. `    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,

3.10 Electric Vehicle Storage Battery (Battery)   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , `  -

 A group of electrochemical cells electrically connected in a series and/or parallel arrangement, the principal purpose of which is to provide DC electrical energy to propel the EV.

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

Page 12 of 84

3.11 Electric Vehicle Supply Equipment (EVSE) The equipment from the branch circuit to, and including, the connector that couples to the electric vehicle inlet, the purpose of which is to transfer electric energy to an EV. This equipment is located off-board the vehicle. 3.12 Elementary Process  A process in (P-spec). a data flow f low diagram (DFD) that as is not decomposed further.Decomposition Its function f unction orprocess. activity is described by a process specification This construct is used a part of the Functional 3.13 Energy Transfer The process of flowing energy to the EV from the EVSE. 3.14 Energy Transfer Strategy  A strategy that accounts for all of the electrical energy needs of an EV and the present status of all on -board equipment, including the EV Storage Battery. It determines the rate that energy is to be transferred to the EV and how how the ETS shall be operated to accomplish this. `    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , `  -

3.15 Energy Transfer System (ETS)  A systemthe that is distributed an Electric Vehicle (EV) and off-board off -board Supply Equipment (EVSE), purpose of whichbetween is to transfer electrical energy from thethe Utility Power Electric System Vehicle (Utility) to the EV Storage Battery and other vehicle loads. The EV and EVSE must be connected together for energy to be transferred. 3.16 Functional Decomposition  A method used to describe the functional and behavioral requirements requi rements of a system, component, or device, captured as a model of the requirements. It involves the hierarchical break-down of complex requirements into simple, easy to describe pieces. The flow of information, energy, and matter between the pieces is captured, along with the process and control requirements. 3.17 Interoperability The condition where components of a system, relative to each other, are able to work together to perform the intended operation of the total system. As an example, example, a 10-mm box-end hand wrench and a 10-mm socket wrench are interoperable, to a 10-mm hex-head bolt. The wrench and the the boltinteroperability are both partsof of the a fastening that the systemrelative will perform as required with either wrench establishes wrenchessystem. and theThe bolt.fact 3.18 Off-Board/On-Board Boundary The point where the ETS is divided into two physical parts. parts. One part becomes realized within the off-board Electric Vehicle Supply Equipment (EVSE). The other part becomes realized within an Electric Vehicle. This boundary will will be in different places, depending on the system architecture. 3.19 Power Stage  A physical and/or logical section of power conversion equipment that can provide conversion over a portion of the total conversion power range of the equipment. The range of a specific specific power stage will overlap with its adjacent stages. 3.20 Process  A function or activity activit y that can be described as an input/output relationship or as the combination of simpler processes. A process is a basic building block of a data flow diagram (DFD).

Not for Resale, 06/12/2014 11:14:05 MDT

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

Page 13 of 84

3.21 Process Activation Table (PAT)  A type of C-spec C- spec that defines the exact conditions required for the indicated P-specs to be active. This construct is used as a part of the Functional Decomposition process. 3.22 Process Specification (P-spec) The descthe description ription of an elementary process. Theshown description may includ text, figures,(DFD). and tables. The description captures input/output relationship for all flows on its related data eflow diagram A P-spec is shown as a circle on a DFD, and has no further “child” processes below it. This construct construct is used as a part of the Functional Decomposition process. 3.23 State Transition Diagram (STD)  A type of C-spec that defines the exact conditions required to determine the value of a sequential logic function. A sequential logic function, as opposed to a combinational logic function, is one where its present value (output) is dependent on the present value of its arguments (inputs) and some number of the previous values of the arguments (previous inputs). See Decision Table. 3.24 Type A Architecture  A form of the ETS where AC electrical energy is transferred from the EVSE to the EV, across the offoff-board/on-board board/on-board boundary, via a conductive coupling. 3.25 Type B Architecture  A form of the ETS where AC electrical energy is transferred from the EVSE to the EV, across the off-board/on-board boundary, via an inductive coupling. 3.26 Type C Architecture  A form of the ETS where DC electrical energy is transferred from the EVSE to the EV, across the off off-board/on-board -board/on-board boundary, via a conductive coupling. 3.27 Utility See Electric Utility Power System. 4.

ABBREVIATIONS AND ACRONYMS

C-spec Control Specification CSMA Carrier Sense Multiple Access DFD Data Flow Diagram DT Decision Table EPRI Electric Power Research Institute ETS Energy Transfer System EV Electric Vehicle EV-ETS Electric Vehicle Energy Transfer System EVSE Electric Vehicle Supply Equipment FG Functional Group FG#m Functional Group m HVAC Heating, Ventilation, Air Conditioning IWC Infrastructure Working Council LMS Load Management System NEC® National Electric Code® P-spec Process Specification PAT Process Activation Table

                    `   ,   ,         `   ,         `   ,   ,         `   ,   ,         `             `             `         `   ,   ,         `   ,         `   ,   ,   ,   ,         `   ,   ,         `         `         `   ,   ,   ,   ,         `   ,   ,         `         `   ,   ,   ,         `         -

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL SAE STD VS 5.

J2293-1 Stabilized FEB2014

Page 14 of 84

SAE International State Transition Diagram Ventilation System

SYSTEM DEFINITION AND CONTEXT

The EV Energy Transfer System (ETS), shown in Figures 1 and 2, converts AC electrical energy from the Utility into DC electrical energy for storage into an EV Storage Battery. The system includes functionality that will be implemented both on-board and off-board as a part of the Electric Vehicle as Supply Equipment (EVSE). This system will not as be partitionedthe intoEV, specific physical components. It will be described groups of functions that are to be implemented part of the EV EV or EVSE, depending on which of three different physical architectures is desired. The different system architectures: Conductive AC (Type A), Inductive (Type B), and Conductive DC (Type C), each perform the same system total function. The difference is that particular sub-functions will be performed either by the EV, or by the EVSE, depending on the architecture. The ETS is defined to include all aspects of the conversion of AC electrical energy into DC electrical energy that will affect the functional interoperability of an EV and EVSE. This includes all aspects of the physical physical connection between an EV and EVSE such as communication signals and power forms. 5.1

External Interfaces

The ETS interacts with other functional systems that are not considered to be within ETS. This is illustrated in Figure 5. These interactions define the environment where the ETS must operate, and are the result of natural and mandated requirements. Some of these external systems are optional. Therefore, any particular ETS may or may not not include an an external interface to interact with them.

FIGURE 5 - ELECTRIC VEHICLE ENERGY TRANSFER SYSTEM FUNCTIONAL CONTEXT DIAGRAM The physical form of the external interfaces of ETS are not defined in this document. Their form will differ based on specific EV or EVSE physical designs. 5.1.1

Electric Utility Power System (Utility)

The Electric Utility Power System is responsible to provide common common AC electrical energy. It is supplied via a branch circuit that is protected as required by national national and local building codes for use with Electric Vehicles. The exact form of the AC electrical energy (i.e., voltage, frequency, etc.) is not of specific interest to the operation operation of the ETS. However, the ETS requires knowledge of the current rating of its branch circuit.

                    `   ,   ,         `   ,         `   ,   ,         `   ,   ,         `             `             `         `   ,   ,         `   ,         `   ,   ,   ,   ,         `   ,   ,         `         `         `   ,   ,   ,   ,         `   ,   ,         `         `   ,   ,   ,         `         -

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL 5.1.2

J2293-1 Stabilized FEB2014

Page 15 of 84

Electric Utility/Local Load Management System (LMS)

The Electric Utility/Local Load Management System (LMS) is an optional system that is responsible to manage the maximum load of the ETS on the Utility or the branch circuit.  An LMS will be located off-board off -board the EV, because it is specific to the Utility Utilit y or bra nch circuit. Therefore, LMS information will be brought into and out of ETS by way of the EVSE. It will then be communicated to the EV if necessary. EVSE may be designed with no acc accommodation ommodation for a connection to a LMS. When a connection is supported, the manufacturer ofthis the EVSE shall define the physical characteristics of the connection to conform to the functional requirements defined in document. Some manufacturers of EVSE may choose to physically include LMS functions within their physical physical designs. For example, a “time of day” function that would that  would allow the EVSE to transfer power only during off-peak rate periods could be incorporated into a specific EVSE design. However, this function would still be considered as outside the ETS’s functional scope. When present, the LMS may establish preferred and mandated load limits that the ETS will not exceed. exceed. A preferred load limit may be ignored if the EV User takes action to do so. A mandated load limit may not be ignored. Also, the ETS will provide load status information back to the LMS. A single LMS may interact with multiple ETS installations. installations. 5.1.3

Indoor Charge Site Ventilation System (VS)

The Indoorfor Charge Site Ventilation (VS) anisoptional system that is system responsible to provide a se specific level EV of ventilation an enclosed (indoor) System site where anisEV being charged. This is optional becau because a specific model may be listed not to require it, per the National Electric Code (NEC®, NFPA-70-1996), Article 625.  A VS will be located off-board the EV, because it i t is specific to the charging char ging site location. Therefore, VS information infor mation will be brought into and out of ETS by way of the EVSE. It will then be communicated to the EV if necessary. EVSE may be designed with no accommodation accommodation for a connection connection to a VS. When a connection is supported, the manufacturer of the EVSE shall define the physical characteristics of the connection to conform to the functional requirements defined in this document. When present, the VS may be required to operate, and to confirm its operation, prior to and during energy transfer. Confirmation should be to detect that the electrical circuit which provides power directly to the ventilation device (fan) is energized. If VS operation is required and no VS is connected to the ETS, or confirmation of operation is not received, then energy transfer will not take place. See NEC®, Article 625 for further information. 5.1.4

EV Storage Battery

The EV Storage Battery is an electrochemical energy storage device that is responsible to provide DC electrical energy to operate an EV traction system and other vehicular systems. It shall be expected that the charging voltages of EV Storage Batteries will vary from 100 to 500 500 V with charging currents up to 400 A DC. The EV Storage Battery is replenished, or charged, when a voltage gr eater eater than the device’s open circuit voltage is applied to it.   5.1.5

EV Mobility Management System (MMS)

The EV Mobility Management System (MMS) is the system or systems that is responsible to control the motion of the vehicle. This includes the propulsion, braking, and parking lock functions. In order to prevent damage to the coupling between the EVSE and EV, it is important that the vehicle be immobilized when a partial or full connection exists. It shall be expected that the MMS will prevent the EV from moving relative to the EVSE when a connection between the two has been indicated by the ETS. This may be accomplished by whatever means the vehicle vehicle manufacturer determines is appropriate. When making the decision to immobilize the vehicle due to a connection, other factors should be considered. For example, if the vehicle is moving at 50 km/h and a connection becomes indicated, then it may be inappropriate to take an immobilizing action.

--`,,,``,,`,,,,```,,`,,,,`,`,,``-`-`,,`,,`,`,,`---

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL 5.1.6

J2293-1 Stabilized FEB2014

Page 16 of 84

Other On-Board Vehicle Systems

Other On-Board Vehicle Systems includes other electrical loads on the vehicle that operate from the same DC electrical energy that is used to charge the EV Storage Battery. These loads may operate during energy transfer and are typically, but not limited to, HVAC and EV Storage Battery thermal management systems. It shall be expected that these these loads may require a total of up to 5.0 kW of electrical power, and that any single load up to 3.0 kW may be switched on or off at any time. The stated expectations are not intended to limit the electrical electrical power used by other vehicle systems. However, these values were used during analysis to help define power stage overlap and power stage range values (see 6.3.1.2) that will prevent the switching of loads from exceeding the limits of a power stage. 5.1.7

EV User

The EV User represents the human operator operator of the ETS. It serves as a source of certain information that may alter the operation of the system. It is also the destination for system status information that may be presented to the human operator. The EV User may be located either off-board an EV while making a connection to EVSE, or on- board in the driver’s seat. Therefore, EV User information will be brought into and out of the ETS by way of the EV and the EVSE. It can then be communicated to the other location if necessary. The physicalisform of this interface willan likely of to operator input selectors available and displays. availability EV User information not intended to require EV consist or EVSE make the information to theThe operator. The of information that is actually presented to the operator, and the method with which it is presented, will likely be different for different EV and EVSE physical designs. Therefore, this interface can be considered to be optional. 5.2

Functional Content

The EV ETS is to provide the following three major functions as shown in Figure 6. 1.

Switch and convert AC electrical energy into DC electrical energy, including accommodation for voltage voltage controlled transfer.

2.

Determine that the system system is ready to properly transfer electrical energy from the Utility to the EV Storage Battery, including accommodation for an external VS.

3.

Control the amount and rate of transfer of electrical energy to the EV Storage Battery, including accommodation for an external LMS.

Each of the three major functions will be decomposed into smaller portions. The data flows between between these portions of ETS will be described to the level necessary to insure interoperability of an EV and EVSE of similar architecture. The functions that could be included as a part of ETS are unlimited. The three previous functions are considered to be the minimum necessary to support the early development of an EV energy transfer infrastructure. As the EV marketplace continues to develop, additional functions will need to be added. Future additions have been considered as architecture decisions were made so that the additions can be made without making existing equipment obsolete.                     `   ,   ,         `   ,         `   ,   ,         `   ,   ,         `             `             `         `   ,   ,         `   ,         `   ,   ,   ,   ,         `   ,   ,         `         `         `   ,   ,   ,   ,         `   ,   ,         `         `   ,   ,   ,         `         -

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

Page 17 of 84

FIGURE 6 - 0.0: ELECTRIC VEHICLE ENERGY TRANSFER SYSTEM DFD 5.3

Functional Constraints

The ETS is based on on the constraint that the EV must be in control of the energy transfer process. This is to say that the EV must control the voltage and current that is presented to the EV Storage Battery and to the Other On-board Vehicle Systems. Consider that the following items will be different for different EVs and that they will continue to evolve evolve as EV designs mature: --`,,,``,,`,,,,```,,`,,,,`,`,,``-`-`,,`,,`,`,,`---

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

a.

Storage Battery’s voltage and current requirements  requirements  

b.

Storage Battery-voltage distribution bus architecture

Page 18 of 84

Since a Storage Battery is specific to an EV, it follows that the EV should   control the process based on whatever parameters it sees fit. The durability the EV Storage battery must also be considered. Thethe durability a strongisfunction it istocharged. Therefore, it isof important for vehicle manufacturers to control how Storageis Battery treatedofinhow order insure customer satisfaction and control warranty costs. 5.4

Physical Content

 An ETS, regardless of architecture (Type A, B, or C), will be implemented in two parts: an EV and an off off-board -board EVSE. There is no requirement requirement for a specific physical physical design within an EV or EVSE. EV designs may distribute functions allocated to the EV to existing physical components within the EV. 5.5 5.5.1

Physical Constraints EVSE - EV Connection

The ETS is based on the physical coupling coupling methods described in SAE J1772 and SAE J1773. These documents have been developed in parallel with this one to insure that these methods are capable of supporting the functional requirements of ETS. 5.5.2

EVSE - EV Communication

SAE J1772 and SAE J1773 define an SAE J1850-compatible channel to provide a communication network between the EV and EVSE. This network is optional for a Type A system and shall be required for Type B and Type C systems. systems. The usage of this network for the ETS application shall be considered “normal vehicle operation messages” as defined by SAE J1850, even though communication to an off-board device is required. 5.5.3

Type A and Type C EVSE - EV Connection Detection

The coupling method described in SAE J1772, in conjunction with the electrical requirements of the Control Pilot circuit, provides for the detection of an EVSE - EV connection by both the EV and EVSE. This is accomplished by transfer of the data items EVSE_Ready and Vehicle_Ready on this circuit. In order for the EV to detect a connection, connection, the EVSE must first indicate that EVSE_Ready is “READY”. See SAE J1772.  J1772.  5.5.4

Type B EVSE - EV Connection Detection

The coupling method described in SAE J1773 provides a dedicated switch for the direct detection of an EVSE - EV connection by the EV. However, the EVSE can only detect a connection connection by monitoring the SAE J1850 channel for activity from the EV. For a Type B architecture, the EV shall conduct some valid communication to the EVSE within 2.0 s of the coupler becoming fully seated in the inlet. The connection detection problem is further complicated by a utility power outage and recovery situation while a Type B EVSE and EV are connected. connected. If the outage is for anything anything but a short period, then the EV will likely go into a low-power stand-by (sleep) mode. When power recovers, the EV will remain inactive until some activity is present on the SAE J1850 channel. For a Type B architecture, the EVSE shall conduct some valid communication to the EV within 2.0 s of recovery from a utility power outage while the coupler is in the inlet. It may not be cost effective for the EVSE to detect when the coupler is in the inlet while the vehicle is in stand-by, or to tell the difference between utility recovery and a typical “off” or “stand -by” to “on” transition. Therefore, the best solution may be to conduct some valid communication to wake the EV whenever the EVSE enters an “on” or o r operational state where energy transfer could occur. --`,,,``,,`,,,,```,,`,,,,`,`,,``-`-`,,`,,`,`,,`---

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL 5.5.5

J2293-1 Stabilized FEB2014

Page 19 of 84

Network Communication Delay

SAE J1850 defines a Carrier Sense Multiple Access (CSMA) network with nondestructive nondestructive contention resolution. This implies that access to the network (sending data) must be controlled in order to in sure that all communication will be accomplished. The minimum interval between consecutive transmissions of any individual data/message for this application shall be 100 ms. All messaging shall be defined with this as a requireme requirement. nt. The maximum allowable latency for any communication required for normal operation shall be 2.5 times the expected time. 5.5.6

EV Readiness to Communicate

SAE J1850 defines that nodes on a network may support a low-power standby (sleep) mode of operation where the node is capable of detecting network signal transitions for the purpose of returning to normal operation (wake (wake-up). -up). This is of particular interest when the power to operate a node is supplied by a battery, such as on an electric or or motor vehicle. The EVSE and EV must always be able to communicate in order to support support certain functions. Therefore, while connected together, the EV and EVSE shall maintain normal operation, or return to normal operation upon detection of network activity. See SAE J1850. 6.

FUNCTIONAL SYSTEM REQUIREMENTS

The following are the functional requirements for the ETS. These describe what the system is supposed to do, within its defined environment. They do not define how these requirements are to be accomplished. These requirements are independent of any particular technology or system architecture.  A simplified form of functional decomposition will be used as a method to describe the requirements of the system. Requirements will be captured as related elements which have inputs and outputs that may represent information, energy, or matter. Each element transforms its inputs into outputs, thus capturing the requirements as a model of the system. Large, complex elements (parents) are broken down into a number of smaller, simpler elements (children). These elements are connected by flows that represent the information, energy or matter that passes between them. For detailed information on this method of system specification refer to Strategies for Real-Time System Specification, by Derek J. Hatley and Imtiaz A. Pirbhai (Dorset House Publishing) The processes that describe ETS are shown in Figure 6. Each process will be decomposed to a level where it can be easily described. Also, an elementary process must be able to be be totally totall y realizable within an EV or EVSE for any of the three system architectures. This allocation will be shown in Section 7, by way of an intermediate architecture that consists of four functional groups. These groups will then be combined in three differe different nt ways that will represent the Type A, B, and C architectures. 6.1

Switch and Convert Electrical Energy

The purpose of this process is to convert convert AC electrical energy into DC electrical energy. It is decomposed as shown in Figure 7. The process will describe each step of conversion as AC is transformed into DC. It also includes switching elements to insure that conductive connections for conductive architectures will make and break connection without electrical potential across the power contacts of the connection. See SAE J1772.  All portions of this process are active (producing output flows) whenever the total process is i s active. There is no explicit process activation control. However, for a process to provide an output flow, all inputs necessary to determine that flow must be available (data triggering). 6.1.1

Detect AC Present

The purpose of this process is to determine if the characteristics of AC_Electrical_Energy from the Electric Utility Power System are such that the ETS will operate properly. The exact characteristics that should be considered when determining if AC_Electrical_Energy is appropriate for proper operation will vary as a function of a specific EVSE design and ETS architecture. Therefore, it is only practical to define general characteristics of AC_Electrical_Energy that can apply to any design or architecture. --`,,,``,,`,,,,```,,`,,,,`,`,,``-`-`,,`,,`,`,,`---

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

FIGURE 7 - 1.0: SWITCH AND CONVERT ELECTRICAL ELECTRICAL ENERGY DFD

--`,,,``,,`,,,,```,,`,,,,`,`,,``-`-`,,`,,`,`,,`---

Page 20 of 84

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL 6.1.1.1

J2293-1 Stabilized FEB2014

Page 21 of 84

Input/Output Flows

See Table 1. TABLE 1 - DETECT AC PRESENT INPUT/OUTPUT FLOWS Flow Name  AC_Electrical_Energy  AC_Present 6.1.1.2

Type Input Output

Initialization

The following shall be performed once upon activation of this process:  AC_Present shall be assigned a value of “FALSE”.  “FALSE”.   6.1.1.3

Operation

The following shall be performed continually while this process is active:  AC_Present shall be assigned a value of “TRUE” if the characteristics of AC_Electrical_Energy are such that the equipment to which this process is allocated shall operate properly, otherwise, it shall be assigned a value of “FALSE”.   6.1.2

Switch AC On/Off

The purpose of this process is to provide on/off switching of AC_Electrical_Energy. AC_Electrical_Energy. The quality of the switch mechanism must be appropriate so that the equipment to which this process is allocated will operate properly. The exact characteristics that should be considered will vary as a function of a specific EVSE design and ETS architecture. Therefore, it is only practical to define general characteristics that can apply to any design or architecture. 6.1.2.1

Input/Output Flows

See Table 2. TABLE 2 - SWITCH AC ON/OFF INPUT/OUTPUT FLOWS Flow Name  AC_Electrical_Energy

Input

 AC_Sw_Request

Input

Sw_AC_Electrical_Energy 6.1.2.2

Type

Output

Initialization

The following shall be performed once upon activation of this process: None. 6.1.2.3

Operation

The following shall be performed continually while this process is active: a.

If the value of AC_Sw_Request is “CLOSED”, then an electrical circuit between Sw_AC_Electrical_Energy and  AC_Electrical_Energy shall be closed and stable within 750 ms.

                    `   ,   ,         `   ,         `   ,   ,         `   ,   ,         `             `             `         `   ,   ,         `   ,         `   ,   ,   ,   ,         `   ,   ,         `         `         `   ,   ,   ,   ,         `   ,   ,         `         `   ,   ,   ,         `         -

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL b.

J2293-1 Stabilized FEB2014

Page 22 of 84

If the value of AC_Sw_Request is not “CLOSED”, th en an electrical circuit between Sw_AC_Electrical_Energy and  AC_Electrical_Energy shall be opened and stable within 250 ms.

6.1.3

Convert AC to DC

The purpose of this process is to convert AC electrical energy in to DC electrical   energy at a controlled level. Energ y conversion will be limited to meet LMS and branch circuit load restrictions. The process is decomposed as shown in Figure 8. This process accommodates accommodates the idea of distinct conversion power stages. It is expected that most equipment which offers a broad range of power conversion will do so in multiple stages with overlapping power ranges. However, it is acceptable to have a single stage. See 6.3.1. Explicit activation of portions of this process shall be controlled as described in: Table 3— 3—1.3-s1: Conversion Mode PAT Table 4— 4—1.3-s2: Pulse Mode PAT Table 5— 5—1.3-s3: Voltage Mode PAT However, for a process to produce an output flow, all input flows necessary to determine that flow must be available (data triggered). TABLE 3 - 1.3-S1: CONVERSION MODE PAT Transfer_Ready

1.3.1 Determine Conversion Load

1.3.2 Convert AC to AC

1.3.6 Convert AC to DC

“FALSE”   “FALSE”

Disable

Disable

Disable

“TRUE”   “TRUE”

Activate

Activate

Activate

TABLE 4 - 1.3-S2: PULSE MODE PAT PAT

Pulse_Mode_Enable

1.3.3 Pass AC Power

1.3.4 Modulate AC Power

“FALSE”   “FALSE”

Activate

Disable

“TRUE”   “TRUE”

Disable

Activate

TABLE 5 - 1.3-S3: VOLTAGE MODE PAT

Voltage_Mode_Enable

1.3.5 Control DC Voltage

“FALSE”   “FALSE”

Disable

“TRUE”   “TRUE”

Activate

--`,,,``,,`,,,,```,,`,,,,`,`,,``-`-`,,`,,`,`,,`---

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

`    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , `  -

6.1.3.1

J2293-1 Stabilized FEB2014

Page 23 of 84

FIGURE 8 - 1.3: CONVERT AC TO DC DFD Determine Conversion Load (Optional)

The purpose of this process is to determine the average current that is being drawn from the Utility to supply the ETS. This information is used by the optional LMS.

