Sulzer za40s
Short Description
Spare part cataloque...
Description
The Sulzer ZA40S engines (in-line and Vee–form having output of 750 kW/cyl and 720 kW/cyl) presented in this issue are forseen for marine applications only and have the following Maximum Continuous Rating (MCR) ranges:
– Power per cylinder: MCR 750 kW (1020 bhp), – Speed: 510 rpm (prop.) – Power per cylinder: MCR 750 kW (1020 bhp), – Speed: 514 rpm (60 Hz) – Power per cylinder: MCR 750 kW (1020 bhp), – Speed: 500 rpm (50 Hz) – Power per cylinder: MCR 720 kW (980 bhp), – Speed: 510 rpm (prop.) – Power per cylinder: MCR 720 kW (980 bhp), – Speed: 514 rpm (60 Hz) – Power per cylinder: MCR 720 kW (980 bhp), – Speed: 500 rpm (50 Hz)
This latest issue of the Engine Selection and Project Manual (ESPM) replaces the last GTD issue 1994. Please note that the complete document has been revised. Particular attention is drawn to the major changes: – The economy ratings of 660 kW/cyl and 600 kW/cyl are no longer available. – The inclusion of information referring to IMO regulations (chapter E). – The inclusion of information referring to the calculation program winGTD (chapter F) of which a CD-ROM is included inside the rear cover, containing winGTD version 1.23 for the ZA40S only, and EnSel version 3.22.
25.48.07.40 – Issue IX.99 – Rev. 0
Wärtsilä NSD Switzerland Ltd
ZA40S
Engine Selection and Project Manual
List of contents
A
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A–1
B
Considerations on engine selection . . . . . . . . . . . . . . . . . . . . . .
B–1
B1 B1.1 B1.2 B1.3 B1.3.1 B1.3.2 B1.3.3 B1.3.4 B1.3.5 B1.3.5.1 B1.3.5.2
Load range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Remarks concerning the engine operating ranges A to D . . . . . . . . . . . . . . . . . . . . . . Engine equipment, acceleration and smoke behaviour . . . . . . . . . . . . . . . . . . . . . . . . Variable-speed engines driving a controllable-pitch propeller (CPP) . . . . . . . . . . . . . Constant-speed engines driving a controllable-pitch propeller (CPP) . . . . . . . . . . . . Constant-speed engines driving an electric generator . . . . . . . . . . . . . . . . . . . . . . . . . Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Control requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Controllable-pitch propeller (CPP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Marine power generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B–1 B–1 B–1 B–2 B–2 B–2 B–2 B–2 B–3 B–3 B–3
B2 B2.1 B2.2
Ambient temperature considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Engine air inlet temperature from 45°C down to 5°C . . . . . . . . . . . . . . . . . . . . . . . . . . Engine air inlet temperature below 5°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B–4 B–4 B–4
C
ZA40S engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–1
C1
Engine description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–1
C2 C2.1 C2.2 C2.3 C2.4 C2.5 C2.5.1 C2.5.2 C2.5.3 C2.5.4 C2.5.5 C2.5.5.1 C2.5.5.2 C2.5.5.3 C2.5.6 C2.5.7 C2.5.8
Engine data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Estimation of engine performance data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Design conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ancillary system design parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vibration aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Torsional vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Resilient mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System dynamics: marine installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System dynamics: diesel electric propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Questionnaire about engine vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Forced torsional vibration calculation of gear driven propulsion applications . . . . . Forced torsional vibration calculation of diesel electric propulsion applications . . . Simulation of the engine speed deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Starting ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sudden loading behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loading programme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–7 C–7 C–7 C–7 C–7 C–9 C–9 C–9 C–10 C–10 C–14 C–14 C–15 C–16 C–17 C–17 C–18
Wärtsilä NSD Switzerland Ltd
a
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
List of contents
C2.6 C2.7 C2.8 C2.9
Turbocharger and charge air cooler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Contents of water and oil in engine including engine mounted piping . . . . . . . . . . . . Pressure drops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pressure and temperature ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–19 C–19 C–19 C–20
C3 C3.1 C3.2 C3.2.1 C3.2.1.1 C3.2.1.2 C3.2.1.3 C3.2.2 C3.2.2.1 C3.2.2.2 C3.2.2.3 C3.2.2.4 C3.3 C3.3.1 C3.3.1.1 C3.3.1.2 C3.3.2 C3.3.3 C3.3.4 C3.3.5 C3.3.6 C3.3.7 C3.3.8 C3.3.9 C3.3.10 C3.3.11 C3.4 C3.4.1 C3.4.2 C3.5 C3.5.1 C3.5.2 C3.5.3 C3.5.4 C3.6 C3.7 C3.7.1 C3.7.2 C3.7.3 C3.7.4
Installation data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dimensions, masses and dismantling heights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Outline drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . In–line engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Engine outline 6ZAL40S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Engine outline 8ZAL40S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Engine outline 9ZAL40S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vee–form engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Engine outline 12ZAV40S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Engine outline 14ZAV40S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Engine outline 16ZAV40S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Engine outline 18ZAV40S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Engine seatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rigidly–mouted engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Resilient–mouted engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rigidly mounted engine seating for In–line Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . Rigidly mounted engine seating for Vee–form Engines . . . . . . . . . . . . . . . . . . . . . . . . Resiliently mounted engine seating for In–line engines . . . . . . . . . . . . . . . . . . . . . . . . Resiliently mounted engine seating for Vee–form engines with TC VTR 354 . . . . . Resiliently mounted engine seating for Vee–form engines with TC VTR 454 . . . . . Resiliently mounted In–line generator set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Resiliently mounted Vee–form generator set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Epoxy resign chocking and drilling plan for In–line engines . . . . . . . . . . . . . . . . . . . . Epoxy resign chocking and drilling plan for Vee–form engines . . . . . . . . . . . . . . . . . Indication angles of ships at which engine running must be possible . . . . . . . . . . . . Engine Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . In–line engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vee–form engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pipe connection plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pipe connection plan 6ZAL40S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pipe connection plan 8 and 9ZAL40S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pipe connection plan 12ZAV40S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pipe connection plan 14–18ZAV40S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cooling and ventilation air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Numbering synopsis and designations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . In–line engine numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Direction of rotation of In–line engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vee–form engine numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Direction of rotation of Vee–form engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–21 C–21 C–25 C–25 C–25 C–28 C–31 C–34 C–34 C–37 C–40 C–43 C–47 C–47 C–47 C–47 C–48 C–49 C–50 C–51 C–52 C–53 C–54 C–55 C–61 C–68 C–69 C–69 C–70 C–71 C–71 C–73 C–81 C–85 C–95 C–96 C–96 C–96 C–97 C–97
25.48.07.40 – Issue IX.99 – Rev. 0
b
Wärtsilä NSD Switzerland Ltd
ZA40S
Engine Selection and Project Manual
List of contents
C4 C4.1
Auxiliary power generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–99 C–99
C5 C5.1 C5.1.1 C5.1.2 C5.1.3 C5.1.3.1 C5.1.3.2 C5.1.3.3 C5.1.3.4 C5.1.4 C5.1.5 C5.2 C5.2.1 C5.2.1.1 C5.2.2 C5.2.2.1 C5.2.2.2 C5.2.2.3 C5.2.3 C5.2.3.1 C5.2.3.2 C5.2.3.3 C5.2.4 C5.2.4.1 C5.2.5 C5.2.6 C5.2.7 C5.2.7.1 C5.2.8
Ancillary systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Part-load data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Engine-driven pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High-temperature cooling water pump (HT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Low-temperature cooling water pump (LT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fuel oil booster pump (only for marine diesel oil) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lubricating oil pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Questionnaire for engine data (winGTD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System design data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Piping systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cooling water systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pre-heating system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lubricating oil systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lubricating oil requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lubricating oil maintenance and treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fuel oil systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fuel oil requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fuel oil treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pressurized fuel oil system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Starting and control air system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Capacity of starting air receivers and compressors . . . . . . . . . . . . . . . . . . . . . . . . . . . Leakage collection system and washing devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tank capacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Exhaust gas system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Determination of exhaust pipe diameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Engine air supply / Engine room ventilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–101 C–101 C–101 C–101 C–102 C–102 C–102 C–103 C–103 C–104 C–105 C–125 C–125 C–135 C–136 C–136 C–136 C–137 C–140 C–140 C–143 C–146 C–149 C–150 C–152 C–153 C–155 C–155 C–159
C6 C6.1 C6.2 C6.3 C6.4
Engine noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Surface sound pressure level at 1 m distance under free-field conditions . . . . . . . . Sound pressure level in suction pipe at turbocharger inlet . . . . . . . . . . . . . . . . . . . . . Sound pressure level in exhaust pipe at turbocharger outlet . . . . . . . . . . . . . . . . . . . Structure borne noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–161 C–161 C–161 C–162 C–162
D
Engine management systems . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–1
D1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–1
D2
DENIS family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–2
Wärtsilä NSD Switzerland Ltd
c
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
List of contents
D2.1 D2.2 D2.3 D2.4
DENIS specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Approved suppliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Speed control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–2 D–4 D–4 D–4
D3 D3.1 D3.2 D3.3
MAPEX family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MAPEX-SM: Partnership agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MAPEX-SM: Partnership agreement closes maintenance loop . . . . . . . . . . . . . . . . . MAPEX-SM: Your complete service package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–7 D–8 D–9 D–10
Engine Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
E–1
IMO regulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Establishment of emission limits for ships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Regulation regarding NOx emissions of diesel engines . . . . . . . . . . . . . . . . . . . . . . . Date of application of ANNEX VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure for certification of engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
E–1 E–1 E–1 E–1 E–1 E–2
winGTD – General Technical Data . . . . . . . . . . . . . . . . . . . . . . . .
F–1
F1 F1.1 F1.2 F1.3
Installation of winGTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Installing winGTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Changes to previous versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–1 F–1 F–1 F–1
F2 F2.1 F2.2 F2.3 F2.4 F2.5 F2.6
Using winGTD (ZA40S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Main window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Four-stroke propulsion engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cooling system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lubricating oil system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Results of the computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Saving a project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–2 F–2 F–2 F–2 F–3 F–3 F–4
E E1 E1.1 E1.2 E1.3 E1.4 E1.5
F
G
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–1
G1
Reference to other Wärtsilä NSD Switzerland documentation . . . . . . . . . . . . . . . . . .
G–1
G2
Piping symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–2
G3
SI dimensions for internal combustion engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–5
G4
Approximate conversion factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–6
25.48.07.40 – Issue IX.99 – Rev. 0
d
Wärtsilä NSD Switzerland Ltd
ZA40S
Engine Selection and Project Manual
List of contents
G5 G5.1 G5.2 G5.3 G5.4 G5.5 G5.6
Wärtsilä NSD Corporation worldwide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Headquarters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Marine business . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Navy business . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Product companies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Corporation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Licensees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–7 G–7 G–7 G–7 G–7 G–8 G–14
G6
Questionnaire order specification for ZA40S engines . . . . . . . . . . . . . . . . . . . . . . . . .
G–19
H
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Index–1
Wärtsilä NSD Switzerland Ltd
e
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
List of contents
25.48.07.40 – Issue IX.99 – Rev. 0
f
Wärtsilä NSD Switzerland Ltd
ZA40S
Engine Selection and Project Manual
List of figures
Fig. A1 Fig. B2 Fig. B3 Fig. B4 Fig. C1 Fig. C2 Fig. C3 Fig. C4 Fig. C5 Fig. C6 Fig. C7 Fig. C8 Fig. C9 Fig. C10 Fig. C11 Fig. C12 Fig. C13 Fig. C14 Fig. C15 Fig. C16 Fig. C17 Fig. C18 Fig. C19 Fig. C20 Fig. C21 Fig. C22 Fig. C23 Fig. C24 Fig. C25 Fig. C26 Fig. C27 Fig. C28 Fig. C29 Fig. C30 Fig. C31 Fig. C32 Fig. C33 Fig. C34 Fig. C35 Fig. C36 Fig. C37 Fig. C38 Fig. C39 Fig. C40 Fig. C41
Power/speed range of Sulzer ZA engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Load range, for ZA40S engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Charge air system for arctic conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Blow-off effect at arctic conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sulzer ZA40S cross section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Starting ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sudden load steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loading programme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ZA40S In–line engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ZA40S Vee–form engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6ZAL40S Driving end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6ZAL40S Exhaust side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6ZAL40S Top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8ZAL40S Driving end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8ZAL40S Exhaust side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8ZAL40S Top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9ZAL40S Driving end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9ZAL40S Exhaust side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9ZAL40S Top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12ZAV40S Driving end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12ZAV40S Right side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12ZAV40S Top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14ZAV40S Driving end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14ZAV40S Right side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14ZAV40S Top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16ZAV40S Driving end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16ZAV40S Right side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16ZAV40S Top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18ZAV40S Driving end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18ZAV40S Right side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18ZAV40S Top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rigidly mounted In–line engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rigidly mounted Vee–form engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Resiliently mounted In–line engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Resiliently mounted Vee–form engine with TC VTR 354 . . . . . . . . . . . . . . . . . . . . . . . Resiliently mounted Vee–form engine with TC VTR 454 . . . . . . . . . . . . . . . . . . . . . . . Resiliently mounted In–line generator set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Resiliently mounted Vee–form generator set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Epoxy resign chocking and drilling plan 6–8ZAL40S . . . . . . . . . . . . . . . . . . . . . . . . . . Epoxy resign chocking and drilling plan 9ZAL40S . . . . . . . . . . . . . . . . . . . . . . . . . . . . Detail C: Fitted foundation bolt M60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Detail D: Foundation bolt M60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Detail E: Jacking screw M39x3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Epoxy resign chocking and drilling plan 12–14ZAV40S . . . . . . . . . . . . . . . . . . . . . . . . Epoxy resign chocking and drilling plan 16–18ZAV40S . . . . . . . . . . . . . . . . . . . . . . . .