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL 6.1.3.1.1

J2293-1 Stabilized FEB2014

Page 24 of 84

Input/Output Flows

See Table 6. TABLE 6 - DETERMINE CONVERSION LOAD INPUT/OUTPUT FLOWS Flow Name Conversion_Load 6.1.3.1.2

Type Output

Initialization

The following shall be performed once upon activation of  this process: None. 6.1.3.1.3

Operation

The following shall be performed continually while this process is active: a.

Conversion_Load shall be assigned a value that that represents the filtered average current of Sw_AC_Electrical_Energy with a first order lag time constant of 10 s. Conversion_Load shall have an accuracy of ±10% or ±2.0 A, whichever is greater, with respect to the actual current of Sw_AC_Electrical_Energy.

b.

Conversion_Load shall increase (decrease) or remain the same as the average current of Sw_AC_Electrical_Energy increases (decreases).

6.1.3.2

Convert AC-to-AC

The purpose of this process is to provide the conversion of Sw_AC_Electrical_Energy into Conv_AC_Electrical_Energy at a controlled level. It is expected that most equipment will have limits imposed at times to prevent damage to itself. These self-protection power limitations are considered to be proper operation, and may be total or partial. If this process is not active then no energy transfer is allowed, the same as for a Power_Level of zero. The exact characteristics that should be considered when determining the self-protection limits of the equipment will vary based on a manufacturers’ specific specific converter design. Therefore, no converter -specific -specific flows are shown into this process. The exact See AC content of Conv_AC_Electrical_Energy is of particular interest for a Type B architecture due to the inductive coupling. SAE J1773 for details. 6.1.3.2.1

Input/Output Flows

See Table 7. TABLE 7 - CONVERT AC-TO-AC INPUT/OUTPUT FLOWS Flow Name

`    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , `  -

Type

Max_Power_Level_Mandate

Input

Stage_Index

Input

Sw_AC_Electrical_Energy

Input

Power_Level Conv_AC_Electrical_Energy Stage_Power_Limited

Input/Output Output Output

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL 6.1.3.2.2

J2293-1 Stabilized FEB2014

Page 25 of 84

Initialization

The following shall be performed once upon activation of this process: Power_Level shall be assigned the value of 0 W. 6.1.3.2.3

Operation

The following shall be performed continually while this process is active. 6.1.3.2.3.1

Power Level

Power_Level shall be assigned the value of Max_Power_Lev el_Mandate, if the value of Power_Level is greater than Max_Power_Level_Mandate, otherwise, no value shall be assigned. 6.1.3.2.3.2

Converted AC Electrical Energy

The power of Conv_AC_Electrical_Energy Conv_AC_Electrical_Energy is a function of the value of Power_Level and Stage_Index. The capabilities and limitations of the present power stage, indicated by Stage_Index, are identified in 6.3.1.2. The following shall apply for values of Stage_Index from 1 to Max_Stage_Index, inclusive. The power of Conv_AC_Electrical_Energy shall be within the “Zero Power Operating Zone”, as shown in Figure 9, for other values of Stage_Index, regardless of the value of Power_Level.

`    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , `  -

FIGURE 9 - AC-TO-AC CONVERSION STEADY-STATE RESPONSE

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL a.

J2293-1 Stabilized FEB2014

Page 26 of 84

Average Steady-State Power —The average steady-state power of Conv_AC_Electrical_Energy, as shown in Figure 9, shall be such that: 1.

The power shall be within the “Steady“Steady -State Operating Zone” for any constant  value of Power_Level greater than or equal to Min_Stage_Power and less than or equal to Max_Stage_Power.

2.

The power shall be within the “Limited Operating Zone” for any constant value of Power_Level greater than or equal to Min_Stage_Power and less than or equal to Max_Stage_Power, if power within t he “Steady-State “Steady-State Operating Zone” can not be achieved because the stage has a self -protection self -protection power limitation in effect.

3.

The power shall be within the “Minimum Power Operating Zone” or the “Zero Power Operating Zone” for any constant value of Power_Level Power_Level less than Min_Stage_Power and greater than 0 (zero). (zero). The power shall not alternate between zones once it has entered the “Zero Power Operating Zone”.

4.

The power shall increase at a rate of less than 1500 W/s while within the “Limited Operating Zone” for a constant value of Power_Level as a self-protection power limit is relaxed.

5.

The power shall be within the “Zero Power Operating Zone” for a constant value of Power_Level of 0 (zero).  (zero).  

The average power at any time shall be the average of the power for the succeeding 5.0 s. b.

Steady-State Power Stability Stability— —The power of Conv_AC_Electrical_Energy, as shown in Figure 10, shall be stable for any constant value of Power_Level such that:

`    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , `  -

FIGURE 10 - AC-TO-AC CONVERSION TRANSIENT RESPONSE

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

c.

J2293-1 Stabilized FEB2014

Page 27 of 84

1.

The instantaneous power power shall remain within the greater of 35 W or ±0.25% of average steady-state power, centered on the average steady-state power.

2.

The average average steady-state steady-state power shall vary less than 100 W/s.

Time To Steady-State Steady-State— —The power level of Conv_AC_Electrical_Energy,  as shown in Figure 10, shall be stable in time Ts for the indicated change in Power_Level, as described in Table 8. Ts shall begin begin when a new value of Power_Level is received. TABLE 8 - TIME TO STEADY-STATE

Previous Value of Power_Level

Present Value of Power_Level is 0 (zero)

Present Value of Power_Level is Less Than the Previous Value of Power_Level

0 (zero)

n/a

n/a

   Powe Power_L r_Lev evel el Watts Ts  -------------------------------------------------------------------- +  1.5  s 2 00 000  W    s 

> 0 (zero)

Ts 0.10 (s)

  Power_Leve evell  Watts  Ts  ------------------------------------------------------- ----------10 000 W/s 

  Power_ ower_Lev Level el  Watt s Ts  --------------------------------------------------------------2 00 000 W    s

Present Value of Power_Level is Greater Than the Previous Value of Power_Level

d.

Time To First Zero Error —The power level of Conv_AC_Electrical_Energy, as shown in Figure 10, may exceed the eventual average steady-state power in time To. There shall be no requirement for the period of time To.

e.

Time To Maximum Overshoot/Undershoot Overshoot/Undershoot— —The power level of Conv_AC_Electrical_Energy, as shown in Figure 10, will reach peak power in time Tp. There shall be no requirement for the period of time Tp.

f.

Maximum Overshoot/Undershoot Overshoot/Undershoot— —The power level of Conv_AC_Electrical_Energy, as shown in Figure 10, shall respond to a positive-going (negative-going) step in Power_Level such that:

g.

1.

The power shall not deviate from the eventual average steady-state power by more (less) than 2.5% of the average.

2.

The power shall increase (decrease) monotonically until it reaches its maximum (minimum) level level at time Tp.

3.

The power shall deviate from the eventual eventual average steady-state power by successfully smaller amounts through time Ts.

Maximum Relative Power Step— Step—The value of P shall be as defined in Table 9, based on the value of Max_Conversion_Power and Min_Stage_Power for the present Stage_Index. The average power of Conv_AC_Electrical_Energy shall increase (decrease) by an amount less than twice any increase (decrease) in Power_Level greater than or equal to P. TABLE 9 - MINIMUM CONVERSION POWER AND MAXIMUM STAGE POWER STEP

Max_Conversion_Power > 10.0 kW > 1.5 kW,  10.0 kW 1.5

kW

Min_Conversion_Power 3.0

kW

180

W

Max_Conversion_Power

Maximum Stage Power Step (P) Maximum Stage Power Step (P) When Min_Stage_Power When Min_Stage_Power >3.0 kW 3.0 kW 35 W

400 W

35 W

400 W

1.5 kW

n/a

                    `   ,   ,         `   ,         `   ,   ,         `   ,   ,         `             `             `         `   ,   ,         `   ,         `   ,   ,   ,   ,         `   ,   ,         `         `         `   ,   ,   ,   ,         `   ,   ,         `         `   ,   ,   ,         `         -

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL h.

J2293-1 Stabilized FEB2014

Page 28 of 84

Maximum Absolute Power Step— Step—The value of P shall be as defined in Table 9, based on the value of Max_Conversion_Power and Min_Stage_Power for the present Stage_Index. The average power of Conv_AC_Electrical_Energy shall remain constant or in crease (decrease) by an amount less than or equal to P for any increase (decrease) in Power_Level less than P.

i.

AC Content Content— —The AC content of Conv_AC_Electrical_Energy shall be as required by SAE J1773.

6.1.3.2.3.3

Stage Power Limited

Stage_Power_Limited shall be assigned a value of “TRUE” if the average steady -state power of Conv_AC_Electrical_Energy is within the “Limited Operating Zone”, as shown in Figure 9, otherwise, it shall be assigned the value of “FALSE”.  “FALSE”.  6.1.3.3

Pass AC Power

The purpose of this process is to provide no modulation of the converted AC power. 6.1.3.3.1

Input/Output Flows

See Table 10. TABLE 10 - PASS AC POWER INPUT/OUTPUT FLOWS Flow Name

6.1.3.3.2

Type

Conv_AC_Electrical_Energy

Input

Mod_AC_Electrical_Energy

Output

Initialization

The following shall be performed once upon activation of this process: None. 6.1.3.3.3

Operation

The following shall be performed continually while this process is active: The voltage, current, and AC content of Mod_AC_Electrical_Energy shall be the same as the voltage and current of Conv_AC_Electrical_Energy. 6.1.3.4

Modulate AC Power (Optional)

The purpose of this process is to provide on/off modulation of converted AC power, where the on and off periods can be controlled. 6.1.3.4.1

Input/Output Flows

See Table 11.

--`,,,``,,`,,,,```,,`,,,,`,`,,``-`-`,,`,,`,`,,`---

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

Page 29 of 84

TABLE 11 - MODULATE AC POWER INPUT/OUTPUT FLOWS Flow Name

Type

Conv_AC_Electrical_Energy

Input

Pulse_Hi_Period

Input

Pulse_Lo_Period

Input

Mod_AC_Electrical_Energy 6.1.3.4.2

Output

Initialization

The following shall be performed once upon activation of this process: None. 6.1.3.4.3

Operation

The following shall be performed continually while this process is active: 6.1.3.4.3.1

On/Off Modulation

The power level of Mod_AC_Electrical_Energy shall alternate between two levels, P0 and P1, as shown in Figure 11, such that:

FIGURE 11 - AC-TO-AC CONVERSION PULSE MODE TIMING a.

The P0 power level shall be greater than or equal to 0 W and less than 25 W.

b.

The duration of the P0 power level shall be Pulse_Lo_Period. It shall range from 5 to 10 000 ms.

c.

The P1 power level shall be the same as the power of Conv_AC_Electrical_Power.

d.

The duration of the P1 power level shall be Pulse_Hi_Period. It shall range from 200 to 10 000 ms.

e.

If the value of Pulse_Hi_Period or Pulse_Lo_Period is not not within the ranges specified, then the P0 and P1 power levels shall both be the same as Conv_AC_Electrical_Energy. --`,,,``,,`,,,,```,,`,,,,`,`,,``-`-`,,`,,`,`,,`---

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL 6.1.3.4.3.2

J2293-1 Stabilized FEB2014

Page 30 of 84

Power Level Transition Time

The power level of Mod_AC_Electrical_Energy shall rise from 10% of P1 to 90% to P1 in the period Tr. Tr shall be less than 100 ms. The power level of Mod_AC_Electrical_Energy shall fall from 90% of P1 to 10% of   P1 in the period period Tf. Tf shall be less than 5 ms. 6.1.3.4.3.3

Pulse Enable Time

The power level of Mod_AC_Electrical_Energy shall transition into the P0 power level for the first time within 500 ms after this process becomes active. 6.1.3.5

Control DC Voltage (Optional)

The purpose of this process is to provide closed-loop control of the AC-to-AC conversion in order to achieve a target DC voltage level. The power level of the conversion will be controlled into the EV Storage Battery and Other On-Board Vehicle System as the load (see 5.1). 5.1). The exact control method will not be specified, except to describe the desired voltage control response. The target voltage, indicated by the value of Voltage_Level, can not change value while this process is active. It is expected that some battery management strategies will require that the DC circuit to the battery be opened and energy transfer to the EV be continued to support the other loads. High power conversion stages may not be able to deliver lower power levels, requiring that a lower power stage be selected. In order to support this optional function, additional restrictions are placed on Min_Conversion_Power (see 6.1.3.5.3.2). This process is not limited by recommended LMS limits (Max_Power_Level). (Max_Power_Level_Mandate) will be applied by other down-stream processes. 6.1.3.5.1

However, required LMS LMS limits

Input/Output Flows

See Table 12. TABLE 12 - CONVERT AC-TO-DC VOLTAGE INPUT/OUTPUT FLOWS Flow Name

6.1.3.5.2

Type

Min_Stage_Power

Input

Max_Stage_Power

Input

Stage_Power_Limited

Input

Voltage_Level

Input

Conv_DC_Electrical_Energy

Input

Power_Level

Output

Power_Out-Of-Range

Output

Pulse_Mode_Enable

Output

Initialization

The following shall be performed once upon activation of this process: None. 6.1.3.5.3

Operation

The following shall be performed continually while this process is active:

                    `   ,   ,         `   ,         `   ,   ,         `   ,   ,         `             `             `         `   ,   ,         `   ,         `   ,   ,   ,   ,         `   ,   ,         `         `         `   ,   ,   ,   ,         `   ,   ,         `         `   ,   ,   ,         `         -

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL 6.1.3.5.3.1

J2293-1 Stabilized FEB2014

Page 31 of 84

Pulse_Mode_Enable

Pulse_Mode_Enable shall be assigned a value of “FALSE”.  “FALSE”.   6.1.3.5.3.2

Power_Level

The voltage of Conv_DC_Electrical_Energy is a function of its power and the l oad it drives. A change in the load will result in a change in the voltage given constant constant power. Power_Level shall be assigned a value such that the voltage of Conv_DC_Electrical_Energy shall provide the following voltage response as shown in Figure 12.

                    `   ,   ,         `   ,         `   ,   ,         `   ,   ,         `             `             `         `   ,   ,         `   ,         `   ,   ,   ,   ,         `   ,   ,         `         `         `   ,   ,   ,   ,         `   ,   ,         `         `   ,   ,   ,         `         -

FIGURE 12 - AC-TO-DC VOLTAGE CONVERSION RESPONSE a.

Minimum Conversion Power —The power of Conv_DC_Electrical_Energy shall be able to be as low as 180% W ± 10% W. See 6.3.1.7.2.3.

b.

Average Steady-State Voltage Voltage— —The average steady-state voltage of Conv_DC_Electrical_Energy into a constant load shall be such that: 1.

The average voltage shall be within ±2.5% of the present value of Voltage_Level

2.

The average average voltage shall vary vary by less than 0.20 0.20 V/s

3.

The average voltage shall not not exceed 512.5 V

The average voltage at any time shall be the average of the instantaneous voltage for the succeeding 5.0 s.

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

Page 32 of 84

c.

Steady-State Voltage Stability Stability— —The voltage of Conv_DC_Electrical_Energy into a constant load shall be within ±0.25% of the average average steady-state voltage while stable. This defines a stable voltage condition.

d.

Maximum Load Step Step— —The instantaneous voltage of Conv_DC_Electrical_Energy shall respond as follows to a step change of 3.0 kW or less in the load of Conv_DC_Electrical_Energy: 1.

The instantaneous voltage shall be stable in 5.0 ms or less (Ts).

2.

The instantaneous voltage shall shall overshoot/undershoot the average steady-state voltage by ±2.5% or less.

e.

Maximum Transient Voltage Voltage— —The voltage of Conv_DC_Electrical_Energy shall not exceed 550.0 V in response to any change in load of Conv_DC_Electrical_Energy.

f.

Maximum Load Rate Of Change Change— —The voltage of Conv_DC_Electrical_Energy shall remain within ±2.5% of the average steady-state voltage in response to a rate of change of 100 W/ms or less in the load of Conv_DC_Electrical_Energy:

g.

Minimum Voltage Step Step— —The average voltage level of Conv_DC_Electrical_Energy shall remain constant or increase (decrease) by an amount of from 1.0 to 2.0 V, for an increase (decrease) in Voltage_Level of 2.0 V.

6.1.3.5.3.3

Power Out of Range

Power_Out_Of_Range shall be assigned a value of “HI” (“LO”) if the value of Power_Level required by the closed -loop voltage control is greater (less) than the active power stage can supply, as defined by Max_Stage_Power and Min_Stage_Power. Otherwise, Power_Out_Of_Range shall not be assigned a value by this process. Stage_Power_Limited may be considered in the determination of Power_Out_Of_Range by this process. 6.1.3.6

Convert AC to DC Power

The purpose of this process is to provide open-loop conversion of AC electrical energy into DC electrical energy. The residual AC content of the DC electrical energy is constrained in order that a current measurement system that measures average current may be designed. This characteristic is also needed to be able to limit the amount of excess heating of the EV Storage Battery due to the AC content. The exact AC content of Mod_AC_Electrical_Energy and the nominal voltage of Conv_DC_Electrical_Energy is of particular interest for a Type B architecture due to the inductive coupling. See SAE J1773 for details. 6.1.3.6.1

Input/Output Flows

See Table 13. TABLE 13 - CONVERT AC-TO-DC POWER INPUT/OUTPUT FLOWS Flow Name

6.1.3.6.2

Type

Mod_AC_Electrical_Energy

Input

Conv_DC_Electrical_Energy

Output

Initialization

The following shall be performed once upon activation of this process: None. 6.1.3.6.3

Operation

The following shall be performed continually while this process is active: --`,,,``,,`,,,,```,,`,,,,`,`,,``-`-`,,`,,`,`,,`---

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL 6.1.3.6.3.1

J2293-1 Stabilized FEB2014

Page 33 of 84

Output Power Level

The power level of Conv_DC_Electrical_Energy shall be within ±1.0% of the power level of Mod_AC_Electrical_Energy minus a constant offset. The power level of Conv_DC_Electrical_Energy shall stay the same or incr ease (decrease) as the power level of Mod_AC_Electrical_Energy stays the same or increases (decreases). 6.1.3.6.3.2

AC Content

The AC content of Conv_DC_Electrical_Energy shall be such that the ratio of the root-mean-squared (rms) power to the average power shall not exceed the value in Table 14, as a function of the average power of Mod_AC_Electrical_Energy. This shall only apply for the P1 power phase when when pulse mode of operation operation is enabled. See 6.1.3.4. The total power content of Conv_DC_Electrical_Energy for all frequencies from 1.0 to 40 Hz shall be less than 0.5% of its total power. TABLE 14 - MAXIMUM RATIO OF RMS TO AVERAGE POWER  Average Power Level of Mod_AC_Electrical_Energy (P)

Maximum Ratio of RMS to Average Power of Conv_DC_Electrical_Energy



6.1.4

P  1.5 kW 1.5 kW < P  10.0 kW

1.60 1.25

P > 10.0 kW

1 + (2.50 kW / P kW)

Switch DC On/Off

The purpose of this process is to provide on/off switching of of DC_Electrical_Energy. This is needed needed to present deenergized circuits across the coupling for a Type C system. system. There may be additional switching of high voltage DC circuits between the EV Storage Battery and other on-board vehicle systems. However, this additional switching does not play a direct role in ETS. The quality of the switch mechanism must be appropriate so that the equipment to which this process is allocated will operate properly. The exact characteristics that should be considered will vary as a function of a specific specific EV design and ETS architecture. Therefore, it is only practical to define general characteristics that can apply to any design or architecture. 6.1.4.1

Input/Output Flows

See Table 15. TABLE 15 - SWITCH DC ON/OFF INPUT/OUTPUT FLOWS Flow Name Conv_DC_Electrical_Energy

Input

DC_Sw_Request

Input

DC_Electrical_Energy Sw_DC_Electrical_Energy 6.1.4.2

Type

Input/Output Output

Initialization

The following shall be performed once upon activation of this process: None.

                    `   ,   ,         `   ,         `   ,   ,         `   ,   ,         `             `             `         `   ,   ,         `   ,         `   ,   ,   ,   ,         `   ,   ,         `         `         `   ,   ,   ,   ,         `   ,   ,         `         `   ,   ,   ,         `         -

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL 6.1.4.3

J2293-1 Stabilized FEB2014

Page 34 of 84

Operation

The following shall be performed continually while this process is active: Conv_DC_Electrical_Energy and Sw_DC_Electrical_Energy shall be considered to be the same internal to this process. If the value of DC_Sw_Request DC_Sw_Request is “CLOSED”, then an electrical circuit between DC_Electrical_Energy and Conv_DC_Electrical_Energy shall be closed and stable within 750 ms. If the value of DC_Sw_Request is not “CLOSED”, then an electrical circuit between DC_Electrical_Energy an d Conv_DC_Electrical_Energy shall be opened and stable within 250 ms. 6.1.5

Detect DC Present

The purpose of this process is to determine if the characteristics of DC_Electrical_Energy are appropriate for proper charging of the EV storage battery. The exact characteristics that should be considered when determining if DC_Electrical_Energy is acceptable for the charging of the EV storage battery will vary as a function of a specific EV Storage battery’s design and construction. It is , therefore, only practical to define general characteristics of DC_Electrical_Energy that can apply to any design or construction. 6.1.5.1

Input/Output Flows

See Table 16. TABLE 16 - DETECT DC PRESENT INPUT/OUTPUT FLOWS Flow Name DC_Electrical_Energy DC_Present 6.1.5.2

Type Input Output

Initialization

The following shall be performed once upon activation of this process: None 6.1.5.3

Operation

The following shall be performed continually while this process is active: DC_Present shall be assigned a value of “TRUE” if the characteristics of DC_Ele ctrical_Energy are such that it is acceptable to charge the EV Storage Battery, otherwise, it shall be assigned a value of “FALSE”.   6.1.6

Detect Switched AC Present

The purpose of this process is to determine if the characteristics of Sw_AC_Electrical_Energy are such that the ETS will operate properly. The exact characteristics that should be considered when determining if Sw_AC_Electrical_Energy is appropriate for proper system operation will vary vary as a function of a specific specific system’s design and and architecture. It It   is, therefore, only practical to define general characteristics of Sw_AC_Electrical_Energy that can apply to any design or architecture.

-

`    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  ` 

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL 6.1.6.1

J2293-1 Stabilized FEB2014

Page 35 of 84

Input/Output Flows

See Table 17. TABLE 17 - DETECT SWITCHED AC PRESENT INPUT/OUTPUT FLOWS Flow Name Sw_AC_Electrical_Energy Sw_AC_Present 6.1.6.2

Type Input Output

Initialization

The following shall be performed once upon activation of this process: None 6.1.6.3

Operation

The following shall be performed continually while this process is active: Sw_AC_Present shall be assigned a value of “TRUE” if the characteristics of Sw_AC_Electrical_Energy are such that the equipment to which this process is allocated shall operate properly, otherwise, it shall be assigned a value of “FALSE”.   6.1.7

Detect Switched DC Present

The purpose of this process is to determine if the characteristics of Sw_DC_Electrical_Energy are such that the ETS will operate properly. For a Type C (DC conductive) system this may include the verification that the EVSE has pre-charged its high-voltage capacitive elements that will be powered by Sw_DC_Electrical_Energy. The exact characteristics that should be considered when determining if Sw_DC_Electrical_Energy is appropriate for proper system operation will vary as a function of a specific system’s design and ar chitecture. chitecture. It is, therefore, only practical to define general characteristics of Sw_DC_Electrical_Energy that can apply to any design or architecture. 6.1.7.1

Input/Output Flows

See Table 18. TABLE 18 - DETECT SWITCHED DC PRESENT INPUT/OUTPUT FLOWS Flow Name Sw_DC_Electrical_Energy Sw_DC_Present `    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , `  -

6.1.7.2

Type Input Output

Initialization

The following shall be performed once upon activation of this process: None. 6.1.7.3

Operation

The following shall be performed continually while this process is active: Sw_DC_Present shall be assigned a value of “TRUE” if the characteristics of Sw_DC_Electrical_Energy are such that the equipment to which this process is allocated shall operate properly, otherwise, it shall be assigned a value of “FALSE”.  

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL 6.2

J2293-1 Stabilized FEB2014

Page 36 of 84

Determine Ready to Transfer Electrical Energy

The purpose of this process process is to determine if the ETS is ready to transfer electrical energy. It is decomposed as shown in Figure 13, and contains logic functions that are detailed in the following tables: Table 19— 19—2-s1: Transfer Ready DT Table 20— 20—2-s2: AC Switch Switch Request DT Table 21— 21—2-s3: Vent Request DT Table 22— 22—2-s4: DC Switch Request DT  All portions of this process are active (producing output flows) whenever the total process is active. There is no no explicit process activation control. However, for a process to provide an output flow, all inputs necessary to determine that flow must be available (data triggering).

--`,,,``,,`,,,,```,,`,,,,`,`,,``-`-`,,`,,`,`,,`---

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

FIGURE 13 - 2.0: DETERMINE READY TO TRANSFER ELECTRICAL ENERGY DFD

--`,,,``,,`,,,,```,,`,,,,`,`,,``-`-`,,`,,`,`,,`---

Page 37 of 84

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

Page 38 of 84

TABLE 19 - 2-S1: TRANSFER READY DT

Sw_AC_Present

DC_Sw_Request = “CLOSED”  “CLOSED” 

Sw_DC_Present

Power_Out_Of_Range = “OK”  “OK” 

Transfer_Ready

“FALSE”   “FALSE”

Do Not Care

Do Not Care

Do Not Care

“FALSE”   “FALSE”

Do Not Care

“FALSE”   “FALSE”

Do Not Care

Do Not Care

“FALSE”   “FALSE”

Do Not Care

Do Not Care

“FALSE”   “FALSE”

Do Not Care

“FALSE”   “FALSE”

Do Not Care

Do Not Care

Do Not Care

“FALSE”   “FALSE”

“FALSE”   “FALSE”

“TRUE”   “TRUE”

“TRUE”   “TRUE”

“TRUE”   “TRUE”

“TRUE”   “TRUE”

“TRUE”   “TRUE”

TABLE 20 - 2-S2: AC SWITCH REQUEST DT

`    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , `  -

Vent_ Request

Vent_ Confirmed

 AC_ Present

Recovery_ Timeout

EVSE_ Ready= “READY”   “READY”

Vehicle_ Ready= “READY”   “READY”

Transfer_ Type_Valid

“FALSE”   “FALSE”

Do Not Care

“TRUE”   “TRUE”

“TRUE”   “TRUE”

“TRUE”   “TRUE”

“TRUE”   “TRUE”

“TRUE”   “TRUE”

“CLOSE”   “CLOSE”

“TRUE”   “TRUE”

“TRUE”   “TRUE”

“TRUE”   “TRUE”

“TRUE”   “TRUE”

“TRUE”   “TRUE”

“TRUE”   “TRUE”

“TRUE”   “TRUE”

“CLOSE”   “CLOSE”

“TRUE”   “TRUE”

“FALSE”   “FALSE”

“TRUE”   “TRUE”

“TRUE”   “TRUE”

“TRUE”   “TRUE”

“TRUE”   “TRUE”

“TRUE”   “TRUE”

“OPEN”   “OPEN”

Do Not Care

Do Not Care

“FALSE”   “FALSE”

Do Not Care

Do Not Care

Do Not Care

Do Not Care

“OPEN”   “OPEN”

Do Not Care

Do Not Care

Do Not Care

“FALSE”   “FALSE”

Do Not Care

Do Not Care

Do Not Care

“OPEN”   “OPEN”

Do Not Care

Do Not Care

Do Not Care

Do Not Care

“FALSE”   “FALSE”

Do Not Care

Do Not Care

“OPEN”   “OPEN”

Do Not Care

Do Not Care

Do Not Care

Do Not Care

Do Not Care

“FALSE”   “FALSE”

Do Not Care

“OPEN”   “OPEN”

Do Not Care

Do Not Care

Do Not Care

Do Not Care

Do Not Care

Do Not Care

“FALSE”   “FALSE”

“OPEN”   “OPEN”

 AC_Sw_ Request

TABLE 21 - 2-S3: VENT REQUEST DT Vent_Exempt

EVSE_Location

Vent_Required

Vent_Request

“TRUE”   “TRUE”

Do Not Care

Do Not Care

“FALSE”   “FALSE”

“FALSE”   “FALSE”

“OUTDOOR”   “OUTDOOR”

Do Not Care

“FALSE”   “FALSE”

“FALSE”   “FALSE”

“INDOOR”   “INDOOR”

“FALSE”   “FALSE”

“FALSE”   “FALSE”

“FALSE”   “FALSE”

“INDOOR”   “INDOOR”

“TRUE”   “TRUE”

“TRUE”   “TRUE”

TABLE 22 - 2-S4: DC SWITCH REQUEST DT

DC_Present

Coupling_ Proximity_ Detected

EVSE_Ready = “READY”  “READY” 

Usage_Mode Vehicle_Ready NOT= = “READY”  “READY”  “NO_TRANSER”  DC_Sw_Request “NO_TRANSER” 

“FALSE”   “FALSE”

Do Not Care

Do Not Care

Do Not Care

Do Not Care

“OPEN”   “OPEN”

Do Not Care

“FALSE”   “FALSE”

Do Not Care

Do Not Care

Do Not Care

“OPEN”   “OPEN”

Do Not Care

Do Not Care

“FALSE”   “FALSE”

Do Not Care

Do Not Care

“OPEN”   “OPEN”

Do Not Care

Do Not Care

Do Not Care

“FALSE”   “FALSE”

Do Not Care

“OPEN”   “OPEN”

Do Not Care

Do Not Care

Do Not Care

Do Not Care

“FALSE”   “FALSE”

“OPEN”   “OPEN”

“TRUE”   “TRUE”

“TRUE”   “TRUE”

“TRUE”   “TRUE”

“TRUE”   “TRUE”

“TRUE”   “TRUE”

“CLOSE”   “CLOSE”

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL 6.2.1

J2293-1 Stabilized FEB2014

Page 39 of 84

Determine EVSE Ready to Transfer

The purpose of this process is to determine if all off-vehicle equipment within the context of the ETS is in a state where it is ready to support support power transfer from the Utility to the EV. This off-vehicle off- vehicle equipment is generally referred to as electric vehicle supply equipment (EVSE). Only conditions that directly relate to the readiness of EVSE should be considered here. Issues related to site ventilation ventilation should not be considered here, as these are considered as a part of the control structure. The exact characteristics considered when determining that the EVSE is ready to support power transfer will vary based on manufacturers’ specific specific EVSE designs. Further, the EVSE’s functional content will vary depending on the ETS architecture (see Section 7). Therefore, it is only practical to define general requirements that could apply to any design design or architecture. This results in no explicit flows into this process. Items for consideration should should include, but not be limited to: a.

Access doors/panels closed

b.

Internal power supply outputs within operational specification

c.

Internal component temperatures within operational specification

6.2.1.1

Input/Output Flows

See Table 23. TABLE 23 - DETERMINE EVSE READY TO TRANSFER INPUT/OUTPUT FLOWS Flow Name EVSE_Ready `    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , ` 

6.2.1.2

Type Output

Initialization

The following shall be performed once upon activation of this process: EVSE_Ready shall be assigned the value of “NOT_READY”.     ,   , `  -

6.2.1.3

Operation

The following shall be performed continually while this process is active: EVSE_Ready shall be assigned the value of “READY” if the present state of the EVSE is such that it can supp ort energy transfer properly, otherwise, a value of “NOT_READY” shall be assigned.  assigned.   Determination of EVSE_Ready shall not take into account data or conditions that are used in the determination of Transfer_Ready, AC_Sw_Request, DC_Sw_Request, and Vent_Request, as shown in Figure 13. 6.2.2

Determine Vehicle Ready to Transfer

The purpose of this process is to determine if all on-board vehicle equipment within the context of the ETS is in a state where it is ready to support power power transfer from the Utility to the EV. Only conditions that directly relate to the readiness of vehicles should be considered here. Issues related to site ventilation should not be considered here, as these these are considered as a part of the control structure.

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

Page 40 of 84

The exact characteristics considered when determining that the vehicle is ready to support power transfer will vary based on manufacturers’ specific EV designs. Further, the vehicle’s functional content will vary vary depending on the ETS architecture (see Section 7). Therefore, it is only practical to define general requirements that could apply to any design or architecture. This results in no explicit flows into this process. Items for consideration should include, but not be limited to: a.

Vehicle in PARK, or parking brake set

b.

Access doors/panels closed

c.

Internal power supply outputs within specification

d.

Internal component temperatures within specification

e.

High voltage equipment properly isolated/grounded

6.2.2.1

Input/Output Flows

See Table 24. TABLE 24 - DETERMINE VEHICLE READY TO TRANSFER INPUT/OUTPUT FLOWS Flow Name Vehicle_Ready 6.2.2.2

Type Output

Initialization

The following shall be performed once upon activation of this process: Vehicle_Ready shall be assigned a value of “NOT_READY”.   6.2.2.3

Operation

The following shall be performed continually while this process is active: Vehicle_Ready shall be assigned a value of “READY” if the present state of the EV is such that it can support energy transfer properly, otherwise, a value of “NOT_READY” shall be assigned.  assigned.   Determination of Vehicle_Ready shall not take into account data or conditions that are used in the determination of Transfer_Ready, AC_Sw_Request, DC_Sw_Request, and Vent_Request, as shown in Figure 13. 6.2.3

Utility Recovery Delay

The purpose of this process is to provide a random time delay to the start of the energy transfer process after a Utility recovers from a power outage. This delay is only required when the Utility recovers while an EV is connected to the EVSE. The delay will allow an opportunity for the Utility’s automatic fault fault recovery equipment to operate without the load of EVs on the Utility. Further, the random element has the effect of slowly increasing the total EV load for the recovering portion of the Utility. This delay may be considered inconvenient by the EV User. Therefore, this process allows the User to override the delay by briefly disconnecting the EVSE from the EV. Allowing an individual User to override override the delay does not not significantly reduce the effectiveness of the random delay because of the low probability that a large percentage of Users will override at the same time. --`,,,``,,`,,,,```,,`,,,,`,`,,``-`-`,,`,,`,`,,`---

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL 6.2.3.1

J2293-1 Stabilized FEB2014

Page 41 of 84

Input/Output Flows

See Table 25. TABLE 25 - UTILITY RECOVERY DELAY INPUT/OUTPUT FLOWS Flow Name  AC_Present

Input

Vehicle_Ready

Input

Recovery_Timeout 6.2.3.2

Type

Output

Initialization

The following shall be performed once upon activation of this process: None. 6.2.3.3

Operation

The following shall be performed continually while this process is active:                     `   ,   ,         `   ,         `   ,   ,         `   ,   ,         `             `             `         `   ,   ,         `   ,         `   ,   ,   ,   ,         `   ,   ,         `         `         `   ,   ,   ,   ,         `   ,   ,         `         `   ,   ,   ,         `         -

Recovery_Timeout shall be assigned a value of “TRUE” if either of the following 2 items are true, t rue, otherwise, it shall be assigned a value of “FALSE”:  “FALSE”:   a.  AC_Present is “TRUE” continually for a random period of time or longer. The random period of time shall be between 120 to 720 s with a resolution and accuracy of 1.0 s or less. A new random period shall be selected and the timing restarted each time AC_Present becomes “TRUE”.  “TRUE”.   b.

Vehicle_Ready is “UNDEFINED” continually for 5.0 s 5.0  s or longer during the timing of the 120 to 720 s random period. The timing of the 5.0 s continual period shall be restarted restarted each time AC_Present becomes “TRUE”.  “TRUE”.  

6.2.4

Determine Ventilation Fault (Optional)

The purpose of this process is to determine if the Indoor Charge Site Ventilation System is non-functional or not available. This is accomplished by allowing a fixed period of time for a functioning VS to confirm normal operation. 6.2.4.1

Input/Output Flows

See Table 26. TABLE 26 - DETERMINE VENTILATION FAULT INPUT/OUTPUT FLOWS Flow Name Vent_Confirmed

Input

Vent_Request

Input

Vent_Fault 6.2.4.2

Type

Output

Initialization

The following shall be performed once upon activation of this process: None.

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL 6.2.4.3

J2293-1 Stabilized FEB2014

Page 42 of 84

Operation

The following shall be performed continually while this process is active: Vent_Fault shall be assigned a value of “TRUE” if both of the following 2 items  are true, otherwise, it shall sh all be assigned a value of “FALSE”:  “FALSE”:  a.

Vent_Request has a value of “TRUE” continually for 10.0 s 10.0  s or longer.

b.

Vent_Confirmed has a value of “FALSE”.  “FALSE”.  

The resolution and accuracy of all timing parameters shall be 1.0 s or less. 6.2.5

Identify EVSE Location (Optional)

The purpose of this optional process is to identify the location, indoor or outdoor, where the EVSE is installed, and to identify if the EVSE is exempt from the charge site mechanical ventilation requirements identified in the National Electric Code, Article 625. EVSE may be designed for indoor or for outdoor service, or the equipment may be suitable for either. In that case, EVSE will accommodate some method for the location to be identified (switches, jumpers, etc.) when the equipment is installed. Further, some EVSE may be exempt from the need for charge site ventilation, regardless of the design of an EV that may                     `   ,   ,         `   ,         `   ,   ,         `   ,   ,         `             `             `         `   ,   ,         `   ,         `   ,   ,   ,   ,         `   ,   ,         `         `         `   ,   ,   ,   ,         `   ,   ,         `         `   ,   ,   ,         `         -

be charged by it.

The exact characteristics that should be considered to determine the EVSE location and ventilation status will vary based on manufacturers’ specific equipment designs. Therefore, no specific flows are shown into this process.  process.   6.2.5.1

Input/Output Flows

See Table 27. TABLE 27 - IDENTIFY EVSE LOCATION INPUT/OUTPUT FLOWS Flow Name

6.2.5.2

Type

EVSE_Location

Output

Vent_Exempt

Output

Initialization

The following shall be performed once upon activation of this process: Vent_Exempt shall be assigned the value of “TRUE” if the EVSE is considered to be exempt from the need for specific charge site mechanical ventilation, per the National Electric Code (NEC®, NFPA-70-1996), Article 625. Otherwise, Vent_Exempt shall be assigned the value of “FALSE”.   EVSE_Location shall be assigned the value of “INDOOR” if the EVSE is considered to be located indoors and that specific charge site mechanical ventilation may be required, per the National Electric Code (NEC®, NFPA-70-1996),  Article 625. Otherwise, EVSE_Location shall be assigned the value of “OUTDOOR”. “OUT DOOR”. In the case where Vent_Exempt is “TRUE,” the value that is assigned to EVSE_Locations, if any, a ny, is of no consequence. 6.2.5.3

Operation

The following shall be performed continually while this process is active: None.

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL 6.2.6

J2293-1 Stabilized FEB2014

Page 43 of 84

Detect Coupling Proximity

The purpose of this process is to determine if the characteristics of the connection between the EVSE and EV are such that the EV should be immobilized to prevent possible damage to the power coupling. The exact characteristics that should be considered when determining if a full  or partial connection exists will vary as a function of the specific specific EV design and ETS architecture. Therefore, it is only practical to define general characteristics of the coupling that could apply to any design or architecture. 6.2.6.1

Input/Output Flows

See Table 28. TABLE 28 - DETECT COUPLING PROXIMITY INPUT/OUTPUT FLOWS Flow Name `    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , `  -

Coupling_Proximity_Detected

6.2.6.2

Type Output

Initialization

The following shall be performed once upon activation of this process: None. 6.2.6.3

Operation

The following shall be performed continually while this process is active: Coupling_Proximity_Detected shall be assigned a value of “TRUE” if the presence or probability of a connection between the EVSE and EV is such that the vehicle should be immobilized to prevent possible damage to the power coupling. Otherwise, Coupling_Proximity_Detected shall be assigned a value v alue of “FALSE”.  “FALSE”.   6.3

Control Transfer of Electrical Energy

The purpose of this process is to control the transfer of electrical energy through the ETS, from the Electric Utility Power System to the EV Storage Battery. Battery. It is decomposed as shown shown in Figure 14.

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

FIGURE 14 - 3.0: CONTROL TRANSFER OF ELECTRICAL ENERGY DFD

--`,,,``,,`,,,,```,,`,,,,`,`,,``-`-`,,`,,`,`,,`---

Page 44 of 84

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

Page 45 of 84

Explicit activation of portions of this process shall shall be as described by Table 29. However, for any process to produce an output flow, all inputs necessary to determine that output must be available (data triggered). TABLE 29 - 3.0-S1: VOLTAGE MODE PAT

6.3.1

3.4 Control Power Conversion of

3.5 Control Voltage Conversion

Voltage_Mode_Enable

Electrical Energy

of Electrical Energy

“FALSE”   “FALSE”

Activate

Disable

“TRUE”   “TRUE”

Disable

Activate

Select Conversion Configuration

The purpose of this process is to identify the power conversion configuration and capabilities of the ETS, and then to select from the available options. It is decomposed decomposed as shown in Figure 15. It is expected that most equipment which offers a broad range of power conversion level will do so in distinct stages with overlapping power ranges as shown in Figure 16. However, it is acceptable to have a single stage. stage. Explicit activation of portions of this process shall be controlled as described in: a.

Table 30 30— —3.1-s1: Conversion Identification PAT

b.

Table 31 31— —3.1-s2: Conversion Selection PAT

However, for a process to produce an output flow, all input flows necessary to determine that flow must be available (data triggered). TABLE 30 - 3.1-S1: CONVERSION IDENTIFICATION PAT

Transfer_Ready

Max_Transfer_ Power_Valid

3.1.2 Identify Stage Design Range

3.1.7 Identify Conversion Power Range

“FALSE”   “FALSE”

“FALSE”   “FALSE”

Disable

Disable

“FALSE”   “FALSE”

“TRUE”   “TRUE”

Activate

Activate

“TRUE”   “TRUE”

Do Not Care

Disable

Activate

TABLE 31 - 3.1-S2: CONVERSION SELECTION PAT

`    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , `  -

Transfer_Ready

3.1.1 Select Power Stage

3.1.3 Select Conversion Control

3.1.5 Select Transfer Type

“FALSE”   “FALSE”

Activate

Activate

Activate

“TRUE”   “TRUE”

Disable

Disable

Disable

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

`    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , `  -

J2293-1 Stabilized FEB2014

FIGURE 15 - 3.1: SELECT CONVERSION CONFIGURATION DFD

Page 46 of 84

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

Page 47 of 84

FIGURE 16 - RELATIVE CONVERSION STAGE POWER RANGE 6.3.1.1

Select Power Stage

The purpose of this process is to select which power stage of the AC-to-AC conversion equipment is to be active. The power conversion capabilities of the present stage are examined and a decision is made if that stage is acceptable for energy transfer. If not, a different stage is selected. It may be necessary to examine all the capabilities of all stages before a decision can be made. The exact characteristics that should be considered to select the active power stage will vary based on manufacturers’ specific vehicle designs and the present energy transfer strategy. 6.3.1.1.1

Input/Output Flows

See Table 32. TABLE 32 - SELECT POWER STAGE INPUT/OUTPUT FLOWS Flow Name Max_Conversion_Power

Input

Max_Stage_Index

Input

Max_Stage_Power

Input

Min_Conversion_Power

Input

Min_Stage_Power

Input

Stage_Index

Input

Power_Out_Of_Range Requested_Stage_Index 6.3.1.1.2

Type

Input/Output Output

Initialization

The following shall be performed once upon activation of this process: process: None.

                    `   ,   ,         `   ,         `   ,   ,         `   ,   ,         `             `             `         `   ,   ,         `   ,         `   ,   ,   ,   ,         `   ,   ,         `         `         `   ,   ,   ,   ,         `   ,   ,         `         `   ,   ,   ,         `         -

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL 6.3.1.1.3

J2293-1 Stabilized FEB2014

Page 48 of 84

Operation

The following shall be performed continually while this process is active: 6.3.1.1.3.1

Requested Stage Index

Requested_Stage_Index shall be assigned a value that represents which po wer stage of the AC-to-AC conversion equipment is to be active such that: a.

The value shall range between 0 (zero) and Max_Stage_Index, inclusive.

b.

The value shall be selected such that the values of Min_Stage_Power, Max_Stage_Power are are acceptable for the present energy transfer strategy.

c.

The value shall shall be 0 (zero) to select a null stage, if no stage is acceptable for the present energy transfer strategy.

The value of Power_Out_Of_Range and Stage_Index should be considered when determining Requested_Stage_Index. If the value of Power_Out_Of_Range Power_Out_Of_Range is “LO” (“HI”), this indicates that a value that is less (greater) than Stage_Index should be assigned to Requested_Stage_Index. 6.3.1.1.3.2

Power Out of Range

Power_Out_Of_Range shall be assigned the value of “OK” if the values of Min_Stage_Power, M ax_Stage_Power, and Stage_Index are acceptable for the present energy transfer strategy and the value of Stage_Index is not 0 (zero). Otherwise, no value shall be assigned. 6.3.1.2

Identify Stage Design Range

The purpose of this process is to identify the unlimited steady-state power conversion capabilities of the selected AC-to AC conversion power stage. The capabilities have been constrained so that adjacent power stages must have a minimum amount of overlap. The actual maximum power that a stage can provide may be limited to a value less than the identified maximum capability. See 6.1.3.2.3.3. The exact characteristics that should be considered to identify the power conversion capabilities will vary based on manufacturers’ specific converter designs. Therefor e, e, no converter-specific flows are shown into this process. 6.3.1.2.1

Input/Output Flows

See Table 33. TABLE 33 - IDENTIFY STAGE DESIGN RANGE INPUT/OUTPUT FLOWS Flow Name

Type

Max_Stage_Index

Input

Requested_Stage_Index

Input

Stage_Index

Output

Max_Stage_Power

Output

Min_Stage_Power

Output

--`,,,``,,`,,,,```,,`,,,,`,`,,``-`-`,,`,,`,`,,`---

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL 6.3.1.2.2

J2293-1 Stabilized FEB2014

Page 49 of 84

Initialization

The following shall be performed once upon activation of this process: None. 6.3.1.2.3

Operation

The following shall be performed continually while this process is active: 6.3.1.2.3.1

Minimum Stage Power

Min_Stage_Power shall be assigned a value that repres ents the minimum steady-state power of Conv_AC_Electrical_Energy for the power stage indicated by Requested_Stage_Index, given the design of the stage such that: a.