Wärtsilä NSD Switzerland Ltd
g
A–1 B–1 B–4 B–5 C–1 C–17 C–17 C–18 C–21 C–22 C–25 C–26 C–27 C–28 C–29 C–30 C–31 C–32 C–33 C–34 C–35 C–36 C–37 C–38 C–39 C–40 C–41 C–42 C–43 C–44 C–45 C–48 C–49 C–50 C–51 C–52 C–53 C–54 C–55 C–56 C–58 C–59 C–60 C–61 C–62
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
List of figures
Fig. C42 Detail C: Fitted foundation bolt M60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–64 Fig. C43 Detail D: Foundation bolt M60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–65 Fig. C44 Detail E: Jacking screw M39x3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–66 Fig. C45 Detail F: Sidestopper with wedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–67 Fig. C46 Permissible loading of the coupling flanges on In–line engines . . . . . . . . . . . . . . . . . C–69 Fig. C47 Permissible loading of the coupling flanges on In–line engines diagram . . . . . . . . . C–69 Fig. C48 Permissible loading of the coupling flanges on Vee–form engines . . . . . . . . . . . . . . C–70 Fig. C49 Permissible loading of the coupling flanges on Vee–form engines diagram . . . . . . C–70 Fig. C50 Pipe connection plan 6ZAL40S with TC on Free End . . . . . . . . . . . . . . . . . . . . . . . . . C–71 Fig. C51 Pipe connection plan 6ZAL40S with TC on Driving End . . . . . . . . . . . . . . . . . . . . . . . C–72 Fig. C52 Pipe connection plan 8–9ZAL40S with TC on Free End . . . . . . . . . . . . . . . . . . . . . . . C–73 Fig. C53 Pipe connection plan 8–9ZAL40S with TC on Driving End . . . . . . . . . . . . . . . . . . . . . C–74 Fig. C54 Pipe connection plan 12ZAV40S with TC on Free End . . . . . . . . . . . . . . . . . . . . . . . . C–81 Fig. C55 Pipe connection plan 12ZAV40S with TC on Free End . . . . . . . . . . . . . . . . . . . . . . . . C–82 Fig. C56 Pipe connection plan 12ZAV40S with TC on Driving End . . . . . . . . . . . . . . . . . . . . . . C–83 Fig. C57 Pipe connection plan 12ZAV40S with TC on Driving End . . . . . . . . . . . . . . . . . . . . . . C–84 Fig. C58 Pipe connection plan 14–18ZAV40S with TC on Free End . . . . . . . . . . . . . . . . . . . . . C–85 Fig. C59 Pipe connection plan 14–18ZAV40S with TC on Free End . . . . . . . . . . . . . . . . . . . . . C–86 Fig. C60 Pipe connection plan 14–18ZAV40S with TC on Driving End . . . . . . . . . . . . . . . . . . . C–87 Fig. C61 Pipe connection plan 14–18ZAV40S with TC on Driving End . . . . . . . . . . . . . . . . . . . C–88 Fig. C62 In–line engine numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–96 Fig. C63 Direction of rotation of In–line engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–96 Fig. C64 Vee–form engine numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–97 Fig. C65 Direction of rotation of Vee–form engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–97 Fig. C66 Characteristics for In–line engines (HT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–102 Fig. C67 Characteristics for Vee–form engines (HT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–102 Fig. C68 Characteristics for In–line engines (LT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–102 Fig. C69 Characteristics for Vee–form engines (LT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–102 Fig. C70 Characteristics for ZA40S engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–103 Fig. C71 Characteristics for ZA40S engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–103 Fig. C72-C91 System design data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–105-C–124 Fig. C92 Central cooling water system (without heat recovery, with externally driven pumps) . . . . . . . . . . . . . . . . . . . . . . . . . C–126 Fig. C93 Central cooling water system (without heat recovery, with engine-driven pumps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–128 Fig. C94 Central cooling water system (with heat recovery, with externally driven pumps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–130 Fig. C95 Central cooling water system (with heat recovery, with engine-driven pumps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–132 Fig. C96 Injection nozzle cooling system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–134 Fig. C97 Engine pre-heating capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–135 Fig. C98 Lubricating oil system with externally driven pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . C–138 Fig. C99 Lubricating oil system with engine driven pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–139 Fig. C100 Fuel oil viscosity-temperature diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–141 Fig. C101 Heavy fuel oil treatment layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–144
25.48.07.40 – Issue IX.99 – Rev. 0
h
Wärtsilä NSD Switzerland Ltd
ZA40S
Engine Selection and Project Manual
List of figures
Fig. C102 Fig. C103 Fig. C105 Fig. C106 Fig. C107 Fig. C108 Fig. C109 Fig. C110 Fig. C111 Fig. C112 Fig. C113 Fig. D1 Fig. D2 Fig. D3 Fig. D4 Fig. E1 Fig. F1 Fig. F2 Fig. F3 Fig. F4 Fig. F5 Fig. G1 Fig. G2 Fig. G3
Pressurized fuel oil system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Starting and control air system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Leakage collection and washing system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Determination of exhaust pipe diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Estimation of exhaust gas density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Estimation of exhaust pipe diameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Air filter size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sound pressure level at 1 m distance and 100% MCR . . . . . . . . . . . . . . . . . . . . . . . . Sound pressure level at turbocharger air inlet and 100% MCR . . . . . . . . . . . . . . . . . Sound pressure level at turbocharger exhaust outlet and 100% MCR . . . . . . . . . . . Structure borne noise at engine foot vertical, 100% MCR . . . . . . . . . . . . . . . . . . . . . . Intelligent engine-management comprising DENIS and MAPEX modules . . . . . . . . DENIS-40 remote control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MAPEX communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The maintenance circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Speed dependent maximum average NOx emissions by engines . . . . . . . . . . . . . . . winGTD: Main window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . winGTD: Four-stroke engine propeller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . winGTD: Lubricating oil system layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . winGTD: Show results of the computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . winGTD: Save as... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Piping symbols 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Piping symbols 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Piping symbols 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Wärtsilä NSD Switzerland Ltd
i
C–147 C–149 C–152 C–155 C–157 C–157 C–160 C–161 C–161 C–162 C–162 D–1 D–3 D–8 D–9 E–1 F–2 F–2 F–3 F–3 F–4 G–2 G–3 G–4
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
List of figures
25.48.07.40 – Issue IX.99 – Rev. 0
j
Wärtsilä NSD Switzerland Ltd
ZA40S
Engine Selection and Project Manual
List of tables
Table A1 Table C2 Table C3 Table C4 Table C5 Table C6 Table C7 Table C8 Table C9 Table C10 Table C11 Table C12 Table C13 Table C14 Table C15 Table C16 Table C17 Table C18 Table C19 Table C20 Table C21 Table C22 Table C23 Table C24 Table C25 Table C26 Table C27 Table C28 Table C29 Table C30 Table C31 Table C32 Table C33 Table C34 Table C35 Table C36
Primary engine data for ZA40S engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External couples and torque variations for gear-driven propulsion applications . . . External couples and torque variations for generating set application (50 Hz) . . . . External couples and torque variations for generating set application (60 Hz) . . . . Turbocharger and charge air cooler selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Contents of water and oil in engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pressure drops according to the flow rate specified . . . . . . . . . . . . . . . . . . . . . . . . . . . Pressure and temperature ranges at continuous service rating . . . . . . . . . . . . . . . . . Dimensions, masses and dismantling heights of ZA40S In–line engines . . . . . . . . . Dimensions, masses and dismantling heights of ZA40S Vee–form engines . . . . . . Approximate masses of heaviest engine components of ZA40S engines . . . . . . . . ZAL40S chocking and drilling plan data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ZAV40S chocking and drilling plan data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Indication angles of ships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . List of connections ZAL40S (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . List of connections ZAL40S (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . List of connections ZAL40S (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . List of connections ZAL40S (4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . List of connections ZAL40S (5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . List of connections ZAL40S (6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . List of connections ZAV40S (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . List of connections ZAV40S (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . List of connections ZAV40S (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . List of connections ZAV40S (4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . List of connections ZAV40S (5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . List of connections ZAV40S (6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System design data for MCR 720 / 514 / generating set / without heat recovery / without waste gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System design data for MCR 720 / 514 / generating set / without heat recovery / with waste gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System design data for MCR 720 / 514 / generating set / with heat recovery / without waste gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System design data for MCR 720 / 514 / generating set / with heat recovery / with waste gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System design data for MCR 720 / 500 / generating set / without heat recovery / without waste gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System design data for MCR 720 / 500 / generating set / without heat recovery / with waste gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System design data for MCR 720 / 500 / generating set / with heat recovery / without waste gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System design data for MCR 720 / 500 / generating set / with heat recovery / with waste gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System design data for MCR 720 / 510 / propulsion / without heat recovery. . . . . . System design data for MCR 720 / 510 / propulsion / with heat recovery. . . . . . . . .
Wärtsilä NSD Switzerland Ltd
k
A–2 C–11 C–12 C–13 C–19 C–19 C–19 C–20 C–21 C–22 C–23 C–57 C–63 C–68 C–75 C–76 C–77 C–78 C–79 C–80 C–89 C–90 C–91 C–92 C–93 C–94 C–105 C–106 C–107 C–108 C–109 C–110 C–111 C–112 C–113 C–114
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
List of tables
Table C37 System design data for MCR 750 / 514 / generating set / without heat recovery / without waste gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C38 System design data for MCR 750 / 514 / generating set / without heat recovery / with waste gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C39 System design data for MCR 750 / 514 / generating set / with heat recovery / without waste gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C40 System design data for MCR 750 / 514 / generating set / with heat recovery / with waste gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C41 System design data for MCR 750 / 500 / generating set / without heat recovery / without waste gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C42 System design data for MCR 750 / 514 / generating set / without heat recovery / with waste gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C43 System design data for MCR 750 / 500 / generating set / with heat recovery / without waste gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C44 System design data for MCR 750 / 500 / generating set / with heat recovery / with waste gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C45 System design data for MCR 750 / 510 / propulsion / without heat recovery. . . . . . Table C46 System design data for MCR 750 / 510 / propulsion / with heat recovery. . . . . . . . . Table C47 Lubricating oils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C48 Fuel oil requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C49 Starting air receiver volumes and compressor capacities for ZA40S engines . . . . . Table C50 Inertia of the ZA40S engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C51 Tank capacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table C52 Guidance for air filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table D1 DENIS specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table D2 Alarm and safety functions of marine diesel engines (1) . . . . . . . . . . . . . . . . . . . . . . . Table D3 Alarm and safety functions of marine diesel engines (2) . . . . . . . . . . . . . . . . . . . . . . . Table G1 SI dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table G2 Questionnaire 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table G3 Questionnaire 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table G4 Questionnaire 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table G5 Questionnaire 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table G6 Questionnaire 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table G7 Questionnaire 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table G8 Questionnaire 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table G9 Questionnaire 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table G10 Questionnaire 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table G11 Questionnaire 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table G12 Questionnaire 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table G13 Questionnaire 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table G14 Questionnaire 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table G15 Questionnaire 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
25.48.07.40 – Issue IX.99 – Rev. 0
l
C–115 C–116 C–117 C–118 C–119 C–120 C–121 C–122 C–123 C–124 C–137 C–140 C–150 C–150 C–153 C–159 D–3 D–5 D–6 G–5 G–20 G–21 G–22 G–23 G–24 G–25 G–26 G–27 G–28 G–29 G–30 G–31 G–32 G–33
Wärtsilä NSD Switzerland Ltd
ZA40S
A.
Engine Selection and Project Manual
Introduction
The range of four-stroke medium-speed Sulzer ZA40S engines (see figure A1 and table A1) are designed for current and future marine and stationary applications and are available with the following options: 1. Power take off (free end) 2. Engine-driven pumps 3. MAPEX products for monitoring and maintenance performance enhancement. The purpose of this manual is to provide our clients with information enabling them to select the engine and options to meet the needs of their vessels and power plants.
F10.4520
Fig. A1
Power/speed range of Sulzer ZA engines
This book is intended to provide the information required for the layout of marine propulsion and power generation plants. Its content is subject to the understanding that any data and information herein has been prepared with care and to the best of our knowledge. We do not, however, assume any liability with regard to unforeseen variations in accuracy thereof or for any consequences arising therefrom.
Wärtsilä NSD Switzerland Ltd PO Box 414 CH-8401 Winterthur, Switzerland Telephone: +41 52 262 4922 Telefax: +41 52 212 4917 Telex: 896659 NSDL CH Direct Fax: +41 52 262 0707
Wärtsilä NSD Switzerland Ltd
A–1
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
A.
Introduction
Engine power per cylinder
Power
[kW/cyl.]
750
750
750
720
720
720
[bhp/cyl.]
1020
1020
1020
980
980
980
Bore x stroke
[mm]
400 x 560
Engine power (MCR) 510 Propulsion
500 GenSet 50 [Hz]
514 GenSet 60 [Hz]
510 Propulsion
500 GenSet 50 [Hz]
514 GenSet 60 [Hz]
Power
Engine MCR
Engine MCR
Engine MCR
Engine MCR
Engine MCR
Engine MCR
Speed [rpm]
Number of cylinders 6 (In-line) (In line)
8 (In-line) (In line)
9 (In-line) (In line)
12 (Vee-form) (Vee form)
14 (Vee-form) (Vee form)
16 (Vee-form) (Vee form)
(Vee form) 18 (Vee-form)
[kW]
4 500
4 500
4 500
4 320
4 320
4 320
[bhp]
6 120
6 120
6 120
5 880
5 880
5 880
[kW]
6 000
6 000
6 000
5 760
5 760
5 760
[bhp]
8 160
8 160
8 160
7 840
7 840
7 840
[kW]
6 750
6 750
6 750
6 480
6 480
6 480
[bhp]
9 180
9 180
9 180
8 820
8 820
8 820
[kW]
9 000
9 000
9 000
8 640
8 640
8 640
[bhp]
12 240
12 240
12 240
11 760
11 760
11 760
[kW]
10 500
10 500
10 500
10 080
10 080
10 080
[bhp]
14 280
14 280
14 280
13 720
13 720
13 720
[kW]
12 000
12 000
12 000
11 520
11 520
11 520
[bhp]
16 320
16 320
16 320
15 680
15 680
15 680
[kW]
13 500
13 500
13 500
12 960
12 960
12 960
[bhp]
18 360
18 360
18 360
17 640
17 640
17 640
Brake specific fuel consumption *1) [g/kWh]
186
187
186
186
187
186
[g/bhph]
137
138
137
137
138
137
BSFC (Vee (Veeform)
[g/kWh]
185
186
185
185
186
185
[g/bhph]
136
137
136
136
137
136
mep
[bar]
25.07
25.58
24.89
24.07
24.56
23.89
BSFC (In-line) (In line)
Lubricating oil consumption (for fully run-in engines under normal operating conditions) 0.7–1.0 g/kWh *2)
Remark:
*1) For the fuel lower calorific value (LCV) of 42.7 MJ/kg and engine with waste gate. *2) This data is for guidance only, it may have to be increased as the actual cylinder lubricating oil consumption in service is dependent on a number of operational factors.
Table A1 Primary engine data for ZA40S engines
25.48.07.40 – Issue IX.99 – Rev. 0
T10.4600
A–2
Wärtsilä NSD Switzerland Ltd
ZA40S
B.
Engine Selection and Project Manual
Considerations on engine selection
B1 B1.1
Load range B1.2
General
The limits of the load range for ZA40S engines for operating with controllable-pitch propellers are shown in the following load range diagram. They are the maximum engine speed at the right, the maximum mean effective pressure in the cylinders (max. torque) at the top and the maximum thermal loading at the left. All ZA40S propulsion engines are equipped with an exhaust waste gate and a charge air bypass.
Remarks concerning the engine operating ranges A to D (see figure B2)
CMCR (Contract Maximum Continuous Rating): Any version of power / speed combination. All engines driving controllable-pitch propellers (CPP) are equipped with waste gate. Range A: Operating range without restrictions related to the selected CMCR at steady state operation. Range B: For intermittent operation in off-design conditions (e.g. acceleration of the ship, or operation in shallow water). Limitations are given by mechanical and thermal loading of the engine, depending on engine specification. Range C: Range with overspeed of 100 per cent to 104 per cent of CMCR speed, only permitted during trials to demonstrate the CMCR power in presence of authorized representatives of engine builder. Range D1: Operating range with clean hull, ideal weather and water conditions at steady state operation. For a controllable-pitch propeller (CPP) the operating range consists of a load-up (load-down) profile below 45 per cent power and an operating range above 45 per cent power.
F10.4160
Fig. B2
Range D2: Constant speed operation with generator drive.
Load range, for ZA40S engine showing controllable-pitch propeller operating range
In order to obtain an optimum propulsion plant, the various operating points for continuous and transient operation from idling to full load, must be taken into consideration.
Wärtsilä NSD Switzerland Ltd
B–1
This condition is for ships with diesel-electric power plants. A waste gate is not mandatory, however a waste gate might be of advantage for applications where large sudden power changes are expected.
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
B.
B1.3
B1.3.2
Engine equipment, acceleration and smoke behaviour
As mentioned in chapter B1.1 all ZA40S propulsion engines are equipped with an exhaust waste gate and double stage charge air bypass. The exhaust waste gate provides more flexibility for manoeuvring and a more agile behaviour of the engine (the operating range ‘B’ for intermittent operation is wider). The double stage charge air bypass serves to match the charge air flow to the need of the engine at low load and to avoid turbocharger compressor surge.
B1.3.1
Considerations on engine selection
Constant-speed engines driving a controllable-pitch propeller (CPP)
This is for engines driving an auxiliary generator and a controllable-pitch propeller through a reduction gearbox, see figure B2 range ‘D1’.
B1.3.3
Constant-speed engines driving an electric generator
This condition is for ships with diesel-electric power plants, see figure B2 range ‘D2’.
Variable-speed engines driving a controllable-pitch propeller (CPP) through a reduction gearbox
B1.3.4
Limitations
Engine load must be limited to the operating range defined in figure B2. For correct limitation, two types of limiters are required:
This represents the normal design, see figure B2.
•
Although all of the operating range ‘A’ could be used by the controllable-pitch propeller, experience showed that a narrower range is beneficial particularly at loads below 50 per cent in order to reduce smoke emissions. Therefore a so-called load-up (load-down) profile was determined. If the pitch controller is programmed in such a way that the engine load/speed follows the indicated line then smoke emissions will be minimal.
•
Manifold air pressure fuel limiter (fuel limited depending on charge air pressure); Torque limiter (fuel limited depending on speed).
For the acceleration of the engine refer to the explanation item B1.2 range ‘B’.
As a general rule when loading the engine, the speed should be increased before increasing the pitch.
25.48.07.40 – Issue IX.99 – Rev. 0
B–2
Wärtsilä NSD Switzerland Ltd
ZA40S
B.
Engine Selection and Project Manual
Considerations on engine selection
B1.3.5 B1.3.5.1
Control requirements B1.3.5.2
Controllable-pitch propeller (CPP):
The CPP control system must include a load control function taking care of engine limitations in automatic control mode. The load control must contain limiters in function of engine speed and power (charge air pressure). For manual operation (speed/pitch directly set), the speed control includes charge air pressure fuel limiter / torque limiter. These limiters have to be bypassed in automatic mode by an external order input from the control system. For overruling the charge air pressure fuel limiter in manual operation, a push-button has to be provided in the control console. Governor layout If the applied governor is not equipped with an integrated torque limiter, the limitations according to figure B2 must be guaranteed by an independent external device.
Marine power generation
In some modern ferries, passenger ships, icebreakers and shuttle tankers, the propeller is driven by an electric motor, which is powered by several generator sets synchronized on a common bus bar, i.e. these generators are working in parallel mode. The generators can be directly coupled to the engines (one-bearing generator) or coupled through an elastic coupling (two-bearing generator). This situation is similar to the one met in stationary power plants; the torsional vibration calculation has to be extended to the calculation of the electrical power swings, which is due to the parallel mode of operation of the generators. Power swings may become very large when one cylinder is not firing in one diesel engine. All data required for a torsional vibration and power swing calculation should be made available to the engine supplier at an early design stage (see ‘C2.5.5 Questionnaire about engine vibration’) in order to avoid any problem on the electrical side of the installation.
Engine dynamics For CPP’s the pitch schedule (pitch versus power) should be determined so that engine loading curves shown in chapter C2.5.7 are respected. Acceleration time from no load to full load depends on various factors. For special cases (emergency) and with engine and systems at stand-by temperatures, a minimum loading time of about 60 seconds must be respected.
Wärtsilä NSD Switzerland Ltd
B–3
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
B2
Engine air inlet temperature from 45°C down to 5°C
Due to the high compression ratio, ZA40S series diesel engines do not require any special measure, such as pre-heating the air at low temperature, even when operating on heavy fuel oil at part load, idling and starting up. The only condition which must be fulfilled is that the water inlet temperature to the charge air cooler must not be lower than 25°C.
Considerations on engine selection
B2.2
Engine air inlet temperature below 5°C
If the combustion air is drawn directly from outside, these engines may operate over a wide range of ambient air temperatures between arctic and tropical conditions. Under arctic conditions the ambient air temperature may drop down to levels below –50°C. To avoid the need of an expensive combustion air preheater, a system has been developed that enables the engine to operate directly with cold air from outside.
This means:
•
B.
Ambient temperature considerations
B2.1
•
ZA40S
When combustion air is drawn directly from the engine room, no pre-heating of the combustion air is necessary. When the combustion air is ducted from outside the engine room and the suction air temperature does not fall below 5°C, no measures have to be taken.
If the air inlet temperature drops below 5°C, the air density increases to such an extent that the maximum permissible cylinder pressure is exceeded. This can be compensated by blowing off a certain mass of the charge air through a blow-off device as shown in figure B3.