The steady-state power of Conv_AC_Electrical_Energy shall be less than Min_Stage_Power +10%, and shall be greater than Min_Stage_Power – Min_Stage_Power  –10% 10% for the case where the value of Power_Level is equal to Min_Stage_Power, as shown in Figure 9.

b.

The value shall be Min_Conversion_Power for the case where the value of Requested_Stage_Index is 1 (one).

c.

The value shall be 0 W for the case where the value of Requested_Stage_Index Requested_Stage_Index is less than or equal to 0 (zero), or greater than Max_Stage_Index.

d.

The value shall be as indicated in Table 34, based on the value of Max_Stage_Power Max_Stage_Power for the adjacent lower power stage, if any. TABLE 34 - MINIMUM STAGE POWER VALUES Max_Stage_Power for Power Stage n >6.0 kW >2.0 kW, 6.0 kW 2.0

6.3.1.2.3.2

kW

Min_Stage_Power for Power Stage n+1 (Max_Stage_Power,

for Stage n) – n)  – 2.0  2.0 kW

10.0 kW >1.5 kW, 10.0 kW 1.5

6.3.1.2.3.3

Max_Stage_Power Min_Stage_Power Min_Stage_Power

+ 12.0 kW + 4.0 kW

Min_Stage_Power

kW

Stage Index

Stage_Index shall be assigned the value of Requested_Stage_Index, if the value of Requested_Stage_Index is an integer between 1 and Max_Stage_Index, inclusive. Otherwise, a value of 0 (zero) shall be assigned. 6.3.1.3

Select Conversion Control

The purpose of this process is to select the method of conversion control. There are two methods available: available: power control and voltage control. The exact characteristics that should be considered to determine the desired conversion control will vary based on manufacturers’ specific transfer strategy. Therefore, no strategy specific flows are shown shown into this process.  process.  6.3.1.3.1

Input/Output Flows

See Table 36. TABLE 36 - SELECT CONVERSION CONTROL INPUT/OUTPUT FLOWS Flow Name

6.3.1.3.2

Type

Voltage_Mode

Input

Voltage_Level

Output

Voltage_Mode_Enable

Output

Initialization

The following shall be performed once upon activation of this process: None. 6.3.1.3.3

Operation

The following shall be performed continually while this process is active: 6.3.1.3.3.1

Voltage Mode Enable

Voltage_Mode_Enable shall be assigned a value of “TRUE” if the present energy transfer strategy calls for off -board off -board closed-loop voltage control of Conv_DC_Electrical_Energy as described in 6.1.3.5 and Voltage_Mode has the value “SUPPORTED”. Otherwise, Voltage_Mode_Enable shall be assigned a value value of “FALSE”.  “FALSE”.  If the value of Voltage_Mode is “NOT_SUPPORTED”, then the EVSE is not designed to support a closed -loop voltage control mode of operation. See 6.1.3.4. 6.3.1.3.3.2

Voltage Level

If Voltage_Mode_Enable Voltage_Mode_Enable is assigned a value of “TRUE” above, then Voltage_Level shall be assigned a value that indicates the desired voltage of Conv_DC_Electrical_Energy, otherwise, no value shall be assigned.

                    `   ,   ,         `   ,         `   ,   ,         `   ,   ,         `             `             `         `   ,   ,         `   ,         `   ,   ,   ,   ,         `   ,   ,         `         `         `   ,   ,   ,   ,         `   ,   ,         `         `   ,   ,   ,         `         -

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL 6.3.1.4

J2293-1 Stabilized FEB2014

Page 51 of 84

Identify EVSE Configuration

The purpose of this process is to identify the configuration configuration of the electric vehicle supply equipment (EVSE). The ETS offers various architectures and some optional features. EVSE may support multiple architectures and some features are not a part of the EVSE for a particular architecture. This process is always always allocated to the off-board equipment (EVSE). The exact characteristics that should be considered to identify the EVSE configuration will vary based on a manufacturer’s specific equipment design. Therefore, no explicit flows are shown into this process. 6.3.1.4.1

Input/Output Flows

See Table 37. TABLE 37 - IDENTIFY EVSE CONFIGURATION INPUT/OUTPUT FLOWS Flow Name

6.3.1.4.2

Type

 AC_Energy_Transfer

Output

Inductive_Energy_Transfer

Output

DC_Energy_Transfer

Output

Pulse_Mode Voltage_Mode

Output Output

Initialization

The following shall be performed once upon activation of this process: 6.3.1.4.2.1

AC Energy Transfer

 AC_Energy_Transfer shall be assigned a value of “SUPPORTED” if the EVSE is compatible with the ETS Type A architecture, otherwise, a value of “NOT_SUPPORTED” shall be assigned.  assigned.  6.3.1.4.2.2

Inductive Energy Transfer

Inductive_Energy_Transfer shall be assigned a value of “SUPPORTED” if the EVSE is compatible with the ETS Type B architecture, otherwise, a value of “NOT_SUPPORTED” shall be assigned.  assigned.   6.3.1.4.2.3

DC Energy Transfer

DC_Energy_Transfer shall be assigned a value of “SUPPORTED” if the EVSE is compatible with the ETS Type C architecture, otherwise, a value of “NOT_SUPPORTED” shall be assigned.  assigned.   6.3.1.4.2.4

Pulse Mode

Pulse_Mode shall be assigned a value of “SUPPORTED” if the EVSE supports the optional mode of operation described in 6.1.3.4 and the EVSE is compatible compatible with the ETS Type B or C architecture. Otherwise, a value of “NOT_SUPPORTED” shall be assigned. While an ETS of any architecture may support this option, the EVSE only plays a direct role in a Type B or C architecture. This is referred to as Option 1 (O1) in Section 7.

--`,,,``,,`,,,,```,,`,,,,`,`,,``-`-`,,`,,`,`,,`---

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL 6.3.1.4.2.5

J2293-1 Stabilized FEB2014

Page 52 of 84

Voltage Mode

Voltage_Mode shall be assigned a value of “SUPPORTED” if the EVSE supports the optional mode of operation described in 6.1.3.5 and the EVSE is compatible with the ETS Type C archi tecture. Otherwise, a value of “NOT_SUPPORTED” shall be assigned.  assigned.   While an ETS of any architecture may support this option, the EVSE only plays a direct role in a Type C architecture. This is referred to as Option 2 (O2) in Section 7. 6.3.1.4.3

Operation

The following shall be performed continually while this process is active: None 6.3.1.5

Select Transfer Type

The purpose of this process is to select the form of energy energy that will be transferred to the vehicle from the EVSE. It is anticipated that some vehicles may support energy transfer of more than one form. This process is always allocated to the on-board equipment (EV). The exact characteristics that should be considered to select the form of energ y will vary based on manufacturers’ specific vehicle designs and the present energy transfer strategy. Therefore, no vehicle-specific flows are shown into this process. 6.3.1.5.1

Input/Output Flows

See Table 38. TABLE 38 - SELECT TRANSFER TYPE INPUT/OUTPUT FLOWS

6.3.1.5.2

Flow Name

Type

 AC_Energy_Transfer

Input

DC_Energy_Transfer

Input

Inductive_Energy_Transfer

Input

Transfer_Type_Preference Transfer_Type

Input Output

Initialization

The following shall be performed once upon activation of this process: Transfer_Type shall be assigned one of the values in Table 39, as a function of the values of AC_Energy_Transfer, Inductive_Energy_Transfer, and DC_Energy_Transfer, indicating the form of energy to be transferred to the vehicle, as defined in Table 40.

`    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,   ,   , `    ,

`    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , `  -

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

Page 53 of 84

TABLE 39 - TRANSFER TYPE OPTIONS  AC_Energy_Transfer

Inductive_Energy_Transfer

DC_Energy_Transfer

Transfer_Type

“NOT SUPPORTED  SUPPORTED 

“NOT_SUPPORTED”   “NOT_SUPPORTED”

“NOT_SUPPORTED”   “NOT_SUPPORTED”

“NO_TRANSFER” NO_TRANSFER”  

“SUPPORTED”   “SUPPORTED”

“NOT_SUPPORTED”   “NOT_SUPPORTED”

“NOT_SUPPORTED”   “NOT_SUPPORTED”

“AC” OR “NO_TRANSFER”  “NO_TRANSFER” 

“NOT_SUPPORTED”   “NOT_SUPPORTED”

“SUPPORTED”   “SUPPORTED”

“NOT_SUPPORTED”   “NOT_SUPPORTED”

“INDUCTIVE” OR   “NO_TRANSFER”  “NO_TRANSFER”

“SUPPORTED”   “SUPPORTED”

“SUPPORTED”   “SUPPORTED”

“NOT_SUPPORTED”   “NOT_SUPPORTED”

“AC” OR “INDUCTIVE” OR “NO_TRANSFER”   “NO_TRANSFER”

“NOT_SUPPORTED”   “NOT_SUPPORTED”

“NOT_SUPPORTED”   “NOT_SUPPORTED”

“SUPPORTED”   “SUPPORTED”

“DC” OR “NO_TRANSFER”  “NO_TRANSFER”  

“SUPPORTED”   “SUPPORTED”

“NOT_SUPPORTED”   “NOT_SUPPORTED”

“SUPPORTED”   “SUPPORTED”

“AC” OR “DC” OR “NO_TRANSFER”   “NO_TRANSFER”

“NOT_SUPPORTED”   “NOT_SUPPORTED”

“SUPPORTED”   “SUPPORTED”

“SUPPORTED”   “SUPPORTED”

“INDUCTIVE” OR “DC” OR “NO_TRANSFER”   “NO_TRANSFER”

“SUPPORTED”   “SUPPORTED”

“SUPPORTED”   “SUPPORTED”

“SUPPORTED”   “SUPPORTED”

“AC” OR “INDUCTIVE” OR “DC” OR “NO_TRANSFER”  “NO_TRANSFER”  

TABLE 40 - TRANSFER TYPE DEFINITION Transfer_Type

Definition

“NO_TRANSFER”   “NO_TRANSFER”

Energy is not to be transferred to the vehicle

“AC”   “AC”

Energy transferred to the vehicle is to be in the form of AC electrical energy

“INDUCTIVE”   “INDUCTIVE”

Energy transferred to the vehicle is to be in the form of inductive (magnetic) energy

“DC”   “DC”

Energy transferred to the vehicle is to be in the form of DC electrical energy

If a particular form of energy is preferred by the EV User, indicated by the value of Transfer_Type_Preference, then this preference shall be considered considered if it is supported. It is not required that the preferred form of energy be transferred. 6.3.1.5.3

Operation

The following shall be performed continually while this process is active: None 6.3.1.6

Validate Transfer Type

The purpose of this process is to determine if the form of energy selected to be transferred to the vehicle is valid. 6.3.1.6.1

Input/Output Flows

See Table 41.

                    `   ,   ,         `   ,         `   ,   ,         `   ,   ,         `             `             `         `   ,   ,         `   ,         `   ,   ,   ,   ,         `   ,   ,         `         `         `   ,   ,   ,   ,         `   ,   ,         `         `   ,   ,   ,         `         -

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

Page 54 of 84

TABLE 41 - VALIDATE TRANSFER TYPE INPUT/OUTPUT FLOWS Flow Name  AC_Energy_Transfer

Input

DC_Energy_Transfer

Input

Inductive_Energy_Transfer

Input

Transfer_Type

Input

Transfer_Type_Valid 6.3.1.6.2

Type

Output

Initialization

The following shall be performed once upon activation of this process: process: None 6.3.1.6.3

Operation

The following shall be performed continually while this process is active: Transfer_Type_Valid shall be assigned a value of “TRUE” if any single one of the 3 following items is true. If none, or more than than one item is true, a value of “FALSE” shall be assigned:   a.  AC_Energy_Transfer has the value “SUPPORTED” “SUP PORTED” and Transfer_Type has the value of “AC”. “ AC”.   b.

Inductive_Energy_Transfer has the value “SUPPORTED” and Transfer_Type has the value of “INDUCTIVE”.  

c.

DC_Energy_Transfer has the value “SUPPORTED” and Transfer_Type has the value of “DC”.  “DC”.  

6.3.1.7

Identify Conversion Power Range

The purpose of this process is to identify the minimum and maximum power capabilities, and the number of power stages that are supported by the AC-to-AC conversion equipment. The capabilities have been constrained so that power stages must be able to fully charge the EV Storage Battery under most residential situations (> 1.5 kW,  10.0 kW). The exact characteristics that should be considered to identify the conversion power range will vary based on a manufacturer’s specific converter design. Therefore, no explicit flows are shown into this process. process.   6.3.1.7.1

Input/Output Flows

See Table 42. TABLE 42 - IDENTIFY CONVERSION POWER RANGE INPUT/OUTPUT FLOWS Flow Name

`    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , `  -

6.3.1.7.2

Type

Max_Stage_Index

Output

Max_Conversion_Power

Output

Min_Conversion_Power

Output

Initialization

The following shall be performed once upon activation of this process:

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL 6.3.1.7.2.1

J2293-1 Stabilized FEB2014

Page 55 of 84

Maximum Stage Index

Max_Stage_Index shall be assigned an integer value between 1 and 63, inclusive, that indicates the total number of power stages that are provided by the AC-to-AC conversion equipment. 6.3.1.7.2.2

Maximum Conversion Power

Max_Conversion_Power shall be assigned a value that is equal to the value of  Max_Stage_Power for the case where the value of Stage_Index is Max_Stage_Index. See 6.3.1.2. 6.3.1.7.2.3

Minimum Conversion Power

Min_Conversion_Power shall be assigned a value that meets the following: a.

The value shall be equal to the value of Min_Stage_Power for the case where the value of Stage_Index is 1 (one). (one). See 6.3.1.2.

b.

The value value shall be as indicated in Table 9, based on the value of Max_Conversion_Power. See 6.3.1.2.

c.

The value shall be less than or equal to 180 W regardless of the value of Max_Conversion_Power if the system supports Voltage_Mode. See 6.3.1.4.

6.3.1.7.3

Operation

The following shall be performed continually while this process is active: None. 6.3.1.8

Identify Maximum Transfer Power

The purpose of this process is to identify the maximum electrical power that can be transferred to the vehicle. It is expected that a vehicle will be designed to accommodate a maximum power transfer level, regardless of the EV Storage Battery’s maximum charging level. This process is always allocated to the on-board on-board equipment (EV). The exact characteristics that should be considered to determine the maximum power transfer level will vary based on manufacturers’ specific vehicle designs and ETS architecture. Therefore, no vehicle vehicle-specific -specific flows are shown into this process. 6.3.1.8.1

Input/Output Flows

See Table 43. TABLE 43 - IDENTIFY MAXIMUM TRANSFER POWER INPUT/OUTPUT FLOWS Flow Name Max_Transfer_Power 6.3.1.8.2

Type Output

Initialization

`    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,

The following shall be performed once upon activation of this process: Max_Transfer_Power shall be assigned a value that indicates the maximum energy transfer rate (power) that can be accommodated by the equipment to which this process is allocated (vehicle).   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , `  -

6.3.1.8.3

Operation

The following shall be performed continually while this process is active: None.

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL 6.3.1.9

J2293-1 Stabilized FEB2014

Page 56 of 84

Validate Maximum Transfer Power

The purpose of this process is to determine if the identified maximum electrical power that can be transferred to the vehicle is valid. 6.3.1.9.1

Input/Output Flows

See Table 44. TABLE 44 - VALIDATE MAXIMUM TR ANSFER POWER INPUT/OUTPUT FLOWS Flow Name

Type

Max_Transfer_Power

Input

Max_Transfer_Power_Valid 6.3.1.9.2

Output

Initialization

The following shall be performed once upon activation of this process: None. 6.3.1.9.3

Operation

The following shall be performed continually while this process is active: Max_Transfer_Power_Valid shall be assigned a value of “FALSE” if the value of Max_Transfer_Power is less than or equal to 0 W, otherwise, a value of “TRUE” shall be assigned.   6.3.2

Determine Conversion Load Limit

The purpose of this process is to determine limits for the AC-to-AC conversion process that are based on information from the external Load Management System (LMS), the size of the branch circuit that the EVSE is connected to, and the vehicle’s power transfer transfer capability. It is decomposed as shown in Figure 17.

`    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , `  -

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

Page 57 of 84

FIGURE 17 - 3.2: DETERMINE CONVERSION LOAD LIMITS DFD This process will not limit energy transfer to zero even when there is a specific LMS request to do so, except if the minimum conversion capability would exceed the branch circuit rating. It would be detrimental to some vehicles if they were required to limit their load to zero zero for extended periods of time. See Figure 18.

--`,,,``,,`,,,,```,,`,,,,`,`,,``-`-`,,`,,`,`,,`---

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

Page 58 of 84

FIGURE 18 - 3.2-S1: LMS PREFERENCE OVERRIDE STD 6.3.2.1

Determine Input Current Limit

The purpose of this process is to determine the maximum input current of the AC-to-AC conversion process. This is the maximum current to be drawn from the Utility. This will be based on the rating of the branch circuit that feeds the EVSE and input from the LMS. However, the LMS can not limit the ETS to less than 1500 W of load. The EVSE is considered to be a continuous load by the NEC®. Therefore, the branch circuit current is limited to 80% of the circuit’s rating.  rating.   6.3.2.1.1

Input/Output Flows

See Table 45.

`    ,   ,   , `  `    ,   , `    ,   ,

  ,   , `  `  `    ,   , `    ,   ,   ,   , `    , `    ,   , `  `  `  ` 

 

Not for Resale, 06/12/2014 11:14:05 MDT

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

Page 59 of 84

TABLE 45 - DETERMINE INPUT CURRENT LIMIT INPUT/OUTPUT FLOWS

6.3.2.1.2

Flow Name

Type

Branch_Circuit_Rating

Input

LMS_Current_Limit_Mandate

Input

LMS_Current_Limit_Preference

Input

LMS_Preference_Override

Input

Current_Limit

Output

Current_Limit_Mandate

Output

Initialization

The following shall be performed once upon activation of this process: None. 6.3.2.1.3

Operation

The following shall be performed continually while this process is active: 6.3.2.1.3.1

Current Limit Mandate

Current_Limit_Mandate shall be assigned a value that is the minimum value of the following 2 items: a.

80% of Branch_Circuit_Rating

b.

The maximum value of the following 2 items: 1.

LMS_Current_Limit_Mandate

2.

The value of the current of AC_Electrical_Energy ±5% when the power of AC_Electrical_Energy is 1500 W at its nominal voltage.

6.3.2.1.3.2

Current Limit

If LMS_Preference_Override is “FALSE”, then Current_Limit shall be assigned a value that is the minimum value of the following 3 items: a.

80% of Branch_Circuit_Rating

b.

LMS_Current_Limit_Preference

c.

LMS_Current_Limit_Mandate

If LMS_Preference_Override is “TRUE”, then Current_Limit shall be assigned a value that is the same as Current_Limit_Mandate. 6.3.2.2

(Section Deleted)

6.3.2.3

Determine Maximum Power Level

The purpose of this process is to determine the maximum level of AC-to-AC power conversion that will be accommodated at this time. It takes into account input current limitations and the AC-to-AC conversion minimum controlled output capability.

--`,,,``,,`,,,,```,,`,,,,`,`,,``-`-`,,`,,`,`,,`---

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL 6.3.2.3.1

J2293-1 Stabilized FEB2014

Page 60 of 84

Input/Output Flows

See Table 46. TABLE 46 - DETERMINE MAXIMUM POWER LE VEL INPUT/OUTPUT FLOWS Flow Name Current_Limit

Input

Mn_Conversion_Power

Input

Max_Power_Level 6.3.2.3.2

Type

Output

Initialization

The following shall be performed once upon activation of this process: None. 6.3.2.3.3

Operation

The following shall be performed continually while this process is active: 6.3.2.3.3.1

Maximum Power Level

If the value of Power_Level that causes the current of Sw_AC_Electrical_Energy to be Current_Limit, +0%,  –  –10%, 10%, is less than Min_Conversion_Power, then Max_Power_Level shall be assigned a value of 0 W, otherwise, Max_Power_Level shall be assigned the value of Power_Level that causes the current of Sw_AC_Electrical_Energy to be Current_Limit, +0%, – +0%,  –10%. 10%. 6.3.2.3.3.2

                    `   ,   ,         `   ,         `   ,   ,         `   ,   ,         `             `             `         `   ,   ,         `   ,         `   ,   ,   ,   ,         `   ,   ,         `         `         `   ,   ,   ,   ,         `   ,   ,         `         `   ,   ,   ,         `         -

Maximum Power Level Rate of Change

Max_Power_Level shall have a limited rate of change such that it shall increase at a rate less than 1500 W/s and shall decrease at a rate less than 9500 W/s. 6.3.2.4

Determine Maximum Power Level Mandate

The purpose of this process is to determine the maximum level of AC-to-AC power conversion that can be accommodated if the LMS preferences are overridden. overridden. This level should not be exceeded for any reason. 6.3.2.4.1

Input/Output Flows

See Table 47. TABLE 47 - DETERMINE MAXIMUM POWER LEVEL MANDATE INPUT/OUTPUT FLOWS Flow Name

Type

Max_Transfer_Power

Input

Current_Limit_Mandate

Input

Min_Conversion_Power

Input

Max_Power_Level_Mandate

Output

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL 6.3.2.4.2

J2293-1 Stabilized FEB2014

Page 61 of 84

Initialization

The following shall be performed once upon activation of this process: None. 6.3.2.4.3

Operation

The following shall be performed continually while this process is active: 6.3.2.4.3.1

Maximum Power Level Mandate

If the value of Power_Level that causes the current of Sw_AC_Electrical_Energy to be Current_Limit_Mandate, +0%,  – 10%, is less than Min_Conversion_Power, then Max_Power_Level_Mandate shall be assigned a value of 0 W, otherwise, Max_Power_Level_Mandate shall be assigned a value that is the minimum of the following 2 items: a.

Max_Transfer_Power

b.

The value of Power_Level that causes the current of Sw_AC_Electrical_Energy to be Current_Limit_Mandate, +0%, – +0%,  – 10%.

6.3.2.4.3.2

Maximum Power Level Mandate Rate of Change

Max_Power_Level_Mandate shall have a limited rate of change such that it shall increase at a rate less than 1500 W/s and shall decrease at a rate less than 9500 W/s. 6.3.2.5

Identify Branch Circuit Rating

The purpose of this process is to identify the current rating of the branch circuit that provides Utility power to the EVSE. It is expected that the EVSE will be designed to be connected to a branch circuit of a specific rating, or that the equipment will accommodate a method for the circuit rating to be identified (switches, jumpers, etc.) when the equipment is installed. This process is always allocated to the off-board equipment (EVSE) The exact characteristics that should be considered to determine the branch circuit rating will vary based on manufacturers’ specific equipment designs. Therefore, no specific flows are shown into this process.  process.   6.3.2.5.1

Input/Output Flows

See Table 48. TABLE 48 - IDENTIFY BRANCH CIRCUIT RATING INPUT/OUTPUT FLOWS Flow Name Branch_Circuit_Rating 6.3.2.5.2

Type Output

Initialization

The following shall be performed once upon activation of this process: Branch_Circuit_Rating shall be assigned a value that indicates the rated amperage of the branch circuit that provides Utility power to the EVSE. 6.3.2.5.3

Operation

The following shall be performed continually while this process is active: None.

--`,,,``,,`,,,,```,,`,,,,`,`,,``-`-`,,`,,`,`,,`---

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL 6.3.3

J2293-1 Stabilized FEB2014

Page 62 of 84

Determine Energy Transfer Status

The purpose of this process is to determine the status of the present energy transfer strateg y. Storage batteries and vehicle systems will differ from individual vehicle manufacturers, as well as between vehicles from the same manufacturer. Different batteries and different high voltage power systems will require different energy transfer strategies. Therefore, it is not practical to require or define exact charge control strategies or exact transfer strategies in this document.  All electric vehicle charging systems (specific battery charging equipment applied to a specific vehicle/battery) are identified as one of two types with respect to National Electric Code (NEC®, NFPA-70-1996), Article 625 —Electric Vehicle Charging System Equipment. The types are: a.

Those that have been certified as “...suitable to be charged indoors...” and, therefore, do not require specific mechanical ventilation for an indoor charging site.

b.

All others, considered considered suitable for indoor charging if, and only if, appropriate mechanical ventilation ventilation is operating at at the indoor charging site.

 An individual vehicle, typically t ypically with a fixed battery design, des ign, m ay be capable of multiple charge control strategies using the same charging equipment. The use of different strategies may alter the charging system’s need for mechanical ventilation ventilation for indoor charging. There are no restrictions that prevent changing strategy to accommodate various various indoor charging sites that may not have mechanical ventilation. 6.3.3.1

Input/Output Flows

See Table 49. TABLE 49 - DETERMINE ENERGY TRANSFER STATUS INPUT/OUTPUT FLOWS Flow Name

6.3.3.2

Type

EVSE_Location

Input

Max_Conversion_Power

Input

Max_Power_Level

Input

Max_Power_Level_Mandate Max_Stage_Index

Input Input

Min_Conversion_Power

Input

Vent_Fault

Input

Base_Charging_Complete

Output

Battery_Design_Capacity

Output

Battery_SOC

Output

ETS_Sleep

Output

Usage_Mode

Output

Usage_Mode_Time

Output

Vent_Required

Output

Initialization

The following shall be performed once upon activation of this process: None.

--`,,,``,,`,,,,```,,`,,,,`,`,,``-`-`,,`,,`,`,,`---

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL 6.3.3.3

J2293-1 Stabilized FEB2014

Page 63 of 84

Operation

The following shall be performed continually while this process is active: 6.3.3.3.1

Usage Mode

Usage_Mode shall be assigned a value that indicates the purpose that energy   transferred to the vehicle will be, or is presently being used for, given the present energy transfer strategy, as defined in Table 50. TABLE 50 - USAGE_MODE DEFINITION Usage_Mode

Definition

“NO_TRANSER”   No energy transfer to the vehicle or battery is occurring “NO_TRANSER” occurring or desired. “BASE”   “BASE”

Energy is/will be used to charge the battery to base charge completion and to support other high voltage vehicle systems. When this mode is complete, the battery is to be considered fully charged by EV User.

“OVER”   “OVER”

Energy is/will be used to perform equalization maintenance (overcharge) of the battery and to support other voltage vehicle affect systems. Interrupting mode high will not significantly the range of the this vehicle. For this mode to be in effect, the BASE mode must have successfully completed (Base_Charging_Complete = “TRUE”).   “TRUE”).

“SUPPORT”   “SUPPORT”

6.3.3.3.2

Energy will not be used to charge the battery. It will be used to support other high voltage vehicle systems.

Usage Mode Time

                    `   ,   ,         `   ,         `   ,   ,         `   ,   ,         `             `             `         `   ,   ,         `   ,         `   ,   ,   ,   ,         `   ,   ,         `         `         `   ,   ,   ,   ,         `   ,   ,         `         `   ,   ,   ,         `         -

Usage_Mode_Time shall be assigned a value that indicates an estimate of the period of time that energy transferred to the vehicle will be, or will continue to be used for, for the present Usage_Mode. Usage_Mode_Time shall indicate 0 (zero) when no estimate is available or possible. 6.3.3.3.3

Ventilation Required

Vent_Required shall be assigned the value “TRUE” if mechanical ventilation for indoor charging is required for the present energy transfer strategy and the present EV Storage Battery, per the National Electric Code (NEC®, NFPA-70-1996),  Article 625. Otherwise, Vent_Required shall be assigned the value “FALSE”.  “FALSE”.   The value of EVSE_Location may be considered when selecting the present energy transfer strategy. If Vent_Required has has the value “TRUE” and Vent_Fault has the value “TRUE”, then energy transfer will not be allowed. In this situation, a different energy transfer strategy that will cause Vent_Required to be assigned, the value “FALSE” should be considered. 6.3.3.3.4

Base Charging Complete

Base_Charging_Complete shall be assigned the value of “TRUE” if the “BASE” Usage_Mode has been successfully completed. Otherwise, Base_Charging_Complete shall be assigned the value of “FALSE”.  “FALSE”.   6.3.3.3.5

Battery State of Charge

Battery_SOC shall be assigned a value that is an estimate of the present percent fraction content of the EV Storage Battery’s usable energy content when fully charged (100%).  (100%).  

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

Page 64 of 84

It is not required that Battery_SOC have a value of 100% when Base_Charging_Complete is “TRUE”.  “TRUE”.   6.3.3.3.6

Battery Design Capacity

Battery_Design_Capacity shall indicate the EV Storage Battery’s rated static capacit y (C) as confirmed by SAE J1798 using the “constant current method”. SAE J1798 specifically deals with with individual battery modules. The number C shall be appropriately scaled to represent the number and configuration of the modules that make up the total EV Storage Battery. 6.3.3.3.7

ETS Sleep

ETS_Sleep shall be assigned a value of “TRUE” to indicate that the ETS has concluded the present energy transfer session and that the vehicle may enter a low-power (sleep) mode of operation when the conditions are appropriate, if such a mode is supported. Otherwise, ETS_Sleep shall be assigned a value of “FALSE”.  “FALSE”.  This will be used as a part of the SAE J1850 communication network to stop the transmission of messages from the EVSE. This communication channel must be idle in order for the EV to enter low power mode. See SAE J2293, J2293, Part 2. 6.3.4

Control Power Conversion of Electrical Energy

The purpose of this process is to determine the power level of the conversion process so that the present energy transfer strategy is met, and to determine if the present power stage’s power range is insufficient. It is expected that this process process   will implement some type of closed-loop control of the electrical characteristics of the EV or the EV Storage Battery, such as voltage or current. The exact control method will not be specified, except to describe what outputs are expected. The exact characteristics that should be considered to control the power co nversion will vary based on manufacturers’ specific vehicle designs designs and EV Storage Battery Technology. Therefore, no vehicle- or battery-specific flows are shown into this process. 6.3.4.1

Input/Output Flows

See Table 51. TABLE 51 - CONTROL POWER CONVERSION OF ELECTRICAL ENERGY INPUT/OUTPUT FLOWS Flow Name

Type

Min_Stage_Power

Input

Max_Stage_Power

Input

Max_Power_Level

Input

Pulse_Mode

Input

Stage_Index

Input

Stage_Power_Limited

Input

Power_Level

Output

Power_Out_Of_Range

Output

Pulse_Mode_Enable

Output

Pulse_Hi_Period

Output

Pulse_Lo_Period

Output

--`,,,``,,`,,,,```,,`,,,,`,`,,``-`-`,,`,,`,`,,`---

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL 6.3.4.2

J2293-1 Stabilized FEB2014

Page 65 of 84

Initialization

The following shall be performed once upon activation of this process: None. 6.3.4.3

Operation

The following shall be performed continually while this process is active: 6.3.4.3.1

Power Level

Power_Level shall be assigned a value less than or equal to Max_Po wer_Level that indicates the present energy transfer strategy’s desired power level of Conv_AC_Electrical_Energy. See 6.1.3.2. Power_Level shall be assigned a value greater than Max_Power_Level if, and only if, the power level indicated by Max_Power_Level is immediately insufficient to prevent the vehicle and its on-board components from eventual damage or shortened service life. Exceeding Max_Power_Level may have financial consequences consequences for the User due to the cost of energy and agreements with their Utility. Stage_Power_Limited should be considered considered when determining if the value of Power_Level should be increased. If power is limited, further increases in Power_Level will have no affect. 6.3.4.3.2 -

Power Out of Range

`    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , `  -

Power_Out_Of_Range shall be assigned a value of “HI” (“LO”), if the present strategy desires a power level of Conv_AC_Electrical_Energy greater (less) than what is available from the active power stage as defined by Min_Stage_Power and Max_Stage_Power. Otherwise, Power_Out_Of_Range shall not be assigned a value. Stage_Power_Limited should not be considered considered when determining the value of Power_Out_Of_Range. If power is limited for the present power stage, it may be a temporary condition, and power stages with higher power capability may also be limited. 6.3.4.3.3

Pulse Mode Enable

Pulse_Mode_Enable shall be assigned the value “TRUE”, if the present strategy calls for a positive -pulsed mode of operation as described in 6.1.3.4 and the value of Pulse_Mode Pulse_Mode is “SUPPORTED”. Otherwise, Pulse_Mode_Enable shall be assigned the value “FALSE”.  “FALSE”.   If the value of Pulse_Mode is “NOT_SUPPORTED”, then the EVSE is not designed to support a positive -pulsed mode of operation. See 6.1.3.4. 6.3.4.3.4

Pulse Period

Pulse_Lo_Period and Pulse_Hi_Period shall be assigned values that indicate the period of the P0 and P1 power phases of the positive-pulsed mode of operation described in 6.1.3.4 if the value of Pulse_Mode_Enable is “TRUE”. Otherwise, Pulse_Lo_Period and Pulse_Hi_Period shall not be assigned values. 6.3.5 7.

(Section Deleted)

SYSTEM ARCHITECTURE

There are 3 different system architectures for the ETS that determine how the elements of the functional requirements (see Section 6) are to be grouped into equipment (EVSE and EV) and how that equipment is to be connected. The detailed physical descriptions will be limited to the boundaries between the EVSE and the EV. The specifics of the design within the equipment is left to the manufacturer of the equipment. It is required that the equipment, viewed viewed at the boundaries, functionally act as the combined functional requirements that are grouped within.

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

Page 66 of 84

System architecture variations shall be referred to as the following: a.

Type A—Conductive AC System Architecture

b.

Type B—Inductive System Architecture

c.

Type C—Conductive DC System Architecture

The physical interfaces to the external systems will not be described.  The specifics are left to the equipment manufacturers. These interfaces are required to provide the data and electrical energy as described in 5.1. When optional external systems are not present or not supported by the equipment, then flows that would be sourced from that system shall be considered to be their defined default value. 7.1

Requirements Allocation

The ETS can be viewed as four (4) groups of functions. These groups are loosely defined as a series of switches, switches, converters, and the logic to operate them, which act to transform AC electrical energy into DC electrical energy as shown in Figure 2. In order to accomplish this transformation, the groups will function together by sharing information. These functional groups (FG) are not likely to be implemented as separate components. However, this grouping is convenient because it can represent the variation due to different system architectures. Each group will be implemented as a part of a piece of equipment, EVSE or EV, depending on the type (A, B, or C) of system. The control and process specification elements of the requirements model in Section 6 are each allocated to one of the four groups. Elements are optional or required for specific architectures, as indicated by “O” and “R”, respectively. Some optional elements are grouped as follows, and shall be implemented as a group by EVSE or EVs that support the option: a.

O1—Positive-pulsed power mode O1—

b.

O2—Voltage control mode O2—

c.

O3—LMS Support O3—

d.

O4—VS Support O4—

 A note will indicate when an option opt ion requires the optional serial data channel be implemented for Type T ype A systems. 7.1.1

Functional Group #1

The requirements model elements allocated to Functional Group #1 shall be as listed in Table 52.

                    `   ,   ,         `   ,         `   ,   ,         `   ,   ,         `             `             `         `   ,   ,         `   ,         `   ,   ,   ,   ,         `   ,   ,         `         `         `   ,   ,   ,   ,         `   ,   ,         `         `   ,   ,   ,         `         -

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

Page 67 of 84

TABLE 52 - ALLOCATION TO FUNCTIONAL GROUP #1 (FG#1)

Name

`    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , `  -

Required/ Optional Type  A

Required/ Optional Type B

Required/ Optional Type C

1.1 1.2

Detect AC Present Switch AC On/Off

R R

R R

R R

2-s2

AC Switch Request DT

R

R

R

2-s3

Vent Request DT

R

R

R

2.1

Determine EVSE Ready to Transfer

R

R

R

2.3

Utility Recovery Delay

R

R

R

O4  

O4

O4

O

O

O

O  

R

R

R

R

2.4

Determine Ventilation Fault

2.5

Identify EVSE Location

)

)

3.1.4

Identify EVSE Configuration

3.1.6

Validate Transfer Type

R

3.2-s1 LMS Preference Override STD

O3  

O3

O3

R R

R R

R R

3.2.1 3.2.5

Determine Input Current Limit Identify Branch Circuit Rating

(1)

1. Optional serial data channel required required for this option for Type A.

7.1.2

Functional Group #2

The requirements model elements allocated to Functional Group #2 shall be as listed in Table 53. TABLE 53 - ALLOCATIONS TO FUNCTIONAL GROUP #2 (FG#2)

Name 1.3-s1 Conversion Mode PAT 1.3-s2 Pulse Mode PAT

Required/ Optional Type  A

Required/ Optional Type B

Required Optional Type C

R R

R R

R R

O3  

O3

O3

(1)

1.3.1

Determine Conversion Load

1.3.2

Convert AC to AC

R

R

R

1.3.3

Pass AC Power

R

R

R

1.3.4

Modulate AC Power

O1

O1

O1

1.6

Detect Switched AC Present

R

R

R

3.1-s1 Conversion Identification PAT

R

R

R

3.1.2

Identify Stage Design Range

R

R

R

3.1.7

Identify Conversion Power Range

R

R

R

3.1.9

Validate Maximum Transfer Power

R

R

R

3.2.3 3.2.4

Determine Maximum Power Level Determine Maximum Power Level Mandate

R R

R R

R R

1. Optional serial data channel channel required for this option for Type A. 

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL 7.1.3

J2293-1 Stabilized FEB2014

Page 68 of 84

Functional Group #3

The requirements model elements allocated to Functional Group #3 shall be as listed in Table 54. TABLE 54 - ALLOCATIONS TO FUNCTIONAL GROUP #3  (FG#3)

Name

7.1.4

`    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , `  -

Required/ Optional Type  A

Required/ Optional Type B

Required/ Optional Type C

R

R

R

1.3-s3

Voltage Mode PAT

1.3.5

Convert AC to DC Voltage

O2  

O2

O2

1.3.6

Convert AC to DC Power

R

R

R

1.7

Detect Switched DC Present

R

R

R

)

1. Optional serial data channel required required for this option for Type A.

Functional Group #4

The requirements model elements allocated to Functional Group #4 shall be as listed in Table 55. TABLE 55 - ALLOCATIONS TO FUNCTIONAL GROUP #4 (FG#4)

Name

Required/ Optional Type  A

Required/ Optional Type B

Required Optional Type C

1.4

Switch DC ON/Off

R

R

R

1.5

Detect DC Present

R

R

R

2.0-s1

Transfer Ready

R

R

R

2.0-s4

DC Switch Request DT

R

R

R

2.2

Determine Vehicle Ready to Transfer

R

R

R

2.6

Detect Coupling Proximity

R

R

R

3.0-s1 3.1-s2

Voltage Mode PAT Conversion Selection PAT

R R

R R

R R

3.1.1

Select Power Stage

R

R

R

3.1.3

Select Conversion Control

R

R

R

0  

R

R

(1)

3.1.5

Select Transfer Type

3.1.8

Identify Maximum Transfer Powerl

R

R

R

3.3

Determine Energy Transfer Status

R

R

R

3.4

Control Power Conversion of Electrical Energy

R

R

R

1. Optional serial data channel channel required for this option for Type A. A. 

7.2

Architecture Variations

The combinations of of the functional groups represent the different architectures that the ETS may have. A piece of equipment (EVSE or EV) may support more that one architecture. architecture. However, the requirements model provides for the identification of the architecture that is to be operational.

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

Page 69 of 84

Conductive equipment that supports both AC and DC energy transfer shall only transfer energy of one type at a time, selected and sequenced sequenced as described by the requirements model. Functional Groups that reside inside equipment but are not being used due to the choice of architecture do not participate in the functional operation of the equipment. 7.2.1

Type A Architecture - AC Conductive

The Type A architecture is shown in Figure 19. The elements of the requirem requirements model that have been grouped into FG#1 shall be implemented by the EVSE. The elements in FG#2, FG#3, and FG#4 shall be implemented by the EV.

`    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , `  -

FIGURE 19 - TYPE A ARCHITECTURE - AC CONDUCTIVE Type A shall use an SAE J1772 compliant coupling (connector and inlet) between the EVSE and EV to provide the following energy and data interfaces. 7.2.1.1

AC Electrical Energy Interface

This interface provides a channel to transfer AC electrical electrical energy described by the flow Sw_AC_Electrical_Energy. This shall be accomplished as described in SAE J1772 for contact #1 - Power AC, contact #2 - Power AC, and contact #5, Equipment/Chassis Ground. 7.2.1.2

Control Pilot Data Interface

This interface provides a channel channel to transfer data as described by the flows in Table 56. This shall be accomplished as described in SAE J1772 for contact #5 - Equipment/Chassis Ground and contact #6 - Control Pilot. TABLE 56 - CONTROL PILOT DATA INTERFACE FLOWS EVSE Sourced Data Flows

EV Sourced Data Flows

EVSE_Ready

Vehicle_Ready

DC_Energy_Transfer

Vent_Required

 AC_Energy_Transfer Current_Limit_Mandate

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

Page 70 of 84

These flows are duplicated on the optional Serial Data Interface. The EV and EVSE shall only use the values communicated on the Control Pilot Data Interface, for the purpose of ETS operation. 7.2.1.3

Serial Data Interface (Optional)

This interface provides an optional, general purpose serial data channel to communicate data between the EVSE and EV. The flows shown in Section 8, Data Dictionary, which are data “d” and meet the following criteria shall be communicated on this channel for a Type A ETS: a.

All data that is sourced sourced from: FG#1, to: FG#2, FG#3, FG#4, or an external element (e).

b.

All data that is sourced sourced from: FG#2, FG#3, or FG#4, to: FG#1, or an external element (e).

c.

All data that is sourced from an external element (e).

                    `   ,   ,         `   ,         `   ,   ,         `   ,   ,         `             `             `         `   ,   ,         `   ,         `   ,   ,   ,   ,         `   ,   ,         `         `         `   ,   ,   ,   ,         `   ,   ,         `         `   ,   ,   ,         `         -

Data that is sourced from/to the same FG and is not external is not available on this channel. channel. The equivalent of the flow may or may not be implemented internal to the equipment. However, the equipment will function as if it does. Communication on this channel shall be accomplished as described in SAE J2178, SAE J2293/2, SAE J1850, and SAE J1772 for contacts #7 - Communication Bus( –  –), ), contact #8 - Communication Bus(+) and contact #9 - Communication Ground. Contact #7 shall only be utilized for Implementation Number 2 of SAE J1850. The EV shall conform to either Implementation Number 1 (10.4 kbps, VPW) or Implementation Number 2 (41.6 kbps, PWM) of SAE J1850. The EVSE shall automatically recognize the SAE J1850 implementation (1 or 2), without intervention by the EV User, through examination of the network network activity provided by the EV. Recognition by the EVSE shall (re-) occur whenever network activity is detected after the network had become inactive. The EVSE and EV shall return to normal operation (wake-up) upon network activity, if either has entered a low-power standby (sleep) mode after the network had become inactive. 7.2.2

Type B Architecture - Inductive

The Type B architecture is shown in Figure 20. The elements of the requirements requirements model that have been grouped into FG#1 and FG#2 shall be implemented by the EVSE. The elements in FG#3 and FG#4 shall be implemented by the EV. This type shall use an SAE J1773 compliant coupling (connector and inlet) between the EVSE and EV. 7.2.2.1

Inductive Energy Interface

This interface provides a channel to inductively transfer electrical energy described by the flow Mod_AC_Electrical_Energy. This shall be accomplished as described in SAE J1773 for electrical power that enters the primary winding at P1 and P2, and exits the secondary winding at S1 and S2. The number of turns on the secondary winding should be tailored to meet the voltage requirements of the specific EV Storage Battery. See SAE J1773.

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

Page 71 of 84

INDUCT IVE FIGURE 20 - TYPE B ARCHITECTURE - INDUCTIVE 7.2.2.2

Serial Data Interface

This interface provides a general purpose serial data channel to communicate data between the EVSE and EV. The flows shown in Section 9, 9, Data Dictionary, which are data “d” and meet the following criteria shall be communicated on this channel for a Type B ETS operation: a.

All data that is sourced sourced from: FG#1, or FG#2, to: FG#3, FG#4, or an external element (e).

b.

All data that is sourced sourced from: FG#3, or FG#4, to: FG#1, FG#2, or an external element (e).

c.

All data that is sourced from an external element (e).

Data that is sourced from/to the same FG and is not external is not available on this channel. The equivalent of the flow may or may not be implemented internal to the equipment. However, the equipment will function as if it does. Communication on this channel shall be accomplished as described in SAE J2178, SAE J2293/2, SAE J1850, and SAE J1773 for communication over the RF repeater described in SAE J1773. The EV and EVSE shall conform to Implementation Number 1 (10.4 kbps, VPW) VPW) of SAE J1850. Implementation Number 2 (41.6 kbps, PWM) shall not be used for Type B ETS. The EVSE and EV shall return to normal operation (wake-up) upon network activity, if either has entered a low-power standby (sleep) mode after the network had become inactive. 7.2.3

Type C Architecture - DC Conductive

The Type C architecture is shown in Figure 21. The elements of the requirements model that have been grouped into FG#1, FG#2, and FG#3 shall be implemented by the EVSE. The elements in FG#4 shall be implemented by the EV.

--`,,,``,,`,,,,```,,`,,,,`,`,,``-`-`,,`,,`,`,,`---

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

`    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , `  -

J2293-1 Stabilized FEB2014

Page 72 of 84

FIGURE 21 - TYPE C ARCHITECTURE - DC CONDUCTIVE CONDU CTIVE

Type C shall use an SAE J1772 compliant coupling (connector and inlet) between the EVSE and the EV to provide the following energy and data interfaces. 7.2.3.1

DC Electrical Energy Interface

This interface provides a channel to transfer DC electrical energy as described by the flow Conv_DC_Electrical_Energy. This shall be accomplished as described in SAE J1772 for contact #1 - Power AC, contact #2 - Power AC, and contact #5, Equipment/Chassis Ground. 7.2.3.2

Control Pilot Data Interface

This interface provides a channel channel to transfer data as described by the flows in Table 56. This shall be accomplished as described in SAE J1772 for contact #5 - Equipment/Chassis Ground and contact #6 - Control Pilot. These flows are duplicated on the Serial Data Interface. The EV and EVSE shall only use the values communicated on the Control Pilot Data Interface, for the purpose of ETS operation. 7.2.3.3

Serial Data Interface

This interface provides a general purpose serial data channel to communicate data between the EVSE and EV. The flows shown in Section 9, Data Dictionary, which are data “d” and meet the following criteria shall be communicated on this channel for a Type C ETS operation: a.

All data that is sourced sourced from: FG#1, FG#2, FG#3, to: FG#4, or or an external element (e).

b.

All data that is sourced from: FG#4, to: FG#1, FG#2, FG#3, or an external element (e).

c.

All data that is sourced from an external element (e).

Data that is sourced from/to the same FG and is not external is not available on this channel. The equivalent of the flow may or may not be implemented internal to the equipment. However, the equipment will function as if it does.