The central fresh water cooling system permits the recovery of the engine’s dissipated heat and maintains the required charge air temperature after the charge air cooler by recirculating warm water to the charge air cooler. In the event of low power operation the charge air cooling water may require pre-heating, utilizing the jacket or lubricating oil cooling systems, to maintain the inlet temperature at 25°C. F10.1761
Fig. B3
25.48.07.40 – Issue IX.99 – Rev. 0
B–4
Charge air system for arctic conditions
Wärtsilä NSD Switzerland Ltd
ZA40S
B.
Engine Selection and Project Manual
Considerations on engine selection
There are up to three blow-off valves fitted on the charge air receiver. In the event that the air inlet temperature to the engine turbocharger is below 5°C the first blow-off valve vents. Each actuated blow-off valve has the effect of approx. 30°C higher suction air temperature. Figure B4 shows the effect of the blow-off valves to the air flow, the exhaust gas temperature after turbine and the firing pressure.
F10.1768
Fig. B4
Blow-off effect at arctic conditions
Wärtsilä NSD Switzerland Ltd
B–5
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
B.
25.48.07.40 – Issue IX.99 – Rev. 0
B–6
Considerations on engine selection
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
C1
Engine description
The Sulzer ZA40S is a modern in-line and vee– form, four-stroke, medium-speed, non-reversible internal-combustion diesel engine. A result of continuous development of the well-proven Z40 and ZA40 engines, making full use of the technical advances and service experience gained with the Sulzer engines. The Sulzer ZA40S is designed for running on a wide range of fuels from marine diesel oil (MDO) to heavy fuel oils (HFO) of different qualities.
Mean effect. press.: 23.89 to 25.58 bar Engine power (MCR) / speed per cylinder: • 750 kW / cyl at 500, 510 and 514 rpm • 720 kW / cyl at 500, 510 and 514 rpm The requirement for a high economy focused on the following targets: • •
Main parameters (see also table A1) : Bore: 400 mm Stroke: 560 mm Stroke / bore ratio: 1.4 Cylinders in–line: 6, 8 and 9 Cylinders vee–form: 12, 14, 16 and 18
• •
High cylinder power through optimised turbocharger and engine design. Low specific fuel consumption by optimum selection of turbocharging, fuel injection, combustion and high stroke-to-bore ratio. Increased ability to burn lowest grade heavy fuel oils. Further improvements for easy servicing and prolonged overhaul intervals.
F10.4522
1 2 3 4 5 6 7
Engine housing Crankshaft Bearings Connecting rod Rotating piston Piston ring package Cylinder liner
Fig. C1
8 9 10 11 12 13 14
Cylinder head Valve drive Camshaft and camshaft drive Fuel injection pumps Fuel injectors Turbocharging Exhaust system
F10.4523
*Standard direction of rotation looking from the propeller or generator towards the engine
Sulzer ZA40S cross section
Wärtsilä NSD Switzerland Ltd
C–1
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
ZA40S engine
Shaft coupling options:
Engine housing (1)
•
The engine housing is a rigid single-piece nodular cast iron design with integrated air receiver and camshaft space. A welded dry oil-sump is fitted below. The engine can be resiliently mounted without requiring an intermediate frame. The crankshaft is underslung. Large openings are provided for inspection and good accessibility to running gear and crankshaft bearings. Side covers are fitted with relief valves, opening automatically if the crankshaft space pressure exceeds the acceptable limit. The sealing of the cylinder liner in the engine housing is dry. The cooling water goes to the cylinder liner directly through a nodular cast iron water ring. Lubricating oil and cooling water are distributed through bored passage ways within the housing to reduce the external pipework.
•
•
Flexible coupling mounted directly on the flywheel to a reduction gearbox or a two-bearing generator. Intermediate shaft coupled directly to crankshaft; flywheel between intermediate shaft and crankshaft for marine applications. Rigidly connected generator coupled directly to crankshaft for single-bearing generator; flywheel between generator shaft and crankshaft.
Main features: •
•
•
•
• •
• •
•
•
The engine housings are of the monoblock design with underslung crankshaft providing high rigidity and mechanical safety. The completely bore-cooled combustion space surrounded by bore-cooled cylinder liner, cylinder head and piston crown, give both high mechanical safety and increased ability to burn lowest grade heavy fuel oils. Well-dimensioned crankshaft and connecting rods for the higher peak pressures. All main bolts are hydraulically tightened for safety and easy servicing. The rotating piston, a unique Z-type-engine feature, for the best possible running behaviour. The refined fuel injection system for the best thermodynamic engine performance. The ZA40S engine is provided with a high-efficiency series-4 turbocharger from ASEA Brown Boveri (ABB), or equivalent. Wastegate and bypass allow optimum turbocharging efficiency. The turbocharger / charge air cooler arrangement can be placed on either end of the engine. The charge air cooler is of the two-stage type having a condensate water separator at the air outlet. Reduced time for the dismantling of the main engine components.
25.48.07.40 – Issue IX.99 – Rev. 0
Crankshaft (2) The crankshaft is forged in one piece from alloy steel and machined all over. The balance weights are bolted onto the crankwebs to obtain favourable bearing loads and vibration-free running. Drillings in the crankshaft feed the lubricating and cooling oil, which enters at the main bearings and passes through the connecting rod and spherical bearing, into the piston crown. The rigid design of the crankshaft allows an optimum economic choice of the vibration damper, which is normally fitted at the free end of the shaft where auxiliary drives can also be accomodated. The flywheel and the turning gear are located at the driving end of the crankshaft. The main bearing next to the flywheel is integrated in the engine housing.
C–2
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
Bearings (3)
Piston ring package (6)
All bearing shells are of the AlSn-type (AluminiumTin). The two halves are easily accessible. The main bearing cap studs and the two horizontal tierods are hydraulically tightened and provide additional stiffness. The big end bearings are of the AlSn–type.
The profiled first piston ring has a chrome-ceramic running layer and chromium plated flanks whereas the second and third ring are rings with chromium plated running surface as are the running faces of the spring loaded oil scraper ring. Grooves for the compression rings are chromium plated.
Connecting rod (4)
Cylinder liner (7)
The connecting rods have a central bore to feed lubricating oil to the spherical bearing and cooling oil to the piston crown. The short connecting rod shaft with spherical head is connected to the big end by four hydraulically tightened studs. The big end of the connecting rod is assembled with two hydraulically tightened studs.
The cylinder liners are made of wear-resistant centrifugal cast iron and are bore-cooled at the upper part to provide a temperature level favourable for good running conditions and low wear rate.
Major advantages of this design are: • • • •
Lower withdrawal height for the piston; The piston can be withdrawn without dismantling the big end bearing; Large crankpin diameters can be accommodated to obtain low specific bearing loads; Good accessibility to the hydraulic studs of the shaft / big end connection.
Cylinder head (8) The cylinder heads are of the thick wall, borecooled type. This feature provides a very high degree of mechanical safety and permits ideal cooling conditions for the flame plate and valve seats. The high stiffness also provides good valve sealing behaviour. The nodular cast iron cylinder heads are held down by four studs which are hydraulically tightened simultaneously. The cylinder heads are equipped with:
Rotating piston (5)
•
The piston crowns are made from forged steel and are bore-cooled with combined shaker-oil and spray cooling. The nodular cast iron skirts have a profiled running surface at top and bottom edges and provide lubrication (inner lubrication). The rotating mechanism is similar to the type already well proven in the Z40 and ZA40 engines. Piston crown, upper spherical bearing shell, skirt and lower one-piece spherical bearing shell are assembled together with eight hydraulically tightened studs.
•
Wärtsilä NSD Switzerland Ltd
C–3
• • • •
Two inlet valves with valve rotators and uncooled seat rings; Two Nimonic exhaust valves with valve rotators and water-cooled seat rings; One central fuel injector; One starting-air valve*; One relief valve; One indicator valve.
* The non–reversible Vee–form engines are only fitted with starting valves on one row of cylinders.
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
ZA40S engine
Valve drive (9)
Fuel injectors (12)
The valves are actuated from the cams of the camshaft via push rods and rocker arms. The valve gear is force–lubricated and enclosed by the light alloy covers.
The fuel injector consists of two main parts, the valve body and the water-cooled nozzle. The nozzle with fine spray holes has a spring-loaded needle. The needle opens under the high fuel pressure, whereupon the fuel atomizes in the combustion chamber. For keeping a residual pressure in the high-pressure line and to avoid cavitation in the fuel nozzle, a non-return valve is fitted in front of the cylinder head. The injection nozzle is water cooled by a separate cooling system.
Camshaft and camshaft drive (10) Placed along the side of the engine, the camshaft carries the inlet and exhaust valve cams, as well as the fuel injection cam for each cylinder. The cams are shrunk-on hydraulically and can be removed or repositioned with the aid of a hydraulic pump. This design results in a very rigid connection and allows simple adjustment of the timing. The camshaft is driven by a train of gear wheels, which also drive the governor and the overspeed device. The starting air distributor is fitted to the camshaft at the driving end. All of the ZA40S engines require a vibration damper at camshaft free end.
Turbocharging (13) The high efficiency turbocharger delivers compressed air through an air cooler to the cylinders. This turbocharger/charge air cooler arrangement can be placed on either end of the engine. The turbine gas outlet casing can be positioned to suit installation requirements. Additional heat recovery is possible from the twostage charge air cooler. When combustion air is drawn directly from the machinery space, no pre-heating of the combustion air is necessary provided the water temperature at the charge air cooler inlet is maintained at w 25°C. A water separator is placed after the charge air cooler.
Fuel injection pumps (11) The fuel injection pumps are helix-controlled, and deliver specific amounts of fuel to the injector at high pressure. Each cylinder has its own fuel pump, which can be cut off if required. For certain applications, variable injection timing (VIT) is incorporated.
Engine-driven pumps The pumps for the ancillary systems are normally driven by electric motors. If required, however, the following pumps, or any combination of the same can be fitted to the engines. • • • •
Cooling water pump, low-temp. circuit (LT); Cooling water pump, high-temp. circuit (HT); Lubricating oil pump; Fuel oil booster pump (only for MDO).
These pumps are driven mechanically by a spur gear fitted to the crankshaft flange at the free end.
25.48.07.40 – Issue IX.99 – Rev. 0
C–4
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
Power take off A power take off can be arranged at the free end of the crankshaft. The power to be taken depends on torsional vibration calculations. Speed control The engine is fitted with an electronic speed control system which keeps the engine speed to any desired value by positioning the fuel regulating linkage. Overspeed protection The engine is protected against overspeeding by: •
a mechanical overspeed safeguard fitted to the engine independent of any remote control or speed control system;
•
an electronic circuit actuating a pneumatic shutdown device on each fuel injection pump.
Wärtsilä NSD Switzerland Ltd
C–5
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
25.48.07.40 – Issue IX.99 – Rev. 0
C–6
ZA40S engine
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
ZA40S engine
C2
Engine data
C2.1
Engine Selection and Project Manual
C2.3
Estimation of engine performance data
The engine performance data BSFC, BSEF and tEaT at max. power can be taken from table A1. The estimation of the performance data for any partial power will be done with the help of a computer program, the so-called winGTD program which is enclosed in this book in the form of a CDROM (see chapter F). If needed we offer a computerized information service to analyze the engine’s heat balance and determine main system data for any rating point within the engine layout field. For details of this service please refer to chapter C5.1.1 The installation of the winGTD and the hardware specification are explained in chapter F.
C2.2
Design conditions
The design data for the ancillary systems are based on standard design (tropical) conditions as shown below. It follows the IMO recommendations. • Air temperature before blower : 45°C • Engine ambient air temp. : 45°C • Coolant temperature before central cooler : 32°C for SW • Coolant temp. before CAC : 36°C for FW • Barometric pressure : 1000 mbar The reference value for the fuel lower calorific value (LCV) of 42.7 MJ/kg follows an international marine convention. The engine can be operated in the range between reference conditions and design (tropical) conditions without any restrictions.
Reference conditions
The engine performance data are based on reference conditions as shown below following the ISO Standard 3046–1: • Air temperature before blower : 25°C • Engine room ambient air temp. : 25°C • Coolant temperature before central cooler : 25°C for SW • Coolant temp. before CAC : 29°C for FW • Barometric pressure : 1000 mbar The reference value for the fuel lower calorific value (LCV) follows an international marine convention. The specified LCV of 42.7 MJ/kg differs from the ISO Standard.
C2.4
Ancillary system design parameters
The layout of the ancillary systems follows the typical engine specified design parameters which are interconnected to the engines performance behaviour. The given design parameters must be considered in the plant design to ensure a proper function of engine and ancillary systems. • • •
Cylinder water outlet temp. : 90°C Oil temperature before engine : 55°C Exhaust gas back pressure at rated power (nominal) : 350 mm WG
The engine specified design parameters remain independent from ambient conditions. The cylinder water outlet temperature and the oil temperature before engine are system internally controlled and have to remain at the specified level.
Wärtsilä NSD Switzerland Ltd
C–7
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
25.48.07.40 – Issue IX.99 – Rev. 0
C–8
ZA40S engine
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
C2.5
Vibration aspects
As a leading designer and licensor we are concerned that satisfactory vibration levels are obtained with our engine installations. The assessment and reduction of vibration is subject to continuing research and we have developed extensive computer software, analytical procedures and measuring techniques to deal with the subject.
C2.5.1
Torsional vibration
General This involves the whole shafting system comprising crankshaft, propulsion shafting, the propeller, engine running gear including camshaft, flexible couplings and power take off. Torsional vibrations are caused by gas and inertia forces as well as by the irregularities of the propeller torque. Reduction of torsional vibrations It is vitally important to limit torsional vibration in order to avoid damage to the shafting. If the vibration level (stresses, torques or amplitudes) at a critical speed is dangerous, the corresponding speed range has to be passed through rapidly (barred-speed range). However, barred-speed ranges can be reduced, shifted, and in some cases avoided by installing a heavy flywheel at the driving end and/or a torsional vibration damper at the free end of the crankshaft. Torsional vibration dampers of various designs are available to reduce different energy levels of vibration. Lower energy vibrations are absorbed by viscous dampers, e.g. Holset, Hasse & Wrede or STE type. It is important to check if an additional oil spray cooling is needed (in order to limit the thermal load).
Wärtsilä NSD Switzerland Ltd
C–9
Higher energy vibrations are absorbed by a spring loaded damper type, e.g. Geislinger, Hasse & Wrede or Vulkan. In this case the damper is supplied with oil from the engine’s lubricating system and the heat dissipated can range from 10 kW to 50 kW depending on the size of the damper. Diesel-electric propulsion In some modern ferries, passenger ships, icebreakers and shuttle tankers, the propeller is driven by an electric motor, which is powered by several generator sets synchronized on a common bus bar, i.e. these generators are working in parallel mode. The generators can be directly coupled to the engines (single-bearing generator) or coupled through an elastic coupling (two-bearing generator). In this case, the maximum power swing between generators has to be checked when one cylinder is not firing, and discussed with the generator supplier.
C2.5.2
Resilient mounting
Resilient mounting is commonly used in passenger ships and ferries, where a high level of comfort has to be offered to the passengers. The purpose of these elastic elements, placed between the engine and the foundation, is to isolate the engine from the ship structure, i.e. to reduce the engine excitations (external couples and torque variations) transmitted to the ship structure as well as the transmitted noise. Without resilient mounting, the engine excitation given in table C2 will act directly on the engine foundation. With a normal design of resilient mounting, an isolation factor of at least 50 to 80 per cent is achieved.
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
C2.5.3
C2.5.4
System dynamics: marine installation
Modern marine propulsion plants may be composed of more than one diesel engine driving a controllable-pitch propeller (CPP) and one or more shaft generators. These elements are connected together by clutches, gears, shaft lines and elastic couplings. Under transient conditions, large perturbations due to changing the operating point, by setting either other speeds or pitch values, usually, the transfer from one operating point to a new operating point engine speed control and propeller speed control, loading or unloading generators, or engaging or disengaging a clutch, cause instantaneous dynamic disturbances which weaken after a certain time (a transient time). Simulation is an opportune method for analyzing the dynamic behaviour of a system subjected to large perturbations, or transient conditions. Mathematical models of several system components, like equivalent vibrating systems, clutch coupling, speed and pitch control have been determined and programmed as library blocs to be used with a simulation program. With this program, it is possible to check if an elastic coupling will be overloaded during engine start, or to optimize a clutch coupling characteristic (engine speed before clutching, slipping time, etc.), to adjust the speed control parameters. This kind of study is mainly requested at an early project stage in order to select suitable components and fulfill specifications regarding speed deviation and setting programs.
25.48.07.40 – Issue IX.99 – Rev. 0
ZA40S engine
System dynamics: diesel electric propulsion
The following factors influence the frequency and voltage behaviour of highly turbocharged fourstroke diesel generating sets which are suddenly loaded or unloaded (independent of engine design/manufacturer): • • • •
Charging system; Type of engine / generator control system Generator layout; Moment of inertia of the whole system.
As criterion for this behaviour, a maximum permissible frequency deviation is defined. This means that the loading of the engine must be done in several steps. The diagram figure C3 shows the recommendation for power steps depending on the power the engine is running at. Please note the following: For safety reasons and in order to avoid costly individual engine matching, we recommend as a guidance the application of the sudden loading steps according to the diagram (as a guide only). In addition, the following precautions should be taken: • •
•
C–10
Determination of the highest occurring step in load for a defined plant. If the sudden load step of the largest consumer exceeds the limits defined in the diagram, a second engine should run in parallel. It is recommended that such a loading programme should be submitted to the respective classification society, as well as to the client. It is essential that the engine builder and the plant designer are aware of the results connected with sudden loading at an early stage of the project.