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

Page 73 of 84

Communication on this channel shall be accomplished as described in SAE J2178, SAE J2293/2, SAE J1850, and SAE J1772 for contacts #7 - Communication Bus( –  –), ), contact #8 - Communication Bus(+) and contact #9 - Communication Ground. Contact #7 shall only be utilized for Implementation Number 2 of SAE J1850. The EV shall conform to either Implementation Number 1 (10.4 kbps, VPW) or Im plementation Number 2 (41.6 kbps, PWM) of SAE J1850. The EVSE shall automatically recognize the SAE J1850 implementation (1 or 2), without intervention by the EV User, through examination of the network activity activity provided by the EV. Recognition by the EVSE shall shall (re-) occur whenever network activity is detected after the network had become inactive. The EVSE and EV shall return to normal operation (wake-up) upon network activity, if either has entered a low-power standby (sleep) mode after the network had become inactive. 8.

VALIDATION

Validation of a specific ETS implementation against the requirements in this document must consider the document’s scope, which is to specify certain function of the EVSE and EV. The requirements are not intended to specify an actual design or physical implementation. Requirements at the boundary between the EVSE and EV are physical in nature to insure that equipment can connect together. The functional requirements are designed to insure that equipment of the same system architecture will operate together. Therefore, it is only appropriate to validate the function of the system at the physical boundary between the EVSE and EV. The individual functions of the EVSE and EV vary as the functional and physical boundary between them is redefined for different system architectures (see Section 7). The expected result at this boundary can be determined for any set of conditions and for any architecture, based on the functional model of the total ETS requirements (see Section 6). This model is the basis for validation, along with the physical boundary descriptions. For each system architecture supported, EVSE and EVs shall be tested to show only that the interfaces between them, as described in Section 7, act as the model predicts. Testing shall include appropriate variation to exercise all aspects of the model that have been included in the actual equipment. When optional functions have not been implemented, and when optional external systems are not supported, then flows that would be sourced from these functions/systems shall be considered to be their defined default value. Testing shall be across the manufacturer’s identified range of environmental conditions. It is important to recognize that equipment may not include physical elements that appear to be required by the model. However, the equipment shall functionally act as if it has these elements. For example, in a Type B system, EVSE is not required to have an actual AC switching device as described in 6.1.2. The EVSE, however, shall not transfer power across the EVSE-EV EVSE-EV boundary unless the functional equivalent of that process is “closed”.   9.

DATA DICTIONARY

Table 57 describes each flow that is present in the requirements model. This information shall be considered minimum requirements for the implementation of the ETS. Not all flows will be realized in every ETS architecture. The following key applies to the table: Data (d) Src. FG# Snk. FG# —  `    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,

Indicates that the flow is information (data), as opposed to energy or matter. Indicates the Functional Group number of the source of the flow. An “e” indicates that the flow comes flow comes from outside (external) the defined context of the system. Indicates the Functional Group number of the sink (destination) of a flow. An “e” indicates that the flow goes outside (external) the defined context of the system. Not applicable.

 

  , `    ,   ,   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , ` 

Not for Resale, 06/12/2014 11:14:05 MDT

  n   o    i    t   p    i   r   c   s     e    D    l   a   r   e   n   e    G

   4    8    f   o    4    7   e   g   a    P

   4    1    0    2    B    E    F    d   e   z    i    l    i    b   a    t    S    1      3    9    2    2    J

   L    A    N    O    I    T    A    N    R    E    T    N    I E

 .     s   e    R   e     g   n   a    R

   Y    R    A    N    O    I    T    C    I    D    A    T    A    D      7    5    E    L    B    A    T

     i    t   s   n    U

   /    f   o   s    t   s    i   s   n   t   o   l   u    C    /    f   n   a    I   e    d   D   e   n    i   a    t   n   o    C

  e    h    t   m   o   r    f   y   g   r   e   n   e    l   a   c    i   r    t   c   e    l   e  .    C  y    A   t    i    l   s   i    t    t   n   U   e   l   s   a   e   n   r   r   e   p   t   e   x    R  e  

  —

  —

  —

    w   o    l    F    t   x   e    t   n   o    C

 .    #    k   n   F    G    1    S

   f   o   d   r   t   e   e   r    f   s   o   n   p   a   r   p   u    t   e   s   s    h    t    i    t    V   a   E    h    t   e   s   h   e   t    t   o   a   t   c   y    i    d   g   r    i   n   e    ”   n   e  .    D   l    E  a   E    T   i   c   S    R   t   r   V    O  c   E   e   e    P   l    P  e   h    U   C   t   y      S    “   A   b  

  —

  —

  —

  a    i

  y   v   g   e   r   l   e   b   n   l   a   e   i    l   a   v   a   c   a    i   r    t    i   c   s   e   s    l   c   e   i    t    i    C  s   r    A   t  .    t   e   y   a   c   g   a    h    t   r   r   e    h   a   n   s   e    E    t   c   l _   a   e   a   c   t    i   a   c    i    d   i   r   n   r   p   t    i   c    ”   o   e    E  r   p   l    U  p   E _   a   C    R   f    T    “   o   A    

  —

  —

  —

  s    i    h    l   c   l    i    t    i   w   w    t   s   i    C  e    A  r   e   e   h    h    t   w   e    t    t   a   t   a    h    t   s   s   a   e    t   n   a   i   c    i   e    d   b   n    i    t   o    ”    D   d  .   e   t    E   t   c    S  s   u    d    O  e    L   u   q   n   o    C    “   e   r   c  

  —

  —

  —

   f   o   e   t   e   e   g   a   e    h   a    h   b   n   r   n    t    t    i    h    t    t   e    f   c   o    d  .    f   a   e   o    f   o   e   E   r   y    t   r    t   e   r   o   e   y   e   e    t   c   S   g   h   n    i   y    l   r   g   e   V   a    t   o    i    t   r   p    i    i    t   r   w   t   e    t   s   U   a   e   c   a   o    t   c    t    t   n   a    d   E   a    h   s   e   e  .    t   e    i    l    S   i    b   c   a   p   s   d   c   o   p   h    i    f  ,   a  .    f   a   n    t   r    i    V  o   a   e   p   h   c   y   p   o   y    h   c   p   r   r    E  e   t   u   m    V    d   t   e   t   e    t   e   e   s    t    S   E   e   h   r   e   t   p   n   t   o  .    t   a   t   r   n    T    h   t   e   a    S  e   a    t    t   a   f   a   r   s    E  n    d   o   r   o   r    t    t    i    h   y    B    B    i   n   u   t   g   t    t    t   a   d   s   e   a    l   o    i    t   n   e   e   a   r   n    i   c    i    h    l    h    t   u   g   -   u   e   l    t   e   o   e   g    t   n   e   s   g   r   c    b     a   r   s   e   a   r    l   a   r   e   c   r   n    t   a   e    i   s   s    E   e   e   r   t   s   t   w   a   v   c _   n    t    t   a   d    t    h    t   a   o   p   o   o    l    i   a   c   l   a  .   s   e   u    S    S    h   a   c   c   n   e    d   e   e    b    i   s   o   e    h    S    i    I    h   c   i   c  .    h    V    V    d   a   h    d    t    E    t    E  e   n   r   T   :    t   n    t   n   s   g   n   i    t   o    i   s   l   s   l   g   s   a   r   r   r   c   E    i    t   r   n   a    ”    ”   h   e   e   e   e   h    t   a    t   a   a   e   i   c    E  c    b   y    t   a    l    E  r   s   c   e   a   n   a   n   a   e   E   f    i    h    t   s   i   e   U    U   t   c   r   c   r   c   h _   c    U  n   c    i    i   e   e   y   n    t    t    l    l   e    t    l    R  a   V   l    R    d   t    d    d   o   n   f    C  p    T  n   o   u      I   n   x   n   x   u      C      T    “   B   E   f   e      I   e   f    I   o   A  s      “   c          1    5    0  .    5  .   —   —    0    0

  —

   0    0    5   o    t    0

  —

     t    t   s   a   u   w   r   o   o   h    l    i    K

   0    0    1   o    t    0

   0    0    0   5    1   :   y   o   B    t    0    1

  —

   %

  s   e   r   e   p   m    A

  —

  n   I    ”    D   o    i    t   ”    E    D   a   r   E    T   u   T    R   g    i    f   R   ”   O    P   n   O   o   P   D    E   P    C   P   T   U _    R   S    “    E   U   :    O   t    S   S    l _    P    V   T   P  u   a    E   O   :    U   f   e    N    S   n    I   “   “   D  

   ”   ”    E   E    U   S    R   L    T    “   A    I   F    ”   “   :    E   t    S   l   u    L   f   a    A  e    F    “   D

   ”    D    E   ”    S   N    O   E    L   P    C    “    l    O    “    ”   t   :    N   l   u    E   f    P  a   e    O    “   D

  s   ”   u   E   ”    t   a   U   E    S    t    L    S   R    T    “ _    l    I   A    F   o   r   ”   “    t   :   n   E   t    l   o   S  u   a    C   L   :   A   f   e    F   n    I   “   D

  s   u    t   a   h    t    S   W    l_   k   o   r   0    t   :    t   n   l   o   u   a    C   f   :   e   n    I    D

  s   u    t   a    t    S    l_   %   o   r   0    t   :    t   n   l   o   u   a    C   f   :   e   n    I    D

   A    0    1   :    t    l   u   a    f   e    D

   ”   ”    E   E    U   S    R   L    T    “   A    I   F    ”   “   :    E   t    S   l   u    L   f   a    A  e    F    “   D

   1 4

   1

   1

  e

  e

  e

   1

   1

 .    #   c   r   G    S   F

  e

   1

   1

   1

   4

   4

   4

   1

   1

  a   )    t   a   d    D   (

  —

   d

   d

   d

   d

   d

   d

   d

   d

  e    t   e    l   p   m   o    C _   g   n    i

  y    t    i   c   a   p   a    C _   n   g    i   s   e    D _   y   r   e    t    t   a    B

   C    O    S _   y   r   e    t    t   a    B

  g   n    i    t   a    R _    t    i   u    i   c   r    C _    h   c   n   a   r    B

   d   e    t   c   e    t   e    D

  e     m   a    N

  y   g   r   e   n    E    l_   a    i   r   c    t   c   e    l    E _    C    A

  r   e    f   s   n   a   r    T _   y   g   r   e   n    E _    C    A

   t   n   e   s   e   r    P _    C    A

   t   s   e   u   q   e    R _   w    S _    C    A

  g   r   a    h    C _   e   s   a    B

  n _   o    i    t   c   e   n   n   o    C

                    `   ,   ,         `   ,         `   ,   ,         `   ,   ,         `             `             `         `   ,   ,         `   ,         `   ,   ,   ,   ,         `   ,   ,         `         `         `   ,   ,   ,   ,         `   ,   ,         `         `   ,   ,   ,         `         -

       A    S Not for Resale, 06/12/2014 11:14:05 MDT

 

  n   o    i    t   p    i   r   c   s     e    D    l   a   r   e   n   e    G

   4    8    f   o    5    7   e   g   a    P

   4    1    0    2    B    E    F    d   e   z    i    l    i    b   a    t    S    1      3    9    2    2    J

   L    A    N    O    I    T    A    N    R    E    T    N    I

 .     s   e    R

   )    D    E    U    N    I    T    N    O    C    (    Y    R    A    N    O    I    T    C    I    D    A    T    A    D      7    5    E    L    B    A    T

  e     g   n   a    R

     i    t   s   n    U

   /    f   o   s    t   s    i   s   n   t   o   l    C  u    /   a   n   f    I   e    d   D   e   n    i   a    t   n   o    C

  r   e   m    i    t    d   o    i   r   e   p   n   o    i    t   c   e   n   n   o   c   a   s   e    t   a   c  .    i    d   d   n   e   r    i    ”   i   p    E  x    U  e      R  s   a    T    “   h     —  

  —

  —

  —

 

  —

  —

  —

   f   o   n   o   w   i   o    l   s   r    f   y   e   v   g   r   n   e   o   n   c  .   e   y    l    C   g   r   a   A   c     e    i   o    t   r   n    t   -   E   c   C _   e    l    l   e   A   a   c   e   i   r    C   h    t    t    A   c   e   s   m    l    t   o   r   E   n   f _   e   s   d   C   e   e    A   r   i _   p   v   e   r   e   w    R   d   S    

  —

  —

  —

   f    f   o   o    t   n   n   o   w   i   e   r   o   s    l   r   r    f   u   e   y   v   c   g    l   n   r   o  .   a   e   c   y   c   n   g    i   r  .    t   e   C  r   c   y    l    D  e   e   g   a   -   n    l   r   c   o   E    i   e   e    t   r   n    t   -   l_    t    E   c   C  a   n   e   e   l_    l   e   A    t   r   c   s   e   a   c   e   i   r   i   c    C   h   r   p    t    t   e    D    l   c   e    E   e   s   m    h    l    t _    t   o    E   r   C   n   f   s _   e    A   e   C   s   d _    t   e   e   a    A   r   i   c _    D    i   p   v     e   r   w   e   O    d   n   S    R   d   M      I     —        1  .   —   —    0

                    `   ,   ,         `

 

  —  

  —

  —

   0    0    0    1   o    t    1

  —

  —

  —

  s   e   r   e   p   m    A

  —

  —

   +   +   r   r   e   e   w  w   o    P  o   s _   P _   x   e   u   n   n    t   o   a   i   o   d    i   n    t   s    I   s    S  r   r _   e _   e    l   v   e   v   g   o   r   n   a    t   o   n   n   C  o   t   o _   C   S _ _   x    C  x   n   :   a   i   a   n   M    I    M    M  

   d   a   s   o   u   L    t _   a   n    t   o    S   i _   s    S  r    T  e    E  v   :   n   o   n   C    I  

   +    +    +   e   e    +   e   t   y   g    d    t    i    i   r   +   e    l   c   n   a   r    +   p   a    R   e   e    +   v   g    d   m  p    i   n _    O  a    l   o   a   r   a   e   e _   R    V   m    C   C    i   e _   w    + _   n   o   c   f_ _   +   T   d   s   g    + _   e   e   g    P   +  n   u   i   n   i    O  e    t   p   p   e   e   i   r    C _   e   s _   r   y   y    d    d   a   g    t    t   r   e   O  n   p   f   e    T  o   o   u   o   e   e   u   T    S  a   D   S   i    M  q   e   r   O  r_   r_   M   e _   h _ _   s    l _ _   R   r   c _   e   e    S _   y   y    P  r   f    f   e   e   r   e   S    T  e   r   s   s _   e   t   e   v _   S  e   n   n   g   g   t_    E  s   t    S   w   a   a   a   n    t    t   :   a   a   a   n   o   T   M  o   a   r   r   s   s   e   n   B   B   B   C    I    E   L   P   T   T   U   U   V     —

  —

  s   u    t   a    t    S _   n   o    i   s   r   A   e   0   v   t   :   n   l   o   u   a    C   f   :   e   n    I    D

 .    #    k   n   G    F    1    S

  e

   2

   3 4  

  e

   2 4     e

  e

 .    #   c   r   G    1    S   F

  —

   2

   3

   2

   2

  —

  a   )    t   a   d    d    D   (

  —

  —

  —

   d

  —

  —

  s   u    t    t   a    S    l_   o   r    t   n   o    C

  y   g   r   e   n    E    l_   a   c    i   r    t   c   e    l    E _    C    A _   v   n   o    C

  y   g   r   e   n    E    l_   a   c    i   r    t   c   e    l    E _    C    D _   v   n   o    C

   d   a   o    L

  e   g   n   a    R   r_   e   w   o    P

  s   u    t   a    t    S

  n _   o    i   s   r   e   v   n   o    C

  n _   o    i   s   r   e   v   n   o    C

  n _   o    i   s   r   e   v   n   o    C

  e     m   a    N

   ”   ”    E   E    U   S    R   L    T    “   A    I   F    ”   “   :    E   t    S   l   u    L   f   a    A  e    F    “   D

   t   u   o   e   m    i    T   n _   o    i    t   c   e   n   n   o    C

  ,         `   ,   ,         `   ,   ,         `             `             `         `   ,   ,         `   ,         `   ,   ,   ,   ,         `   ,   ,         `         `         `   ,   ,   ,   ,         `   ,   ,         `         `   ,   ,   ,         `         -

       A    S Not for Resale, 06/12/2014 11:14:05 MDT

 

  n   o    i    t   p    i   r   c   s     e    D    l   a   r   e   n   e    G

   4    8    f   o    6    7   e   g   a    P

   4    1    0    2    B    E    F    d   e   z    i    l    i    b   a    t    S    1      3    9    2    2    J

   L    A    N    O    I    T    A    N    R    E    T    N    I

 .     s   e    R

   )    D    E    U    N    I    T    N    O    C    (    Y    R    A    N    O    I    T    C    I    D    A    T    A    D      7    5    E    L    B    A    T

  e     g   n   a    R

     i    t   s   n    U

   /    f   o   s    t   s    i   s   n   t   o   l   u    C    /    f   a   n    I   e    d   D   e   n    i   a    t   n   o    C

   d   e    d   n   e   m    f   m   o   o    t   c   r   n   e   e   s   r    i   r   t   u   a   c   h    t   m  y   u   g  .   m  r    i   e   d   e   x   E   a   n   e   c   m    l_   x   e   a   e   c   t    h   o    t    i   r   n   s   t   c   e    S   e    t    l    T   a   E   E   c _    i    d   C  e   n   A   h    I    t  

  s    i    S    f    T   o    t    E   n   e   e    h   r   r   t   u   t   a   c   h    t   m  y   u   g  .    d   m  r    i   e   e   x   E   a   n   e   c   m    l_   x   e   a   e   c   t    h    i    t    t   r   o   n   s   c   d   e   e    t    l   e   r   a   E   i   c _   u    i    d   C  q   n   A  e    I   r

  —

   1  .    0

   1  .    0

  —

   0    0    0    1   o    t    1

  —

  s   e   r   e   p   m    A

   l    d   a   n    i    t   r   a   a   E   p   S   a    f    V   o   E   e   e    h   c   t   n   n   e   s   e   e   r   e   w   p   t   e   e   b    h    t   n   o   s   i   e    t    t   c   a   c   e    i    d   n   n   n   o    i   c    ”   l    E   t   a    U   t   o  .    R  r   V    T    “   o   E  

   ”   ”    E      U   E    R   S   w    L   o    “   A    l    T    F   I   F    t   ”   “   :   x   E   t    l   e   S  u    t   a   n   L   f   o   A  e    F    C    “   D  

  e  .    h    t    S   o   T    t    E   w  e   o   h    l    f    t   y   m   g   o   r   f   r   e   n   y   e   r   e    l    t   a   t   a   c    i   r   B    t   c   e   e   g    l   e   r   a   o    C   t    D   S   s   V    t   n   E   e   l   s   a   e   r   r   n   e   p   t   e   x      R  e    

   f   o   d   r   t   e   e   r    f   s   o   n   p   a   r   p   u    t   s   e   i   s    h    t    t    V   a    h   E    t   e   s   h    t   e    t    t   o   a   c   y    i    d   g   r    i   n   e    ”   n   e  .    D   l    E  a   E    T   i   c   S   r   V    R   t    O  c   E   e   e    P   l    P  e   h    U   C   t   y    S    “   D   b  

  —

  —

   0    0    0    1   o    t    1

  —

  s   e   r   e   p   m    A

  —

  e    l    b   a    l    l    i   a   a   c   v    i   r   a    t   s   c   i   e   t   y    l   e   i    l  .    C  a   y    D  u   q   r   e   e   t   e   t    t    h   a    t    i    t   a   r   B   a   p   e    h    t   o   r   g   a   r   s   p   t   e    t   a   o   a   c   e   S    i    t    V    d   h   n   f    E    i   e    ”   o    h    E  y    t   g    U  r   m    R  e   n   o    T   r      “   e   f  

  s    i    h   l   c   l    t    i    i   w   w   t   s   i    C  e   r    D  e    h   e    h    t   w   e    t    t   a   a    t    h   s    t   s   a   e

   t   n   a   i   c   e    i    d   b   n    i    t   o    ”    d    D  e   t  .    E   t   c    S  s   u    d    O  e    L   u   q   n   o    C    “   e   r   c  

  —

  —

  —

  —

  —

  r   e    f   s   s   a   n   a   r    h   t    S  y    T  g    E  r   e   e   n   e    h    t    t    t   n   a   e    h    t   s   e   s   r   e   p    t   a   e   c    h    i    t    d   d   n   e  .    i    ”   t   e   n    E   l   o    U  p   i   s   s      R  m   o   e    T      “   c   s     —    

  —

  —

  —

  —

  —

  —

  —

  —

  —

   ”    D    E    T   n   I    R    O   o    i    t   ”    P    D   a   r   E    P   u   T    U   g   R   ”   S    i    f _   n   O   o   P   D    E   T    C   P   T   O _    R   N    “    E   U    ”    O   t    S   S _   P   l   u    V   T    P   f   a    E   O   :    U  e    N    S   n    I   “   “   D  

   ”   ”    E   E    U   S    R   L    T    “   A    I   F    ”   “   :    E   t    S   l   u    L   f   a    A  e    F    “   D

   ”    D    E   ”    S    O   N    L   E    C    “   P    I   O    “    ”   t   :    N   l   u    E   f    P  a   e    O    “   D

  s   ”   ”   u   E   E    t   a   U   S    t    L    S   R    l_   T    “   A    F   o   r   I    ”   “    t   :    E   n    t    l   o   S  u   a    C   L   :   A   f   e    F   n    I   “   D

   +   s    +   t   u   a     s    t   u   S  s    t   u   w   a _   t   o   t   a    l   n   t    S    F _   i   o   S    t   r   s   l_   x   f   e   r   e   s   e   o   r    t   v   t   n  n   n   n   o  a   r   o   o    C   T   C   C  

   A    0    1   :    t    l   u   a    f   e    D

   A    0    1   :    t    l   u   a    f   e    D

    w   o    l    F    t   x   e    t   n   o    C

   2

   2

  e

   1 4

   4

   4

  e

  e

 .    #   c   r   G    4    S   F

   1

   1

   4

   1

   4

   4

   4

  —

  a   )    t   a   d    d    D   (

   d

   d

  —

   d

   d

   d

   d

  —

   t    i    i   m    L    t_   n   e   r   r   u    C

  e    t   a    d   n   a    M _    t    i    i   m    L    t_   n   e   r   r   u    C

  y   g   r   e   n    E    l_   a    i   r   c    t   c   e    l    E _    C    D

  r   e    f   s   n   a   r    T _   y   g   r   e   n    E _    C    D

   t   n   e   s   e   r    P _    C    D

   t   s   e   u   q   e    R _   w    S _    C    D

  p   e   e    l    S _    S    T    E

  s   u    t   a    t    S _    S    T    E

 .    #    k   n   G    F    4 e    S

  e     m   a    N

   d   e    t   c   e    t   e    D _   y    t    i   m    i   x   o   r    P _   g   n    i    l   p   u   o    C

   E    A    S

--`,,,``,,`,,,,```,,`,,,,`,`,,``-`-`,,`,,`,`,,`---

Not for Resale, 06/12/2014 11:14:05 MDT

 

  n   o    i    t   p    i   r   c   s     e    D    l   a   r   e   n   e    G

   4    8    f   o    7    7   e   g   a    P

   4    1    0    2    B    E    F    d   e   z    i    l    i    b   a    t    S    1      3    9    2    2    J

   L    A    N    O    I    T    A    N    R    E    T    N    I

 

  —  .     s   e    R

`    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , `  -

   )    D    E    U    N    I    T    N    O    C    (    Y    R    A    N    O    I    T    C    I    D    A    T    A    D      7    5    E    L    B    A    T

  e     g   n   a    R

     i    t   s   n    U

   /    f   o   s    t   s    i   s   n   t   o   l   u    C    /    f   n   a    I   e    d   D   e   n    i   a    t   n   o    C

 

  —

  —

  —

  e    +   d   r   o   e   M    f   s _    +   +   n   e   r   r   a   r   g   e   e   a    T   l    f    f   s   s _   t   y   n   n   o   a   r   V   r   g   r   a    +    T   T  e _   n   e _   y   y    E   d   g _   o   r   e   r   g   e   e   i   v   n   n   t    M _    E   E  c   e   s _ _   u   l   u    C   C   d   n   P    A   D   I  