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
External couples and torque variations for gear driven propulsion applications
In-line engines Number of cylinders
6
Vee-form engines
8
9
12
14
16
18
External mass couples *1) MCR rating (at 510 rpm) M1V [±kNm]
0
0
114.8
0
51.4
0
175.7
M1H [±kNm]
0
0
86.1
0
32.0
0
112.2
M2V [±kNm]
0
0
65.3
0
75.4
0
84.8
M2H [±kNm]
0
0
0
0
41.9
0
47.1
Torque variations MCR rating (750 kW/cyl. / 510 rpm) Order
3
4
4.5
3
3.5
4
4.5
Full load DM [±kNm]
50.8
114.5
112.8
26.3
12.5
39.8
86.3
No load DM [±kNm]
75.0
17.7
26.5
38.8
2.8
6.1
20.3
Order
6
8
9
6
7
8
9
Full load DM [±kNm]
35.2
12.6
6.3
61.0
45.3
23.6
8.8
No load DM [±kNm]
9.3
4.9
3.8
16.1
13.6
9.2
5.4
MCR rating (720 kW/cyl. / 510 rpm) Order
3
4
4.5
3
3.5
4
4.5
Full load DM [±kNm]
44.5
110.9
110.2
23.0
12.1
38.5
84.3
No load DM [±kNm]
75.0
17.7
26.5
38.8
2.8
6.1
20.3
Order
6
8
9
6
7
8
9
Full load DM [±kNm]
35.4
14.0
8.0
61.3
46.9
26.3
11.3
No load DM [±kNm]
9.3
4.9
3.8
16.1
13.6
9.2
5.4
Remark:
*1) All resulting forces are zero M1V: M1H: M2V: M2H: DM:
free external mass couple 1st order vertical free external mass couple 1st order horizontal free external mass couple 2nd order vertical free external mass couple 2nd order horizontal torque varation
The free external mass couples for other engine speeds can be calculated as follows: Mx = M510 (Nx / N510)2 The torque variations for other engine ratings are available on request.
Table C2 External couples and torque variations for gear-driven propulsion applications
Wärtsilä NSD Switzerland Ltd
C–11
T10.4601
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
ZA40S engine
External couples and torque variations for generating set application (50 Hz) In-line engines Number of cylinders
6
Vee-form engines
8
9
12
14
16
18
External mass couples *1) MCR rating (at 500 rpm) – 50 Hz – M1V [±kNm]
0
0
110.3
0
49.4
0
168.9
M1H [±kNm]
0
0
82.8
0
30.8
0
107.8
M2V [±kNm]
0
0
62.8
0
72.5
0
81.5
M2H [±kNm]
0
0
0
0
40.3
0
45.3
Torque variations MCR rating (750 kW/cyl. / 500 rpm) – 50 Hz – Order
3
4
4.5
3
3.5
4
4.5
Full load DM [±kNm]
56.6
116.4
113.7
29.3
12.7
40.4
87.0
No load DM [±kNm]
70.9
18.2
26.5
36.7
2.8
6.3
20.3
Order
6
8
9
6
7
8
9
Full load DM [±kNm]
31.5
11.8
5.4
60.7
44.3
22.2
7.6
No load DM [±kNm]
9.3
4.9
3.8
16.1
13.6
9.2
5.4
MCR rating (720 kW/cyl. / 500 rpm) – 50 Hz – Order
3
4
4.5
3
3.5
4
4.5
Full load DM [±kNm]
50.6
113.1
111.5
26.2
12.3
39.3
85.3
No load DM [±kNm]
70.9
18.2
26.5
36.7
2.8
6.3
20.3
Order
6
8
9
6
7
8
9
Full load DM [±kNm]
35.4
13.4
7.2
61.3
46.2
25.1
10.2
No load DM [±kNm]
9.3
4.9
3.8
16.1
13.6
9.2
5.4
Remark:
*1) All resulting forces are zero M1V: M1H: M2V: M2H: DM:
free external mass couple 1st order vertical free external mass couple 1st order horizontal free external mass couple 2nd order vertical free external mass couple 2nd order horizontal torque varation
The free external mass couples for other engine speeds can be calculated as follows: For 60 Hz: Mx = M514 (Nx / N514)2 For 50 Hz: Mx = M500 (Nx / N500)2 The torque variations for other engine ratings are available on request.
Table C3 External couples and torque variations for generating set application (50 Hz)
25.48.07.40 – Issue IX.99 – Rev. 0
C–12
T10.4603
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
External couples and torque variations for generating set application (60 Hz) In-line engines Number of cylinders
6
Vee-form engines
8
9
12
14
16
18
External mass couples *1) MCR rating (at 514 rpm) – 60 Hz – M1V [±kNm]
0
0
116.6
0
52.2
0
178.5
M1H [±kNm]
0
0
87.5
0
32.5
0
114.0
M2V [±kNm]
0
0
66.3
0
76.6
0
86.1
M2H [±kNm]
0
0
0
0
42.6
0
47.8
Torque variations MCR rating (750 kW/cyl. / 514 rpm) – 60 Hz – Order
3
4
4.5
3
3.5
4
4.5
Full load DM [±kNm]
47.9
113.5
112.2
24.8
12.4
39.4
85.8
No load DM [±kNm]
76.7
17.5
26.5
39.7
2.8
6.1
20.3
Order
6
8
9
6
7
8
9
Full load DM [±kNm]
35.3
13.0
6.7
61.2
45.9
24.4
9.5
No load DM [±kNm]
9.3
4.9
3.8
16.1
13.6
9.2
5.4
MCR rating (720 kW/cyl. / 514 rpm) – 60 Hz – Order
3
4
4.5
3
3.5
4
4.5
Full load DM [±kNm]
42.2
110.1
109.7
21.9
12.0
38.2
84.0
No load DM [±kNm]
76.7
17.5
26.5
39.7
2.8
6.1
20.3
Order
6
8
9
6
7
8
9
Full load DM [±kNm]
35.4
14.2
8.3
61.3
47.1
26.7
11.7
No load DM [±kNm]
9.3
4.9
3.8
16.1
13.6
9.2
5.4
Remark:
*1) All resulting forces are zero M1V: M1H: M2V: M2H: DM:
free external mass couple 1st order vertical free external mass couple 1st order horizontal free external mass couple 2nd order vertical free external mass couple 2nd order horizontal torque varation
The free external mass couples for other engine speeds can be calculated as follows: For 60 Hz: Mx = M514 (Nx / N514)2 For 50 Hz: Mx = M500 (Nx / N500)2 The torque variations for other engine ratings are available on request.
Table C4 External couples and torque variations for generating set application (60 Hz)
Wärtsilä NSD Switzerland Ltd
C–13
T10.4602
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
C2.5.5
ZA40S engine
Questionnaire about engine vibration
To enable us to provide the most accurate information and advice on protecting the installation and vessel from the effects of engine/generator induced vibration, please photocopy this questionnaire and send us the completed copy.
C2.5.5.1
Forced torsional vibration calculation of gear driven propulsion applications
Client specification Client name Owner, yard, consultant, other: Address: Department, reference: Country:
Tel., telefax, telex:
Contact person: Project Type, size of vessel:
Owners name (if available):
Wärtsilä NSD Switzerland Ltd representative:
Engine specification Engine type: Sulzer
ZA40S
Engine speed [rpm]:
Engine power [kW]: Flywheel inertia
Engine rotation:
[kgm2]:
Engine driven pumps:
[clockwise] / [anticlockwise]
Flywheel drawing number: [Yes] / [No]
Barred speed range accepted:
[Yes] / [No]
Reduction gear specification Gear Manufacturer: Drawing number:
Clutches / elastic couplings: Propeller / interm. shaft: Drawing no.:
Type (description, code, ...): (detailed drawings with the gearwheel inertias and gear ratios to be encl.)
(det. inform. of type/manufacturer of all clutches and/or elastic coupl. used, to be encl.)
Material U. T. S. [N/mm2]:
(detailed inform. to be enclosed)
PTO-Generator Manufacturer:
Type:
Generator speed [rpm]:
Rated voltage [V]:
Rated apparent power [kVA]:
Power factor [cos ϕ]:
Rotor inertia [kgm2]:
Drawing number:
Grid frequency [Hz]:
(detailed inform. to be enclosed)
Propeller Type: [fixed: FPP] / [controllable: CPP] Manufacturer:
Number of blades:
Drawing number:
Diameter [m]:
Mass [kg]:
Expanded area blade ratio:
Mean pitch [m]: Inertia without water [kgm2]:
Inertia with water [kgm2]:
General Order number:
Deadline:
25.48.07.40 – Issue IX.99 – Rev. 0
C–14
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
C2.5.5.2
Forced torsional vibration calculation of diesel electric propulsion applications
Client specification Client name Owner, yard, consultant, other: Address: Department, reference: Country:
Tel., telefax, telex:
Contact person: Project Type, size of vessel:
Owners name (if available):
Wärtsilä NSD Switzerland Ltd representative:
Engine specification Engine type: Sulzer
ZA40S
Engine speed [rpm]:
Engine power [kW]:
Engine rotation:
Flywheel inertia [kgm2]:
Flywheel drawing number:
Engine driven pumps:
[Yes] / [No]
[clockwise] / [anticlockwise]
Damper type (if known):
Power take off specification Gear Manufacturer:
Drawing number: (detailed drawings with the gearwheel inertias and gear ratios to be encl.)
Generator Manufacturer:
Type:
Generator speed [rpm]:
Rated voltage [V]:
Rated apparent power [kVA]:
Power factor [cos ϕ]:
Rotor inertia [kgm2]:
Drawing number:
Grid frequency [Hz]:
(detailed inform. to be enclosed)
Fundamental machine constants (base power - rated apparent power): Reactances xd: x’d: x”d:
p.u. p.u. p.u.
Line (trafo react) xT:
p.u.
xq:
p.u.
x”q:
p.u.
T’d: T”d: T”q:
sec sec sec
Generator shaft arrangement drawing no.: Generator outline dimension on layout drawing no.:
Wärtsilä NSD Switzerland Ltd
C–15
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
C2.5.5.3
ZA40S engine
Simulation of the engine speed deviation
Client specification Client name Owner, yard, consultant, other: Address: Department, reference: Country:
Tel., telefax, telex:
Contact person: Project Type, size of vessel:
Owners name (if available):
Wärtsilä NSD Switzerland Ltd representative:
Engine specification Engine type: Sulzer
ZA40S
Engine speed [rpm]:
Engine power [kW]:
Engine mep [bar]:
Engine inertia with damper or disc [kg/m2]:
Flywheel inertia [kg/m2]::
Generator Generator type: Generator inertia [kgm2] :
Generator speed [rpm]:
Propeller Propeller type (FPP/CPP): Propeller inertia [kgm2]:
Propeller speed Np [rpm]:
Turbocharger Turbocharger type: Suction air inlet temp [°C]:
Ambient air pressure [bar]:
Governor Governor type: Adjusted speed drop [%]:
Adjustment remarks (i.e. needle value):
Load characteristics Generator load (power / torque)
Propeller load
time (s) ..............
engine load (%) ..............
time (s) ..............
engine speed (%) ..............
engine speed (rpm) engine load (kW) .............. ..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
If necessary attach additional sheet or graph(s).
25.48.07.40 – Issue IX.99 – Rev. 0
C–16
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
C2.5.6
Starting ability
F10.0214
Fig. C2
C2.5.7
Starting ability
Sudden loading behaviour
F10.4614
Fig. C3
Sudden load steps
Wärtsilä NSD Switzerland Ltd
C–17
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
C2.5.8
ZA40S engine
Loading programme
F10.1763
Fig. C4
Loading programme
25.48.07.40 – Issue IX.99 – Rev. 0
C–18
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
C2.6
Turbocharger and charge air cooler
Number of cylinders
Remark:
Engine rating
Turbocharger
Charge air cooler
Quantity
Type *1)
Quantity
Type
Max.air flow [kg/h]
6
MCR
1
VTR 354 P–11
1
CAC106
34 200
8
MCR
1
VTR 454 P–11
1
CAC108
54 000
9
MCR
1
VTR 454 P–11
1
CAC108
54 000
12
MCR
2
VTR 354 P–11
2
CAC106
68 400
14
MCR
2
VTR 454 P–11
2
CAC108
108 000
16
MCR
2
VTR 454 P–11
2
CAC108
108 000
18
MCR
2
VTR 454 P–11
2
CAC108
108 000
Min. water flow [m3/h]
see tables C27 to C46
*1) Other turbocharger models and makes are possible. Information will be made available upon request.
Table C5 Turbocharger and charge air cooler selection
C2.7
T10.4524
Contents of water and oil in engine including engine mounted piping In–line engine
Vee–form engine
6
8
9
12
14
16
18
Oil (engine in service)
[dm3]
320
470
520
640
790
960
1150
Jacket cooling water
[dm3]
690
980
1080
1270
1790
1810
2010
Nozzle cooling water
[dm3]
4
5.5
6
9
10
11
12
Two-stage charge air cooler, high-temperature circuit
[dm3]
60
82
82
120
164
164
164
Two-stage charge air cooler, low-temperature circuit
[dm3]
60
82
82
120
164
164
164
Table C6 Contents of water and oil in engine
C2.8
T10.4525
Pressure drops
System
Pressure drops [bar] *1)
Jacket cooling water system (pressure drop over engine with turbocharger)
0.9
Nozzle cooling water system (pressure drop over engine)
2.0
Charge air cooling water system two–stage high-temp. circuit (pressure drop over cooler)
0.3
Charge air cooling water system two–stage low-temp. circuit (pressure drop over cooler)
0.3
Remark:
*1) The pressure drop figures are approximate. The pressure drops apply to the engine only (engine inlet to engine outlet) and do not cover the piping on the installation side.
Table C7 Pressure drops according to the flow rate specified
Wärtsilä NSD Switzerland Ltd
C–19
T10.4526
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
C2.9
Pressure and temperature ranges
Table C8 represents a summary of the required pressure and temperature ranges at continuous service rating (CSR). The gauge pressures are measured at the engine instrument panel. The pump delivery head is obtained by adding the pres-
Medium
System (limits for alarm and shut-down)) (
High temperature cooling *2) High-temperature
sure losses in the piping system, filters, coolers, valves etc. and the vertical level pressure difference between pump suction and pressure gauge to the values indicated in the table below.
Location of measurement
Max.
Min.
Max.
4.0
5.0
75
–
Engine outlet
–
–
85
95
Lubricating oil
3.0
5.0
25
36
–
–
–
–
Inlet TC
–
–
–
–
–
–
–
90
Engine inlet
2.0
4.5
–
–
Engine outlet
–
–
60
70
4.0
7.0
50
60
Engine inlet Engine outlet
normal 5.0 –
max 10 max.10 approx. a rox. 5 *3) approx. a rox. 3
max.20 a 0
–
–
–
TC bearing
Refer to TC manual
–
–
–
110
–
Injection pump inlet
8.0
10.0
–
–
–
Feed pump
Feed pump outlet
3.0
5.0
–
–
–
Air filter / silencer on TC (adm. pressure drop)
–
100 mmWG *4)
–
–
–
Intake air system (adm. pressure drop)
–
200 mmWG *4)
–
–
–
Cooler Starting air Compressed air Co essed a
Control air
Exhaust gas
–
*5)
–
–
–
Cooler outlet
–
–
25
65
–
Engine inlet
7.0
25 or 30
–
–
–
6.0
8.0
–
–
–
–
–
–
–
–
*6)
–
Engine inlet
normal 7.0
Cylinder outlet
–
TC inlet
–
–
–
620
–
–
design 350 mmWG
–
–
–
–
fouled *5) 500 mmWG
–
–
–
Exhaust TC outlet tl t
*1) *2) *3) *4) *5) *6)
normal 55
Diff. *1)
Booster pump
Heavy fuel oil
Charge air
CAC inlet CAC outlet Outlet TC
TC cooling (integrated in high-temperature high temperature cooling)
Main a bea bearing g / piston s o coo cooling g
Temperature Limit values [° C]
Min.
Fresh water
Fuel nozzle cooling
Gauge pressure Limit values [bar]
Engine inlet
Low-temperature cooling *2)
Remark:
ZA40S engine
Approx. temperature rise at continuous service power. The water flow has to be within the prescribed limits. According to TC instructions. Max. value in fouled condition. The pressure drop under fouled condition is limited to an increase of 150 mmWG above the measured value at commissioning. Refer to commissioning results for normal values.
Table C8 Pressure and temperature ranges at continuous service rating (with/without heat recovery)
25.48.07.40 – Issue IX.99 – Rev. 0
C–20
T10.4161
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
C3
Installation data
C3.1
Dimensions, masses and dismantling heights
F10.1423
Fig. C5
ZA40S In–line engines
Cylinder
TC - type
A [mm]
B [mm]
C [mm]
E [mm]
F [mm]
P *1) [mm]
Mass [tonnes]
6L
VTR354
4 920
7 014
7 768
1 436
3 378
2 800
59
8L
VTR454
6 320
8 734
9 310
1 454
3 747
2 800
78
9L
VTR454
7 020
9 434
10 010
1 454
3 747
2 800
86
Remark:
Min. crane capac. [tonnes] The minimum crane capacity for dismantling and maintenance works i based is b d on prescribed ib d ability to lift the cylinder head or camshaft or turbocharger depending which one is heavier. An appropriate margin has to be included.
*1) For rigidly mounted engines. For resiliently mounted engines: P = 3 200 mm. *2) Cylinder liner.
Table C9 Dimensions, masses and dismantling heights of ZA40S In–line engines
Wärtsilä NSD Switzerland Ltd
C–21
T10.4180
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
ZA40S engine
F10.1425
Fig. C6
ZA40S Vee–form engines
Cylinder
TC type
A [mm]
B [mm]
C [mm]
E [mm]
F [mm]
P *1) [mm]
Mass [tonnes]
12 V
VTR354
5 740
7 650
7 960
3 464
4 008
3 850
102
14 V
VTR454
6 520
8 605
8 915
4 190
4 152
4 700
119
16 V
VTR454
7 300
9 385
9 695
4 190
4 152
4 700
132
18 V
VTR454
8 080
10 165
10 475
4 190
4 152
4 700
145
Remark:
Min. crane capac. [tonnes] The minimum crane capacity for dismantling and maintenance works is based on prescribed ability to lift the cylinder head or camshaft or turbocharger depending which one is heavier. An appropriate a ro riate margin h to b has be iincluded. l d d
*1) For rigidly mounted engines. For resiliently mounted engines: – (VTR354): P12 = 3 700 mm and – (VTR454): P14, 16+18 = 4 500 mm. *2) Cylinder liner. *3) Piston.
Table C10 Dimensions, masses and dismantling heights of ZA40S Vee–form engines
25.48.07.40 – Issue IX.99 – Rev. 0
C–22
T10.4181
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
Engine component
Cylinder
Mass of engine component [tonnes]
Cylinder head (with valve drive and lifting device)
–
0.9
Camshaft
6
1.35
8
1.75
9
1.85
12 V
1.35
14 V
1.70
16 V
1.95
18 V
2.10
Turbocharger TC 354
1.90
for 6 and 12 cylinder engines TC 454
3.25
for 8,9,14,16 and 18 cylinder engines Charge air cooler CAC 106
1.54
for 6 and 12 cylinder engines CAC 108
1.70
for 8,9,14,16 end 18 cylinder engines
Table C11 Approximate masses of heaviest engine components of ZA40S engines
Wärtsilä NSD Switzerland Ltd
C–23
T10.4527
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
25.48.07.40 – Issue IX.99 – Rev. 0
C–24
ZA40S engine
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
C3.2
Outline drawings
C3.2.1
In–line engines
C3.2.1.1
Engine outline 6ZAL40S
F10.4757
Fig. C7
6ZAL40S Driving end
Wärtsilä NSD Switzerland Ltd
C–25
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
ZA40S engine
F10.4758
Fig. C8
6ZAL40S Exhaust side
25.48.07.40 – Issue IX.99 – Rev. 0
C–26
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
F10.4759
Fig. C9
6ZAL40S Top view
Wärtsilä NSD Switzerland Ltd
C–27
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
C3.2.1.2
ZA40S engine
Engine outline 8ZAL40S
F10.4760
Fig. C10 8ZAL40S Driving end
25.48.07.40 – Issue IX.99 – Rev. 0
C–28
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
F10.4761
Fig. C11 8ZAL40S Exhaust side
Wärtsilä NSD Switzerland Ltd
C–29
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
ZA40S engine
F10.4762
Fig. C12 8ZAL40S Top view
25.48.07.40 – Issue IX.99 – Rev. 0
C–30
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
C3.2.1.3
Engine outline 9ZAL40S
F10.4760
Fig. C13 9ZAL40S Driving end
Wärtsilä NSD Switzerland Ltd
C–31
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
ZA40S engine
F10.4763
Fig. C14 9ZAL40S Exhaust side
25.48.07.40 – Issue IX.99 – Rev. 0
C–32
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
F10.4764
Fig. C15 9ZAL40S Top view
Wärtsilä NSD Switzerland Ltd
C–33
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
C3.2.2 C3.2.2.1
ZA40S engine
Vee–form engines Engine outline 12ZAV40S
F10.4765
Fig. C16 12ZAV40S Driving end
25.48.07.40 – Issue IX.99 – Rev. 0
C–34
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
F10.4766
Fig. C17 12ZAV40S Right side
Wärtsilä NSD Switzerland Ltd
C–35
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
ZA40S engine
F10.4767
Fig. C18 12ZAV40S Top view
25.48.07.40 – Issue IX.99 – Rev. 0
C–36
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
C3.2.2.2
Engine outline 14ZAV40S
F10.4768
Fig. C19 14ZAV40S Driving end
Wärtsilä NSD Switzerland Ltd
C–37
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
ZA40S engine
F10.4769
Fig. C20 14ZAV40S Right side
25.48.07.40 – Issue IX.99 – Rev. 0
C–38
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
F10.4770
Fig. C21 14ZAV40S Top view
Wärtsilä NSD Switzerland Ltd
C–39
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
C3.2.2.3
ZA40S engine
Engine outline 16ZAV40S
F10.4768
Fig. C22 16ZAV40S Driving end
25.48.07.40 – Issue IX.99 – Rev. 0
C–40
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
F10.4771
Fig. C23 16ZAV40S Right side
Wärtsilä NSD Switzerland Ltd
C–41
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
ZA40S engine
F10.4772
Fig. C24 16ZAV40S Top view
25.48.07.40 – Issue IX.99 – Rev. 0
C–42
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
C3.2.2.4
Engine outline 18ZAV40S
F10.4768
Fig. C25 18ZAV40S Driving end
Wärtsilä NSD Switzerland Ltd
C–43
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
ZA40S engine
F10.4773
Fig. C26 18ZAV40S Right side
25.48.07.40 – Issue IX.99 – Rev. 0
C–44
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
F10.4774
Fig. C27 18ZAV40S Top view
Wärtsilä NSD Switzerland Ltd
C–45
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
25.48.07.40 – Issue IX.99 – Rev. 0
C–46
ZA40S engine
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
C3.3
Engine seatings
C3.3.1 C3.3.1.1
Description Rigidly–mouted engine
Two types of resilient–mouting arrangement are available for ZA40S engines.
The engine seating is a fabricated box structure. It is integral with the double–bottom structure, and must be of sufficent stiffness to support the weight of the engine, to transmit the propeller thrust, to withstand the external couples from the engine and to avoid resonance with propeller or engine excitation. The engine is seated either on epoxy resin material, steel or cast iron chocks. When using epoxy resin material, the engine builder has to be informed and the instructions of the engine builder and resin supplier must be strictly observed. The engine is bolted down on its seating by means of hydraulically tightened bolts, one row on each engine side. The propeller thrust is transmitted to the foundation structure through either a separate thrust block or one built into the gear box. Position of the engine is ensured by means of fitted bolts located at the engine flywheel end. Apart from the holding–down bolts, side chocks must be fitted on both sides of the engine to resist the transverse inertia or collosion forces.
C3.3.1.2
Resilient–mouted engine
Passenger vessels require a high level of comfort; low noise levels and absence of vibration. Noise and vibration may originate in propellers, diesel engines, gearboxes and auxilary machinery. The diesel engine generates low–frequency vibration and high–frequency structure–borne noise. The solution for successfully reducing the noise and vibration is to seat the engine on resilient moutings.
Wärtsilä NSD Switzerland Ltd
One arrangement is mainly applied for propulsion engines. The engine only is bolted through chocks onto a welded sub–frame (raft). This is fitted to ship’s structure by means of standard rubber elements in a vee–form arrangement of 100 degrees. The engine is connected to a reduction gear through a flexible shaft coupling. The use of a sub– frame facilitates installation and ensures correct alignment of the engine. Four stoppers, two at each end of the sub–frame, are provided to limit the extreme movement of the resilient–mounting arrangement when the vessel is in heavy seas. The other resilient–mounting arrangement, with the same basic concept as for the propulsion engines, is applied for generator sets. This arrangement uses a common sub–frame for the diesel engine and the generator. The lub. oil tank is integral with common sub–frame and several of the installations components such as filters, pre–lubricating pumps, etc., can be mounted on the forward end of the common sub–frame. Depending on the number of cylinders, single bearing generators can be considered, in which case no flexible coupling would be required between the engine and the generator. For more information please contact WNSCH. The resilient–mounting used with ZA40S engines is the over–critical type (soft mounting). This means that the natural frequencies of the resilient– mounting are lower than the frequencies of the excitation generated by the diesel engine. This type of mounting offers the best solution with regard to the vibration isolation and structure–borne sound insulation.
C–47
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
C3.3.2
ZA40S engine
Rigidly mounted engine seating for In–line Engines
F10.4164
Fig. C28 Rigidly mounted In–line engine
25.48.07.40 – Issue IX.99 – Rev. 0
C–48
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
C3.3.3
Rigidly mounted engine seating for Vee–form Engines
F10.4167
Fig. C29 Rigidly mounted Vee–form engine
Wärtsilä NSD Switzerland Ltd
C–49
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
C3.3.4
ZA40S engine
Resiliently mounted engine seating for In–line engines
F10.4270
Fig. C30 Resiliently mounted In–line engine
25.48.07.40 – Issue IX.99 – Rev. 0
C–50
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
C3.3.5
Resiliently mounted engine seating for Vee–form engines with TC VTR 354
F10.4271
Fig. C31 Resiliently mounted Vee–form engine with TC VTR 354
Wärtsilä NSD Switzerland Ltd
C–51
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
C3.3.6
ZA40S engine
Resiliently mounted engine seating for Vee–form engines with TC VTR 454
F10.4272
Fig. C32 Resiliently mounted Vee–form engine with TC VTR 454
25.48.07.40 – Issue IX.99 – Rev. 0
C–52
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
C3.3.7
Resiliently mounted In–line generator set
Engine type: 8ZAL40S Genset weight: 141 tonnes (without water and oil)
F10.4715
Fig. C33 Resiliently mounted In–line generator set
Wärtsilä NSD Switzerland Ltd
C–53
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
C3.3.8
ZA40S engine
Resiliently mounted Vee–form generator set
Engine type: 16ZAV40S Genset weight: 200 tonnes (without water and oil)
F10.4716
Fig. C34 Resiliently mounted Vee–form generator set
25.48.07.40 – Issue IX.99 – Rev. 0
C–54
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
C3.3.9
Epoxy resin chocking and drilling plan for In–line engines
F10.4795
Fig. C35 Epoxy resin chocking and drilling plan 6–8ZAL40S
Wärtsilä NSD Switzerland Ltd
C–55
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
F10.4796
Note: detail C: detail D: detail E: detail F:
Fitted foundation bolt M60 Foundation bolt M60 Jacking screw M39x3 Sidestopper with wedge
ZA40S engine
see figure C37 see figure C38 see figure C39 see figure C45
Fig. C36 Epoxy resin chocking and drilling plan 9ZAL40S
25.48.07.40 – Issue IX.99 – Rev. 0
C–56
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
No. of cylinders
Engine mass *1)
Total No. of foundation bolts
[t]
Total net chocking area
Oil pressure of hydraulic press *2)
Pretensioning force in foundation bolt
Permissible mean surface pressure of chock *3)
[cm2]
[bar]
[kN]
[N/mm2]
6
64
26
14 720
210 280
170 220
3.5 4.5
8
85
34
18 950
210 280
170 220
3.5 4.5
9
94
38
21 140
210 280
170 220
3.5 4.5
To be observed: – Prior to pouring the epoxy resin chocks, the engine has to be aligned. The side stoppers have to be welded in place. – Pouring of the epoxy resin chocks and its preparatory work must be carried out either by experts of the epoxy resin manufacturer or by their representatives. Their relevant instructions must have previously been approved by WNSCH. – These instructions must strictly be observed. In particular no yard work on the engine foundation may proceed before the hardening period of the epoxy resin chocks. – When fully cured (exact time determined by experts of the epoxy resin manufacturer or their representatives) the jacking screws must be removed. – Then tighten the foundation bolts with the hydraulic pressure according to the table above. – For toghtening the foundation bolts use hydraulic tools only. – Fit the side stopper wedges finally. Remark:
*1) Including net engine mass, flywheel, water/oil, primary part of coupling and vibration damper. *2) The hydraulic pressure includes an efficiency loss of 10% in the hydr. tensioning device. *3) The permissible mean surface pressure of chocks must be according to the relevant classification society rules. Whenever possible, the higher of the two values should be used.
Table C12 ZAL40S chocking and drilling plan data
Wärtsilä NSD Switzerland Ltd
T10.4805
C–57
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
ZA40S engine
F10.4797
Fig. C37 Detail C: Fitted foundation bolt M60
25.48.07.40 – Issue IX.99 – Rev. 0
C–58
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
F10.4798
Fig. C38 Detail D: Foundation bolt M60
Wärtsilä NSD Switzerland Ltd
C–59
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
ZA40S engine
F10.4799
Fig. C39 Detail E: Jacking screw M39x3
25.48.07.40 – Issue IX.99 – Rev. 0
C–60
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
C3.3.10 Epoxy resin chocking and drilling plan for Vee–form engines
F10.4800
Fig. C40 Epoxy resin chocking and drilling plan 12–14ZAV40S
Wärtsilä NSD Switzerland Ltd
C–61
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
Note: detail C: detail D: detail E: detail F:
Fitted foundation bolt M60 Foundation bolt M60 Jacking screw M39x3 Sidestopper with wedge
ZA40S engine
see figure C42 see figure C43 see figure C44 see figure C45
F10.4801
Fig. C41 Epoxy resin chocking and drilling plan 16–18ZAV40S
25.48.07.40 – Issue IX.99 – Rev. 0
C–62
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
No. of cylinders
Engine mass *1)
Total No. of foundation bolts
[t]
Total net chocking area
Oil pressure of hydraulic press *2)
Pretensioning force in foundation bolt
Permissible mean surface pressure of chock *3)
[cm2]
[bar]
[kN]
[N/mm2]
12
109
28
18 960
240 325
195 265
3.5 4.5
14
127
32
21 500
240 325
195 265
3.5 4.5
16
141
36
24 180
240 325
195 265
3.5 4.5
18
154
40
26 720
240 325
195 265
3.5 4.5
To be observed: – Prior to pouring the epoxy resin chocks, the engine has to be aligned. The side stoppers have to be welded in place. – Pouring of the epoxy resin chocks and its preparatory work must be carried out either by experts of the epoxy resin manufacturer or by their representatives. Their relevant instructions must have previously been approved by WNSCH. – These instructions must strictly be observed. In particular no yard work on the engine foundation may proceed before the hardening period of the epoxy resin chocks. – When fully cured (exact time determined by experts of the epoxy resin manufacturer or their representatives) the jacking screws must be removed. – Then tighten the foundation bolts with the hydraulic pressure according to the table above. – For toghtening the foundation bolts use hydraulic tools only. – Fit the side stopper wedges finally. Remark:
*1) Including net engine mass, flywheel, water/oil, primary part of coupling and vibration damper. *2) The hydraulic pressure includes an efficiency loss of 10% in the hydr. tensioning device. *3) The permissible mean surface pressure of chocks must be according to the relevant classification society rules. Whenever possible, the higher of the two values should be used.
Table C13 ZAV40S chocking and drilling plan data
Wärtsilä NSD Switzerland Ltd
T10.4806
C–63
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
ZA40S engine
F10.4802
Fig. C42 Detail C: Fitted foundation bolt M60
25.48.07.40 – Issue IX.99 – Rev. 0
C–64
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
F10.4803
Fig. C43 Detail D: Foundation bolt M60
Wärtsilä NSD Switzerland Ltd
C–65
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
ZA40S engine
F10.4804
Fig. C44 Detail E: Jacking screw M39x3
25.48.07.40 – Issue IX.99 – Rev. 0
C–66
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
F10.4807
Fig. C45 Detail F: Sidestopper with wedge
Wärtsilä NSD Switzerland Ltd
C–67
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
ZA40S engine
C3.3.11 Indication angles of ships at which engine running must be possible
Classification Societies
Loyd’s Register of Shipping
German Loyd
Det Norske Veritas
Bureau Veritas
American Bureau of Shipping
USSR Register of Shipping
Polsky Rejestr Statow
R.I.N.A.
Nippon Kaiji Kyokai
1985
1984
1986
1985
1986
1986
1980
1984
1983
5.1.3.6.
3.1.C.1.
4.2.3.B 200
15-53.11
31.13
VII-1.6
VII-1.6
2-C-2.1.6.
F-10.1.1.
Main– and aux. engines Abbreviation Heel to each side Rolling to each side Ship length
15°
15°
15°
15°
15°
15°
15°
15°
15°
22.5°
22.5°
22.5°
22.5°
22.5°
22.5°
22.5°
22.5°
22.5°
100
––
0.5 [mg/m3]
> 5 [µm]
Standard turbocharger filter sufficient
Oil wetted or roller screen filter
Inertial separator and oil wetted filter
< 5 [µm]
Standard turbocharger filter sufficient
Oil wetted or panel filter
Inertial separator and oil wetted filter
Valid for
the vast majority of installations
These may likely apply to only a very few extreme cases. For example ships carrying bauxite or similar dusty cargoes or ships rountinely trading along desert coasts
Table C52 Guidance for air filtration
T10.0278
In the event that the air supply to the machinery spaces has a high dust content in excess of 0.5 mg/m3 which can be the case on ships trading in coastal waters, along desert areas, or transporting dust-creating cargoes, there is a greater risk of increased wear to the piston rings and cylinder liners. The normal air filters fitted to the turbochargers are intended mainly as silencers and not to protect the engine against dust. The necessity for the installation of a dust filter and the choice of filter type depends mainly on the concentration and composition of the dust in the suction air.
unit for the air supply to the diesel engines and general machinery spaces on vessels regularly transporting dust-creating cargoes such as iron ore and bauxite, is highly recommended. Table C52 and figure C109 ‘Air filter size’ show how the various types of filters are to be applied as well as the approximate filter surface required for a pressure drop less than 200 mm WG and related to the installed engine power.
Where the suction air is expected to have a dust content of 0.5 mg/m3 or more, the engine must be protected by filtering this air before entering the engine, e.g. also on coastal vessels or vessels frequenting ports having high atmospheric dust or sand content. Marine installations have seldom had special air filters installed until now. Stationary plants on the other hand, very often have air filters fitted to protect the diesel engine. The installation of a filtration
Wärtsilä NSD Switzerland Ltd
C–159
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
ZA40S engine
F10.4613
Fig. C109
Air filter size
Example: Estimation of air filter surface for Sulzer 16ZA40S engine: – PMCR (750 kW/cyl) = 12 000 kW, – Air dust content [ 5 mg/m3, – Particle size u 5 mm. Chosen: – Roller screen filter (table C52), – Filter surface (figure C109) [ 7.3 to 10 m2
25.48.07.40 – Issue IX.99 – Rev. 0
C–160
Wärtsilä NSD Switzerland Ltd
ZA40S
C.
Engine Selection and Project Manual
ZA40S engine
C6
Engine noise
It is very important to protect the ship’s crew/passengers from the effects of machinery space noise and reduce the sound pressure levels in the engine-room and around the funnel casing by applying adequate sound insulation.
C6.1
Figures C110, C111 and C112 give the sound pressure levels and frequency at the engine surface, turbocharger air inlet pipe and turbocharger exhaust gas outlet pipe enabling insulation and noise abatement calculations to be made.
Surface sound pressure level at 1 m distance under free-field conditions, 100% MCR
F10.4617
Fig. C110Sound pressure level at 1 m distance and 100% MCR
C6.2
Sound pressure level in suction pipe at turbocharger inlet (reference diameter = 1.0 m), 100% MCR
F10.4618
Fig. C111Sound pressure level at turbocharger air inlet and 100% MCR
Wärtsilä NSD Switzerland Ltd
C–161
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
C.
C6.3
ZA40S engine
Sound pressure level in exhaust pipe at turbocharger outlet (reference diameter = 1.2 m), 100% MCR
F10.4619
Fig. C112Sound pressure level at turbocharger exhaust outlet and 100% MCR
C6.4
Structure borne noise at engine foot (vertical), 100% MCR
F10.4620
Fig. C113Structure borne noise at engine foot vertical, 100% MCR
25.48.07.40 – Issue IX.99 – Rev. 0
C–162
Wärtsilä NSD Switzerland Ltd
ZA40S
D
Engine Selection and Project Manual
Engine management systems
D1
Introduction
Developments in engine management systems at Wärtsilä NSD Switzerland Ltd are bringing the intelligent engine nearer. The introduction of a standard electrical interface, designated DENIS (Diesel Engine coNtrol and optImizing Specification), facilitates connection with approved remote control systems, while new computer-based tools under the designation of the MAPEX family (see chapter D3) enable ship owners and operators to improve the operating economy of their diesel engines. Market research with leading shipowners and shipbuilders has led Wärtsilä NSD Switzerland Ltd to introduce a new engine control philosophy: that of the intelligent engine-management system.
Much has been written in recent literature about the ‘intelligent engine’ an engine which monitors its own condition, and adjusts its parameters for optimum performance in all situations. Intelligent engine-management takes this important idea a step further by incorporating not only engine optimizing functions but also management features, such as maintenance planning and spare parts control, into a complete system for the ‘intelligent engine-management’.
F10.1745
Fig. D1
Intelligent engine-management comprising DENIS and MAPEX modules
Wärtsilä NSD Switzerland Ltd
D–1
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
D
D2
DENIS family
An important step towards an intelligent enginemanagement system has been to create a basis for the integration of diverse control systems and automation levels into a unified ship management system. This is achieved by providing the engine with a clearly defined, all-electrical interface between the engine and its remote control system.
This file contains the specification of the signal interface on the engine which is made accessible to all Wärtsilä NSD Switzerland Ltd licensees. It summarizes all data about the signals exchanged and contains among other related information the control diagram of the engine, a detailed signal list and a minimum of functional requirements. – DENIS remote control specification: This file contains the detailed functional specification of the remote control system, including also functions particular to the new ZA40S engines namely variable inlet closing (VIC) and load-dependent control of charge air bypass flap. The intellectual property on this specification remains with Wärtsilä NSD Switzerland Ltd. Therefore this file is licensed to Wärtsilä NSD Switzerland Ltd’s remote control partners only. These companies offer systems built completely according to the engine designer’s specifications, tested and approved by Wärtsilä NSD Switzerland Ltd. Due to the co-operation between Wärtsilä NSD Switzerland Ltd. and leading remote control suppliers additional optimizing functions can be integrated into the remote control system, thereby making systems even more attractive and avoiding the need for many interfaces between different electronic systems.
This electrical interface, which is designated DENIS, is defined by Wärtsilä NSD Switzerland Ltd, while the manufacture and supply of the remote control system itself is the responsibility of the approved specialist manufacturers. Co-operation agreements have been reached with established remote control suppliers, who operate world-wide, in order to offer engine customers the solutions they need. Wärtsilä NSD Switzerland Ltd accepts application of approved remote control systems only. The DENIS family contains specifications for the engine management systems of most modern types of Sulzer diesel engines. The diesel engine interface specification applicable for the ZA40S engine is DENIS-40. In multiple-engined ZA40S plants, or installations with Sulzer main engines and generating sets, the unified control concept facilitates the application of automation. DENIS is thus a comprehensive control concept for complete ship propulsion plants.
D2.1
Engine management systems
Many advantages arise from the use of DENIS: • Systems approved by the engine designer; • Easy adaptation of a remote control system; • Integrated optimizing function; • Simpler troubleshooting; • Clear separation of responsibilities; • Single supplier possible for all shipboard automation; • Greater flexibility in integrating engine control within a ship management system.
DENIS specification
The DENIS specification does not represent any hardware. It is the description of the signals exchanged between engine, remote control, safety and alarm system, and defines the control and safety functions required by the engine. The DENIS specification is presented in two volumes: – DENIS engine specification:
25.48.07.40 – Issue IX.99 – Rev. 0
Table D1 identifies the correct DENIS specification and approved remote control suppliers for each engine type.
D–2
Wärtsilä NSD Switzerland Ltd
ZA40S
D
Engine Selection and Project Manual
Engine management systems
Engine type RTA52, 62, 72 RTA84M RTA52U, 62U, 72U RTA84C upgrade
DENIS
Approved RCS suppliers
DENIS-1
ABB, Siemens, Kongsberg Norcontrol, STN Atlas Elektronik, NABCO
RTA84T-B
DENIS-5
ABB, Siemens, Kongsberg Norcontrol, STN Atlas Elektronik, NABCO
RTA48T, 58T RTA48T-B, 58T-B, 68T-B RTA62U-B, 72U-B RTA96C
DENIS-6
ABB, Siemens, Kongsberg Norcontrol, STN Atlas Elektronik, NABCO
S20U
DENIS-20
ABB, Siemens, Kongsberg Norcontrol, STN Atlas Elektronik, NABCO
ZA40S
DENIS-40
ABB, STN Atlas Elektronik
ZA50S
DENIS-50
ABB, STN Atlas Elektronik, Kongsberg Norcontrol
Table D1 DENIS specification
T10.0284
F10.4612
Fig. D2
DENIS-40 remote control
Wärtsilä NSD Switzerland Ltd
D–3
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
D
D2.2
D2.4
Approved suppliers
Wärtsilä NSD Switzerland Ltd has an agreement concerning the development, production, sales and servicing of remote control and safety systems for their ZA40S engines with each of the following companies: ABB Marine BV P.O. Box 433 3000 AK Rotterdam The Netherlands
Tel +31-10 407 89 11 Fax+31-10 456 86 87 Telex 25299 abbnl
STN Atlas Elektronik Behringstrasse 120 D-22763 Hamburg Germany
Tel +49-40 88 25 0 Fax+49-40 88 25 4116 Telex 403253 tst
D2.3
Alarm sensors
The classification societies require different alarm and safety functions, depending on the class of the vessel and its degree of automation. These requirements are listed together with a set of sensors defined by Wärtsilä NSD Switzerland Ltd in the tables ‘Alarm and safety functions of marine diesel engines’, tables D2 and D3. The time delays for the slow-down and shut-down functions given in tables D2 and D3 are maximum values. They may be reduced at any time according to operational requirements. When decreasing the values for the slow-down delay times, the delay times for the respective shut-down functions are to be adjusted accordingly. The delay values are not to be increased without the written consent of Wärtsilä NSD Switzerland Ltd.
Speed control
Wärtsilä NSD Switzerland Ltd accepts the application of approved speed control systems only. The approved speed control systems comprise standard electronic systems and electronic systems for special applications.
The engine builder and customer agree to a plant specific sensor list based on tables D2 and D3 . Certain sensors may be added or deleted depending on the requirements of the relevant classification society or operator but Wärtsilä NSD Switzerland Ltd’s requirements must be followed. The exact extent of delivery of alarm sensors is subject to agreement between the engine builder and its customer.
List of approved speed control systems: A) Standard Electronic speed control • ABB ‘DEGO-II’ system with actuator ‘ASAC70’ B) Electronic speed control with mechanical-hydraulic backup control • Woodward ‘DCS723’ with actuator ‘PGA-EG58’ for marine propulsion and ‘PGG-EG58’ for diesel electric propulsion.
25.48.07.40 – Issue IX.99 – Rev. 0
Engine management systems
The sensors delivered with the engine are connected to terminal boxes mounted on the engine. Signal processing has to be performed in a separate alarm and monitoring system usually provided by the shipyard.
D–4
Wärtsilä NSD Switzerland Ltd
ZA40S
D
Engine Selection and Project Manual
Engine management systems
Table D2 Alarm and safety functions of marine diesel engines (1)
Wärtsilä NSD Switzerland Ltd
D–5
T10.4654
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
D
Table D3 Alarm and safety functions of marine diesel engines (2)
25.48.07.40 – Issue IX.99 – Rev. 0
D–6
Engine management systems
T10.4655
Wärtsilä NSD Switzerland Ltd
ZA40S
D
D3
Engine Selection and Project Manual
Engine management systems
MAPEX family
An intelligent engine-management system also needs to include functions such as the monitoring of specific engine parameters, analysing data, and managing maintenance and spare parts purchasing activities. Many of these functions involve specific and complex engine knowledge and are most appropriately handled directly by the engine designer. Wärtsilä NSD Switzerland Ltd provides a full range of equipment for carrying out these functions, called the MAPEX family. MAPEX, or ‘Monitoring and mAintenance Performance Enhancement with eXpert knowledge’, encompasses the following principles: • • • • • • •
Improved engine performance through reduced down time; Monitoring of critical engine data, and intelligent analysis of that data; Advanced planning of maintenance work; Management support for spare parts and for maintenance; Access on board ship to the knowledge of experts; Full support of data storage and transmission by floppy disk and by satellite communication; Reduced costs and improved efficiency.
The MAPEX family currently comprises seven systems: MAPEX-PR, SIPWA-TP (not available for ZA40Sengine),MAPEX-SM,MAPEX-TV, MAPEX-AV, MAPEX-CR and MAPEX-FC. Further members of the MAPEX family are also envisaged. In each case special emphasis has been placed on user friendliness and ease of installation.
Wärtsilä NSD Switzerland Ltd
D–7
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
D
D3.1
Engine management systems
MAPEX-SM: Partnership agreement
MAPEX-SM is an advanced management tool for the administration and planning of Spare parts and Maintenance. It comes complete with the original Wärtsilä NSD Switzerland Ltd data for the shipowner’s specific engines. The system is user friendly and operates on IBM or IBM-compatible personal computers. Features include purchasing of engine spare parts, inventory control, statistical reporting, issuing of work orders, maintenance history recording, and much more.
By installing MAPEX-SM at the head office as well as on board ship, the owner can centralize requisitioning and purchasing operations for the entire fleet on a single system. This also allows planning of major maintenance work and recording of maintenance histories for each vessel. Statistical features provide an overview of fleet maintenance and purchasing, and assist in corporate strategic planning. MAPEX-SM is modular, so that it can be installed in phases if desired, beginning with the head office and later expanding to include vessels as the shipowner’s budget permits.
F10.3242
Fig. D3
MAPEX communication
25.48.07.40 – Issue IX.99 – Rev. 0
D–8
Wärtsilä NSD Switzerland Ltd
ZA40S
D
Engine Selection and Project Manual
Engine management systems
D3.2
MAPEX-SM: Partnership agreement closes maintenance loop
Whether installed on a single ship or throughout the fleet, or in a power plant, MAPEX-SM is supplied by Wärtsilä NSD Switzerland Ltd as part of a complete service package, the ‘MAPEX-SM Partnership Agreement’. The objective of optimizing maintenance with respect to safety, environment, availability and fuel consumption is only achieved if the maintenance work, its cost, the spare parts consumption and the engine performance data are reported and analysed.
A) According to the design of the engine and its components, different maintenance tasks are required. B) These maintenance requirements are implemented in a maintenance program such as MAPEX-SM. C) Crew members report the maintenance which has been completed directly into the MAPEX-SM database so that the operator is continually informed of the maintenance progress and the spare parts consumption. Reporting of completed work forms the basis for optimizing the maintenance process. D) The results of the analysis of completed maintenance and the spare parts consumption allows Wärtsilä NSD Switzerland Ltd to give the operator recommendations to optimize his maintenance programme. It also gives the engine designer the possibility to identify the needs for design modifications to comply with changing requirements for better safety, availability and maintenance costs. Wärtsilä NSD Switzerland Ltd provides the following technical services as part of this MAPEX-SM Partnership Agreement: •
•
F10.0320
Fig. D4
•
The maintenance circle
Wärtsilä NSD Switzerland Ltd
D–9
Review and comparison of engine performance parameters with expected results based upon the company’s experience with engines of similar type and rating. Analysis of performance data with respect to developing trends. Comparison with previous data collected during the life of the MAPEXSM Partnership Agreement. Recommendations made on possible improvements to operating and maintenance procedures to minimize downtime, increase overall efficiency and reduce costs.
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
D
D3.3
Engine management systems
MAPEX-SM: Your complete service package
The ‘MAPEX-SM Partnership Agreement’ is a complete service package which includes the following: • •
• • •
• •
MAPEX-SM software; Data for the particular engine or engines covered by the contract, such as complete descriptions of all components, with their spare parts and maintenance work orders (a description of the work itself, as well as the necessary tools and spare parts); Installation and starting; Training for administrative and technical personnel in the use of the system. Regular updates of data, including prices, availability for parts supplied by Wärtsilä NSD Switzerland; Reduced prices on spare parts for engines covered by the contract; System hardware (PC or multiple PCs and communication hardware) if required.
25.48.07.40 – Issue IX.99 – Rev. 0
D–10
Wärtsilä NSD Switzerland Ltd
ZA40S
E
E1 E1.1
Engine Selection and Project Manual
Engine Emissions
IMO regulations IMO
The International Maritime Organisation (IMO) is the specialized agency of the United Nations (UN) dealing with technical aspects of shipping. For more information see http://www.imo.org.
E1.2
Establishment of emission limits for ships
In 1973 an agreement on the International Convention for the Prevention of Pollution from ships was reached. It was modified in 1978 and is now known as MARPOL 73/78. Starting from 1991 a new ANNEX VI to this convention has been prepared. In this new annex regulations have been introduced to reduce or prohibit certain types of emissions from ships. One of these regulations prescribes the maximum allowable emissions of nitrogen oxides (NOx) by engines installed on ships. This regulation is the only one being of direct concern for propulsion engine design.
E1.3
F10.3278
Regulation regarding NOx emissions of diesel engines
Fig. E1
The following speed-dependent curve shows the maximum allowed average emissions when running with marine diesel oil (MDO) (figure E1) . The emission value for an engine is calculated according to the Technical Code which is part of ANNEX VI and is almost identical with ISO 8178. As this is an average value it does not imply that the engine emits nitrogen oxides (NOx) below the given limit over the whole load range.
Wärtsilä NSD Switzerland Ltd
E–1
E1.4
Speed dependent maximum average NOx emissions by engines
Date of application of ANNEX VI
During the Conference of Parties to MARPOL 73/78 in September 1997 the final draft to ANNEX VI has been adopted. To come into force, the protocol of the conference has to be ratified by 15 member states, of which the combined merchant fleet constitutes at least 50 per cent of the gross tonnage of the world’s merchant shipping. When coming into force, the new regulations on NOx emissions will be applicable (with exceptions stated in the regulations) to all engines with a power output of more than 130 kW which are installed on ships constructed on or after 1st January 2000. The date of construction is the date of keel laying of the ship. Engines in older ships do not need to be certified unless they are subjected to major modifications which would significantly alter their NOx emission characteristics.
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
E
E1.5
Engine Emissions
Procedure for certification of engines
When the new regulation comes into force it has to be proved that every delivered engine complies with the IMO regulation. The standard procedure will involve testing the emissions during the trials on the test bed. If it can be proved that the engine is exactly to the same design as an already certified engine, a so-called parent engine, no testing is required. The certification will be surveyed by the administrations or delegated organisation.
E2
Measures for compliance with the IMO regulation of the ZA40S engine
The IMO regulation is fulfilled by specific adaptation of the engine tuning and fuel injection parameters. These measures have all been tested and chosen with the least disadvantage on engine costs and fuel consumption maintaining todays high engine realibility.
25.48.07.40 – Issue IX.99 – Rev. 0
E–2
Wärtsilä NSD Switzerland Ltd
ZA40S
F
F1 F1.1
Engine Selection and Project Manual
winGTD – General Technical Data
Installation of winGTD System requirements
winGTD will run on 386, 486 or Pentium processor-based PCs that incorporate the following minimum software and hardware requirements: – Microsoft Windows version 3.1, and later versions running in 386 enhanced mode, or Windows 95; – 4 MB memory; – 10 MB of free hard disc space; – CD-ROM drive (1.44 MB floppy disks available on request). A serial or parallel port is required if you wish to use a printer.
F1.2
Installing winGTD
Use the following procedure to install the winGTD. 1. Insert the winGTD CD into your CD-ROM drive. 2. To start the installation program, run the file ‘d:\wingtd\setup.exe’ (where d is the drive letter of your CD-ROM). 3. Follow the on-screen instructions. When installation is complete, a message appears indicating that the installation was successful.
F1.3
Changes to previous versions
The amendments and how this version differs from previous versions are explained in file README.TXT, which is located in the winGTD directory on the CD-ROM. To view this file open Windows File Manager, locate the file and double-click on it.
Wärtsilä NSD Switzerland Ltd
F–1
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
F
F2 F2.1
winGTD – General Technical Data
Using winGTD (ZA40S) F2.2
Main window
When you double-click on the winGTD icon, it opens to the Main window.
Four-stroke propulsion engines
After you have clicked on the selected engine type (ZA40S), the ‘Four-stroke engine propeller’ shows up.