 .    5    2    6    d   l   e   e   c   s   r   t    i    i   e   r    E   d    i    S  s   A    ®    V  n    C   c   E  o   c    i    f   e   s   E    i    i   c   t    h    N   e   t    t   e   a   h   p  a   h    t    S   h    t   y   n   t   n   b   o  s   o    i    i   e    t    t    l   a   t   a   d   a   c   e   c   n   a   i   o   i    f    t    l   s   d   e   n   a   d   n   i    I    ”   n   s   :   R   i    t   a   n   O   d   ’   a   e    t   O   l    l   r   s   a   o   o    D   n    t   d   s   n   o   N    I   n    i    C   “   i    ‘    

  —

  —

  —

   f   o   r   a   f   e   n   s    i   s   n   a    i   r    E   t   e    S   h    V   t    E   t   r   e   o    h    t   p    t   p   a   u    h   s    t   o    t

  s    d   y   V  .    t   e   a    E   c   a   e    i   r   e    d    h   n   i   s   t    i    ”   t   o   a   t    Y   h    t    D   y   g    A   t   e   r    E  a   e    t   n    R    “   s   e  

  —

  —

  —

   ”    R    O    O    D   ”    T   R    U   O    O    “   O    I   D    N    ”   I    R   “   :    O   t    l    O  u   a    D   f   e    N    I    “   D

   I    ”    Y    D    ”    A    D    E    E   s   R    N   u    t   “    I    I    F   a    t   ”   ”   E    S   Y   D   D   r_   D    E   N   e   A   N    U    f    E    “   s   R   I   :   n _   F    l    E   t   a   r   T   D  u   a    T   O   :    N   f   e    N   “    U   D   n   “    I

 .    #    k   n   G    F    1 4    S

   1 4

   1 4     e

 .   c   #    1   r    G    S   F

   1

  a   )    t   a   d    D   (

   d

  e     m   a    N

  —

  n   o    i    t   a   r   u   g    i    f   n   o    C _    E    S    V    E

  n   o    i    t   a   c   o    L _    E    S    V    E

  —

   1  .    0

   S  .    M    L   d    l   e   a   e   c   n   r   x   e   e    f    t   o   o   x   t    t   e   t   n   e   o   e    h   n   r   r   t    S   u   t   a   T   c   h    t    E   m  y   e   u   g   h    t   m  r    i   e   d   x   E   a   n   d   e   m    l_   n   e   e   a   c   m    h   i    t   r   m   s   t   c   o   e   e   c    t    l   a   E  e   c _   r    i      d   C  s   a   n   A   h    I     —      1  .   —    0

  —

   0    0    0    1   o    t    1

   0    0    0    1   o    t    1

  —

  s   e   r   e   p   m    A

  s   e   r   e   p   m    A

  s   e   v   i    i    V    t   c   E   u   e    d   h   n   t    i   e   o    h   t    t    t   y   r   a   g    h    t   e   n   e  .   s   l   e    t   a   E   a   c   S   c   i   r   V    i    d   t   c   E   e   e    i   n   l    ”   e   h    D   C   t   y    E   A   b    T   f    d    R  o   e    O  r   t   e   r    P   f    P  s   o   p   p    U  n   a   u    S   r    “   t   s  

   ”    D    E    T   n   I    R   o    O    i    t   ”    P    D   a   r   E    P   u   T    U   g    i    f   R   ”   S _   n   O   o   P   D    E   T    O    C   P   T _    R   N    “    E   U   :    O   t    S   S _   P   l    V   T    P  u   a    E   O   :    U   f   e    N   “    S   D   n   “      I  

   S    M    L    l   a   n   r   e  .    f    t    d   o   x    t   e   e   n   e   e   e    h   c   x   r   r   t   e   u   t   a    t   c   h   o    t   m  y   n   u   g   S   m  r    i   e   T   x   E   a   n   E   e   m    t    l_   h   e   a   c   d    h   i    t   r   e   r    t   s   c   i   u   e   e    t    l   q   a   E  e   c _   r    i    d   C  s   a   n   A   h    I  

   S    M    L    l   a  .   n   r   d   e   e    t   x   e    f   e   c   o   e   x   e    d   h   o    t   a   t    t   o   a   t    l   o    h    t   n   m   y   u    S   r   T   m  g    i   x   E   a   e   E   n   e   m    t    l    h   e   a   c   d    h   i    t   r   e   r    t   s   c   i   u   e   e    t    l   q   a   E  e   c _   r    i    d   C  s   a   n   A   h    I      5    0    0  .    0

  —

   0    4    2   o    t    0

  —

  s    t   a   w   o    l    i    k

   +  e   c   e   n    t   a   e   r    d   f   n   e   a   e   r    M    P _ _    t    i    t    i   m   m    i    i    L      L    t_   t_   w   n   n   o    l   e   e    F  r   r   r   r    t   u   u   x   C   C   e _ _    t   n   S   S   o   M    M    C   L   L  

     W   s    t    k    i    0   m    i    L   4 _   2   :    S   t    l    M   u    L   f   a   :   e   n   D    I

  s   A    t    i    0    0   m    i    L   0 _   1   :    S   t    l    M   u    L   f   a   :   e   n   D    I

  s   A    t    i    0    0   m    i    L   0 _   1   :    S   t    l    M   u    L   f   a   :   e   n   D    I

   1 4

   1

   1

  —

   2

   1

   1

  e

  e

  e

  e

   d

   d

   d

   d

  —

   d

  e    t   a    d   n   a    M _    t    i   m    i    L    t_

  e   c   n   e   r   e    f   e   r    P _    t    i   m    i    L    t_

  n   e   r   r   u    C _    S    M    L

  n   e   r   r   u    C _    S    M    L

   t    i   s   m    i    L _    S    M    L

  e    t   a    d   n   a    M _    t    i   m    i    L _   r   e   w   o    P _    S    M    L

  y    d   a   e    R _    E    S    V    E

  r   e    f   s   n   a   r    T _   y   g   r   e   n    E _   e   v    i    t   c   u    d   n    I

   E    A    S Not for Resale, 06/12/2014 11:14:05 MDT

 

 .     s   e    R

   S   e    f   s   d   o    M    t    i   s   e   r    t   r    L  .   a   r    i   r    i   e    l    d    t    d   s   e   m   a   e    i   w   v   n    l   e   e   n   r   o    d   O  e   r   e    d   c   o   p   e   x   r _   s   e    t   n   e   e   e   r    d   r   x   e   g   r   i   s   c   p   e    l   e   e    l    f   e   t   n   s    f    U   o   o   e   o   e   e   b  .    t   r   y    i   r    h   n    V  r    t    l    d   t   e    f    l   p   n   g    f    E  e   o   a   t    S   r   a   o   e   y   h   o   a   T   e   r   e    l   c   n   n   s    h    h    t    E    P  s   a    t   r    E   m  y   e    t    S _   m    t   e   u   g   h   u   l_   a   M   a   S  v    t   r    h   m  e   d    h   m  a   n    t    L    t    M   i    i    i   x   E   a   n   d   e    t    L   e   x   i   a    t   r   c   a   s   l   s   f   e   e   c    t   o   h   n    t   m   m   r    l_   n   e   a   a    l   e   e   e   c   c   o   e   a   e    i    t    i    t   u    E   c    l   m    h   i    h _   x    d   a   d    t    t   r   m    d   n   e  .   n   v   e    i    i   s   t   s   C   c    l   o   e   e    ”   e   g   e   l   e   A   e   c    ”    t    t    h  .    E   t    i   m    E   h _   g   e   a   E  e   a   v    t   r    t   o   u    i    U  m    U   t    t   c _   c   n    i   s   s    l    R  a   e   a    d   o    d   C  a    R  o   i   n   A   h      T   r   t    h      T    h   b   v      I   n   C    I    “   f    “   t    5    5        0    0    0    0   —   —  .  .    0    0

 .    h   y   c   g   e   n   r    h   a   r   e   n    t    b   E   y   e _    b    l    t   a    f    d   h   c   o   t   e   f   r   o   i    t   e   e   h   s   s   c   u   e   i    l    l   e   n   l    b   i   a   m   o   E   v    t   a   t   o   s   t   a _    t   m    i    C   e   r   u   e   s   m    A    t    i    l   s   m    d   i    i   x   o   a   r    i   m    d    i   e   n   l   p   n   l    i   m    d   a   p    l   e   S  u   e   e   d   s    h   v   n   M    t    t   e    L   a   e   s   L    l    h   e   r_   m  a   t    t    t   a   e   m  n    i   c   w  o   r   u    i   e   c    t    d   o   c   x   i   e   n   P  r   e   r    I   c      5    0    0  .    0

  s   s    t    f    i   e   e   o   e    i    l   m    h   v    i   r   t    t    l   p   e   i   e   c    d   p   w   u    d   e    i   o   a   s   r   d   t    i   v   e  .   p    C  o   u   n    h   e   a   a   r    A    t    d   q    h   -   p   g    f   r   e   r   e   S   t    l   o   a    l    f   o   t    t    t   o   t   n    i     o    M   s   a   r   e   e   L   u    t   y   n    C  c   u   e   l   c    l   n   r   g    A   t   r  .   o    i   a   m  a   i   o   r   a   e   c   e   h   v   n   s   c   e   r   r   n    h   t   w   o   e   h  .    t    t   e    t   c    E   m   m    t   y    f   o   r   u   e   x   n   g   u   l_   v   o   n   n   p   a   e   r   e   m   m  a   o    d   r   e   e    f    i    i   x   o   a   r    h   e   b   n    t   g   i   m   p    t   o   x   i   a    t   r   c   c   a   e   E   e   n   c   r   n   t    i   m   s   u   m   y   h    t    l_   u   e   w   q    l    l   o   a   e   e   b   f   e   e   e    E  o   c    h   v   d   o   i    h    h   p   m    t   n    t _    t   r   e   e   s   t   a   o   t   s   L   s   C   C   s   i   n   c    h   e   r_   i   e   s   e   A   A   s   i   o   e    t    t   r   s    t    l _     e    t   a   e   l   a   v   a   e   t   o    E    b   a    t   v   c   w  a   t   c   c   a    i _    i    i      i   n   e    d   n    d   o   t    d   o    C    C   s   r   o   m   n   P  e   l   n   c   g      I   n   C   A      i    A      I    I    5    5    0    0    1    0    0  .  .    0    0

  e     g   n   a    R

   0    4    2   o    t    0

  —

   0    4    2   o    t    0

   0    4    2   o    t    0

   0    4    2   o    t    0

  —

  s    t    t   a   w   o    l    i    K

  s    t    t   a   w   o    l    i    K

  s    t    t   a   w   o    l    i    k

  n   o    i    t   p    i   r   c   s     e    D    l   a   r   e   n   e    G

   4    8    f   o    8    7   e   g   a    P `    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , `  -

   4    1    0    2    B    E    F    d   e   z    i    l    i    b   a    t    S    1      3    9    2    2    J

   L    A    N    O    I    T    A    N    R    E    T    N    I

   )    D    E    U    N    I    T    N    O    C    (    Y    R    A    N    O    I    T    C    I    D    A    T    A    D      7    5    E    L    B    A    T

  s    t    t      i    t   s   n   a   w   o    U    l    i    k

  —

  —

   3    6   o    t    0

   0    4    2   o    t    0

  —

  s    t    t   a   w   o    l    i    k

  s   ”   ”   u   E   E    t   a   U   S    t    L    S   R    l_   T    “   A    F   o   r   I    t    ”   “   :   n   E   l    t   o   S  u    C   L   f   a   :   A  e   n   F    I    “   D

   ”   ”    E   E    t   U   S   u   R   L   p   T   A   n   “   F    I    I   “   r_   ”   :   e   E   l    t   s   S  u    U   L   f   a   :   A  e   n   F    I    “   D

  e   g   n   a    R   r_   e   w   o    P _   n     o    i    W   s   r   k   e   0   v   :   n   l    t   o   u    C   f   a   :   e   n   D    I

 .    #    k   n    F    2    S   G

   1 2 e

   1

   2 4 e      4

   2 4

   2 4 e

   2 3 4

 .    #   c   r   G    S   F

  e

   1

  e

   2

   2

   2

   2

   2

  a   )    t   a   d    d    D   (

   d

   d

   d

   d

   d

   d

   d

   l   e   v   e    L _   r   e   w   o    P _   x   a    M

  e    t   a    d   n   a    M    l_   e   v   e    L _   r   e   w   o    P _   x   a    M

  x   e    d   n    I   e _   g   a    t    S _   x   a    M

  r   e   w   o    P   e _   g   a    t    S _   x   a    M

   /    f   o   s    t   s    i   s   n   t   o   l   u    C    /    f   n   a    I   e    d   D   e   n    i   a    t   n   o    C

  e     m   a    N

     W   s    t    k    i    0   m    i    L   4 _   2   :    S   l    t    M  u    L   f   a   :   e   n   D    I

  e   c   n   e   r   e    f   e   r    P _    t    i   m    i    L _   r   e   w   o    P _    S    M    L

  e    d    i   r   r   e   v    O _   e   c   n   e   r   e    f   e   r    P _    S    M    L

  e    l   g   g   o    T _   e   c   n   e   r   e    f   e   r    P _    S    M    L

  r   e   w   o    P _   n   o    i   s   r   e   v   n   o    C _   x   a    M

     W    k    5  .    1   :    t    l   u   a    f   e    D

     W    k    5  .    1   :    t    l   u   a    f   e    D

  e   g   n   a    R   r_   e   w   o    P _   n   o    i   s   r   e   0   v   :   n   l    t   o   u    C   f   a   :   e   n   D    I

  e   g   n   a    R   r_   e   w     o   W    P   k _   e   0   g   t   :   a   l    t   u    S   f   a   :   e   n   D    I

   E    A    S Not for Resale, 06/12/2014 11:14:05 MDT

 

  n   o    i    t   p    i   r   c   s     e    D    l   a   r   e   n   e    G

   4    8    f   o    9    7   e   g   a    P

   4    1    0    2    B    E    F    d   e   z    i    l    i    b   a    t    S    1      3    9    2    2    J

   L    A    N    O    I    T    A    N    R    E    T    N    I

 .     s   e    R

   )    D    E    U    N    I    T    N    O    C    (    Y    R    A    N    O    I    T    C    I    D    A    T    A    D      7    5    E    L    B    A    T

   f    d   o   e    l   s   a   e   b   v  ,   e   V    l    f   e   E   o   h   e    t    h   e   t  .   u   i    t    l    l   o   e   m   a   i    t   c   v   l    d   i   o   e   h    t   e   m   r   r   v   u   r   e   f   e   m    d   e    i   x   o   a   r   a   s   f   n    h    t   n   t   r   o    i   m    l   s   n   e   e   i   g    h   v    t    t   e   a   i   s   e   s   L   h   d    t   e    t   r_   r   e   a   e   e   h   c    i    t    d   w   o   w   o   n   n   P    I   p   o      5    0    0  .    0

  e    0    4     g   n    2   o   a    t    R    0

 .   e   u    f    l   o   a   v   e   d    i   u    l    l   a   a   v   v   e   a    h   i   s    t    t   r   a   e    h    t   w   o   s   P   e    t   r_   a   e   c    i    f    d   s   n   n    i    ”   a   r    E   T    U  x_    R  a    T   M    “  

  —

   f   o   r   e   w   o   p    d   e    l    l  .   o   r   y    t   n   g   o   r   c   e   n    E   m   u   l_   m  a    i   n   i    t   r   c   c   m   e    l   e   E    h    t _   s   C   e   A    t _   a   v   c   n    i    d   o   n   C      I    5    0    0  .    0

   d   e    f   e  .   e    h    )   y   o   v   s    t    d    ”   i   g    i   r   t   n   r   y    O   e   c   e   d   e   e   r   b   L   g   e   s   w  a    “   n    i   m   w    (   r   a   i   e    d    t   o   e  .    f   o   E    ”   e   p   h   e    l   m   w   s    S   o   s    I _    t    f    l   o    l   o   a   H  r   e    T   g    f    f    d   t   a   c   y   e   p    d   a    d   “   e   o   e   o   E   e   r   c    l   g   v   o   t    l   r   i    d   o  .   w  e   r   r   r   e    f   s   r   e  .    t   o    l   e   e   o   h   e   e    h   s   r   y   n   r   m  e    i    t    t   r   y   n   c    i   g   p   t   w   w   e   g   o    t    t   m   n   g    l   s   e   e    i   e   r   a   d   d   o   a   o   a    t    l    E   e   o   o   r   s   w  e   p   p    i   r   s   e   c    h    h   c   e   a    d    t   n _   o   n    t    t   r   c   v   c   C   p   E    E  e   m  y   m  y   o   v    i   e   c   a   e   l   r   m   r    t _ _   u   u   n  .    h  .    A   g   d   g   d    t   e   w  e    d   l   u   l   o   p   c   r   r   e _   a   a   e   m   m    t   o    b   s   o   e    i   e    i   e   e   r   m   c    i   n   i    t   r   c   r    l   e   o   v    i   n   s    t   r   c   x   E   a   n   c   e   x   E   a   n   c   e    t   e   )    t    h   a   n   p   h   e   i   a   C   c   e   c   e    C   C    d _   x _   x   c   A   t   m   m   m   s    l    l   e   w   e   g   e    t   e    l    l    l      A   r   e   a   a   e   e   e   e   E  o    t   a   l    t    t   e   t   o   h    E    h   i   a   p    t   c   c   m   s    h    h    h    i   o   o   v   a    t _    t    t    t   _    (    t   r   r   o   n   c    t   n    t   e   r    C   n    l    i    l   s   C   A   s   C   s   c   s   c   d    d   r   C  s   l   e   f   e   A _   e   A    t   e   l   e   l   e   a  .   e   S    t   e   e    i   s   d    t    t   n   f    t   e   A   r    T _ _   r   e   e   a   v   t   a   a   a   e   a   m    i   o    E    E   r   v   v    i   c   n     c   n    i   c _   E    i   c _   u    ”   s   v   i   c   s   e    i    i    i   p   n   r    K    t    d   o   w    d   o   C   e    d   C  q   e   e    d   o    d   a   e      “    O   t   n   C   A      R   n   C   n   C    h      I   n   A  r   r   c   o   o   n   t    I    d      I      I    A   t   a   i   p      5    5    5    5        0    0    0    0    0    0    0    0   —   —  .  .  .  .    0    0    0    0

  —

   0    4    2   o    t    0

   0    4    2   o    t    0

  —

  s    t    t   a   w   o    l    i    k

  s    t    t   a   w   o    l    i    k

   ”   ”    E   E    U   S    R   L    T    “   A    I   F    ”   “   :    t    E   l    S  u    L   f   a    A  e    F    “   D

  e   g   n   a    R   r_   e   w   o    P _   n     o    i    W   s   r   k   e   0   v   :   n   l    t   o   u    C   f   a   :   e   n   D    I

  e   g   n   a    R   r_   e   w     o   W    P   k _   e   0   g   t   :   a   l    t   u    S   f   a   :   e   n   D    I

 .    #    k   n    F    2    S   G

   2

 .    #   c   r   G    4    S   F   a   )    t   a   d    d    D   (

  s    t    t      i    t   s   a   n   w   o    U    l    i    k    /    f   o   s    t   s    i   s   n   t   o   l   u    C    /    f   n   a    I   e    d   D   e   n    i   a    t   n   o    C

  e     m   a    N

     W    k    0   :    t    l   u   a    f   e    D

  r   e   w   o    P   r_   e    f   s   n   a   r    T _   x   a    M

  —

   0    4    2   o    t    0

   0    4    2   o    t    0

   0    4    2   o    t    0

  —

  —

  s    t    t   a   w   o    l    i    k

  s    t    t   a   w   o    l    i    k

  s    t    t   a   w   o    l    i    k

  —

  —

     W    k    0   :    t    l   u   a    f   e    D

     W    k    5  .    1   :    t    l   u   a    f   e    D

     W    k    0   :    t    l   u   a    f   e    D

  s   u   ”    t   a   I    t    H    S   “    I   ” _    l    ”   I    H   o   r   K   “    t    O   :   n   “   l    t   o   I   u    C   ”   f   a   :   O  e    L   n    I   “   D

   2 4 e      2 3 4

   3

   2

   2

   2

   4 e

   2

   2

   2

   2

   3 4

   2

   2

   3 4

   d

   d

   d

  —

   d

   d

   d

   d

  r   e   w   o    P   e _   g   a    t    S _   n    i    M

  y   g   r   e   n    E    l_   a   c    i   r    t   c   e    l_    E    C    A _    d   o    M

   t    i   m    i    L   r_   e   w   o    P

  e    t   a    d   n   a    M    t_    i   m    i    L   r_   e   w   o    P

  e   g   n   a    R    f_   o    t _   u    O   r_   e   w   o    P

   d    i    l   a    V   r_   e   w   o    P   r_   e    f   s   n   a   r    T _   x   a    M

  r   e   w   o    P _   n   o    i   s   r   e   v   n   o    C _   n    i    M

   l   e   v   e    L   r_   e   w   o    P

   E    A    S

--`,,,``,,`,,,,```,,`,,,,`,`,,``-`-`,,`,,`,`,,`---

Not for Resale, 06/12/2014 11:14:05 MDT

 

  n   o    i    t   p    i   r   c   s     e    D    l   a   r   e   n   e    G

   4    8    f   o    0    8   e   g   a    P

 .     s   e    1    R

`    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , `  -

   4    1    0    2    B    E    F    d   e   z    i    l    i    b   a    t    S    1      3    9    2    2    J

   L    A    N    O    I    T    A    N    R    E    T    N    I

  e    h   e    t    d    t   o   a   e   m    b   e   s   o   l    t    t   u   s   p   a   i    h    t   y   e   v   e   g    t   r   i    i   m  e   s    i    t   n   o  .    f    E  p   d   o   l_   n   e    d   a   e   l   o   c   h   b    i   r   i    t   r   w  n   a   e   c   l   e   p   l   e   e   s   v   e   E  e   i    h   n    t _   l   o    i   s   C  r   e    t   e   A  w   l    t _   o   a   a   v   u   c   p   d    i    d   n   o   o    1   n   C   P  m      I

   )    D    E    U    N    I    T    N    O    C    (    Y    R    A    N    O    I    T    C    I    D    A    T    A    D      7    5    E    L    B    A    T

  e     g   n   a    R

   0    1   o   0    t    0    0   0    0    2

  s    d   n    t   s   o      i   n   c   e   s    U    i    l    l    i   m

  e    h   e    t    d    t   o   a   e   m    b   e   s   o   l    t    t   u   s   p   a   i    h    t   y   e   v   e   g    t   r   i    i   m  e   s    i    t   n   o  .    f    E  p   d   o   l_   n   e    d   a   e   l   o   c   h   b    i   r   i    t   r   w  n   a   e   c   l   e   p   l   e   e   s   v   e   E  e   i    h   n    t _   l   o    i   s   C  r   e    t   e   A  w   l    t _   o   a   a   v   u   c   p   d    i    d   n   o   o    0   n   C   P  m      I    1

 .   e   s   E    l    S   u   V   p   E   e   e   v   h    i    t    t    i   s   y   o   b   p    t    d   e   a   t    h    t   r   s   o   e   p   p    t   u   a   c   s    i   s    d   i   n   o    i    ”   n   i    D   t    l    E  a   u    T   d    R  o    O  m    P  e    P   d    U  o    S    “   m  

  —

  e    d   o   m   e   s    l   u   p   e   v    i    t    i   s   o   p  .    t    d   a   e    h   r    t    i   s   e   s   d   e    t   a   s   c   i    i    d   n   n   i   o    i    ”   t   a    E   l   u    U   d    R  o    T    “   m     —  