F10.4667
Fig. F1
winGTD: Main window
F10.4668
Fig. F2
The winGTD Main window contains four pull-down menus, the Work area and the Status bar.
Select the engine according to cylinder configuration (e.g. ZA40S). After that you can enter your desired engine rating (power and speed). The rating point must be within the rating field. The shaft power can be expressed in units of kW or bhp.
By opening the ‘Propeller’ menu and clicking on submenu ‘Four stroke’ you then select the engine type and the program will start. The installed CD-ROM contains the ZA40S engines only. This command can be executed without activating the menu, simply by pressing the function key F6 (four-stroke propulsion engines).
25.48.07.40 – Issue IX.99 – Rev. 0
winGTD: Four-stroke engine propeller
F2.3
Cooling system
In the ‘Four-stroke engine-propeller’ mask you have to select the type of cooling system. Each engine type is connected with a number of predetermined and standardized cooling system types. After the selection of the cooling system type you can either click the ‘compute-button’ and calculate the data of the selected engine or you can choose ‘Temperatures’ or ‘Properties’ from the ‘Cooling system’ menu.
F–2
Wärtsilä NSD Switzerland Ltd
ZA40S
F
Engine Selection and Project Manual
winGTD – General Technical Data
F2.4
Lubricating oil system
F2.5
The option ‘Lubricating oil system’ contains these items: Lubricating oil system, Treatment and System layout. The ‘System layout’ shows the principal system with all functional elements. The main parameters may be changed directly or in the items mentioned below.
Results of the computation
To show the results of the computation for the selected rating click ‘Show results’. The previously selected input data are considered and expressed into the shown results like ‘Engine performance data, Heat dissipation, Charge air system, Coolant temperatures, Starting air system, Pumps, Dynamic characteristics, Main dimensions, Lubricating oil system, Cooling system’.
F10.4669
Fig. F3
winGTD: Lubricating oil system layout F10.4670
Fig. F4
Wärtsilä NSD Switzerland Ltd
F–3
winGTD: Show results of the computation
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
F
F2.6
winGTD – General Technical Data
Saving a project
To save all the data belonging to your project, choose ‘Save as...’ from the File menu. The following dialog box appears.
F10.4671
Fig. F5
winGTD: Save as...
Type a project name (winGTD proposes a threecharacter suffix based on the program you have selected) and choose a directory location for the project. Once you have specified a project name and selected the desired drive and directory, click ‘Save’ to save your project data.
25.48.07.40 – Issue IX.99 – Rev. 0
F–4
Wärtsilä NSD Switzerland Ltd
ZA40S
G
Engine Selection and Project Manual
Appendix
G1
Reference to other Wärtsilä NSD Switzerland documentation
Uni-fuel Ship Installation
System Engineering Concept Guidance 20 pp, Issue 7056/Lüthi/28.01.94, Order No. 29.06.07.40
Fire Prevention in Exhaust Gas Systems
System Engineering Concept Guidance 5 pp, Issue 7056/Thomson/13.11.96, Order No. 29.07.07.40
Wärtsilä NSD Switzerland Ltd
G–1
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
G
G2
Appendix
Piping symbols
F10.1910
Fig. G1
Piping symbols 1
25.48.07.40 – Issue IX.99 – Rev. 0
G–2
Wärtsilä NSD Switzerland Ltd
ZA40S
G
Engine Selection and Project Manual
Appendix
F10.1911
Fig. G2
Piping symbols 2
Wärtsilä NSD Switzerland Ltd
G–3
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
G
Appendix
F10.1905
Fig. G3
Piping symbols 3
25.48.07.40 – Issue IX.99 – Rev. 0
G–4
Wärtsilä NSD Switzerland Ltd
ZA40S
G
Engine Selection and Project Manual
Appendix
G3
SI dimensions for internal combustion engines
Symbol I,L A V m
Definition Length Area Volume Mass
SI–Units m, mm, µm m2, mm2, cm2 m3, dm3, I, cm3 kg, t, g
ρ
Density
kg/m3, g/cm3, kg/dm3
Z, W Ia, Ip I, J
Section modulus Second moment of area Moment of inertia (radius)
m3 m4 kgm2
α, β, γ, δ, ϕ
Angle
rad, °
t f, v v, c, w, u N, n a
Time Frequency Velocity Rotational frequency Acceleration
s, d, h, min Hz, 1/s m/s, km/h 1/s, 1/min m/s2
ω
Angular velocity
rad/s
α
Angular acceleration
rad/s2
qm qv p L F p
Mass flow rate Volume flow rate Momentum Angular momentum Force Pressure
kg/s m3/s Nm Nsm N, MN, kN N/m2, bar, mbar
σ, τ
Stress
N/m2, N/mm2
E W, E, A, Q P M, T
Modulus of elasticity Energy, work, quantity of heat Power Torque moment of force
N/m2, N/mm2 J, MJ, kJ, kWh W, kW, MW Nm
η
Dynamic viscosity
Ns/m2
ν
Kinematic viscosity
m2/s
γ, σ
Surface tension
N/m
T, Θ, t, θ
Temperature
K, °C
nT, nΘ, ... α C, S c
Temperature interval Linear expansion coefficient Heat capacity, entropy Specific heat capacity
K, °C 1/K J/K J/(kgK)
λ
Thermal conductivity
W/(mK)
K e L(LIN)TOT L(A)TOT
Coefficient of heat transfer Net calorific value Total LIN noise pressure level Total A noise pressure level Average spatial noise level over octave band Voltage Current Brake specific fuel consumption
W/(m2K) J/kg, J/m3 dB dB
LOKT U I BSFC
Table G1
SI dimensions
Wärtsilä NSD Switzerland Ltd
Other units
Kn rpm
cSt, RW1
dB V A kg/J, kg/(kWh), g/(kWh)
T10.0080
G–5
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
G
G4
Appendix
Approximate conversion factors
Length 1 in 1 ft 1 yd 1 statute mile 1 nautical mile
Force
= 12 in = 3 feet = 1760 yds = 6080 feet
= = = = =
25.4 mm 304.8 mm 914.4 mm 1609.3 m 1853 m
1 lbf (pound force)
=
4.45 N
=
6.899 kPa (0.0689 bar)
= =
1.609 km/h 1.853 km/h
=
0.447 m/s2
=
0.55 · (°F -32)
= =
1.06 kJ 4.186 kJ
= = =
0.735 kW 0.7457 kW 0.0012 kW
Pressure 1 psi (lb/sq in)
Mass Velocity 1 oz 1 lb = 16 oz 1 long ton 1 short ton 1 tonne
= = = = =
0.0283 kg 0.4536 kg 1016.1 kg 907.2 kg 1000 kg
Area 1 in2 1 ft2 1 yd2 1 acre 1 sq mile (of land) 640 acres
= = = = =
6.45 cm2 929 cm2 0.836 m2 4047 m2 2.59 km2
25.48.07.40 – Issue IX.99 – Rev. 0
Temperature 1 °C
Energy 1 BTU 1 kcal
= = =
16.4 cm3 0.0283 m3 0.7645 m3
Power 1 bhp (metric) 1 bhp (Imp.) 1 kcal/h
Volume (fluids) 1 Imp. pint 1 US. pint 1 Imp. quart 1 US. quart 1 Imp. gal 1 US. gal 1 Imp. barrel = 36 Imp. gal 1 barrel petroleum = 42 US. gal
Acceleration 1 mphps
Volume 1 in3 1 ft3 1 yd3
1 mph 1 knot
= = = = = = = =
0.568 l 0.473 l 1.136 l 0.946 l 4.546 l 3.785 l 163.66 l 158.98 l
G–6
Wärtsilä NSD Switzerland Ltd
ZA40S
G
G5
Engine Selection and Project Manual
Appendix
Wärtsilä NSD Corporation worldwide
G5.1
Headquarters Wärtsilä NSD Corporation World Trade Center Leutschenbachstrasse 95 CH-8050 Zürich Switzerland
Tel. Fax
+41 1 305 7100 +41 1 305 7199
Wärtsilä NSD Corporation Kauppapuistikko 15, 5th Floor FIN-65 100 Vaasa Finland
Tel. Fax
+358 6 3270 +358 6 327 2422
Wärtsilä NSD Corporation, Navy Business c/o Grandi Motori Trieste S.p.A. Bagnoli della Rosanda 334 I-34 018 Dorligo della Valle, Trieste Italy
Tel. Fax
+39 40 319 5531 +39 40 319 5301
Finland
Wärtsilä NSD Finland Oy Järvikatu 2-4 PO Box 244 FIN-65 101 Vaasa Finland
Tel. Fax
+358 6 3270 +358 6 317 1906
Finland
Wärtsilä NSD Finland Oy Marine Tarhaajantie 2 PO Box 252 FIN-65 101 Vaasa Finland
Tel. Fax
+358 6 3270 +358 6 356 7188
Finland
Wärtsilä NSD Finland Oy Stålarminkatu 45 PO Box 50 FIN-20 810 Turku Finland
Tel. Fax
+358 2 264 3111 +358 2 234 2419
France
Wärtsilä NSD France S.A. 28, Boulevard Roger-Salengro F-78 200 Mantes-la-Ville F-78 202 Mantes-la-Jolie Cedex BP 1224 France
Tel. Fax
+33 1 34 78 88 00 +33 1 34 78 88 03
G5.2
G5.3
G5.4
Marine business
Navy business
Product companies
Wärtsilä NSD Switzerland Ltd
G–7
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
G
Appendix
France
Cummins Wärtsilä 1, rue de la Fonderie B.P. 1210 F-68 054 Mulhouse Cedex France
Tel. Fax
+33 389 666 868 +33 389 666 830
France
Cummins Wärtsilä Usine de la Combe B.P. 115 F-17 700 Surgères France
Tel. Fax
+33 546 30 31 50 +33 546 30 31 59
Italy
Wärtsilä NSD Italia S.p.A. Bagnoli della Rosandra 334 I-34 018 Trieste Italy
Tel. Fax
+39 40 319 5000 +39 40 827 371
Norway
Wärtsilä NSD Norway A/S N-5420 Rubbestadneset Norway
Tel. Fax
+47 53 42 25 00 +47 53 42 25 01
The Netherlands
Wärtsilä NSD Nederland B.V. Hanzelaan 95 NL-8017 JE Zwolle PO Box 10 608 NL-8000 GB Zwolle The Netherlands
Tel. Fax
+31 38 4253 253 +31 38 4253 352
Switzerland
Wärtsilä NSD Switzerland Ltd Zürcherstrasse 12 PO Box 414 CH-8401 Winterthur Switzerland
Tel. Fax
+41 52 262 49 22 +41 52 212 49 17
Sweden
Wärtsilä NSD Sweden AB Åkerssjövägen S-46165 Trollhättan PO Box 920 S-46129 Trollhättan Sweden
Tel. Fax
+46 520 4226 00 +46 520 4228 50
G5.5
Corporation network
Australia
Wärtsilä NSD Australia Pty Ltd 48 Huntingwood Drive Huntingwood 2148 New South Wales Australia
Tel. Fax
+61 29 6728 200 +61 29 6728 585
Brazil
Wärtsilä NSD do Brasil Ltda Av. Rio Branco, 116-12° andar 20 040-001 Rio de Janeiro/RJ Brazil
Tel.
+55 21 2240 251 +55 21 5094 386 +55 21 5092 358
25.48.07.40 – Issue IX.99 – Rev. 0
G–8
Fax
Wärtsilä NSD Switzerland Ltd
ZA40S
G
Engine Selection and Project Manual
Appendix
Canada
Wärtsilä NSD Canada Inc. 50 Akerley Boulevard, Burnside Industrial Park Dartmouth (Halifax) Nova Scotia B3B 1R8 Canada
Tel. Fax
+1 902 4681 264 +1 902 4681 265
Chile
Wärtsilä NSD Chile Ltda Nueva de Lyon 96, Oficina 305 Providencia Santiago Chile
Tel. Fax
+56 2 2325 031 +56 2 2325 469 +56 2 2325 608 +56 2 2328 754
Chile
Wärtsilä NSD Chile Ltda Avenida Colón 3284 Talcahuano Chile
Tel. Fax
+56 41 592 077 +56 41 592 075
China
Wärtsilä NSD (China) Ltd Room 4201 Hopewell Centre 188 Queen’s Road East Wanchai Hong Kong P.R. China
Tel. Fax
+852 2528 6605 +852 2529 6672
China
Wärtsilä NSD Shanghai Repr. Office Unit A, 13 A/F Jiu Shi Fu Xin Mansion 918 Huai Hai Road (M) Shanghai 200 020 P.R. China
Tel. Fax
+86 21 6415 5218 +86 21 6415 5868
China
Wärtsilä NSD Beijing Repr. Office Room 2505, CITIC Building No. 19 Juabguomenwai Dajic Beijing 100 004 P.R. China
Tel. Fax
+86 10 659 31842 +86 10 659 31843
China
Wärtsilä NSD Wuhan Representative Office Room 1501-02, Deng Yue Building 314 Xin Hua Road, Wuhan Hubei 430 022 P.R. China
Tel. Fax
+86 27 57 83 530 +86 27 57 83 033
China
Wärtsilä NSD Taiwan Ltd 3F-2, No. 111 Sung Chiang Road (Boss Tower Building), Taipei Taiwan R.O.C.
Tel. Fax
+886 22 515 2229 +886 22 517 1916
Colombia
Wärtsilä NSD Colombia S.A. Avenida 15 No. 101-09 Oficina 408 Edificio Vanguardia A.A. 91 710 Bogotá D.C. Colombia
Tel.
+57 1 621 5705 +57 1 621 5813 +57 1 621 6246 +57 1 616 8466
Wärtsilä NSD Switzerland Ltd
G–9
Fax
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
G
Appendix
Cyprus
Wärtsilä NSD Mediterranean Ltd & Wärtsilä NSD Cyprus Ltd P.O. Box 53 037 3133 Limassol Cyprus
Tel. Fax
+357 5 322 620 +357 5 314 467 +357 5 314 468
Denmark
Wärtsilä NSD Danmark A/S Jens Munksvej 1 PO Box 67 DK-9850 Hirtshals Denmark
Tel. Fax
+45 99 569 956 +45 98 944 016
Denmark
Wärtsilä NSD Danmark A/S Akseltorv 8, 1st floor DK-1609 Copenhagen V Denmark
Tel. Fax
+45 99 569 956 +45 98 944 016
France
Wärtsilä NSD France S.A. Etablissement de la Méditerranée R.N. 8-Les Baux F-13 420 Gémenos France
Tel. Fax
+33 4 42 32 57 94 +33 4 42 32 57 98
Germany
Wärtsilä NSD Deutschland GmbH Schlenzigstrasse 6 D-21 107 Hamburg Germany
Tel. Fax
+49 40 751 900 +49 40 751 90 190
Great Britain
Wärtsilä NSD UK Ltd Tubs Hill House London Road Sevenoaks Kent TN13 1BL Great Britain
Tel. Fax
+44 1732 744 400 +44 1732 744 420
Great Britain
Wärtsilä NSD UK Ltd Girdleness Trading Estate Wellington Road Aberdeen AB11 8DG Great Britain
Tel. Fax
+44 1224 871 166 +44 1224 871 188
Greece
Wärtsilä NSD Greece S.A. 4, Loudovikou Square GR-185 31 Piraeus PO Box 860 12 GR-185 03 Piraeus Greece
Tel. Fax
+30 1 413 54 50 +30 1 413 55 82 +30 1 411 79 02
Velar og Skip enf Fiskislóö 137 A 101 Reykjavik Iceland
Tel. Fax
+354 56 200 955 +354 56 210 095
Iceland
25.48.07.40 – Issue IX.99 – Rev. 0
G–10
Wärtsilä NSD Switzerland Ltd
ZA40S
G
Engine Selection and Project Manual
Appendix
India
Wärtsilä NSD India Ltd 76, Free Press House Nariman Point Mumbai 400 021 India
Tel. Fax
+91 22 281 5601 +91 22 287 5995–6 +91 22 284 0427
Indonesia
P. T. Stowindo Power Menara Citibank 3rd floor JL Metro Pondok Indahkav. II BA Jakarta 12 310 Indonesia
Tel. Fax
+62 21 766 2950 +62 21 766 2946/47
Ireland
Wärtsilä NSD Ireland Ltd Dublin Executive Office Centre Red Cow, Naas Road Dublin 22 Ireland
Tel. Fax
+353 1 459 5668 +353 1 459 5672
Italy
Wärtsilä Navim Diesel s.r.l. Via Carrara 24-26 I-16 147 Genova Italy
Tel. Fax
+39 010 373 0779 +39 010 373 0757
Ivory Coast
Wärtsilä NSD ACO PO Box 4432 – Zone A4 17, rue Pierre et Marie Curie Abidjan 01 Ivory Coast
Tel. Fax
+225 351 876 +225 350 351 +225 351 506
Japan
Wärtsilä Diesel Japan Co. Ltd Kobe Yusen Bldg. 1-1-1, Kaigan-dori Chuo-ku Kobe 650 Japan
Tel. Fax
+81 78 392 5333 +81 78 392 8688
Japan
NSD Japan Ltd San Ei Building 10th floor 2-3, Kaigan-dori, 2-chome Chuo-ku Kobe 650 Japan
Tel. Fax
+81 78 321 1501–5 +81 78 332 27 23
Japan
Wärtsilä Diesel Japan Co. Ltd Binary Kita-Aoyama Bldg. 8F 3-6-19, Kita-Aoyama, Minato-ku Tokyo 107 Japan
Tel. Fax
+81 3 34 86 4531 +81 3 34 86 4153
Korea (Rep. of)
Wärtsilä NSD Korea Ltd Noksan Bldg. 6th floor 50-11, Yonggang-dong, Mapo-Gu Seoul 121-071 Korea (Rep. of)
Tel. Fax
+82 2 3272 8032-5 +82 2 3272 8036
Wärtsilä NSD Switzerland Ltd
G–11
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
G
Appendix
Korea (Rep. of)
Wärtsilä NSD Korea Ltd Pusan Marine Centre, 1002-A 79-1, Chungangdong, 4-Ga Chung-Gu Pusan 600-014 Korea (Rep. of)
Tel. Fax
+82 51 465 2191-2 +82 51 465 5222
Mexico
Wärtsilä NSD de Mexico S.A. de C.V. Patricio Sanz # 526, Col. de Valle México, DF 03 100 Mexico
Tel. Fax
+525 682 74 92 +525 682 91 54 +525 5 362 352
Mexico
Wärtsilä NSD de Mexico Guillermo Gonzales Camarena # 1100, Piso 50 Col. Centro Ciudad de Santa Fé México, DF 01 210 Mexico
Tel. Fax
+525 570 92 00 +525 570 92 01
Morocco
Salva 93, Boulevard de la Résistance Casablanca 21 700 Morocco
Tel. Fax
+212 2 304 038 +212 2 305 717
Norway
Wärtsilä NSD Norway A/S Hestehagen 5 Holter Industrieområde N-1440 Drøbak Norway
Tel. Fax
+47 64 93 7650 +47 64 93 7660
Pakistan
Wärtsilä NSD Pakistan (Pvt.) Ltd 16-Kilometer, Raiwind Road PO Box 10 104 Lahore Pakistan
Tel. Fax
+92 42 541 8846 +92 42 541 9833
Peru
Wärtsilä NSD del Perú S.A. J. Arias Aragües 210 San Antonio – Miraflores Lima 18 Peru
Tel. Fax
+51 1 241 7030 +51 1 444 6867
Philippines
Wärtsilä NSD Philippines Inc. No 6, Diode Street Light Industry and Science Park BO, Diezmo, Cabuyo, Laguna Philippines
Tel. Fax
+63 49 543 0382 +63 49 543 0381
Poland
Wärtsilä NSD Polska, Sp zo o Al. Wilanowska 372 02-665 Warszawa Poland
Tel. Fax
+48 22 843 8751 +48 22 843 8752
25.48.07.40 – Issue IX.99 – Rev. 0
G–12
Wärtsilä NSD Switzerland Ltd
ZA40S
G
Engine Selection and Project Manual
Appendix
Poland
Wärtsilä NSD Polska, Sp zo o Ul. Grunwaldzka 139 90-264 Gdansk Poland
Tel. Fax
+48 58 345 23 44 +48 58 341 67 44
Portugal
Wärtsilä NSD Portugal Lda Zona Industrial Da Maia I Sector X - Lote 362 No. 43, Apartado 415 P-4470 Maia Codex Portugal
Tel. Fax
+351 2943 9720 +351 29 43 9729
Puerto Rico
Wärtsilä NSD Carribbean Inc. Metro Office Park, Suite 101, 2 Calle 1 Guaynabo 00968 Puerto Rico
Tel. Fax
+1 787 792 8080 +1 787 792 2600
Russia
Wärtsilä NSD Corporation Glazovsky per., 7, Suite 16 RU-121 002 Moscow Russia
Tel.
+7 095 200 1255 +7 095 203 1560 +7 095 956 3696
Wärtsilä NSD Corporation 10 Krasnoarmeiskaya Ul. 15 RU-198 103 St. Petersburg Russia
Tel.
Wärtsilä NSD Saudi Arabia Ltd Industrial City, Phase 4 PO Box 2132 Jeddah 21 451 Saudi Arabia
Tel. Fax
+966 2 637 6470 +966 2 637 6884 +966 2 637 6482
Singapore (Rep. of)
Wärtsilä NSD Singapore Pte Ltd 14, Benoi Crescent Singapore 629 977 Teban Garden, PO Box 619 Singapore 916 001 Singapore (Rep. of)
Tel. Fax
+65 265 9122 +65 264 0802
South Africa
Wärtsilä NSD South Africa Pty Ltd 36 Neptune Street Paarden Eiland 7405 Cape Town PO Box 356 Cape Town 7420 South Africa
Tel. Fax
+27 21 511 1230 +27 21 511 1412
Spain
Wärtsilä NSD Ibérica S.A. Poligono Industrial Landabaso, s/n, Apartado 137 E-48 370 Bermeo (Vizcaya) Spain
Tel. Fax
+349 4 6170 100 +349 4 6170 113
Russia
Saudi Arabia
Wärtsilä NSD Switzerland Ltd
G–13
Fax
Fax
+7 812 325 2127 +7 812 325 2128 +7 812 325 2129 +7 812 325 2298
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
G
Appendix
Turkey
Enpa Dis Ticaret A.S. Spor Cad. No. 92 Besiktas Plaza A Blok Zemin Kat Besiktas Istanbul Turkey
Tel. Fax
+90 212 258 55 16 +90 212 258 99 98
Ukraine
Wärtsilä NSD Corporation 5, Buzrik Str. Nicolaev 327 029 Ukraine
Tel. Fax
+380 512 500 057 +380 512 500 057
United Arab Emirates
Wärtsilä NSD Gulf FZE PO Box 61 494 Jebel Ali Dubai United Arab Emirates
Tel. Fax
+971 4 838 979 +971 4 838 704
USA
Wärtsilä NSD North America Inc. 201 Defense Highway, Suite 100 Annapolis, MD 21 401 USA
Tel. Fax
+1 410 573 2100 +1 410 573 2200
USA
Wärtsilä NSD Inc. Summit Tower 11 Greenway Plaza, Suite 2920 Houston, Texas 77 046 USA
Tel. Fax
+1 713 840 0020 +1 713 840 0009
USA
Wärtsilä NSD North America Inc. 2900 S.W. 42nd Street Hollywood, Florida 33 312 USA
Tel. Fax
+1 954 327 4700 +1 954 327 4877
Vietnam
Wärtsilä NSD Vietnam Co Ltd Central Plaza Office Building, 7th Floor 17 Le Duan Street, Dist 1 Ho Chi Minh Vietnam
Tel.
+84 8 8244 534 +84 8 8244 535 +84 8 8294 891
China
China State Shipbuilding Corporation 5 Yuetan Beijie PO Box 2123 Beijing 100 861 China
Tel. Fax
+861 068 588 833 +861 068 583 380
Croatia
“3. Maj” Engines & Cranes Liburnijska 3 PO Box 197 51 000 Rijeka Croatia
Tel.
+385 51 262 666 +385 51 262 700 +385 51 261 127
G5.6
Fax
Licensees
25.48.07.40 – Issue IX.99 – Rev. 0
G–14
Fax
Wärtsilä NSD Switzerland Ltd
ZA40S
G
Engine Selection and Project Manual
Appendix
France
Wärtsilä NSD France SA 28, Boulevard Roger Salengro F-78 200 Mantes-la-Ville BP 1224 F-78 202 Mantes-la-Jolie Cedex France
Tel. Fax
+33 1 34 78 88 00 +33 1 34 78 88 03
Germany
Dieselmotorenwerk Rostock GmbH Werftallee 13 D-18 119 Rostock Germany
Tel. Fax
+49 381 123 2132 +49 381 123 2130
Italy
Wärtsilä NSD Italia S.p.A. Bagnoli della Rosandra, 334 I-34 018 San Dorligo della Valle Trieste Italy
Tel. Fax
+39 40 319 50 00 +39 40 82 73 71
Italy
Isotta Fraschini Motori SpA Factory and Head Office Via F. de Blasio - Zona Industriale I-7012 Bari Italy
Tel. Fax
+39 80 534 50 00 +39 80 531 10 09
Japan
Diesel United Ltd (Head Office) 8th floor, Prime Kanda Building 8, 2-chome, Kanda Suda-cho Chiyoda-ku Tokyo 101 Japan
Tel. Fax
+81 3 3257 8222 +81 3 3257 8220
Japan
Hitachi Zosen Corporation (Head Office) Ninety Building 3-28 Nishikujo 5-chome Konohana-ku Osaka 554 Japan
Tel. Fax
+81 6 466 7555 +81 6 466 7524
Japan
Mitsubishi Heavy Industries Ltd (Head Office) 5-1 Marunouchi, 2-chome Chiyoda-ku Tokyo 100 Japan
Tel. Fax
+81 3 3212 9080 +81 3 3212 9779
Japan
NKK Corporation 1-2, Marunouchi, 1-chome Chiyoda-ku Tokyo 100 Japan
Tel. Fax
+81 3 3217 3320 +81 3 3214 8421
Wärtsilä NSD Switzerland Ltd
G–15
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
G
Korea
Appendix
Hyundai Heavy Industries Co Ltd Engine and Machinery Division 1, Cheonha-dong, Dong-ku Ulsan City, PO Box 70 Ulsan City 682-792 Korea
Tel.
Korea Heavy Industries & Construction Co Ltd Engine Business Division 555, Guygok-dong Changwon, Kyungnam PO Box 77 Changwon City 641-600 Korea
Tel.
Samsung Heavy Industries Co Ltd Engine Business Division 69, Sinchon-Dong Changwon, Kyungnam, 641-370 Korea
Tel.
Korea
Ssangyong Heavy Industries Co Ltd Ssangyong Kang Nam B/D 4th floor, 448-2, Dogok-z dong Kagnam-Gu Seoul 135-272 Korea
Tel. Fax
+82 2 3460 3638 +82 2 3462 9797
Poland
H. Cegielski-Poznan SA UI. 28 Czerwca 1956 Nr. 223/229 60-965 Poznan Poland
Tel.
+48 61 831 13 50 +48 61 831 23 50 +48 61 831 13 91
Zaklady Urzadzen Technicznych “Zgoda” SA UI. Wojska Polskiego 66/68 41-603 Swietochlowice Poland
Tel.
Spain
Manises Diesel Engine Company SA Quart de Poblet PO Box 1 E-46 930 Valencia Spain
Tel. Fax
+349 6 154 64 00 +349 6 154 64 15
Turkey
Türkiye Gemi Sanayii AS (Turkish Shipbuilding Industrie Inc) Meclisi Mebusan Caddesi 66 80 040 Salizpazari Istanbul Turkey
Tel.
+90 212 249 83 17 +90 212 245 81 87 +90 212 251 32 51
Korea
Korea
Poland
25.48.07.40 – Issue IX.99 – Rev. 0
G–16
Fax
Fax
Fax
Fax
Fax
Fax
+82 522 30 7281 +82 522 30 7282 +82 522 30 7424 +82 522 30 7427
+82 551 78 7490 +82 551 78 7482 +82 551 78 8463 +82 551 78 8467
+82 551 60 6641 +82 551 60 6642 +82 551 61 9477 +82 551 60 6040
+48 32 45 72 01 +48 32 45 72 70 +48 32 45 72 71 +48 32 45 72 15
Wärtsilä NSD Switzerland Ltd
ZA40S
G
Engine Selection and Project Manual
Appendix
USA
Wärtsilä NSD Switzerland Ltd
Waukesha Engine Division Dresser Industries Inc 1000 W. St. Paul Avenue Waukesha, WI 53 188 USA
G–17
Tel. Fax
+1 414 547 33 11 +1 414 549 27 95
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
G
25.48.07.40 – Issue IX.99 – Rev. 0
G–18
Appendix
Wärtsilä NSD Switzerland Ltd
ZA40S
G
G6
Engine Selection and Project Manual
Appendix
Questionnaire order specification for ZA40S engines
T10.0300
Wärtsilä NSD Switzerland Ltd
G–19
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
G
Appendix
Questionnaire order specification for ZA40S engines
Table G2 Questionnaire 1
25.48.07.40 – Issue IX.99 – Rev. 0
T10.0301
G–20
Wärtsilä NSD Switzerland Ltd
ZA40S
G
Engine Selection and Project Manual
Appendix
Questionnaire order specification for ZA40S engines
Table G3 Questionnaire 2
Wärtsilä NSD Switzerland Ltd
T10.0302
G–21
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
G
Appendix
Questionnaire order specification for ZA40S engines
Table G4 Questionnaire 3
25.48.07.40 – Issue IX.99 – Rev. 0
T10.0303
G–22
Wärtsilä NSD Switzerland Ltd
ZA40S
G
Engine Selection and Project Manual
Appendix
Questionnaire order specification for ZA40S engines
Table G5 Questionnaire 4
Wärtsilä NSD Switzerland Ltd
T10.0304
G–23
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
G
Appendix
Questionnaire order specification for ZA40S engines
Table G6 Questionnaire 5
25.48.07.40 – Issue IX.99 – Rev. 0
T10.4663
G–24
Wärtsilä NSD Switzerland Ltd
ZA40S
G
Engine Selection and Project Manual
Appendix
Questionnaire order specification for ZA40S engines
Table G7 Questionnaire 6
Wärtsilä NSD Switzerland Ltd
T10.0306
G–25
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
G
Appendix
Questionnaire order specification for ZA40S engines
Table G8 Questionnaire 7
25.48.07.40 – Issue IX.99 – Rev. 0
T10.0307
G–26
Wärtsilä NSD Switzerland Ltd
ZA40S
G
Engine Selection and Project Manual
Appendix
Questionnaire order specification for ZA40S engines
Table G9 Questionnaire 8
Wärtsilä NSD Switzerland Ltd
T10.4664
G–27
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
G
Appendix
Questionnaire order specification for ZA40S engines
Table G10 Questionnaire 9
25.48.07.40 – Issue IX.99 – Rev. 0
T10.0310
G–28
Wärtsilä NSD Switzerland Ltd
ZA40S
G
Engine Selection and Project Manual
Appendix
Questionnaire order specification for ZA40S engines
Table G11 Questionnaire 10
Wärtsilä NSD Switzerland Ltd
T10.0311
G–29
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
G
Appendix
Questionnaire order specification for ZA40S engines
Table G12 Questionnaire 11
25.48.07.40 – Issue IX.99 – Rev. 0
T10.3627
G–30
Wärtsilä NSD Switzerland Ltd
ZA40S
G
Engine Selection and Project Manual
Appendix
Questionnaire order specification for ZA40S engines
Table G13 Questionnaire 12
Wärtsilä NSD Switzerland Ltd
T10.0313
G–31
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
G
Appendix
Questionnaire order specification for ZA40S engines
Table G14 Questionnaire 13
25.48.07.40 – Issue IX.99 – Rev. 0
T10.0314
G–32
Wärtsilä NSD Switzerland Ltd
ZA40S
G
Engine Selection and Project Manual
Appendix
Questionnaire order specification for ZA40S engines
Table G15 Questionnaire 14
Wärtsilä NSD Switzerland Ltd
T10.0315
G–33
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
G
25.48.07.40 – Issue IX.99 – Rev. 0
G–34
Appendix
Wärtsilä NSD Switzerland Ltd
ZA40S
H.
Engine Selection and Project Manual
Index
A
I
Alarm sensors, D–4
Installation data, C–21
Ambient temperature considerations, B–4
Installation of winGTD, F–1
Ancillary systems, C–101
Intelligent–engine management, D–1
Ancilliary system design parameters, C–7
ISO Standard 3046–1, C–7
Approved suppliers, D–4
L
Auxiliary power generation, C–99
Leaking collection system and washing devices, C–152
C
Load range, B–1
Capacity of starting air receivers and compressors, C–150
Loading programme, C–18
Consideration on engine selection, B–1
Lubricating oil maintenance and treatment, C–137
Conversion factors, G–6
Lubricating oil requirements, C–136
Cooling and pre–heating water systems, C–125
Lubricating oil system, C–136
Cooling and ventilation air, C–95
M D
MAPEX, D–7
DENIS, D–1
MAPEX–PR, D–7
DENIS family, D–2
MAPEX–SM, D–7
DENIS specification, D–2
MAPEX-SM, D–8
Design conditions, C–7
Mass of engine component, C–23
Determination of exhaust pipe diameters, C–155 Dismantling hights, C–21
N NOx emissions, E–1
E
Numbering synopsis and designations, C–96
Engine air supply, C–159 Engine Coupling, C–69
O
Engine description, C–1
Order specification, G–19
Engine dimensions, C–21 Engine emissions, E–1
P
Engine main parameters, C–1
Part load data diagram, C–101, C–102
Engine management system, D–1
Pipe connection plans, C–71
Engine masses, C–21
Piping symbols, G–2
Engine noise, C–161
Piping systems, C–125
Engine options, A–1
Power / speed range of ZA engines, A–1
Engine outlines, C–25
Pre-heating, C–135
Engine room ventilation, C–159 Engine seatings, C–47
Pressure and Temperature ranges at continuous service rating, C–20
Estimation of engine performance data, C–7
Pressurized fuel oil system, C–146
Exhaust gas system, C–155 External couples and torque variations, C–11
Q Questionnaire about engine vibration, C–14
F
Questionnaire Computerized GTD, C–104, C–105
Fuel oil requirements, C–140 Fuel oil system, C–140 Fuel oil treatment, C–143
Wärtsilä NSD Switzerland Ltd
Index–1
25.48.07.40 – Issue IX.99 – Rev. 0
Engine Selection and Project Manual
ZA40S
H.
Index
R Reference conditions, C–7 Reference to other documentation, G–1 Remote control system, D–2 Resilient mounting, C–9
S SI dimensions, G–5 SIPWA–TP, D–7 Speed control, D–4 Starting ability, C–17 Starting and control air system, C–149 Sudden loading behaviour, C–17 Sulzer ZA40S cross section, C–1 Sulzer ZA40S engines, A–1 System design data, C–101
T Tank capacities, C–153 Torsional vibration, C–9 Turbocharger and scavenge air cooler selection, C–19
U Using winGTD, F–2
V Vibration aspects, C–9
W winGTD, C–104, F–1 WNSCH, Address, A–1 WNSD Corporation network, G–8 WNSD Corporation worldwide, G–7 WNSD Licensees, G–14 WNSD Marine business, G–7 WNSD Navy business, G–7 WNSD Product companies, G–7
25.48.07.40 – Issue IX.99 – Rev. 0
Index–2
Wärtsilä NSD Switzerland Ltd
View more...
Comments