  —

 

  —

   d   o    i   r   e   p   m   o    d   n   a   r   e    h    t    t   a    h    t  .   e   s   d   e    t   r    i   a   c   p    i   x    d   e   n    i   s    ”   a    E   h    U  r    R  e   m    T    “   i    t    

  —

  n   o  .    i   s   r   e   v   e   t    i   v   c   n   a   o   c   e    C   b   o    A   -   t   o    d    t   e   -   t    C  s    A  e    f   u   o   q   r   e   e   g   i   a   s    t   s   t   a   e   h    t    h    t    t   s   n   e   e    t   m   a   i   c   p    i    d   u   n   q    I   e  

 .    C  e   v    A    i   -   t   o   c    t   -   a   s    C   i    A   t   a   e   h    h    t    t    f    t   o   n   e   e   m   g   i   a   p    t   s   u   q   e   e    h    t   n   o   s   i   e   s    t   r   a   e   c   v    i    d   n   n   o    I   c  

  —

   1

   1

   3    6   o    t    0

  y   r   e   v   o   c   e    R   y    t    i    l    i    t    U   e    h    t    t   a    h    t  .   e   r   s   d   e    i    t   p   a   c   x    i    d   e   n   s    i   a    ”   h    E  r    U  e    R   i   m    T    “   T  

   0    0    0    0    1   o    t    5

  —

  —

  —

  —

  —

   3    6   o    t    0

  s    d   n   o   c   e   s    i    l    l    i   m

  —

  —

  —

  —

  —

  —

  —

   d   o    i   r   s   e    P  m _   e   0   :   s    t    l    l   u   u    P   f   a   :   e   n   D    I

   ”    D    E    T   n   I    R   o    i    t    ”    O    P   a   r   D    P   u   E    U   g   T    i    f   R   ”   S _   n   O    T   o    D    O    C   P   E _   P   T   N    R    E   U    “   :    S   S   O    t    V _   P   l   u    E   T   P   f   a    U  e   :   O   n   N    I    “   S    “   D  

   ”   ”    E   E    U   S    R   L    T    “   A    I   F    ”   “   :    t    E   l    S  u    L   f   a    A  e    F    “   D

   +    d   d   o   o   i    i   r   r   e   e    P   P _    i_   o    H   L _ _   e   e   s   l   s    l   u   u    P   P  

   ”   ”    E   E    U   S    R   L    T    “   A    I   F    ”   “   :    t    E   l    S  u    L   f   a    A  e    F    “   D

  s   u   ”   ”    t   a   E   E    t    S    S   U    R   L   r_   T    A   e   “    F    f    “   s   I   n   ”   :    t    E   a   S   l   r   u    T   L   f   a   :   A  e   n   F    I    “   D  

   0   :    t    l   u   a    f   e    D

  e   g   n   a    R   r_   e   w   o    P _   e   0   g   t   :   a   l    t   u    S   f   a   :   e   n   D    I

   k  .    #   n    G    2    S   F

   2

   1 4

   2

   2

   1

   1 e

   2

   4

 .    #   c   r   G    4    S   F

   4

   1

   4

   4

   1

   1

   4

   2

  a   )    t   a   d    d    D   (

   d

   d

   d

  —

   d

   d

   d

   d

   /    f   o   s    t   s    i   s   n   t   o   l   u    C    /    f   n   a    I   e    d   D   e   n    i   a    t   n   o    C

  e     m   a    N

   d   o    i   r   s   e    P  m _   e   0   :   s    t    l    l   u   u    P   f   a   :   e   n   D    I

   d   o    i   r    P   e    i_    H _   e   s    l   u

   d   o    i   r    P   e _   o    L _   e   s    l   u

  e    d   o    M _   e   s    l   u

  e    l    b   a   n    E _   e    d   o    M _   e   s    l   u

   t   u   o   e    i    d   o   r   e    P _   e   s    l   u

   i   m    T _   m   o    d   n   a

   t   u   o   e   m    i_    T   y   r   e   v   o   c   e

  x   e    d   n    I _   e   g   a    t    S _    d   e    t   s   e   u   q   e

  x   e    d   n    I _   e   g   a    t

   E    A    S

   P

   P

   P

   P

   P

   R

   R

   R

   S

Not for Resale, 06/12/2014 11:14:05 MDT

 

  n   o    i    t   p    i   r   c   s     e    D    l   a   r   e   n   e    G

   4    8    f   o    1    8   e   g   a    P

   4    1    0    2    B    E    F    d   e   z    i    l    i    b   a    t    S    1      3    9    2    2    J

   L    A    N    O    I    T    A    N    R    E    T    N    I

   )    D    E    U    N    I    T    N    O    C    (    Y    R    A    N    O    I    T    C    I    D    A    T    A    D      7    5    E    L    B    A    T

   d   e    t    i   e   m   v    i    i    l    t   g   c   n   a  .    f    i   e   e   o   e   h   r   b   t   g   a   e   i   y   t   s   w  s    b   o   y   n    d   p   g   o   r   e   i   e   e   s   s   n    h   o    t    E  p   r    t _   r   e   v   a   l    h   u   n   a   c   p   c   o    t   s   i   r   n   o   r   e   t   e    t   c   i    t   a   e   c   w    l   c    t   e   o    i   p    d   E _   o   n    i    C  r    C   p    ”   A   f   -   A      E _   l   o   e   t    U  v   s     n    R  o   r   C    T   o   A     —    “   C   f

  y    b    d   e   v    i   r   e    d   y   g   r   e   n   e    l   a   c   f  .    i   r   o   y    t   c   g   r    l   e   i   g   n   n   e    h   E   c    C   i    t _    A  w   l   a   c   s   s   i    t    f    t   n   f   r   c   e   /   e   s   o   l   n   e   r   o   E   p   e _   e    C    R   h    t    A  

  a    i   y   v   g   e   r   l   e   b   n   l   a   e   i    l   a   a   v   c   a    i   r   s    t   c   i   e   s    l   c  .   e   i    t   y   s   g    C   i   r   r    A   t   e    t   e   n   a   c    E    h   a   r   l   a _   a    t   s   h   c   e   c   i    t   r   a   e   t   c   c   t    i   e    i    l    d   a   r   n   p   E    i _    ”   o    E  r   p   C    U  p   A _   a   w    R   f    T    “   o   S  

   d   e   v    i   r   e    d   y   g   r   e   n   e    l   a   c    i   r   f    t   c   o  .   e   g   y    l   e   i   n   g   r    C   h    t   c   e   n    D    i    E   e   w   s   l_    h    t    f    f   a   c   s   o   i    t   r    t   n   /   n   e   o   c   e   s    l   e   e   E   r   h   p   t _   e   y   C    R   b   D  

  y   g   r  .   e   y   n   g   e   r    l   s   e    i   a   n   c   s   E    i   r   c   l    t    t   a   c   i   c   e    i    l   s   r   r   i    t   e   t   e   c   e    C  c    l    D  a    E    t   r   a   a _    h   h   C   c   D   e _    t   s   t   e   i   a   w    t   r   S   a   c   p    i   a   r   i    d   o   v   p   n    i   p   l   e    ”   a   b    E  e   a    l    U   h   i   a    R   t    f   v    T    “   o   a     —

  —

 .     s   e    R

  —

  —

  —

  —

  —

  —

  —

  —

  e     g   n   a    R

  —

  —

  —

  —

  —

  —

  —

  —

   t   s      i   n    U

  —

  —

  —

  —

  —

  —

  —

  —

   /    f   o   s    t   s    i   s   n   t   o   l   u    C    /    f   a   n    I   e    d   D   e   n    i   a    t   n   o    C

   +   +   r   r   e   e   w  w   o   o    P   P _ _   x   e   e   e    d   g   g   a    I   a   t   n    t _    S   S _   e _   x   g   n   a   t     a    i    M    M    S     —

   ”   ”    E   E    U   S    R   L    T   A    “    I   F    ”   “   :    E   t    S   l   u    L   f   a    A  e    F    “   D

   k  .    #   n    G    3 4    S   F

   2 3 4

   2

 .    #   c   r   G    2    S   F

   2

  a   )    t   a   d    d    D   (

  —

  e     m   a    N

   ”   ”    E   E    U   S    R   L    T   A    “    I   F    ”   “   :    E   t    S   l   u    L   f   a    A  e    F    “   D

   d   e    t    i   m    i    L   r_   e   w   o    P _   e   g   a    t    S

  e   g   n   a    R   r_   e   w   o    P _   e   g   a    t    S

   t    l   u   a    F    t_    +   n   e    t    V   u   +   o   y   +   s   +  e   d   y   u    t   y   i   m  a   d   a    d   e    t   a   T   a _   R  e    S  e   y _   R  r   r_   R _    S _   e   f   e   e    T   E  v   s   l   c    E   S  o   n   i    h   a   :    V  c   e   r   e   n   E   R   T      I    V  

  —

   ”   ”    E   E    U   S    R   L    T   A    “    I   F    ”   “   :    E   t    S   l   u    L   f   a    A  e    F    “   D

  s   u   ”   ”    t   a   E   E    t    S    S   U    R   L   r_   “    T   e   I   A    F    f   s   ”   “   n   E   t   :   a   r   S   l   u    T   L   f   a   :   A  e    F   n   “   D    I

   4

   3

   4

   2 4 e

  e

   1

   2

   4

   3

   4

  —

  —

   d

  —

   d

   d

  —

   t   n   e   s   e    P   r _    C    A _   w    S

  y   g   r   e   n    E    l_   a   c    i   r    t   c   e    l    E _    C    D _    W    S

   t   n   e   s   e    P   r_    C    D _   w    S

  y    d   a   e    R   r_   e    f   s   n   a   r    T

  s   u    t   a    t    S   r_   e    f   s   n   a   r    T

  y   g   r   e   n    E    l_   a   c    i   r    t   c    l    E   e _    C    A _   w    S

 

   E    A    S

--`,,,``,,`,,,,```,,`,,,,`,`,,``-`-`,,`,,`,`,,`---

Not for Resale, 06/12/2014 11:14:05 MDT

 

  n   o    i    t   p    i   r   c   s     e    D    l   a   r   e   n   e    G

   4    8    f   o    2    8   e   g   a    P

   4    1    0    2    B    E    F    d   e   z    i    l    i    b   a    t    S    1      3    9    2    2    J `    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , `  -

   L    A    N    O    I    T    A    N    R    E    T    N    I

 .     s   e    R

   )    D    E    U    N    I    T    N    O    C    (    Y    R    A    N    O    I    T    C    I    D    A    T    A    D      7    5    E    L    B    A    T

  e     g   n   a    R

     i    t   s   n    U

   /    f   o   s    t   s    i   s   n   t   o   l   u    C    /    f   a   n    I   e    d   D   e   n    i   a    t   n   o    C

 .    V    E   e   e    b   h   o   t    t   o   y   t   g   r   E   e   S   n   V   e    f    E   o   e   m    h    t   r   o   m    f   o   r   e   f    h    t    d   s   e   r   e   r    t   e   a   f   c   s    i    d   n   a   n   t   r    I  

  —

  —

  —

   I    ”    C    A    “   ”    I   s   ”   C   u    t   R   D    “   a   E   I    t    F    S   S   ”    ”    C    l_   N   E    V   o    I   A   r    A    t    T   “   :   n   R   C   t   o   T   U   l   u _    C    D   f   a   :   O   e    N    N    I   n   “   “   D    I

  e    b   o    t   y  .   g   r   V   e   E   n   e   e    f    h    t   o   o    t   m   r   E   o   S    f    d   V    E   e   r   r   e    f   e    h   r   t   p   m   o   r   e   f    h    t    d   s   e   r   e   r    t   e   a   f   c   s    i    d   n   a   n   t   r    I  

  —

  —

  —    I    ”    ”    E    C    C    N    A    “    E    I    R    ”    E    E   ”   F    C   C   E    N   D    “   R    t   E   I   P   u   R   ” _   p   E   E   O   n   F   V   N    I    I   “    T  :   r_   E   e   R   C   t   s   P   U   l   u    U _   D   f   a   :   O   e    N    N    I   n   “   “   D      I  

   d   e   n   t   g   a    i   s   h    t   e    d   e   s   p   y    i    T    E  r_    S  e    V   f    E  s   n   e   a   r    h    t    T  .    t   y   d   a   e    h   g   r   t    t   s   e   s   u   e   n   e   e    t   a   e   q   c   h   e   r    i    d   t   s    t   n   r   a    i   o   h    ”   p    E  p   V    U  u   E    R  s   e    T   o   h    “   t    t    

   l    l    i   w   r   o  ,   g   y   i   n   g   r   e   e   b   n   s   e   i    t   y   a   t    i    l    h    t    i    t   e   U   s   e   o   p   r    h   u   t   p   m   o   r  .   e   f   r    h    t    d   f   o   s   e   r   r    d   e    t    f   e   a   e   s   c   s    i   u    d   n   a   e   n   r    I    t    b

  —

  e   m    i    t    t   o   g   d   n   e    i   n   t    i   a   c   e   m  p   x   e   r   e   s   e   i    h    t   e    f    d   o   o   e   M    t   a _    i   m  g   e    t   s   a   s   e   U   n   t   a   n   s   e   e   s    t   r   a   e   c   p   t  .    i      d   e   s   n    h   a    I    t    l     —      1   —

  e    t   a   f    t   s   o   a   r   e   n   f    i   s   s    i   n   a   r    V   t    E  e   e   h    t    h  .    t    t    t   r    E   a   o    S    h   p    t   p   V   u   E   s   e   s   e    t   o   h   a    t    t   c   y    i   m    d   d   n   a   o    i   r    f   e    ”   r   y    E   i   s   g   r    U   t    R  a   e   n    T    “   h    t   e  

  n   o    i    t   a  .    l    i    t    S   n   V   e   v   l   a   e   n   r    t    i   e   s   t   e   x   g   e   r   e   a   t    h    h   c   y    t    b   a    h   d    t   e   m   s   e   i   r    t    f   a   c   n    i    d   o   n   c    i   n    ”   e   e    E   b    U    R  s   a    T    “   h  

  —

  —

  —

   0    8    8    2   o    t    0

  —

  —

  —

  —

  s    t   e   u   n    i    M

  —

  —

  —

   I    ”    Y    D    ”    A    D    E   s   E    N    R   u    “    t   I    I    F   a    t   ”   ”   E    S   Y    D   r_   D   D    N   e   A   E    U    f    N   s   E   I   “   n   R   F   t   :   a _   E   l   r   T   u    T    D   f    N  a   :   O   e   n   N    I    “   U    “   D  

   ”   ”    E   E     U   S    R   L   w   o   T    “   A    l    F   I   F    “    t   ”   :   x   E   t    l   e   S  u    t    L   a   n    f   o   A  e    F    C    “   D  

  s   ”   ”   u   E   E    t   a   U   S    t    L    S   R    l_   T    “   A    F   o   r   I    t    ”   “   :   n   E   t   o   S   l   u    C   L   f   a   :   A  e    F   n   “   D    I

   I    ”    ”    E    R    S    E    A   ”   F    B    “   T   S    I    N   s   ”   R    A   u    R    t   R   O    P   a   E   P   T    t _    F    S   S   U   O    l_   N   “    S   N   o   r   A   I   “    t   :   n   R   ”   t   o   T   R   l   u _    C    E   f    V  a   :   O   e   n   N    I    “   O    “   D  

  s   u    t   a    t   n    S   i    l_   m   o   r   0    t   :   n   t   o   l   u    C   f   a   :   e   n   D    I

   +  e   e   c    l   n   g   e   g   r   e   o   f    T  e _   r   e   P _     c   n   e   w  e   p   o   r   y    l   e    F   f    T _    t   e   r   r   x   P   f   e   e _   s    t   n   S  n   o   M  a   r    C   L   T  

 .    #    k   n   G    F    1 e    S

   4

   1 e

   4 e

  e

  —

   1 4 e

   1

 .   c   #    4   r    G    S   F

  e

   1

   4

   4

  e

   4

  e

  a   )    t   a   d    d    D   (

   d

   d

   d

   d

  —

   d

   d

  e   c   n   e   r   e    f   e   r    P _   e   p    T   y   r_   e    f   s   n   a   r

   d    i    l   a    V _   e   p    T   y   r_   e    f   s   n   a   r

  e    d   o    M _   e   g   a   s

  e   m    i    T _   e    d   o    M _   e   g   a   s

   t   u   p   n    I   r_   e   s

  y    d   a   e    R _   e    l   c    i    h   e

   d   e   m    i    f   r   n   o    C    t_   n   e

  e     m   a    N   e   p    T   y   r_   e    f   s   n   a   r

   T

   E    A    S

   T

   T

   U

   U

   U

   V

Not for Resale, 06/12/2014 11:14:05 MDT

 

  n   o    i    t   p    i   r   c   s     e    D    l   a   r   e   n   e    G

   4    8    f   o    3    8   e   g   a    P

   4    1    0    2    B    E    F    d   e   z    i    l    i    b   a    t    S    1      3    9    2    2    J

   L    A    N    O    I    T    A    N    R    E    T    N    I

 .     s   e    R

`    ,   ,   , `  `    ,   , `    ,   ,   ,   , `  `  `    ,   , `    ,   ,   ,   , `    , `    ,   , `  `  `  `    ,   , `    ,   , `    , `    ,   , `  -

   )    D    E    U    N    I    T    N    O    C    (    Y    R    A    N    O    I    T    C    I    D    A    T    A    D      7    5    E    L    B    A    T

   t    t   p   o   m   n   e   r   x   o   e    l   s   t   e    l    i   a   a   n   n   o    E   i   s   r   i    t    S  e    t   e   c    V  g   x   n   u    E  r   e   f   a     e   h   e   n    h    h    t   c    t   e    t   o    t    d   a   a   n   s    h   i    h   i   v    t    t   o   m   s   r   s   t   p    t   e   e   e    t   o   s   a   a    t   c   c   y    i    i   g  .    d   s    d   n   n  .   n   i   n   n    i   o    i    i   o   l   e    i    ”   v    t    ”   t   a    E   h   l   a    E   l   a   b   a    U  m   i    t    U   i    t    l    i   n   a    R  o   n    R   v    T   r   e    “   f   v    T    “   e   v   a  

  —

 

  —

  n   o    i    t   a    l    i    t   n   e   v

  e    t    i   s   e   g   r   a    h   c    t  .   a    h   S    t    T   s   E   e    t   y   a   c   b    i    d   d   e   n   t    i    ”   s   e    E  u    U  q   e    R  r    T   s    “   i  

  —

  n   o    i    t   a   V  e    l    i    t   r   n   E  g   a   e   e   h   v   h    t   c   e   f    t    t    i   n   s   o   g   e   e   i   n   s   e   g   r   r   g   p   a   r   a    h   e   c   h    h    t   c    t   a   r    h   o   h    t    i    t    d   o   s   i   n   w   e   y    t   r   r   a   e    t   c   o   t    i   a    d   f   n   d    B  .    i   e   r    ”   i   e   y   g   g    E  u   e   a   t    U  q   e   r   a   o   t    R  r   r    t    T   s   S  s      “   i  

   f   o    l   e   v   e    l   e   g   a  .    t    l   o   y   r   v   g   e    C  n    D   E    d   l_   e   r   a    i   s    t   r   c   e   i   c    d   l   e   e   E    h _    t   s   C   e   D    t _   a   v   c   n    i    d   o   n   C    I

  —

   1

  e     g   n   a    R

  —

  —

  —

  —

   0    0    5   o    t    0

     i    t   s   n    U

  —

  —

  —

  —

   t    l   s   o    V

   /    f   o   s    t   s    i   s   n   t   o   l   u    C    /    f   n   a    I   e    d   D   e   n    i   a    t   n   o    C

   ”   ”    E   E    U   S    R   L    T    “   A    I   F    ”   “   :    t    E   l    S  u    L   f   a    A  e    F    “   D  

  s   u   ”    t   a   E   ”    t    E    S   U    R   U _   r   T    R   e   “    T    f    “   s   I   n   ”   :    t    E   l   a   r   S  u    T   L   f   a   :   A  e   n   F    I    “   D  

   ”    E   ”      U   E    R   U   w   o   T    “   R    l    F   I   T    “    t   ”   :    t   x   E   l   e   S  u    t    L   a   n    f   o   A  e    F    C    “   D  

   l   a   c   -   i   r   e    d   t   e   c   h   s   l   e   t   o   e   y    l   c    b   e   C   d   e    h   D    t    t   r    t    f   o   a   r   o   p    h   e   p    t    f   u   s   s   s   e   n    t   s   a    i   a   t   r   c   e    i    l    l    d   o   c   r    i    i   n   t   n   h   e    ”    D  o   c   v   e    E  e   h    T  g   t    R   t   a   t   o    O   l   o  .    P  v   y    P  p   g   r   E    S    U  o   e    V   o   n      S    “   l   e   E    

 .   e   d   g   e   r   a   i    t    l   s   o   e   v   d   p   i   s   o   r   o   e    l   -   f    d   s   n   e   a   s   r   o    t    l   c   y    t   g   a   r    h   e    t   n   e   s   f   e    t   o   a   c   e    i    d    d   o   n    i   m    ”   l    E  o   r    U   t    R  n   o    T    “   c  

  —

  —

  —

  —

  —

  —

   ”   ”    E   E    U   S    R   L    T    “   A    I   F    ”   “   :    t    E   l    S  u    L   f   a    A  e    F    “   D

  s   ”   u   E   ”    t   a   U   E    t    U    S   R    l_   T    “   R    T   o   r   I    t    ”   “   :   n   E   l    t   o   S  u    C   L   f   a   :   A  e   n   F    I    “   D

   V    0   :    t    l   u   a    f   e    D

   ”    D    E    T   n   I    R   o    O    i    t   ”    P   a    D    P   r   u   E    U   g   T    i    f   R   ”   S _   n   O    T   o    D    E    C   P   T   O _   P    N    E   U   R   “   :    S   S   O    t    V _   P   l   u    E   T   P   f   a    U  e   :   O   n   N    I    “   S    “   D

 .    k   n   G    #    1    S   F

   4 e

  e

   1 e

   3

   1 4

   3 4

 .    #   c   r   G    1    S   F

   1

   1

   4

   4

   1

   4

  a   )    t   a   d    d    D   (

   d

   d

   d

   d

   d

   d

  e    d   o    M _   e   g   a    t    l   o

  e    l    b   a   n    E _   e    d   o    M _   e   g   a    t    l   o

  e     m   a    N    t   p   m   e   x    E    t_   n   e

   t    l   u   a    F    t_   n   e

   t   s   e   u   q   e    R    t_   n   e

   d   e   r    i   u   q   e    R    t_   n   e

   l   e   v   e    L _   e   g   a    t    l   o

   V

   V

   E    A    S

   V

   V

   V

   V

   V

   V

Not for Resale, 06/12/2014 11:14:05 MDT

 

SAE INTERNATIONAL

J2293-1 Stabilized FEB2014

Page 84 of 84

10. NOTES 10.1 Marginal Indicia  A change bar (I) ( I) located in the left margin is for the convenience of the user in locating areas where technical revisions, not editorial changes, have been made to the previous issue of this document. An (R) symbol to the left of the document document title indicates a complete revision of the document, including technical revisions. Change bars and (R) are not not used in original publications, nor in documents that contain editorial changes only.

PREPARED BY THE SAE ELECTRICAL VEHICLE CHARGING CONTROLS SUBCOMMITTEE OF THE SAE ELECTRIC VEHICLE STANDARDS FORUM COMMITTEE STABILIZED BY THE SAE HYBRID - EV COMMITTEE

`    ,   ,   , `  `    ,   ,  

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF